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Abstract

Graph covering numbers describe the minimum number of graphs 𝐺𝑖 of a given guest class G
needed to cover a host graph 𝐻 . While these numbers have been extensively explored, we
consider a variant where the graphs 𝐺𝑖 have to be induced subgraphs of 𝐻 . This induced
global G-covering number is denoted by icGg (𝐻 ). One extension of these covering numbers is
the induced union G-covering number icGu (𝐻 ), where each graph 𝐺𝑖 can consist of multiple
vertex-disjoint induced subgraphs of 𝐻 , as long as each of them is in G.

An induced covering number icGx (𝐻 ) is called separable from the non-induced covering
number cGx (𝐻 ), if there exists a guest class G and a host class H, such that no function
𝑓 : ℕ → ℕ exists, such that icGx (H) ≤ 𝑓 (cGx (H)). In other words, the induced covering
number cannot be bounded by its non-induced counterpart. In this thesis, we show that
induced covering numbers can be separated evenwhen only considering hosts𝐻 with bounded
treewidth. Conversely, if we restrict the guest class G to only monotone graph classes, that
is, graph classes closed under taking subgraphs, we show that for hosts 𝐻 with bounded
degeneracy, the induced union covering number is not separable.
Finally, we investigate the complexity of determining induced covering numbers. We

present examples in which determining whether the induced union covering number is at
most some integer 𝑘 is NP-complete, and also show how to find a minimal induced global
forest-cover of an outerplanar graph in linear time.

Zusammenfassung

Graph covering numbers beschreiben die minimale Anzahl von Graphen 𝐺𝑖 aus einer gege-
benen Gastklasse G, die benötigt werden, um einen Hostgraphen 𝐻 zu überdecken. Während
diese Zahlen bereits umfassend untersucht wurden, betrachten wir eine Variante, bei der
die Graphen 𝐺𝑖 induzierte Teilgraphen von 𝐻 sein müssen. Diese sogenannte induzierte
globale G-covering number wird mit icGg (𝐻 ) bezeichnet. Eine Erweiterung dieses Konzepts
sind die induzierten union G-covering numbers icGu (𝐻 ), bei denen jeder Graph 𝐺𝑖 aus mehre-
ren paarweise disjunkten, induzierten Teilgraphen von 𝐻 bestehen darf, sofern jeder dieser
Teilgraphen zur Klasse G gehört.

Eine induzierte covering number icGx (𝐻 ) heißt separable von der nicht-induzierten Über-
deckungszahl cGx (𝐻 ), wenn es eine Gastklasse G und eine Hostklasse H gibt, so dass keine
Funktion 𝑓 : ℕ → ℕ existiert, mit der icGx (H) ≤ 𝑓 (cGx (H)) gilt. Anders gesagt: Die induzierte
covering number lässt sich nicht durch ihre nicht-induzierte Variante nach oben beschränken.
In dieser Arbeit zeigen wir, dass induzierte covering numbers sogar dann trennbar sind, wenn
man sich auf Hostgraphen 𝐻 mit beschränkter Baumweite beschränkt. Umgekehrt zeigen wir,
dass induzierte covering numbers nicht trennbar sind, sofern die Gastklasse G monoton ist, also
unter dem Bilden von Teilgraphen abgeschlossen, und die Hostgraphen 𝐻 eine beschränkte
Degeneriertheit aufweisen.
Abschließend untersuchen wir die Komplexität der Bestimmung induzierter covering

numbers. Wir präsentieren Beispiele, in denen es NP-vollständig ist, zu entscheiden, ob
die induzierte Vereinigungsüberdeckungszahl höchstens einen gegebenen Wert 𝑘 beträgt.
Zudem zeigen wir, wie man in linearer Zeit ein minimal induziertes globales Wald-cover eines
außenplanaren Graphen bestimmen kann.
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1 Introduction

A graph cover of a host graph𝐻 with a guest graph class G is a multiset of graphs in G such that
all edges in 𝐻 are covered. The global G-covering number of a host graph 𝐻 is the minimum
number of graphs of G needed in a cover. In one of the earliest studies of graph coverings by
Erdös et al. in 1966 [EGP66], they showed that every host graph 𝐻 can be covered with at
most ⌊ |𝑉 (𝐻 ) |2

4 ⌋ triangles and singular edges. Since then, the global covering number has been
explored extensively for different guest classes and host graphs, for example Nash-Williams
proved exact bounds for the global covering number with forests [Nas64]. The covering
number with forests as guest class is often referred to as arboricity, and many subclasses of
forests have also been studied such as linear arboricity (linear forests, i.e. paths) [Alo88], star
arboricity (star forests) [HMS96], and many more.

As many of these covering numbers have been looked at individually, Knauer and Ueckerdt
[KU16] created a framework to unify the expression of these covering numbers. Some variants
of covering numbers have shown to also be interesting to study.

They define three different G-covers, the global, local, and folded G-cover; each being less
restrictive than the previous. The three types of G-covers yield three covering numbers with
cGg ≥ cGl ≥ cGf .

For example the local covering number, the cover does not minimize the number of graphs,
but rather how often a vertex in 𝐻 is covered. Fishburn et al. studied the local covering for
the guest class of complete bipartite graphs [FH96].

The framework allows for more general results, for example the separability of the global
and local covering number for certain guest class. The global covering number cGg is called
separable from the local covering number cGl , if there exists a guest class G and a host class H,
such that no function 𝑓 : ℕ → ℕ exists, such that cGl (H) ≤ 𝑓 (cGg (H)). In other words, the
local covering number can get arbitrarily larger than the global covering number.
Induced graph coverings are a variant of normal coverings, where there is an additional

restriction on the graphs in the cover. Every graph of the guest class G used in an induced
cover has to also be an induced subgraph of𝐻 . This requirement for induced subgraphs makes
sense in applications where covers need to be more localized. When looking at the vertices
of one graph 𝐺 of any induced cover, all edges between these vertices have to be included
in 𝐺 . On the contrary, a non-induced cover may cover a dense part of the host with many
sparse graphs which might be undesirable for certain applications. While induced covers do
not prevent this entirely, the requirement for induced subgraphs certainly help by disallowing
many sparse configurations.
Induced coverings are as far as we know largely unexplored compared to non-induced

coverings. Axenovich, Ueckerdt et al. proved some results for induced forest- and star-
arboricities [ADRU19]. They also look at weak induced arboricities, where not the entire
subgraph has to be induced, but only the individual connected components.
Our goal in this thesis is transfer and expand the framework from “Three ways to cover

a graph” [KU16] to induced graph coverings. We examine induced covering numbers on
some well-known graph classes including linear forests and star forests. We also determine
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1 Introduction

the separability of induced and non-induced covering numbers for host and guest classes
with bounded degeneracy/treewidth. Finally, we establish the computational complexity for
determining the induced covering numbers for certain guest classes.
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2 Covering Numbers

2.1 Preliminaries

Let 𝐺 and 𝐻 be graphs. A subgraph 𝐻 ′ of 𝐻 is induced if every edge 𝑢𝜈 in 𝐸 (𝐻 ) with
𝑢, 𝜈 ∈ 𝑉 (𝐻 ′) is also an edge in 𝐻 ′.

A map 𝜑 : 𝑉 (𝐺) → 𝑉 (𝐻 ) is called graph homomorphism if for every edge 𝑢𝜈 ∈ 𝐸 (𝐺), the
edge 𝜑 (𝑢)𝜑 (𝜈) exists in 𝐸 (𝐻 ). A graph homomorphism is edge-surjective if for every edge
𝑒 ∈ 𝐸 (𝐻 ) some edge 𝑒′ of 𝐺 is mapped to 𝑒 , i.e. |𝜑−1(𝑢𝜈) | ≠ 0.

The disjoint union ¤∪ of graphs𝐺𝑖 is the vertex- and edge-disjoint union of these graphs 𝐺𝑖 .
In the resulting graph, the graphs 𝐺𝑖 are not connected to each other.
For a graph class G we define G as the graph class containing the disjoint union of one or

more graphs in G. For example, if S is the class of all star graphs, S is the class of all star
forest, that is the class where each graph consists of one or more disjoint stars.

2.2 Induced Covering Numbers

Let 𝐻 be a graph and G be a graph class. We call 𝐻 the host graph and G the guest class. A 𝑡-
global G-cover of𝐻 is an edge-surjective graph homomorphism𝜑 : (𝐺1 ¤∪𝐺2 ¤∪ . . . ¤∪𝐺𝑡 ) → 𝐻 ,
where for each 𝑖 ∈ [𝑡],𝐺𝑖 ∈ G. The graphs 𝐺𝑖 are called guest graphs. A cover is injective if
for all 𝑖 ∈ [𝑡], the restrictions 𝜑 |𝐺𝑖

are injective. In other words, 𝜑 (𝐺𝑖) is a copy of 𝐺𝑖 in 𝐻 .
A cover 𝜑 is called induced if for all 𝑖 ∈ [𝑡], the graphs 𝜑 (𝐺𝑖) are induced subgraphs of 𝐻 .
The induced global covering number denoted by icGg (𝐻 ) is defined as

icGg (𝐻 ) :=min{𝑡 : there exists an induced injective t-global G-cover of 𝐻 }.

To rephrase, the induced global covering number is the minimum number of graphs of G
needed to cover all edges in the host graph 𝐻 , where each graph used is an induced subgraph
of 𝐻 . Note that edges may be covered more than once.

An induced 𝑘-union G-cover is an induced 𝑡-global G-cover where the following graph is
𝑘-vertex-colorable. The graph has 𝑡 vertices, each representing one of the graphs𝐺𝑖 in the
𝑡-global cover, and there is an edge connecting the vertices representing 𝐺𝑖 and 𝐺 𝑗 if and
only if they share a vertex in 𝐻 , formally there exists 𝑢 ∈ 𝑉 (𝐺𝑖) and 𝜈 ∈ 𝑉 (𝐺 𝑗 ) such that
𝜑 (𝑢) = 𝜑 (𝜈).

In other words an induced 𝑘-union G-cover is the minimum number of graphs needed to
cover 𝐻 , where each graph can be the union of multiple graphs𝐺𝑖 in G as long as they do not
share a vertex and each 𝐺𝑖 induces a subgraph in 𝐻 . The union of multiple graphs 𝐺𝑖 can be
seen as a color class in the constructed graph on 𝑡 vertices.

The induced union covering number denoted by icGu (𝐻 ) is defined as

icGu (𝐻 ) :=min{𝑘 : there exists an induced injective k-union G-cover of 𝐻 }.
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2 Covering Numbers

An induced 𝑘-local G-cover is an induced G-cover 𝜑 , where every vertex in 𝐻 is hit at most
𝑘 times, formally max

𝜈∈𝑉 (𝐻 )
|𝜑−1(𝜈) | ≤ 𝑘 .

The induced local covering number denoted by icGl (𝐻 ) is defined as

icGl (𝐻 ) :=min{ max
𝜈∈𝑉 (𝐻 )

|𝜑−1(𝜈) | : 𝜑 is an induced injective G-cover of 𝐻 }.

The local covering number does not minimize the number of guest graphs needed, but
rather the maximum number of times a vertex in 𝐻 is used.

The induced folded covering number denoted by icGf (𝐻 ) is defined as

icGf (𝐻 ) :=min{ max
𝜈∈𝑉 (𝐻 )

|𝜑−1(𝜈) | : 𝜑 is an induced G-cover of 𝐻 }.

Note that a folded cover does not have to be injective.

2.3 Non-Induced Covering Numbers

Each of the four covering numbers icGg , icGu , icGl , ic
G
f have a corresponding non-induced covering

number cGg , cGu , cGl , c
G
f , where the cover does not have to be induced.

cGg (𝐻 ) :=min{𝑡 : there exists an injective 𝑡-global G-cover of 𝐻 }.
cGu (𝐻 ) :=min{𝑘 : there exists an injective 𝑘-union G-cover of 𝐻 }.
cGl (𝐻 ) :=min{max

𝜈∈𝐻
|𝜑−1(𝜈) | : 𝜑 is an injective G-cover of 𝐻 }.

cGf (𝐻 ) :=min{max
𝜈∈𝐻

|𝜑−1(𝜈) | : 𝜑 is a G-cover of 𝐻 }.

Clearly, every induced covering number is at least the non-induced counterpart as every
induced cover is also allowed as a non-induced cover.

Observation 2.1: For any host graph 𝐻 and guest class G we have

cGg (𝐻 ) ≤ icGg (𝐻 )
cGu (𝐻 ) ≤ icGu (𝐻 )
cGl (𝐻 ) ≤ icGl (𝐻 )
cGf (𝐻 ) ≤ icGf (𝐻 ).

2.4 Monotonicity Of Induced Covering Numbers

Furthermore, the induced covering numbers also have an internal ordering.

Lemma 2.2: For all guest classes G and all host graphs 𝐻 , we have

icGg (𝐻 ) ≥ icGu (𝐻 ) ≥ icGl (𝐻 ) ≥ icGf (𝐻 ).

Clearly every 𝑡-G-global cover is also a valid 𝑡-G-union cover. Every 𝑘-union cover is also
a valid 𝑘-local cover and every 𝑘-local cover is a valid 𝑘-folded cover. In all three cases the
covering number cannot increase.
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2.5 Linear Forest

2.5 Linear Forest

We will now examine the upper bounds for induced covering numbers for some specific
examples. Coloring numbers are sometimes closely related to covering numbers, the strong
chromatic index is one of those.

The strong chromatic index of a graph is the minimum number of colors needed to color all
edges such that each color induces a matching. Let P be the class of all paths.

Lemma 2.3: For the guest class P , the class of disjoint unions of paths, and every host graph 𝐻
we have

icPg (𝐻 ) < 2 · Δ(𝐻 )2.

Proof. Since the class P contains all matchings, the upper bound is at most the covering
number of induced matchings which corresponds to the strong chromatic index. Each color
in strong chromatic coloring induces a matching, so the induced matchings of every color
form an induced global P-cover of 𝐻 . As the strong chromatic index is known to be less than
2 · Δ(𝐻 )2 [MR97], we obtain icPg (𝐻 ) < 2 · Δ(𝐻 )2.

This bound is tight up to a constant factor. The complete graph 𝐾𝑛 as the host serves as an
example since every induced path is a singular edge, so the induced global covering number
is equal to the number of edges.

Observation 2.4: For every 𝑛 ∈ ℕ there exists a graph 𝐻 = 𝐾𝑛 such that icPg (𝐻 ) > 1
2Δ(𝐻 )

2.

Matchings can be used to find an upper bound for other induced covering numbers, so we
start by looking at the induced matching-covering numbers.

Lemma 2.5: For the guest class of all matchings G = {𝑃2} and every host graph 𝐻 we have

icGl (𝐻 ) ≤ icGu (𝐻 ) ≤ 2 ·
⌈
3Δ(𝐻 ) + 2

5

⌉
icGf (𝐻 ) ≤ Δ(𝐻 ) + 1.

Proof. Every (not necessarily induced) path in𝐻 can be split into two (non-induced) matchings
by coloring the edges of the path in alternating colors, which are also union of paths. Using
this construction, the induced G-union covering number of𝐻 is at most twice the non-induced
covering number with unions of paths, that is icPu (𝐻 ) ≤ 2 cPu (𝐻 ).
The non induced union P-covering number cPu is also known as linear arboricity. Guldan

shows in [Gul86] that for every graph 𝐻 cPu (𝐻 ) ≤ ⌈3Δ(𝐻 ) + 2
5

⌉.

The folded covering number c𝑃f (𝐻 ) is in
{
⌈Δ(𝐻 )

2
⌉, ⌈Δ(𝐻 ) + 1

2
⌉
}
[KU16].

Corollary 2.6: For the guest class of all paths P and every host graph 𝐻 we have

icPl (𝐻 ) ≤ icPu (𝐻 ) ≤ 2 · ⌈3Δ(𝐻 ) + 2
5

⌉

icPf (𝐻 ) ≤ Δ(𝐻 ) + 1.

As matchings are a subset of P , this directly follows from Lemma 2.5.

5



2 Covering Numbers

2.6 Star Forest

A tree 𝐺 with at most one vertex with more than one neighbor is called a star. Let S be
the class of all stars. The induced covering number with stars is also similar to the induced
covering numbers from the previous section.

Corollary 2.7: For the guest class S of all stars and every host graph 𝐻 we have

icSl (𝐻 ) ≤ icSu (𝐻 ) ≤ 2 · ⌈3Δ(𝐻 ) + 2
5

⌉

icSf (𝐻 ) ≤ Δ(𝐻 ) + 1.

Since matchings are also star forests, the three induced S-covering numbers above are
bounded from above by the maximum degree of 𝐻 by Lemma 2.5.
In a complete graph 𝐾𝑛 , the only star that can be induced is the path with one edge, so

the induced folded S-covering number icSf (𝐾𝑛) is Δ(𝐾𝑛). Therefore, the three bounds in
Corollary 2.7 are asymptotically tight.

6



3 Separability

Any Hereditary Monotone

Host g u, l, f g u, l, f g u, l, f

any Lemma 3.2 - Lemma 3.6 Lemma 3.7 - ?

𝑘 colorable - - - ? - ?

𝑘 degenerate - - - ? Lemma 3.10 Lemma 3.9

𝑀-minor-free - - ? ? Lemma 3.14 -

treewidth 𝑘 Lemma 3.4 Lemma 3.5 ? ? Lemma 3.11 -

Figure 3.1: A table with the results of this chapter, green for separation, red for bounded,
and yellow for unknown.

In this chapter, we first look at some relations between induced covering numbers and
corresponding non-induced coloring numbers for all graphs and then for certain restrictions
on the host or guest graph class. We already know from Observation 2.1 that the induced
covering number is greater of equal to the non-induced counterpart. Here we examine by
how much they can actually differ, that is, in which cases the induced covering number can
actually be bounded from above by the non-induced covering number.

Definition 3.1: For a guest class G, and one of the four covering types x ∈ {g, u, l, f} we say a
host class H is ( icGx , cGx )-bounded, if there exists a function 𝑓 , such that

icGx (𝐻 ) ≤ 𝑓 (cGx (𝐻 )) for all graphs 𝐻 ∈ H.

If H is not ( icGx , cGx )-bounded, we call it separable.

When we talk about separation or boundedness of a type of covering number in this
chapter, it will always be about the induced and non-induced counterpart of this type. This
differs from the separation from one type of non-induced covering number to another type of
non-induced covering number, for example, the separation of a global covering number from
a local covering number.
The table Figure 3.1 show the results of this chapter. The rows are the restrictions on the

host graph class H, that is for an integer 𝑘 and some graph 𝑀 the host class H has to be
𝑘-colorable, 𝑘-degenerate,𝑀-minor free, or treewidth at most 𝑘 . The columns are restrictions
on the guest class G, that is it has to be hereditary or monotone. Each of those columns is split
in two, the columns with the letter 𝑔 stand for the global covering numbers, the other columns
for union, local, and folded covering numbers. The green fields are separability results of this
chapter, the red fields boundedness, and the yellow fields are not examined in this thesis.

3.1 General Guest Classes

We start with the most general case, where there are no restrictions on the guest and host class.
No restrictions on the guest class allows for very constructed guest classes, so separability is
not hard to achieve.

7



3 Separability

The global, union, and local induced covering numbers icg, icu and icl cannot be bounded
by their corresponding non-induced covering number.

Lemma 3.2: There exists a host classH and a guest class G such that for every 𝑛 ≥ 3 there exists
a host 𝐻 ∈ H such that for 𝑥 ∈ {g, u, l}

icGx (𝐻 ) ≥ 𝑛 − 1 and cGx (𝐻 ) = 2.

Proof. Let the host class H be the class of all complete graphs. Let the guest class consist of
𝐾2 and all complete graphs with one edge missing, that is we set
G = {𝐾𝑛′ − 𝑒 | 𝑛′ ≥ 3, 𝑒 ∈ 𝐸 (𝐾𝑛′)} ∪ {𝐾2}.

For any 𝑛 ≥ 3we consider the complete graph𝐻 = 𝐾𝑛 ∈ H. Clearly, every induced graph of
a complete graph is also a complete graph, so 𝐾2 is the only guest that is an induced subgraph
of 𝐻 . Therefore, there can only be matchings in any injective induced local G-covering, so
icGl (𝐻 ) = 𝑛 − 1 since every matching covers at most one edge of a vertex. Using Lemma 2.2
we get 𝑛 − 1 = icGl (𝐻 ) ≤ icGu (𝐻 ) ≤ icGg (𝐻 ).

The non-induced covering number is 2 for all three covering types, as indeed for any edge
𝑒 ∈ 𝐸 (𝐻 ), the graphs 𝐾𝑛 − 𝑒 and the graph which consists of only 𝑒 form a 2-global injective
G-cover of 𝐻 . In particular, we obtain cGg (𝐻 ) = cGu (𝐻 ) = cGl (𝐻 ) = 2.

Adding restrictions to the host class H make the question of separability more interesting.
Indeed, if there is a host class H′ ⊆ H, such that icx(H) and cx(H) can be separated, the
covering numbers can also be separated for H. Specifically, showing separability for more
sparse host graphs is a stronger result than the previous Lemma 3.2. One way to limit the
density of our host graphs is to limit their treewidth. The treewidth of a graph 𝐻 is the
minimum 𝑘 ∈ ℕ, such that 𝐻 is a subgraph of some 𝑘-tree. A 𝑘-tree is a graph formed by
𝐾𝑘+1 and then adding more vertices, such that after each addition of a vertex 𝜈 , 𝜈 has exactly
𝑘 neighbors and the 𝑘 neighbors of 𝜈 induce a clique. We use tw(𝐺) as the notation for the
treewidth of a graph 𝐺 .
We introduce a graph class we will later use as our host class. For 𝑛 ∈ ℕ we denote the

cycle on 𝑛 vertices with 𝐶𝑛 . Let 𝐶′
2𝑛 be a cycle graph on 2𝑛 vertices, with one extra chord:

this one edge connects two vertices that are exactly distance 𝑛 apart in the cycle. We call this
graph a split cycle.

Figure 3.2: The split cycle 𝐶′
8, with one of the two smaller cycles colored blue.

Observation 3.3: For every 𝑛 ≥ 1 there is no induced simple even cycle in 𝐶′
4𝑛 .

8



3.1 General Guest Classes

Proof. 𝐶′
4𝑛 clearly only has three subgraphs which are cycles on more than two vertices. The

two smaller cycles have 2𝑛+1 vertices, so the cycle is odd. The larger cycle uses all 4𝑛 vertices,
which induces the entire graph 𝐶′

4𝑛 , which is not a cycle.

Lemma 3.4: There exists a host class H of treewidth 2 and a guest class G such that for any
𝑛 ≥ 2 there exists an 𝐻𝑛 ∈ H with

cGg (𝐻𝑛) = 2 and icGg (𝐻𝑛) ≥ 4𝑛 + 1.

Proof. Let the guest class be the class of all even cycles G = {𝐶2𝑘 : 𝑘 ≥ 2} ∪ {𝐾2}. For every
𝑛 ≥ 2 let 𝐻𝑛 = 𝐶′

4𝑛 be the split cycle with 4𝑛 vertices. Note that this graph has treewidth 2.
Let the host class H be {𝐻𝑛 : 𝑛 ≥ 2}.
For every 𝑛 ≥ 2 and 𝐻𝑛 , the non-induced global G-covering number is two, as it can be

covered with a 𝐶4𝑛 and the remaining chord with 𝐾2, i.e. cGg (𝐻𝑛) = 2.
We now show that for every 𝑛 ≥ 2, the induced global G-covering number icGg (𝐻𝑛) is at

least 4𝑛 + 1. From Observation 3.3 we know 𝐻𝑛 has no induced even cycle of more than two
vertices. Therefore, the only induced even cycle is 𝐾2, so any edge of 𝐶′

4𝑛 has to be covered
individually, i.e. icGg (𝐶′

4𝑛) = 4𝑛 + 1.

Figure 3.3: A wheel𝑊8, with one extra chord.

For the union covering numbers this construction is not enough for separability. As we can
take many vertex disjoint edges, the induced union G-covering number of 𝐶′

4𝑛 will not get
large, even when G contains only 𝐾2. To extend our construction to separate union covering
numbers, we add one additional universal vertex to a split-cycle 𝐶′

4𝑛 . As we will show, this
construction is enough to even separate local and folded induced covering numbers to their
non-induced counterpart.

Lemma 3.5: There exists a host class H of treewidth 3 and a guest class G such that for every
𝑛 ≥ 2 there exists a host 𝐻 ∈ H such that for 𝑥 ∈ {u, l, f}

cGx (𝐻 ) = 2 and icGx (𝐻 ) ≥ 𝑛

Proof. A cycle with one additional vertex connected to all other vertices is called a wheel. We
denote the wheel with 𝑘 + 1 vertices by𝑊𝑘 for 𝑘 ≥ 3. The size of a wheel is the number of
vertices without the universal vertex, so𝑊𝑘 has size 𝑘 . Let the guest class be the class of all
even sized wheels and the complete graphs 𝐾2 and 𝐾3, that is G = {𝑊2𝑘 : 𝑘 ≥ 2}∪ {𝐾2, 𝐾3}. For
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3 Separability

an integer 𝑛 ≥ 2 we construct the graph 𝐻𝑛 by taking a copy of𝑊4𝑘 . Denote the vertices as
𝜈1, . . . , 𝜈4𝑘+1. Assume 𝜈1 is the universal vertex of𝑊4𝑘 and 𝜈2, . . . , 𝜈4𝑘+1 are the other vertices
in cyclic order. We add the edge 𝜈2𝜈2𝑘+2 to the graph𝐻𝑛 (Figure 3.3). Note that this graph is the
same as a split cycle𝐶′

4𝑘 with one extra universal vertex. Let the host class beH = {𝐻𝑛 : 𝑛 ≥ 2}.
Note that every 𝐻𝑛 has treewidth 3 as 𝐶′

4𝑛 has treewidth 2 and 𝐻𝑛 only has one additional
vertex.

For every 𝑛 ≥ 2 the non-induced union G-covering number cGu (𝐻𝑛) is 2 as we can cover 𝐻𝑛

with𝑊4𝑛 and a singular edge 𝐾2.
For every 𝑛 ≥ 2 the induced union G-covering number of 𝐻𝑛 is at least 𝑛. Indeed, we show

that there is no induced subgraph of 𝐻𝑛 that is an even wheel on more than five vertices.
Assume there is an induced subgraph 𝐺 that is an even wheel on more than five vertices. In
every wheel, there is one universal vertex connected to all other vertices. Denote this vertex
with 𝜈1. As there are more than four other vertices in 𝐺 , this vertex has degree greater 4.
There is only one vertex in 𝐻𝑛 that has degree greater 4, that is 𝜈1, so this vertex has to be the
vertex connected to all others. The remaining vertices must induce an even cycle, but as 𝐻𝑛

without vertex 𝜈1 is 𝐶′
4𝑛 , and there is no induced even cycle in 𝐶′

4𝑛 by Observation 3.3. This
contradicts the assumption that there is a subgraph that is an even wheel on more than 5
vertices.
As any cover uses wheels with at most 5 vertices and there is a vertex with degree 4𝑛, this

vertex is hit at least 𝑛 times, i.e. icGf (𝐻𝑛) ≥ 𝑛.

3.2 Hereditary Guest Classes

As we have seen in the previous section, if there are no restrictions on the guest class, we
may obtain many examples that lead to separability. We used some specifically constructed
examples, which may feel a bit unnatural. In this section, we limit the guest class to be
hereditary, as most commonly used graph classes are hereditary and therefore feel more
natural. A graph class G is hereditary if and only if it is closed under taking induced subgraphs.

Even when only considering hereditary guest classes, the induced global covering number
cannot be bounded by its corresponding non-induced global covering number.

Lemma 3.6: There exists a host class H and a hereditary guest class G such that for every 𝑛 ≥ 3
there exists a host 𝐻 ∈ H such that

icGg (𝐻 ) ≥ 𝑛 and cGg (𝐻 ) = 2.

Proof. For every 𝑛 ≥ 3, we construct the graph 𝐻𝑛 that arises from a copy of the complete
graph 𝐾𝑛 . We denote by 𝜈1, 𝜈2, . . . , 𝜈𝑛 the vertices of 𝐻𝑛 . For each vertex 𝜈𝑖 we add a new
vertex 𝑢𝑖 with an edge connecting 𝜈𝑖 and 𝑢𝑖 (Figure 3.4). We call these new edges 𝜈𝑖𝑢𝑖 hairs
of 𝐻𝑛 . Now, we set H = {𝐻𝑛 | 𝑛 ≥ 3}. The guest class G consists of the disjoint union of
complete graphs. Note in particular that G is hereditary.
For any 𝑛 ≥ 3 we consider the host 𝐻𝑛 ∈ H. We have cGg (𝐻𝑛) = 2, as the edges of the

complete graph in 𝐻𝑛 can be covered with one complete graph and all other edges with one
matching.

Now consider an induced injective G-cover of 𝐻𝑛 . We show that any guest 𝐺 ∈ G covers at
most one hair. Assume a guest 𝐺 ∈ G contains at least two hairs 𝑢𝑖𝜈𝑖 and 𝑢 𝑗𝜈 𝑗 , where 𝑖 ≠ 𝑗 .
The vertices 𝑢𝑖 and 𝑢 𝑗 have degree 1, so they cannot be part of the same component of𝐺 , as
each component is a complete graph. Yet, the vertices 𝜈𝑖 and 𝜈 𝑗 induce the edge 𝜈𝑖𝜈 𝑗 , which
connects the components of 𝑢𝑖 and 𝑢 𝑗 , a contradiction.
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Figure 3.4: A complete graph 𝐾5, with hairs colored blue.

We observe that the induced global G-cover has to contain at least 𝑛 guests as there are 𝑛
hairs in 𝐻𝑛 , i.e. icGg (𝐻𝑛) ≥ 𝑛.

Just as in the previous section, a slightly more complex construction is needed to separate
union, local, and folded covering numbers, as Lemma 3.6 heavily relies on the fact that all
guests are connected.

Lemma 3.7: There exists a host class H and a hereditary guest class G such that for every 𝑛 ≥ 2
there is a host 𝐻 ∈ H such that for 𝑥 ∈ {u, l, f}

icGx (𝐻 ) ≥ 𝑛 and cGx (𝐻 ) = 2.

Proof. Let the guest class G be the class of all complete graphs and stars. Note that this class
is hereditary. For every 𝑛 ≥ 2 construct 𝐻𝑛 by starting with 𝑛 disjoint copies of 𝐾𝑛 . Add one
extra vertex that is connected to all vertices (Figure 3.5). We call this vertex the center vertex.
Let H be the class of all 𝐻𝑛 for 𝑛 ≥ 2.
For every 𝑛 ≥ 2, 𝐻𝑛 can be non-induced covered with one star covering all edges of

the center vertex and 𝑛 disjoint 𝐾𝑛 covering the edges of the copies of 𝐾𝑛 . Therefore, the
non-induced union, local and folded G-covering number is 2.
We now show that the induced folded G-covering number icGf (𝐻𝑛) is at least 𝑛. We claim

that no graph 𝐺 ∈ G can cover more than 𝑛 edges of the center vertex.
Assume a graph 𝐺 ∈ G covers more than 𝑛 edges of the center vertex. We denote the 𝑛

copies of 𝐾𝑛 with 𝐾1
𝑛, . . . , 𝐾

𝑛
𝑛 . Since the center vertex has 𝑛 edges to each of the 𝑛 copies of 𝐾𝑛 ,

according to the pigeon-hole principle, there are edges to at least two distinct 𝐾𝑖
𝑛 and 𝐾 𝑗

𝑛 and
there are at least two edges to the same 𝐾𝑙

𝑛 that are covered by 𝐺 . Two vertices of distinct 𝐾𝑖
𝑛

and 𝐾 𝑗
𝑛 do not have an edge between them, so 𝐺 cannot be a complete graph. Two vertices of

the same 𝐾𝑛 induce the edge between them, therefore they both have degree at least 2 as they
are also connected to the center vertex. This means 𝐺 can also not be a star and therefore is
not in G, a contradiction to the assumption.

11



3 Separability

Figure 3.5: Three copies of 𝐾3, with one universal vertex colored red.

As the center vertex is incident to 𝑛2 edges and each 𝐺 ∈ G can cover at most 𝑛 of those
edges, the folded covering number is at least 𝑛, i.e. icGf (𝐻𝑛) ≥ 𝑛. From Lemma 2.2 we obtain
icGf ≥ icGl ≥ icGu , from which the remaining inequalities of this lemma follow.

For many host classes the question of separability remains open for hereditary guest classes.
One interesting question might be which restrictions to the host class separate their induced
union covering number from the non-induced covering number.

3.3 Monotone Guest Classes

A further natural restriction is requiring the guest classes to be monotone. A graph class G
is monotone if and only if it is closed under taking (not necessarily induced) subgraphs. In
this section, we only consider monotone guest classes. When a graph class is monotone, it
often contains many useful subgraphs for covering. We will use the fact, that every monotone
graph class contains all stars, or if the graph class has bounded maximum degree all stars
up to that degree. To start, we show that for monotone guest classes, all host classes with
bounded degeneracy have bounded covering numbers for union, local, and folded induced
covering numbers.

A graph 𝐺 has degeneracy 𝑑 , if in every subgraph 𝐺 ′ ⊆ 𝐺 there exists a vertex with degree
at most 𝑑 . Let 𝑑 (𝐺) denote the minimum degeneracy of a graph 𝐺 and 𝑑 (G) = sup

𝐺∈G
{𝑑 (𝐺)}

denote the degeneracy of a graph class G.
For host graphs with bounded degeneracy, we have the following useful lemma.

Lemma 3.8 ([ADRU19, Theorem 7]): For every host graph 𝐻 , we have icSu (𝐻 ) ≤ 2𝑑 (𝐻 ), where
S is the class of all stars.
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Using this lemma, we show that when only considering monotone guest classes and host
graph classes with bounded degeneracy, the union, local and folded induced covering numbers
can be bounded by their non-induced counterpart.

Figure 3.6: The star 𝑆8, divided into two 𝑆3 and one 𝑆2.

Lemma 3.9: For every monotone guest class G, we have for every host 𝐻

icGu (𝐻 ) ≤ 2 𝑑 (𝐻 ) · cGu (𝐻 )
icGl (𝐻 ) ≤ 2 𝑑 (𝐻 ) · cGl (𝐻 )
icGf (𝐻 ) ≤ 2 𝑑 (𝐻 ) · cGf (𝐻 ).

In particular, for every monotone guest class G, every host class H with bounded degeneracy is
(icGu (H), cGu (H))-, (icGl (H), cGl (H))-, and (icGf (H), cGf (H))-bounded.

Proof. We will start the proof for the case that the maximum degree of every vertex in every
graph 𝐺 ∈ G is bounded. Let 𝑘 be this maximum degree in G and 𝐻 be any graph in H.
Since G is monotone, it also contains all stars with up to 𝑘 leaves, that is vertices of degree 1.
According to Lemma 3.8, any host 𝐻 with degeneracy at most 𝑑 admits a 2𝑑-union S-cover.
We take any valid induced 2𝑑-union S-covering of 𝐻 . While this induced union cover may
use stars with up to Δ(𝐻 ) leaves, there are only stars up to degree 𝑘 in G. Yet, every star of
degree at most Δ(𝐻 ) is the union of at most ⌈Δ(𝐻 )

𝑘
⌉ many stars in G (see Figure 3.6). Therefore,

icGu (𝐻 ) ≤ 2𝑑 · ⌈Δ(𝐻 )
𝑘

⌉.
The non-induced folded G-covering number is at least ⌈Δ(𝐻 )

𝑘
⌉ as the vertex in 𝐻 with

the highest degree has to be used in at least that many stars to cover all incident edges, so
cGf (𝐻 ) ≤ ⌈Δ(𝐻 )

𝑘
⌉.

Combining these two inequalities we get icGu (𝐻 ) ≤ 2𝑑 · Δ(𝐻 )
𝑘

≤ 2𝑑 · cGf (𝐻 ). The remaining
inequalities of this lemma follow from this and Lemma 2.2.

In the case that the maximum degree of the graphs𝐺 ∈ G is not bounded, it is easy to see
that from the monotony of G we can follow that the class of all stars S is contained in G. We
immediately get icGf (𝐻 ) ≤ 2𝑑 (𝐻 ) from Lemma 3.8, which also show all inequalities of this
lemma.

While the union, local, and folded induced covering numbers are bounded for graphs with
bounded degeneracy, the same is not true for the global induced covering number. We can
use the fact, that for induced global coverings, all connected components of a guest must
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have distance of at least two. Indeed, if there are two connected components 𝐶1 and 𝐶2 with
distance 1, at least one edge between𝐶1 and𝐶2 would be induced. With this, we can construct
an example where the induced global covering number can get arbitrarily large, while the
non-induced global covering number stays the same.

Figure 3.7: The 1-edge subdivision
of the graph 𝐾3, the new vertices are
colored blue.

Figure 3.8: Coloring of the 1-edge
subdivision of the graph 𝐾3.

Lemma 3.10 ([AGRU18, Theorem 4(ii)(a)]): There exists a host classHwith bounded degeneracy
and a monotone guest class G such that for any 𝑛 ≥ 2 there exists a host 𝐻 ∈ H such that

icGg (𝐻 ) ≥ 𝑛 − 1 and cGg (𝐻 ) ≤ 2

Proof. For any fixed 𝑛 ≥ 2 let 𝐾 ′
𝑛 be the graph obtained by subdividing each edge of 𝐾𝑛 once.

That is, every edge 𝑢𝜈 in 𝐾𝑛 is replaced by a 𝑢𝜈-path with two edges. We denote the original
vertices of 𝐾𝑛 by 𝑉 := {𝜈1, . . . , 𝜈𝑛} and the new vertices of the edge subdivision by 𝑉 ′. As all
new vertices 𝜈 ′ ∈ 𝑉 ′ have degree 2 and the original vertices 𝜈 ∈ 𝑉 only have edges to new
vertices, 𝐾 ′

𝑛 clearly has degeneracy 2. Let H be the class of all 𝐾 ′
𝑛 for 𝑛 ≥ 2 and the guest class

G be the class of all star forests S . Note that this guest class is monotone.
First we show cGg (𝐾 ′

𝑛) ≤ 2. Let us partition the edges of 𝐾 ′
𝑛 into two color classes so that

each of the two color classes corresponds to a star forest. Note that every edge in 𝐾 ′
𝑛 connects

an original vertex 𝜈 ∈ 𝑉 to a new vertex 𝜈 ′ ∈ 𝑉 ′. Each of the new vertices 𝜈 ′ ∈ 𝑉 ′ has exactly
two neighbors 𝑢 and𝑤 . Color the two edges 𝑢𝜈 ′ and 𝜈 ′𝑤 with two different colors. As every
edge is only incident to exactly one new vertex, such a coloring exists. It is easy to see that
both colors form star forests with the original vertices of 𝐾𝑛 being the centers of the stars
(that is the only vertex in a star with degree greater 1) as seen in Figure 3.8.

Now we show icGg (𝐾 ′
𝑛) ≥ 𝑛 − 1. Take any induced 𝑡-global S-cover 𝜑 : 𝐹1 ¤∪ . . . ¤∪𝐹𝑡 → 𝐾 ′

𝑛

of 𝐾 ′
𝑛 . Let 𝑢𝜈 ′ be an edge in a forest 𝐹𝑖 and𝑤 be the only other neighbor of 𝜈 ′ in 𝐾 ′

𝑛 .
If the edge 𝜈 ′𝑤 exists in the same star forest, 𝜈 ′ has to be a center of a star. This means 𝑢

and𝑤 are leaves of 𝐹𝑖 and cannot have any more edges in this star forest.
If the edge 𝜈 ′𝑤 does not exist in the same star forest, no other edge with endpoint𝑤 belongs

to the star forest 𝐹𝑖 , as that would induce 𝜈 ′𝑤 .
In both cases for each edge, 𝑢𝜈 ′ (and 𝜈 ′𝑤 ), one of the original vertices in 𝐾𝑛 , 𝑤 (and 𝑢),

cannot have any more incident edges. Therefore, any star forest can only contain up to 𝑛
edges and at least 2·(𝑛2)

𝑛
= 𝑛 − 1 star forests have to be used.
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While the induced global covering number icGg for monotone guest classes cannot be
bounded in terms of the degeneracy of the host and the non-induced counterpart, it can be
bounded when using the treewidth of the host graph.

Lemma 3.11: For any monotone guest class G and every host class 𝐻

icGg (𝐻 ) ≤ 3
(tw(𝐻 )+1

2
)
· cGg (𝐻 ).

Proof. Every host graph 𝐻 is the union of at most 3
(tw(𝐻 )+1

2
)
induced star forests [ADRU19,

Theorem 8]. The remaining proof is identical to the previous lemma.

Another type of host classes, where the induced global covering number can be bounded in
terms of the non-induced global covering number is the class of𝑀-minor free graphs. Here
we can use some coloring numbers to prove a bound.

The 𝑡-coloring 𝑐𝑜𝑙𝑡 (𝐺) of a graph 𝐺 is defined as the minimum integer 𝑘 , such that an
ordering of the vertices in 𝐺 exists, where from every vertex 𝜈 ∈ 𝑉 (𝐺) at most 𝑘 − 1 smaller
vertices of the ordering can be reached using paths with at most 𝑡 edges.

Lemma 3.12 ([Van+17, Corollary 1.3]): For every graph 𝐺 that excludes the complete graph 𝐾𝑛
as a minor, we have

𝑐𝑜𝑙𝑡 (𝐺) ≤
(
𝑛−1
2
)
· (2𝑡 + 1).

We use this upper bound to determine a bound for the star chromatic number, which is the
number of colors needed to color a graph 𝐺 , such that any two colors induce a star forest.

Lemma 3.13 ([JNM23, Page 188]): For every graph 𝐺 , 𝑐𝑜𝑙2(𝐺) is equal to the star chromatic
number.

Using the star chromatic number, we can easily find an upper bound for the induced global
covering number.

Lemma 3.14: For every 𝐾𝑛-minor free host class H and every monotone guest class G, we have

icGg (H) ≤
(5(𝑛−12 )

2
)
· cGg (H).

Proof. For any 𝐾𝑛-minor free host graph 𝐻 we know from Lemma 3.12 that the 2-coloring
number is at most 5 ·

(
𝑛−1
2
)
. Furthermore, Lemma 3.13 states that the star chromatic number is

equal to the 2 strong coloring number, so also 5 ·
(
𝑛−1
2
)
. From the definition of star chromatic

number, any two colors of a star chromatic coloring induces a star forest. The induced star
forest of all pairs of colors clearly cover the entire graph 𝐺 , so the induced global covering
number is at most

(5(𝑛−12 )
2

)
.

Corollary 3.15: For every monotone guest class G, every𝑀-minor free host class is ( icGg , cGg )-
bounded.

With this section, the question of separability for monotone guest classes is solved for
most classes of hosts. What remains open is whether hosts with unbounded degeneracy are
separable for union, local, and folded induced covering numbers.

Question 3.16: Are all hosts classes H ( icGu , cGu )-bounded for all monotone guest classes G?
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4 Complexity of Determining Induced
Covering Numbers

4.1 NP-complete examples

Lemma 4.1 ([KSW78]): Determining whether the non-induced global clique-cover number of a
given graph 𝐻 is at most a given integer 𝑘 is NP-complete.

As every subgraph in a graph 𝐻 that is a clique is also an induced clique in 𝐻 , this is also
trivially true for the induced global clique-cover number.

Corollary 4.2: Determining whether the induced global clique-cover number of a given graph
𝐻 is at most a given integer 𝑘 is NP-complete.

Lemma 4.3: In any triangle-free graph 𝐻 , we have

icSu (𝐻 ) = cSu (𝐻 ).

where S is the class of all stars.

Proof. We claim that every non-induced union S-cover of every triangle-free graph 𝐻 is also
an induced union S-cover. Assume a non-induced union S-cover 𝜑 : 𝑆1, . . . , 𝑆𝑡 → 𝐻 of a
triangle-free graph 𝐻 is not a valid induced union S-cover. This means that at least one star
𝑆𝑖 in the union S-cover is not induced. Let 𝑢𝜈 be one edge in 𝐻 , where 𝑢𝜈 is not in 𝐸 (𝑆𝑖),
but is induced by 𝑆𝑖 in 𝐻 . As this edge is not in the star, neither of the two vertices 𝑢 and 𝜈
is the center vertex of the star. Let us denote the center vertex of the star by 𝑐 . The three
edges 𝑐𝑢, 𝑐𝜈 , and 𝑢𝜈 are all in 𝐻 , and form a triangle, contradicting the assumption that 𝐻 is
triangle-free. Therefore, every non-induced S-cover of a triangle-free graph 𝐻 is also a valid
induced union S-cover of 𝐻 . Since the induced covering number is always at least as large as
the non-induced counterpart, this proves the equality icSu (𝐻 ) = cSu (𝐻 ).

Lemma 4.4: For any graph 𝐻 if there exists a union S-cover of size 𝑘 , then there also exists an
union S-cover of size at most 𝑘 such that every edge in 𝐻 is covered exactly once.

Proof. Clearly, all subgraphs of a star 𝑆 are also stars. Given a non-induced union S-cover
𝜑 : 𝑆1, . . . , 𝑆𝑡 → 𝐻 , as long as there is an edge in 𝐻 that is covered more than once, we can
remove one instance of that edge in one star 𝑆𝑖 of the cover. We end up with a cover of size at
most 𝑘 , where no edge in 𝐻 is covered more than once.

In fact, a covering as described in Lemma 4.4 corresponds to an edge-coloring of 𝐻 , where
every color forms a star forest. We call an edge-coloring, where every color forms a star forest,
a star-forest-coloring.

Corollary 4.5: For any graph 𝐻 if there exists a union S-cover of size 𝑘 , then there also exist a
star-forest-coloring into 𝑘 colors.
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Lemma 4.6: If there exist a star-forest-coloring of a graph 𝐻 with 𝑘 colors, there also exist a
union S-cover of size 𝑘 .

Proof. Take any star-forest-coloring with 𝑘 colors, and for every color, the star forest of that
color. The stars in these 𝑘 star forest form a union S-cover. Since the stars of a star forest are
vertex-disjoint, this union S-cover has size at most 𝑘 .

upper

right up-facing
lower

left up-facing

left antenna right antenna

right legleft leg

Figure 4.1: Variable gadget with its edge
names

𝑙1 𝑙2 𝑙3

𝑏1

𝑏2

𝑏3
𝑏4

Figure 4.2: Clause gadget

Theorem 4.7 ([HMS96, Theorem 4]): Determining whether cSu (𝐻 ) ≤ 2 is NP-complete for even
2-degenerate graphs 𝐻 .

A Not-All-Equal 3SAT instance, consists of variables𝑉 and clauses𝐶 . In every clause 𝑐 ∈ 𝐶 ,
there are exactly three literals of variables in 𝑉 . A clause 𝑐 denotes, that the three literal
cannot all three be true, or all three be false. Deciding whether a Not-All-Equal 3SAT instance
has a valid assignment of variables to true or false is NP-complete [Sch78].

Theorem 4.8 ([Sch78]): Not-All-Equal 3SAT is NP-complete.

Our goal is to prove Theorem 4.7 by reducing Not-All-Equal 3SAT to 2-Star-Forest-Cover,
the problem described in Theorem 4.7. Given any Not-All-Equal 3SAT instance 𝐼 with variables
𝑉 and clauses 𝐶 , the auxiliary graph 𝐻 contains one copy of the variable gadget (Figure 4.1)
for every variable 𝜈 ∈ 𝑉 and a copy of the clause gadget (Figure 4.2) for every clause 𝑐 ∈ 𝐶 . In
every variable gadget, we call the left vertex of the lower edge the “true” vertex and the right
one the “false” vertex. We add an edge from every literal vertex 𝑙1, 𝑙2, and 𝑙3 of every clause
gadget to the corresponding variable gadget, either the “true” vertex or the “false” vertex
depending on the literal type. We call these added edges the connecting edges, and together
with the left (or right) leg, they form the left (or right) down-facing edges of a variable gadget.

In the following we will prove that icSu (𝐻 ) ≤ 2 is true if and only if there exists a valid
variable assignment in 𝐼 .

Within this section, we refer to the two colors of any 2-coloring as blue and red.

Lemma 4.9: If there exists a star-forest-coloring of 𝐻 with 2 colors, then for every variable
gadget, all its left down-facing edges have the same color 𝑐1 and all its right down-facing edges
also have the same color 𝑐2. Note that (for this lemma) 𝑐1 and 𝑐2 are not necessarily distinct.

Proof. Take any star-forest-coloring of edges with 2 colors. There clearly cannot be any
monochromatic paths of length 3, that is a path 3 edges.
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4.1 NP-complete examples

We use the same notation as in Figure 4.1. Assume there is a variable gadget that has left
down-facing edges in both colors. Without loss of generality there is at least one red right
down-facing edge in the same gadget. The lower edge has to be blue, otherwise there would
be a red path of length 3. The right up-facing edges has to be red as otherwise it would extend
the blue path with the lower edge and a blue left down-facing edge to length 3. The upper
edge and the right antenna have to be blue to not extend the red path with the right up-facing
edge. The left up-facing edge has to be red to not extend the blue path with the upper edge
with the right antenna. The left antenna cannot be either color since being red would extend
the red path with the left up-facing edge, and being blue would extend the path with the
upper edge together with the right antenna. This contradicts there being a coloring with two
colors, so all left down-facing edges of each variable gadget have to be the same color.
The proof that all right down-facing edges have the same color is identical with left and

right swapped.

Lemma 4.10: If there exists a star-forest-coloring of 𝐻 with 2 colors, then the left down-facing
edges of all variable gadgets 𝐺𝜈 have to be colored differently than the right down-facing edges
in 𝐺𝜈 .

Proof. From Lemma 4.9 we know that the same side down-facing edges all have the same color.
Assume left and right down-facing edges have the same color. Without loss of generality let all
down-facing edges be red. The lower edge has to be blue to avoid the red path of length 3. We
then choose the color 𝑐1 for the left up-facing edge. The antenna and upper edge have to be in
the other color 𝑐2, as the up-facing edge forms a monochromatic path of length 2 with either
a down-facing edge or the lower edge. The same is true for the right up-facing edge. Since
the upper edge has to be different from both up-facing edges those two must have the same
color 𝑐3. The left and right antenna also have to be a different color from their corresponding
up-facing edge 𝑐3, so they also have to be in the same color 𝑐4. The left antenna, upper edge,
and right antenna all have the same color now and form a monochromatic path of length 3,
so this connected monochromatic component is not a star, this contradicts the assumption.
Therefore, the left down-facing and right down-facing edges have distinct colors.

Lemma 4.11: For every variable gadget𝐺𝜈 , if all left down-facing edges have the same color, all
right down-facing edges have the same color, and these two colors are distinct, then it is possible
to star-forest-color the edges of a variable gadget with 2 colors.

Proof. Without loss of generality let the left down-facing edges be red and the right down-
facing edges be blue. Color the lower edge red, the both up-facing blue, the left antenna blue,
and the upper edge and the right antenna red. As there every monochromatic connected
component is a star this construction proves the lemma.

Lemma 4.12: If there exists a star-forest-coloring of 𝐻 with 2 colors, then every edge 𝑙 𝑗𝑏 𝑗 from
every clause gadget is colored differently from the other incident edge from a variable gadget
into 𝑙 𝑗 .

Proof. Let the other incident edge from the variable gadget be 𝑙 𝑗𝑎 and the color of that edge
be 𝑐 . As proven in Lemma 4.9, all down-facing edges incident to 𝑎 have the same color 𝑐 . The
vertex 𝑎 also has an incident leg in that same color 𝑐 , so that leg together with the edge 𝑙 𝑗𝑎
already form a monochromatic path on two edges. Assume the edge 𝑙 𝑗𝑏 𝑗 would also be in
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the same color. This would extend the monochromatic path to three edges, which means this
monochromatic component does not form a star and therefore cannot be part of a star. This
contradiction proves that each edges 𝑙 𝑗𝑎𝑖 has a different color from the other incident edge of
𝑙 𝑗𝑏 𝑗 .

Lemma 4.13: If there exists a star-forest-coloring of 𝐻 with 2 colors, then in every clause gadget
the three incoming connecting edges do not all have the same color.

Proof. As a reminder, connecting edges are the edges connecting a vertex gadget with a clause
gadget. Assume all three of the connecting edges of a clause gadget 𝐺𝜈 have the same color,
let that color be blue. We know from Lemma 4.12 that all three edges 𝑙 𝑗𝑏 𝑗 for 𝑗 ∈ [3] have to
be blue. The two edges 𝑏1𝑏2 and 𝑏2𝑏3 must be blue as otherwise they would connect the two
edges 𝑙1𝑏1 and 𝑙3𝑏3 and form a path of length 3. The two other edges 𝑏1𝑏4 and 𝑏3𝑏4 must be
red as otherwise they would extend the blue path with 𝑏1𝑏2 and 𝑏2𝑏3. Now the path (𝑙1, 𝑏1, 𝑏4,
𝑏3, 𝑏1) is red and therefore cannot be part of a star. This contradicts the claim that all three
connecting edges of the same clause gadget have the same color.

Lemma 4.14: If not all three connecting edges of a clause gadget have the same color, then the
edges of the clause gadget are star-forest-colorable with two colors.

Proof. In the case that the two edges 𝑙1𝑏1 and 𝑙3𝑏3 are colored into the same colors, we color
the remaining edges as follows. Without loss of generality let 𝑙1𝑏1 and 𝑙3𝑏3 be red and 𝑙2𝑏2 be
blue. We color 𝑏1𝑏2 and 𝑏3𝑏4 blue, and 𝑏1𝑏4 and 𝑏2𝑏3 red.
In case that the two edges 𝑙1𝑏1 and 𝑙3𝑏3 have the different color, we color the remaining

edges as follows. Without loss of generality let 𝑙1𝑏1 and 𝑙2𝑏2 be red and 𝑙3𝑏3 be blue. We color
𝑏1𝑏2 and 𝑏3𝑏4 blue, and 𝑏1𝑏4 and 𝑏2𝑏3 red.

In both cases both colors form a star forest.

Lemma 4.15: If the graph 𝐻 admits a union S-cover of size 2, then the Not-All-Equal 3SAT
instance 𝐼 is a yes-instance.

Proof. If there exists a S-cover of size 2, we know from Lemma 4.6 that there also exist a
star-forest-coloring with 2 colors. Take any such coloring. From Lemma 4.9 we know that for
each variable gadget all down-facing edges from the “true” vertex are in the same color and
all down-facing edges from the “false” vertex are in the other. Assign every variable with red
colored down-facing edges from the “true” vertex to true, and every other variable to false.
From Lemma 4.9 and Lemma 4.10 we know that every variable gadget has exactly one “true”
or “false” vertex where all down-facing edges are all red, and the other one has only blue
down-facing edges. We claim that this a valid assignment.
Assume there is a clause that is violated. Then there exists a clause where all three clause-

variables are assigned to the same value. From our assignment we know all three connecting
edges to the clause gadget all have the same color. After Lemma 4.13 we know that if all three
connecting edges have the same color, there is no coloring of edges into two colors, such that
all connected components of one color is a star. Furthermore, according to Lemma 4.6 this
means there is no 2 union S-cover of 𝐻 . This violates the assumption. Therefore, all clauses
have to be valid, so the assignment is valid.

Lemma 4.16: If the Not-All-Equal 3SAT instance 𝐼 is a yes-instance, then the graph is union
S-coverable with size 2.
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4.2 Induced Forest-Covering of Outerplanar Graphs

Proof. Take any valid assignment of variables of the NOT-ALL-EQUAL 3SAT instance. If a
variable 𝜈 is assigned to true, we color all down-facing edges of the variable gadget 𝐺𝜈 from
the “true” vertex red, and any down-facing edges from the “false” vertex blue. We color these
edges exactly the other way if the corresponding variable is assigned false. From Lemma 4.11
we extend the star-forest-coloring with two colors to the vertex gadget 𝐺𝜈 . As we started
with a valid instance of the instance 𝐼 , no three connecting edges into a clause gadget have
the same color, so by Lemma 4.14 we extend the star-forest coloring with two colors to the
clause gadget. As this colors all edges in a valid way, according to Lemma 4.6 𝐻 has a union
S-cover of size 2, which proves the lemma.

The construction of the graph 𝐻 from the Not-All-Equal 3SAT instance 𝐼 is clearly poly-
nomial, and as Lemma 4.15 and Lemma 4.16 have shown, cSu (𝐻 ) ≤ 2 is true if and only if
there exists a valid variable assignment of the Not-All-Equal 3SAT instance 𝐼 . This proves
that deciding cSu (𝐻 ) ≤ 2 is NP-complete, and as the construction of 𝐻 is clearly 2-degenerate,
Theorem 4.7.

Corollary 4.17: Determining icSu ≤ 2 is NP-complete for the class of 2-degenerate graphs.

This follows directly from Lemma 4.3 and Theorem 4.7, as the construction in Theorem 4.7
does not contain any triangle.

We can do the same proof idea to extend a result for a non-induced star-covering number
to the induced star-covering number.

Lemma 4.18 ([GO09, Theorem 5]): Determining cSu ≤ 3 is NP-complete for bipartite planar
graphs.

Corollary 4.19: Determining icSu ≤ 3 is NP-complete for bipartite planar graphs.

As there are no triangles in a bipartite graph, this follows directly from Lemma 4.3 and
Lemma 4.18

4.2 Induced Forest-Covering of Outerplanar Graphs

After looking at some cases where induced coverings are NP-complete, we look at one example
where a minimal induced global cover can be found in linear time in regard to the number
of vertices. Here we introduce an algorithm to determine the global induced forest-covering
number of an outerplanar graph.

Theorem 4.20: For every outerplanar graph 𝐻 with 𝑛 vertices, we can determine the induced
forest-global covering number icFg (𝐻 ) in linear time O(𝑛), where F is the class of all forests. We
can also find such a cover in O(𝑛).

Axenovich et al showed that every outerplanar graph can be induced global covered with
at most three forests.

Lemma 4.21 ([ADRU19, Theroem 9]): The global induced forest-covering number of any
outerplanar graph 𝐻 is at most 3, that is

icFg (𝐻 ) ≤ 3

where F is the class of all forests.
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4 Complexity of Determining Induced Covering Numbers

Figure 4.3: A Triangle re-
quires three induced forest
to cover all edges.

Figure 4.4: A triangle free graph that requires
three induced forests to cover all edges.

One easy example where an outerplanar graph requires three forest in an induced cover
is a triangle. In fact, as soon as an outerplanar graph 𝐻 contains a triangle, the induced
global forest-covering number is 3. One might assume that two forests are enough in any
triangle-free outerplanar graph 𝐻 , but this is not true for the graph in Figure 4.4. Finding an
induced global cover for any outerplanar graph 𝐻 with three forest is also not difficult.
As every outerplanar graph 𝐻 has degeneracy of at most 2, it is trivially proper vertex-

colorable with tree colors.

Observation 4.22: Every outerplanar graph is proper vertex-colorable with three colors.

Lemma 4.23: For every outerplanar graph 𝐻 with 𝑛 vertices, we can find an induced global
F-cover of size 3 in linear time O(𝑛).

Proof. This follows from part of the proof of [HMS96, Theorem 2]. We add edges to 𝐻 until
𝐻 is maximal outerplanar (inner triangulated). It is easy to see that these added edges cannot
decrease the induced global covering number, as the class of all forests is monotone, that
is close under taking subgraphs. We finding any proper vertex-coloring of 𝐻 with three
colors, as this is always possible Observation 4.22. We now show the subgraph induced by
any two colors is a forest. Assume the induced subgraph of two colors is not a forest, that
is, it contains at least one cycle. Take the smallest subgraph that is a cycle 𝐶 ⊆ 𝐹 . Since our
chosen 3-coloring is proper, 𝐶 is bipartite, so the cycle 𝐶 must contain at an even amount
of vertices. But since 𝐻 is maximal, there must exist edges in 𝐻 , that form a triangle with
vertices of 𝐶 . This contradicts that the chosen cycle 𝐶 is minimal, therefore there is no cycle
in the induced subgraph with two colors 𝐹 . As there are only three pairs of colors, these three
induced forests form an induced global forest-cover of 𝐻 of size 3.

Determining whether the induced global forest-covering number icFg of an outerplanar
graph 𝐻 is 1 is trivial, as it is exactly true if 𝐻 is a forest itself. Therefore, we only have to
determine whether the induced global forest-covering number is 2 or 3, and in the case it is 2,
find any two induced forests that cover 𝐻 .
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4.2 Induced Forest-Covering of Outerplanar Graphs

We will now describe how to determine whether two induced forests can cover 𝐻 and if
yes, how to find one such cover.

Theorem 4.24: For every outerplanar graph 𝐻 with 𝑛 vertices, we can determine in linear time
O(𝑛), whether there exists two induced forests in 𝐻 , that cover all edges. If so, we can also find
one such pair in O(𝑛).

We start by trying to color the vertices of 𝐻 in two colors, let us call the two colors blue
and red. Every vertex has to be colored, but we also allow a vertex to be colored in both
colors. The property of this coloring is that the blue and red vertices each induce a forest,
and every edge in 𝐻 is covered by at least one of the two forests. We call such a coloring a
two-forest-coloring.

For this to be true, the following two things need to be true:

For every edge 𝑢𝜈 ∈ 𝐸 (𝐻 ), 𝑢 and 𝜈 both share at least one color.

The red (blue) vertices do not induce any cycle.

It is easy to see that any vertex coloring fulfilling these criteria is a two-forest-coloring. If a
two-forest-coloring exist, the global induced forest-covering number is at most 2, as the two
forests induced by the colors form such a cover. Clearly, any two induced forests which cover
all edges can also be represented by such a coloring.

Observation 4.25: For every outerplanar graph 𝐻 , the existence of a two-forest-coloring is
equivalent to icFg (𝐻 ) ≤ 2.

To simplify the process, let us initially assume the outerplanar graph𝐻 is 2-vertex connected.

Figure 4.5: Two outermost faces of an outerplanar graph colored blue and red.

We call a face𝐶 of an outerplanar graph outermost, if all but one edge are on the outer face.

Observation 4.26: Every 2-vertex connected outerplanar graph with at least one chord has at
least two outermost faces.

Clearly any 2-vertex connected outerplanar has at least one outermost face. If the outerpla-
nar graph has at least one chord, take that and divide the outerplanar graph into two. Clearly,
both halves have an outermost face.
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4 Complexity of Determining Induced Covering Numbers

Lemma 4.27: For every 2-vertex connected outerplanar graph𝐻 with𝑛 vertices, we can determine
in O(𝑛), whether there exists two induced forests in 𝐻 , that cover all edges. If there exists two
such forests, then we can also find one such pair in linear time.

Proof. The outer face of every 2-vertex connected outerplanar graph 𝐻 is a cycle on all 𝑛
vertices. We use a dynamic programming approach to find a valid coloring of the vertices
efficiently. In one state, we maintain two vertices𝑢 and 𝜈 , the colors of each of the two vertices,
and whether they are connected in each of the two colors. This state represents whether it is
possible to color all vertices in the cyclic order from 𝑢 to 𝜈 inclusive, such that 𝑢 and 𝜈 each
are colored red, blue, or in both colors, and are connected in red, blue, or both colors. We
initialize all adjacent pairs of vertices of the cyclic ordering, with all possible ways to assign
colors to the two vertices such that they share at least one color. The connectivity in each
color is automatically determined by whether the colors of the two vertices induce this color
in the edge 𝑢𝜈 , in other words, they are connected in the shared colors of 𝑢 and 𝜈 .
Then as long as 𝐻 contains at least one chord, take any outermost face 𝐹 . Let 𝜈1𝜈𝑘 be

the chord of this outermost face 𝐹 and denote the vertices of this face in cyclic order by
𝜈1, 𝜈2, . . . , 𝜈𝑘 . We now merge adjacent states of this face 𝐹 , that is we start with the states with
vertices 𝜈1 and 𝜈2, and merge them with the states with vertices 𝜈2 and 𝜈3. For this merge, we
iterate over all states 𝜈1 and 𝜈2, let us call these states 𝑠𝑖 , and for each such state 𝑠𝑖 we also
iterate over all states with 𝜈2 and 𝜈3, let us call those 𝑠′𝑗 . When the color of 𝜈2 is the same in
both states 𝑠𝑖 and 𝑠′𝑗 , we create a new state with 𝜈1 and 𝜈3, where 𝜈1 has the color it has in
state 𝑠𝑖 and 𝜈3 has the color it has in state 𝑠′𝑗 . In this state, 𝜈1 and 𝜈3 are connected in each
color 𝑐 exactly if in both state 𝑠𝑖 and 𝑠′𝑗 the two vertices are connected in color 𝑐 . After this
merge, we merge the new states of vertices 𝜈1 and 𝜈3 with the states of vertices 𝜈3 and 𝜈4 and
so on, until we are only left with states of vertices 𝜈1 and 𝜈𝑘 .

Here we for each state 𝑠𝑖 with 𝜈1 and 𝜈𝑘 , the color (red, blue, or both) of the chord between
these two vertices is determined by the colors of 𝜈1 and 𝜈𝑘 . In case the two vertices do not
share a color, this state 𝑠𝑖 is invalid, as both endpoints of all edges must contain a common
color. If this chord is colored in a color 𝑐 and in this state 𝑠𝑖 𝜈1 and 𝜈𝑘 are already connected in
that color 𝑐 , the chord would close a monochromatic cycle, and is therefore invalid, otherwise,
we create a new state with added the colors of the chord added to connectivity. Only the
newly created states of 𝜈1 and 𝜈𝑘 are valid, as the old states do not consider the chord. We can
now remove all edges of the outerplanar face 𝐹 except for the chord. Clearly, the remaining
graph remains a 2-vertex connected outerplanar graph. In this remaining graph, only the
states of two now adjacent vertices 𝜈1 and 𝜈𝑘 have been added, so all states still contain only
pairs of vertices adjacent in the cyclic ordering.
We repeat this process with any remaining outermost face until only one face remains. This

last face can be handled exactly the same, only that we can choose one edge as the “chord”,
and it does not matter which edge this is. If at the end, any valid state remains, 𝐻 is induced
global 2-forest coverable. We can construct this cover by taking any remaining state of the
remaining pair 𝑢𝜈 , coloring these two vertices in these two colors, and then backtracking from
which two states this state was created. Then we color the vertices of these states in those
colors and so on, until all vertices are colored. Since we maintained the previously mentioned
criteria, that each vertex has a color, for all edges the two endpoints 𝑢 and 𝜈 share at least
one common color, and no color induces a cycle, this induced cover is a valid induced global
F-cover of 𝐻 . In case there are no states left, there exists no valid vertex coloring fulfilling
the criteria, and therefore icFg (𝐻 ) = 3.
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For one fixed pair of vertices 𝑢 and 𝜈 , there can clearly only be a constant amount of states
containing these two vertices 𝑢 and 𝜈 . As we only merge as often as there are edges in 𝐻 , and
every outerplanar graph 𝐺 has at most 2|𝑉 (𝐺) | − 3 edges, this entire process can be done in
linear time with regard to the number of vertices.

Note that in the coloring of Lemma 4.27 we can also determine all possible colors of a fixed
vertex 𝜈 by always choosing an outermost face that does not contain 𝜈 and finish the final
face with an edge containing 𝜈 .
Until now, we assumed 𝐻 is connected and 2-vertex connected. If 𝐻 is not connected, we

can solve each connected component separately, so this does not matter. In case it is not
2-vertex connected, we can look at the block-cut-tree of 𝐻 . This block-cut-tree contains all
2-vertex connected components, and two adjacent components share exactly one vertex. We
can take any leaf component of the block-cut-tree and use Lemma 4.27 to find valid colorings
in that 2-vertx connected component 𝐶 . Here we also determine the possible colors of the
vertex 𝜈 that component 𝐶 shares with at least one other component. When we initialize the
states of a component 𝐶′ that also contains vertex 𝜈 , we need to make sure we allow no state
where vertex 𝜈 has a color it cannot have in component 𝐶 . We can repeatedly remove leaf
components of the block-cut-tree until nothing remains, then we either have no valid states
left and there is no induced global forest-cover of 𝐻 of size 2, or we can construct this cover
again by backtracking our states. The block-cut-tree and the algorithm in Lemma 4.27 both
run in linear time with regard to the number of vertices in 𝐻 , so this proves Theorem 4.24.
In total, we can determine whether the induced global forest-covering number of any

outerplanar graph 𝐻 with 𝑛 vertices is 1, 2, or 3 in O(𝑛). We are also always able to find such
a cover, so this proves Theorem 4.20.
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