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Abstract

To a certain graph there exist plenty of different drawings. In some of them one
can see the relations between the nodes better than in other drawings. There are
different characteristics of a good drawing of a graph. One of them is the number of
crossings between the edges. The corresponding optimization problem is called the
Crossing Minimization Problem (CMP) which is NP-hard.

A quite restricted version of this problem has received considerable attention that
called the One-Sided Crossing Minimization Problem (OCMP). In this problem
the nodes are placed on two horizontal lines and the solution is an order of the
nodes on the upper line such that the number of crossings is the minimum over all
possible permutations. This optimization problem is also NP-hard and there exist
several well-studied efficient heuristics. We build two approximization algorithms
using machine learning. One of them starts in a random permutation and switches
neighbouring nodes to reduce the crossings and the other algorithm determines the
leftest node in the order and by iterating we can build a complete order. We find
that our approaches are competitive on graphs on sizes the network was trained on
(up to 20 vertices) and even scale for sizes with up to 50 vertices.

Deutsche Zusammenfassung

Zu einem gegeben Graphen existieren viele verschiedene Zeichnungen. In manchen
Zeichnungen kann man die Beziehungen zwischen den Knoten besser erkennen als
in anderen. Ein Merkmal einer guten Zeichnung eines Graphen ist die Anzahl an
Kreuzungen der Kanten. Das zugehörige Optimierungsproblem heißt Kreuzungsmin-
imierungsproblem (KMP) welches NP-schwer ist.

Das einseitige Kreuzungsminimierungsproblem (EKMP) ist eine stark eingeschränkte
Version davon welche einige Aufmerksamkeit erreicht hat. Dabei werden die Knoten
auf zwei horizontale Linien aufgeteilt sind und gesucht ist eine Permutation der
Knoten auf der oberen Linie, sodass die Anzahl der Kreuzungen minimal ist, auch
dieses Problem ist NP-schwer. Es existieren einige lang erforschte Heuristiken und
wir versuchen zwei Heuristiken mit Hilfe von maschinellem Lernen zu entwickeln.
Ein Ansatz started in einer zufälligen Permutation und tauscht benachbarte Knoten
um die Anzahl an Kreuzungen zu minimieren und in dem anderen Ansatz bestimmen
wir den linkesten Knoten der Permutation und durch mehrfaches Anwenden dieses
Vorgehens können wir eine komplette Permutation aufbauen. Wir finden, dass unsere
Ansätze konkurrenzfähig zu existierenden Heuristiken sind auf Instanzgrößen auf
denen das Netzwerk auch trainiert wurde (bis zu 20 Knoten) und dass diese sogar
bis Instanzgrößen von 50 noch gut skalieren.
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1. Introduction

1.1 Graph Drawing

Graph drawing is a scientific field in informatics that tries to find a geometrical representa-
tion of an abstract object called a graph. This is an important tool to make information
for humans more accessible. One example is a network map. One can write every station
with its reachable stations in a list but this would make it very hard to find a route from a
given start to a given end so these maps are represented as graphs and drawn such that
it’s easy to perceive all these informations. Other examples are visualizing social networks
with its users and relations between them, entity-relationship diagrams, data structures
such as trees and moleculuar structurs in biology[FH01]. But there are also applications
that have a more pracitical backround. One example is to design a hierarchical layout
of VLSI circuits[KK90]. It consists of finding the position of an electronical component
row by row where one row is fixed and the other one has to be permutated such that the
number of crossings is the minimum.
The application of VLSI circuits has a strict metric of how good a solution is namely the
number of crosses. In contrairy to that the metric of how good a graph drawing for human
pereption is ambigously. There exist many metrics [Pur02] however one of the metrics is
also minimizing the number of crosses.

Crossing Number

A drawing D of a graph G is a mapping from the nodes into the plane and mapping from
the edges to a set of simple planar curves such that the curve has the adjacend nodes as
endpoints and contains no other nodes. The number of crossings cr(D) of a given drawing
D is the number of intersections between distinct edges. The crossing number cr(G) of a
given graph G is the minimum number of crosses over all drawings. The descision problem
to this is proven to be NP-complete [MRG83] so there is probably no efficient algorithm to
calculate this number. For complete bipartite graphs Km,n there exists a general drawing
[Zar55] with

Z(m,n) = bm2 cb
m− 1

2 cbn2 cb
n− 1

2 c
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1. Introduction

crosses and therefore this is an upper bound for the number of crosses for this graph. There
is also a general drawing for complete graphs Kn [Thr52] with

Z(n) = bn2 cb
n− 1

2 cbn− 2
2 cbn− 3

2 c

crosses. There is also a lower bound proven independently by Ajtai, Chvátal, Newborn and
Szemerédi [ACNS82] and by Leighton [Lei83] which is for a graph G with n nodes and m
edges such that e > 7m then the number of crosses

cr(G) ≥ e3

29n2

is bounded by this term.

Approximation Algorithm for Crossing Number

A graph that we can draw without crossings is called a planar graph. We can determine
if a given graph is planar and then find a two dimensional embedding if so even in linear
time[NC85]. However when there are more crosses this problem gets more difficult.

The Sugiyama algorithm [STT81] calculates to a given directed graph G = (V,E) a two
dimensional hierarichal drawing. It draws the nodes on distinct horizontal lines and edges
between those lines and tries to minimize the number of crosses. It consists of four steps:

step 1: Transform G into a equivalent graph with nodes on distinct horizontal lines
called levels and edges just between neighboring levels

step 1.1: Change direction of edges to make the graph acyclic

step 1.2: Assign nodes to different levels

step 1.3: Add dummy nodes such that edges crossing multiple levels can be divided
in multiple edges between neighboring levels

step 2: Calculate for each level an order between the nodes

step 3: Calculate concrete x-coordinates for nodes on each level

step 4: Remove dummy nodes and edges and calculate a two dimensional assignment of
every node

Some of these steps are hard optimization problems. For example in step 1.1 if we want
to minimize the number of edges that have to be reversed we have to solve the NP-hard
problem Minimum Feedback Arc Set[Ced66] as well as in step 1.2 if we want to know the
maximum number of levels and number of nodes per level we have to solve the NP-hard
Directed Layering Problem[PE91]. Step 1.3 and 4 are trivial.
For steps 2 and 3 a heuristic for reducing edge crossings is proposed. It starts with a
random permutation on the lowest level. The algorithm then tries to find a permutation for
the next higher level which is called the One-SidedCrossingMinimization. By iterating over
the layers a permutation for every layer is found and then the direction changes and the
algorithm tries to find a permutation for the second highest level and iterates down to the
lowest level. This procedure is called the down-up procedure and is repeated at maximum
a predefined number of rounds or until the permutation on the levels doesn’t change.

2



1.2. Machine learning on graphs

The One-SidedCrossingMinimizationProblem is NP-hard [Wor94] even for sparse graphs
[Vrt01]. There exist many well studied heuristics for approximating this problem. In tests
[MJ97] the barycenter heuristic lead to the best results regarding quality of the solution
and computation time. In this thesis we want to build an algorithm using machine learning
that approximates this optimization problem and compare them to existing heuristics.

1.2 Machine learning on graphs
There exist many tasks in which we want our nodes or edges in graphs to be mapped in
a low-dimensional space. One example is mapping all nodes in a two dimensional space
which indicate how to draw the graph. But there are some applications in which we want
our whole graph to be mapped in a low dimensional space. Here an example is deciding
whether a molecule is toxic or not. The basic idea of machine learning on graphs is that
entities like nodes are real valued vectors attached to which are called embeddings. These
are calculated with respect to the topological structure.

Node2Vec

This is a method of how to embed the nodes of an undirected graph in a p-dimensional
space [AG16]. The function to be learned is f : V → Rp which can be represented as a
|V | × p matrix that has the p-dimensional embeddings of all nodes in the different columns.
Define a strategy S like depth-first search or breadth-first search of sampling a random
walk from a given node and with that define the network neighbourhood NS(u) as the set
of nodes being discovered from node u by strategy S. Then the optimization problem is

max
f

∑
u∈V

log(Pr(NS(u)|f(u)))

where Pr(NS(u)|f(u)) is the probability of discovering the set NS(u) when starting at u.
By assuming the independence of discovering two different nodes the formula is equivalent
to

max
f

∑
u∈V

∑
v∈NS(u)

log(Pr(v|f(u)))

and define

Pr(v|f(u)) = exp(f(v) · f(u))∑
vi∈V exp(f(vi) · f(u))

Now the optimization problem is defined and can be optimized by gradient descent with the
embeddings of the nodes as variables. With the embeddings for the nodes the edges can be
embedded as concatenation, sum or componentwise multiplication of the two adjacent nodes.

This is an unsupervised mapping strategy since we don’t need any labeling of the nodes. In
the master thesis of Yani Kolev[Kol19] node2vec has been used for crossing minimization.
Even though the outline was that node2vec didn’t provide good enough representations
for their purposes they think that node2vec is designed for larger graphs that don’t need
geometric informations.

Struct2Vec

3



1. Introduction

This is a method of telling structural identity of some nodes in an undirected graph
G = (V,E). The paper [LFRR17] presents a general framework for determining to a given
node u some nodes with equaling properties. It consists of four phases.
The first phase consists of predicting structural identity of two nodes. The formula for two
nodes u, v ∈ V is recursively defined as

fk(u, v) = fk−1(u, v) + g(s(Rk(u)), s(Rk(v)))
f−1(u, v) = 0

where Rk(u) is the set of nodes with distance of exactly k from u and with U ⊆ V being a
set of nodes s(U) is defined as the ordered degree sequence of those nodes where g is a
metric for measuring the distance between two of those sequences.

The second phase constructs a multilayer graph M with edge weights that represents the
structural idendity of nodes. The graph M consits of k∗ + 1 layers with k∗ being the
diameter of G. Each layer consists of a complete graph with the same set of nodes as the
given graph G at beginning. Then for each layer k ∈ {0, 1, .., k∗} the weight of an edge
between nodes on the same layer is defined as

wk(u, v) = e−fk(u,v)

and every node v ∈ V in layer k is connected to its corresponding node in the neighbouring
layers meaning vk−1 and vk+1. The weight for these edges is

w(uk, uk−1) = 1
w(uk, uk+1 = log(Γk(u) + e)

where Γk(u) is the number of edges in layer k adjacent to u that have more than average
weight on this layer.

The third phase tells how to generate a random sequence. For a given node v ∈ V the
random sequence of fixed low lenght starts with the corresponding node in layer zero.
Before deciding which node comes after node uk the algorithm decides whether to stay
in this layer with a constant probability q > 0 and in the other case changes the layer.
In the nontrivial case where two neighbouring layers exist the unnormalized probabilities
of changing to layer k + 1 is w(uk, uk+1) and to layer k − 1 is w(uk, uk−1). In layer k
the unnormalized probability of going to node v after node u is e−fku,v. This process is
repeated such that a set of random sequences are determined.

The fourth step is learning an embedding of a node given those sequences. Skip-Gram[MCCD13]
has proven to be effective for this.

Also struct2vec with its four presented phases is an unsupervised technique.

Learning Combinatorial Optimization Algorithms over Graphs

Combinatorial optimization problems are often NP-hard which makes it not easy to handle
them. One approach is to exactly solve the problem which gets very hard with rising
instance size. An computationally easier approach is approximization. This is often realized
by greedy algorithms. Given a partial solution the algorithm computes a bigger partial

4



1.2. Machine learning on graphs

solution until our solution fulfills the constraints of the problem for example if we want to
approximate MinimumVertexCover we start with an empty set of nodes and try to add
nodes until the nodes cover all edges.

This paper [HD17] provides a general framework of learning an approximation algorithm.
We introduce a learned funtion Q(h(S), v) which maps our partial solution S and a given
node v to a single scalar that tells us the quality of our new solution S′ = S ∪ {v} with
the help of a helper function h. The helper function h maps our partial solution S to a
combinatorial structure satisfying the constraints of the given problem. Given a optimal Q
function we just have to add the node v which maximizes Q(h(S), v) and repeat this until
our solution fulfills the constraints of the problem.

Given a directed graph G = (V,E) with a edge weight function w : E → R+ the Q function
works as follows. First an p-dimensional feature embedding µv for each node v is calculated
recursively with µ0

v as the p-dimensional zero vector and

µt+1
v = relu(θ1xv + θ2

∑
u∈N(v)

µt
u + θ3

∑
u∈N(v)

relu(θ4w(v, u)))

where relu is the rectified linear unit defined componentwise as relu(x) = max{0, x}, N(v)
is the neighbourhood of a node v, xv is one if and only if v ∈ S and θ1 ∈ Rp, θ2, θ3 ∈ Rp×p,
θ4 ∈ R are the model parameters. Then our embedding is µv = µT

v which contains
informations about its T -hop neighbourhood. Usually T is a small number like four. Then
Q is approximated with

Q̂(h(S), v,Θ) = θ>5 relu([θ6
∑

u∈N(v)
µu, θ7µv])

where [., .] is the concatenation and θ5 ∈ R2p, θ6, θ7 ∈ Rp×p are also model parameters which
make Θ = ⋃7

i=1 θi the set of all model parameters. These are learned using reinforcement
learning. In experiments they outperformed existing approximation algorithms by far with
the average approximation ratio as metric.

Neurosat

Another approach was presented with neurosat [DS19]. It is a neural network based on
graphs that learned the satisfiabilaty problem. A set of clauses is represented as a undi-
rected graph by adding for every variable two nodes representing its two complementary
literals. Each literal is connected with the clause it appears in and the complementary
literals are also connetced with an different edge meaning they exchange different messages.
Each node is an embedding accosciated which are at beginning Linit for each literal and
Cinit for each clause which are learned vectors.

Then the nodes send learned messages over the edges in one message passing iteration. The
embeddings of the literals and clauses are stored in two learned LSTMs with the initial
hidden states being just zeros. They used two multilayer perceptrons Lmsg and Cmsg which
calculate an message vector from the embedding of a literal or a clause. Lvote is another
multilayer perceptron which calculates the scalar vote of an embedding. We say l ∈ c if and
only if literal l is part of the clause c. In one message passing iteration one clause c gets
the old hidden state and the sum over all literals that appear in c of the message vector∑

l∈c Lmsg(l) as input. Then the literal l gets updated which also gets the old hidden state,
the old state of its complement literal and the sum over all clauses that the literal appears

5



1. Introduction

in of its message vector ∑c ∈l Cmsg(c). They did 28 iterations of message passing iterations
and trained the network to minimize the sigmoid cross-entropy between the true binary
label and the mean of all literal votes mean({Lvote(l)|l is literal}). The true binary label is
1 if and only if the set of clauses are satisfiable

After training they found out that if the network says a set of clauses is satisfiable usually
one of the complementary literals has a higher vote than the other. This directly corre-
sponded to the assignment of the variables and they could decode a satisfying assingment
most of the time.

Even though the outline was that their approach didn’t beat existing SAT solvers they say
they think artificial intelligence can help in the future to improve the state of the art.

Graph Networks

Deepmind created a Graph Nets library. It works with Tensorflow and this framework
creates a neural network that operates on graphs[BHB+18]. It works on attributed directed
graphs which means that each edge, each node and the whole graph are one embedding
attached to. A graph network updates these attributes only with respect to the underlying
topology and its attributes. It can be used for supervised learning.

1.3 Contribution Outline
We developed two heuristics for approximating the one-sided crossing minimization using
Deepmind’s Graph Nets library with two different approaches.

Learned leftmost

In this approach we build our permutation from left to right node by node. We start with
our given graph and then try to predict the node that has to be the leftest in a permutation.
Since sometimes one can choose two nodes to be the leftest and still reach the optimum
number of crosses we define functions that map a node to a number which tells us if we
can put it in the left of a permutation.

Learned switch

In this approach we start in a given permutation. Then we try to predict for two neigh-
bouring nodes if we have to switch them. We defined a global metric that tells us if we
have to switch nodes because we don’t want to act greedy and just reach a local minimum.

We were able to create heuristics that show good results in comparison to existing heuristics.

6



2. Preliminaries

In this chapter we introduce some preliminaries that are used in this thesis.

2.1 Directed Graphs
A directed graph is an abstract structure which represents to a given set of objects some
relations. We call the objects nodes and the realtions between them edges that point from
a sender node to a receiver node. A directed graph can be drawn by drawing points for the
nodes and lines from the sender to the receiver node for the edges. An example could be a
network map. Each stop is represented as a node and if a bus or train drives from one stop
to another an edge is directed like this.

Formally we define a directed graph G = (V,E) as tuple with V being the set of nodes and
E being the set of edges. An edge e ∈ E ⊆ V × V is a ordered pair e = (vi, vj) where the
node is directed from vi to vj .

v1 v2

v3

(v3, v1)

(v1, v2)

Figure 2.1: example of an directed graph

2.1.1 Two Layered Network

A two layered network N = (V,U,E, x) with V = {v1, v2, .., vn} and U = {u1, u2, .., um} de-
scribes the directed graph G = (V ∪̇U,E). The nodes of this graph can be divided into two
distinct sets such that all the edges are between the two distinct sets and each edge e ∈ V ×U
is directed from V to U . Additionaly x is an ordering of U . Define an ordering x of a set S as

7



2. Preliminaries

a bijective function x : S → {1, 2, .., |S|} where each element is assigned number called rank.

If we also have an ordering y of V we can draw the graph by placing the nodes of the two
distinct sets on two horizontal distinct lines where the nodes are sorted by both orderings.
If the elements in a set have a subscript like B = {b1, b2, .., bm} we say x is a trivial order
when x(bi) = i.

v1 v2 v3 v4

u1 u2 u3 u4

y : v1 7→ 1 y : v2 7→ 2 y : v3 7→ 3 y : v4 7→ 4

x : u1 7→ 1 x : u2 7→ 2 x : u3 7→ 3 x : u4 7→ 4

Figure 2.2: two layered network N = (V,U,E, x) with trivial ordering x

2.1.2 Attributed directed graphs
An attributed directed graph G = (V,E) is a graph where each node is a dV dimensional,
each edge a dE dimensional and the whole graph a dG dimensional vector called embedding
associated. Define eV : V → RdV as the function that returns the embedding of a node,
define eE : E → RdE as the function that returns the embedding of an edge and define
eG : {G} 7→ RdG that returns the embedding of the whole graph also called the global
embedding.

2.1.3 Random Graphs
In this subsection we will describe a random graph generator.

2.1.3.1 Erdős–Rényi model

Consider a Graph G = (V,E) with n nodes and m edges. The G(n, p) model decides
independently for each edge with probability p whether it is included in the graph or not
and therefore chooses a graph with n nodes and m ∼ Bin(

(n
2
)
, p) edges.

Since we want to generate two layered networks the model has to be changed slightly.
Consider a two layered network N = (V,U,E, x) with n nodes in V and m nodes in U . The
G(n,m, p) model decides independently for each possible edge e ∈ V × U with probability
p whether it is included in the graph or not and therefore |E| ∼ Bin(n ·m, p). The order x
of U is random.

2.2 Neural Networks
A Neural Network is like a calculation rule of some kind of input with some variables. In
most cases the Variables are initialized randomly. The goal is to change the variables to
some values that the network output is what we want it to be by training the network.
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Figure 2.3: attributed directed graph G = (V,E)

2.2.1 Components

Now we will explain some components from which one can build a neural network. These
small components are already a neural network, however composing different components
can make a network stronger. Every component is a calculation rule of an input vector
x ∈ Rn to an output vector z ∈ Rm.

2.2.1.1 Perceptron

∑

x1

x2

x3

xn

w1

w2

w3

wn

b+
∑n

i=1 wi · xi

activation function

Figure 2.4: perceptron

One common known architechture is a perceptron. From our input x a single scalar z ∈ R1

is calculated from. In the first step the weighted sum of x is calculated and the bias is
added. In the last step a so called activation function is applied to that. Some examples
for activation functions are

• tanh : R→ R

• sigmoid function : R→ R, x 7→ 1
1+e−x

• rectified linear unit : R→ R, x 7→ max{0, x}

9



2. Preliminaries

In a perceptron the learned values are the weights w0, w1, ..., wn ∈ R and the bias b ∈ R.

2.2.1.2 Multilayer Perceptron

x1

x2

x3

hidden layer

output layer
y1

y2

y3

y4

z1

z2

Figure 2.5: multilayer perceptron

One can also compose some perceptrons and then get a multilayer perceptron. The figure
above shows a multilayer perceptron with one hidden layer however an arbitrary amount
of hidden layers are possible. Note that in the figure for the perceptron there is an extra
circle for the activation function which isn’t in this figure. A multilayer perceptron also
has activation functions but for simplicity they aren’t pictured.

The value on a hidden layer or the output layer is the weighted biased sum of the values of
the layer before and some activation function on top. Here our learned values are once
more the weights and biases of the different layers. Our output vector z ∈ Rm can have
any dimension, depending on the number of neurons on the output layer.

2.2.1.3 Layer Normalization

This component normilizes our input vector x which means that z ∈ Rn has the same
dimension. Given the input vector x the output is

y = s ◦ x− µ
σ + ε

+ o

with

µ = 1
n

n∑
i=1

xi

σ =

√√√√ 1
n

n∑
i=1

(xi − µ)2

where ◦ is the componentwise multiplication. The learned variables are o ∈ Rn and s ∈ Rn

and ε is a constant. Typically s is initialized with only ones as entries and o with only
zeros as entries.

2.2.2 Learning

The basic idea is that we feed the network a chunk of data and the network tries to change
the variables a little bit so it performs better on this perticular chunk of data and repeat
this step.
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2.2. Neural Networks

2.2.3 Loss

To make our network better we need a function that tells us how good our network performs
on data which means it shows us the difference between our actual network and the network
we want it to be. One takes a function where lower values mean a better performance.
Let’s say we want our network to predict the degrees of each node. The prediction of our
network is z ∈ Rn with the zi being the node degree prediction for the node vi. We can
calculate the true label l for the graph which means li is the degree of vi. With those
vectors we have to define a metric called loss for how bad our prediction is. Given our
prediction z and our true label l some common known loss functions are

• mean squared error 1
n

∑n
i=1(zi − li)2

• mean absolut error 1
n

∑n
i=1 |zi − li|

If we have a dataset containing some graphs we can calculate the average loss of all graphs.
Now an easy approach to make our network better is to iterate over all learnable varibales
and change them slightly higher or lower and check if our loss gets better or worse. If it
gets worse then reverse our change of the variable. This algorithm will make our network
better over time however a more mathematical approach and the actual state of the art is
the gradient descent. The basic idea is the same but it is realized a little different.

2.2.4 Gradient Descent

Now consider our loss function as a function from f : Rn → R where n is the number
of learnable variables. Now let’s say our current variables are v ∈ Rn. The negative
gradient −∇f(v) tells us the direction in which the function f at f(v) decreases the fastest.
So in other words if we move our actual variables v in the direction of −∇f(v) our loss
decreases the fastest in comparison to all other directions. So if we update our variables
v′ = v − γ∇f(v) where γ is called the learning rate we move our variables in this direc-
tion and hope our loss gets better. If we repeat this algorithm our loss hopefully gets better.

One could calculate the average loss of all the data we have but this would end up in a not
handable computational complexity. In practical applications we feed a predefined number
inputs the network, this is called the batch size.
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2. Preliminaries

2.3 One-Sided Crossing Minimization

Consider a two layered network N = (V,U,E, x) with n nodes in V and m nodes in U . The
solution to the problem is an ordering y of the nodes V such that the number of crossings
is the minimum of all possible orderings if we draw this graph. Note that the number of
crossings just depends on the given graph and the permutation of V since the ordering x
of U is given with the two layered network.

y : v1 7→ 1

y : v2 7→ 2

y : v3 7→ 3

y : v4 7→ 4

y : v5 7→ 5

v2 v3 v1 v4v5v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6 u1 u2 u3 u4 u5 u6

16 crossings 9 crossings

y : v1 7→ 3

y : v2 7→ 1

y : v3 7→ 2

y : v4 7→ 5

y : v5 7→ 4

Figure 2.6: bad order on the left and optimal order on the right

Define N(v) = {u|(v, u) ∈ E or (u, v) ∈ E} as the Neighbourhood of v and define the
crossing matrix C = (ci,j) of a two layered network where

ci,j =
{
⊥, i = j
|{(um, un) ∈ N(vi)×N(vj)|x(um) > x(un)}|, i 6= j

is the number of crossings between the edges adjacent to vi and vj when vi is on the left of
vj .

The order y of the nodes N can be also expressed as a order matrix M = (mi,j) ∈
{0, 1,⊥}n×n. The order matrix is defined as

mi,j =


⊥, i = j
1, y(vi) < y(vj)
0, y(vi) > y(vj)

which means mi,j is 1 if and only if vi is on the left of vj . Given the order Matrix M one can
calculate the ordering y of V with y(vn) being the sum of nonzero entries in the n-th column.

With the order Matrix M or its corresponding ordering y and the correlation matrix C the
number of crosses is

crossesC(y) = crossesC(M) =
n∑

i=0

n∑
j=0
j 6=i

mi,j ∗ ci,j

Since a two layered network N defines its correlation matrix C the subscript can also be N .
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2.3. One-Sided Crossing Minimization

2.3.1 NP-completeness of the decision problem

We will now consider the decision problem of the One-Sided Crossing Minimization which
is the following

Instance: two layered network N = (V,U,E, x), k ∈ N0

Question: order y of V such that crossesN (y) ≤ k

and show that this problem is NP-complete as a short review of the proof [Wor94]. This
is done by reducing from the problem Minimum Feedback Arc Set which is the following

Instance: directed graph G = (V,E), k ∈ N0

Question: F ⊆ E, |F | ≤ k such that G′ = (V,E \ F ) is acyclic

If our graph has n self edges then the feedback arc set has to contain all these self edges
because each of these edges result in one cycle. Therefore we have to decide if our graph
with all self edges removed has a feedback arc set of size at most k − n and if k − n is less
than zero we know the graph has no solution of the questioned size. This is why we can
assume that graph G has no self edges.

Given now an instance of the feedback arc set G = (V,E), k ∈ N with V = {v1, v2, ..., vn}
and |E| = m we build our new two layered network N ′ = (V ′, U ′, E′, x′), k′ ∈ N0 as
following:

V ′ =V
U ′ =

⋃
e∈E

Ce with Ce = {c1
e, c

2
e, c

3
e, c

4
e, c

5
e, c

6
e}

So for each node in our graph G we put a node in V ′ and for each edge e in our graph we
put a clump Ce consisting of six nodes in U ′.
Now we have to add the edges. Each vi ∈ V ′ and each clump Ce are connected with two
edges. We differentiate between three cases:
If e is an outgoing edge from vi we connect vi with c1

e and c5
e. If e is an incoming edge to

vi we connect vi with c2
e and c6

e and if e is not adjacent to vi we connect it with the two
middle nodes c3

e and c4
e. All posibilities are in the figure below illustrated.

c1e c2e c3e c4e c5e c6e c1e c2e c3e c4e c5e c6e c1e c2e c3e c4e c5e c6e

vi vi vi

e=(vi, vj) is outgoing edge from vi
e=(vj , vi) is incoming edge from vi e=(vj , vk) is not adjacent to vi

Figure 2.7: Three cases for edges

Let x′ be an order of U ′ where each clump stays together. The order between different
clumps is not defined nor nessecary. We prove now that our graph G has feedback arc set
of size at most k if and only if our two layered network N ′ has a order y′ of V ′ with at most

k′ = 4
(
n

2

)(
m

2

)
+m

(
n− 2

2

)
+ 4m(n− 2) +m+ 2k

crosses.
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Lemma 2.1. Let y′ an ordering for V ′ with B = {(vi, vj) ∈ E|y′(vi) > y′(vj)}. Then the
number of crosses is

m := 4
(
n

2

)(
m

2

)
+m

(
n− 2

2

)
+ 4m(n− 2) +m+ 2|B|

For e1, e2 ∈ E and e1 6= e2 we have two clumps. Each of the clump has two edges to each
node in V1. Now consider the crosses between edges from different clumps. So for each
pair of nodes v1, v2 and each pair of edges e1, e2 we have four crosses which makes in total
4
(n

2
)(m

2
)
crosses between different clumps.

Now consider the crosses between edges from the same clump C(vi,vj). Since there are n− 2
nodes that aren’t incident to (vi, vj) in G, in our constructed network N ′ these nodes are
connected to c3

(vi,vj) and c4
(vi,vj). So for each pair of nodes in these n− 2 nodes we get one

crossing giving
(n−2

2
)
crosses. Now summing over all clumps this gives m

(n−2
2
)
crosses. The

node vi is connected to c1
(vi,vj) and c5

(vi,vj) and the node vj is connected to c2
(vi,vj) and c6

(vi,vj)
which both cross exactly two edges incident to the n − 2 other nodes giving 4m(n − 2)
crosses. Now the only uncounted crosses are between the edges (vi, c

1
(vi,vj)), (vi, c

5
(vi,vj)) and

(vj , c
2
(vi,vj)), (vj , c

6
(vi,vj)). If y′(vi) < y′(vj) then there will be one cross and otherwise then

there will be three crosses. Summing over all clumps this gives m + 2|B| crosses which
leads to the lemma.

Let G = (V,E) now have a feedback arc set F of size at most k. Since G = (V,E \F ) has no
cycles we can find an ordering y by topological sort such that for every edge (vi, vj) ∈ E \F
the nodes in the new graph are ordered y′(vi) < y′(vj). The just shown lemma implies that
the two layered network N ′ has at most k′ crosses.

Let N ′ now have an order y′ of V ′ such that there are at most k′ crosses. Define B =
{(vi, vj) ∈ E|y′(vi) > y(vj)}. The lemma implies that |B| <= k. Now we know that for
each path (va, vb), (vb, vc), ..., (vy, vz) ⊂ E \B the ordering is y(va) < y(vz) so there can’t
be any cycle and therefore B is a feedback arc set of size at most k.

2.3.2 Reduction to Integer Linear Programm

Define the entries of the order matrix as binary variables mi,j for i, j = 1..n1 and i 6= j,
but there are many assignments of the order matrix which don’t represent a permutation.
The first constraint is that vi is on the left of vj if and only if vj is on the right of vi. This
equivalence can be expressed in constraints as

mi,j = 1−mj,i i 6= j

The second one is keeping the transitivity. When node vi is on the left of vj and vj is on
the left of vk then vi is on the left of vk. This implication can be expressed in constraints as

mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k

Then the number of crosses is
n∑

i=0

n∑
j=0
j 6=i

mi,j · ci,j
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2.3. One-Sided Crossing Minimization

which makes our ILP to

minimize
n∑

i=0

n∑
j=0
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k

2. 0 ≤ mi,j ≤ 1 i 6= j

3. mi,j = 1−mj,i i 6= j

2.3.3 Existing Heuristics

Given a two layered network N = (V,U,E, x) there exist many approaches to approximate
the ordering y of V . Some algorithms will need the crossing matrix C.

2.3.3.1 Barycenter

The barycenter heuristic can be used to approximate optimization problems. However
the minimization of crossings in a hierarchical drawing of a graph is the most famous
application of the algorithm. It calculates the position of each node in V as the average
position of all its adjacent nodes in U . In practice this simple algorithm performs very well
and is often used in graph drawing.

On the theoretical side this algorithm does not have an upper bound for its error. It has
been shown that the relative number of crossings to the optimum is up to θ(|V |) times higher.

The computational complexity is the result of computing for each node the average position
of its adjacent nodes which takes θ(|U |) and then sorting the nodes takes θ(|V | log(V )))
which leads to θ(|U |+ |V | log(V ))) for the complete algorithm[MS05].

2.3.3.2 Sifting

The sifting algorithm was originally used for reducing the number of vertices in reduced
ordered binary decision diagrams but can also be used in the one-sided crossing minimiza-
tion. The algorithm starts with a given permutation and then sifts one node after another
until every node has been sifted once. Sifting a node means fixing every other node and
place this node on every possible position and compute every time the number of crosses.
Then place the node at the local minimum and continue with the next node.

There exist different variants of the algorithm. Since many use cases already have a
permutation for both of the vertices and the question is to find a better permutation
one can start with this given permutation or start with a random permutation. There
exist also three different methods to choose the next node. The first variant chooses the
nodes in the given permutation for example from the left to the right. The second one
chooses the nodes randomly. A more accurate variant sorts the nodes by the degree of them.

By swapping one node u with its right neighbour v the number of crossings is crossnew =
crossold − cu,v + cv,u which takes constant time when given the crossing matrix (ci,j). The
implementation of sifting is swapping the node until it is on the leftmost or rightmost
position and then swap it on the other side. This takes θ(|V |) which makes sifting all nodes
in θ(|V |2)[MSM98].
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2.3.3.3 Median

The median heuristic is very similar to the barycenter heuristic. Instead of computing
the average position of all adjacent nodes it computes the median of all nodes. If a node
has no adjacent nodes, then it is placed on the left and if two nodes are assigned to the
same position then the one with odd degree is placed on the left of the one with even degree.

It has been shown that the median heuristic computes drawings with at least three times
worse crossings than the optimal solution. There exist graphs where the median heuristic
is exactly three times worse than the optimum so there can’t exist a lower bound. However
for some graphs there exist better bounds. Consider the following theorem.

Theorem 2.2. Suppose ε > 0 and 0 < c < 1. Then there exist an N0 such that the graph
has at least N0 nodes on both horizontal lines then the error is at most

3− c2

1 + c2 + ε

With c being close to one this error is close to one which means that for dense graphs the
median heuristic is close to the optimum.
Computing the median position of its adjacent nodes takes θ(|U |) and sorting takes θ(|V |)
because all the values are in 0..|U | by using bucket sort wich leads to a complete complexity
of θ(|U |+ |V |)[Wor94].

2.3.3.4 Greedy Switch

The greedy switch heuristic also starts in a given permutation. Then it iterates over the
nodes in V from left to right. If swapping the actual node with its neighbour will reduce
the number of crosses then swap. This is done with every pair of nodes in one iteration. If
there had been at least one swap in an iteration the just repeat this algorithm.

2.3.3.5 Greedy Insert

This heuristic works like insertion sort. We start with an empy ordered set for the nodes in
V . Then we take one random node and place it in the position that minimizes the number
of crosses in this ordered set. This will be repeated until we have an order for the whole
set V .

2.3.3.6 Split

This heuristic works recursively like quick sort. First a pivot element vi ∈ V is chosen. Then
we choose another node vj ∈ V and place it in the left partition if and only if ci,j > cj,i

which means that the number of crossings between the edges adjacent to vi and vj is lower
when vj is on the left of vi. Otherwise the node is placed in the right. Then we pick a pivot
element in those partitions and try to recursively build an order of the elements[Ism12].
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3. Graph Network

Neural networks often get sequence of data like a voice sample or a vector like the data of
some sensors as input. In these cases the ordering matters because the same sentence with
the words reordered can make its content completely different or in the other case if we
change the output of two sensors our network won’t make good predictions anymore.

But there exist problems where we want our input to be independent of the order and
instead define relations on our own between data points. One example of a representation
of such a problem are graphs. Many problems can be represented as graphs for example
molecular structures. Each atom can be represented as node and the edges between the
nodes can indicatate some chemical relations between the nodes.

There exist approaches of neural networks that work on graphs. The basic idea is that
nodes which are connected by edges can send messages over the edges. After such a so
called message passing step each node can behave differently depending on the messages it
receives. Deepmind now build a machine learning framework that works on graphs which
will be presented in this chapter [BHB+18]. One message passing step is done by a graph
network (GN). It gets a graph as input and the output also a graph.
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3. Graph Network

3.1 Graph
The graph network works on directed attributed graphs. A graph network just updates the
embeddings attached to the graph with respect to the structure to it. After updating these
embeddings the size of the embeddings can change.
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graph network

Figure 3.1: graph network operating on a given attributed directed graph

3.1.1 Graph concatenation
One basic operation on graphs is the graph concatenation. If we have two same graphs with
possibly different attributes we can concatenate these. This means we consider the same
graph but the attributes are the concatenation of both. This means in case of a specific
node that we have two different embeddings. This node in the concatenated graph has a
vector as attribute which is both vectors concatenated on another. One can see an example
in figure 3.2. In this example two graphs are concatenete however an finate number of
graphs can be concatenated. We use the symbol ⊕ to indicate the concatenation of graphs.

3.2 GN block Variants
The framework provides six diffent variants of a GN block, however we only use two of
them and build with them complex networks.
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Graph G
⊕

G′

Figure 3.2: graph concatenation of graph G and G′

The variants use update functions φ. Update functions are the learned functions that
should determine how the embeddings have to be updated. We use multilayer perceptrons
with a layernorm layer.

The following variants consist of three phases:

step 1: edge update by φe

step 2: node update by φn

step 3: global update by φu

We will use the term old embedding for the embedding before it gets updated and new
embedding for the updated one.
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3.2.1 Full GN Block

In the following text we will describe each of the three phases for a full GN block in detail.

Step 1: edge update

In order to update all the edge embeddings for each edge embedding ek the edge update
function φe gets as input

• old edge embedding ek

• old node embedding of receiver node vrk

• old node embedding of sender node vsk

• old global embedding u

and returns the new edge embedding e′k.

... ... ... ...

...

ek vrk vsk u

e′k

φe

Figure 3.3: edge update function as single layer perceptron

Step 2: node update

In order to update all the node embeddings for each node embedding vi we first need to
determine the set of the old embeddings of edges E′i that point to this node. Then these
are summed up to e′i and with that the node update function φn gets as input

• summed new embeddings of edges that point to this node e′i
• old node embedding vi

• old global embedding u

and returns the new node embedding v′i.
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... ... ...

e′i vi u

...

v′i

φv

Figure 3.4: node update function as single layer perceptron

global update

In order to update the global embedding u the new embeddings of all nodes are summed
up to v′ and the new embeddings of all edges are summed up to e′. Then the global update
function φ gets as input

• summed new embeddings of all edges e′

• summed new embeddings of all nodes v′

• old global embedding u

and returns the new global embedding u′.

... ... ...

e′ v′ u

...

v′i

φu

Figure 3.5: global update function as single layer perceptron

3.2.2 Graph Independent (GI) Block

In the following text we will describe each of the three phases for a graph independent
block in detail.

edge update

In order to update all the edge embeddings for each edge embedding ek the edge update
function φe gets as input

• old edge embedding ek
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e′k

ek

φe

Figure 3.6: edge update function as single layer perceptron

and returns the new edge embedding e′k.

node update

In order to update all the node embeddings for each node embedding vi the node update
function φv gets as input

• old node embedding vi

and returns the new node embedding v′i.

v′i

vi

φv

Figure 3.7: node update function as single layer perceptron

global update

In order to update the global embeding u the global update function φu gets as input

• old global embedding u

and returns the new global embedding u′.
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u′

u

φu

Figure 3.8: global update function as single layer perceptron

3.3 Models
In this section we wil describe some possibilites of composing graph networks together to
make them more powerful.

3.3.1 n-Process Encode Decode

This model consists of two GI blocks GIenc, GIdec and one core GN block GNcore. The
blocks are used in three phase with the first phase being the encoder phase, followed by
the core phase and the last phase is the decoder phase.

In the encode phase the input graph is given to GIenc. This network updates all embeddings
and the output is given to the next phase. The reason for this phase is that in the beginning
we give some informations in each embedding and this GI block should transform them in
embeddings that the following phases can work with better.

The core phase is a composition of the GN block GNcore. Every GNcore is given the result
of the block before concatenated with the output of the encoder phase. This is repeated n
times and the output of the last GN block is given to the next phase.

In the decode phase the graph is given to GIdec which returns the result of this model.
This GI block should update the embeddings such that they are the size that is needed.
For example if we want a this model to predict the degree of a node we want every node to
have a one dimensional embedding which is the node’s prediction for the degree.

The number of how often the core GN block is used can be a constant like n or it can
be a function depending on the input graph Gin. For example we can use as many core
iterations as number of nodes the input graph has.

This model is visualized in the figure below.
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3. Graph Network

Gin GIenc GNcore GIdec Gout

×n
⊕

Figure 3.9: Encode-process-decode

3.3.2 n-Layer Process Encode Decode

This model consists of two GI blocksGIenc, GIdec and nGN blocksGN1
core, GN

2
core, ..., GN

n
core

which are used in the same phases as the n-process encode decode. The only difference is
that this time the core networks are different with different learnable parameters and the
graph is passed to each GN block just once. Therefore the number of iterations is fixed in
this model in comparison to the n-process encode decode.

...Gin GIenc GN 1
core GNn

core GIdec Gout
⊕ ⊕

Figure 3.10: Encode-process-decode

3.3.3 n-Recursive Layer Process Encode Decode

This model consists of n GN blocks GN1
core, GN

2
core, ..., GN

n
core and two GI blocks GIenc

and GIdec. The input graph is given to the encoder GI block GIenc. This is given to
the first graph network GN1

core. The second graph network gets the concatenation of the
encoded input graph and the output of the graph network before. The i-th graph network
GN i

core gets the concatenation of the encoded input graph and the output of the n − 1
graph networks before. Then the decoder network GIdec gets the concatenation the output
of the last GN block GNn

core and returns the output graph.

Gin

GN 1
core

GNn
core

⊕

GN 2
core

GN 3
core

⊕

⊕ ...

...

...

⊕

⊕

⊕

...

GIdec Gout

GIenc

Figure 3.11: n- recursive process encode decode
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4. Heuristics Using Machine Learning

4.1 Learned Leftmost Node
In this approach we want to build part by part our permutation and consequently reducing
our graph to smaller instances. We want to start with the given graph and then determine
the leftest node then delete this node from the graph and then determine the leftest node in
this one. By iterating over the number of nodes in V1 we then have our perfect permutation.
This algorithm is visualized in the figure below.

leftmost leftmost leftmost

v1 v2 v3 v1 v2 v1

v1 v1 v1

u1 u2 u3 u1 u2 u3 u1 u2 u3

u1 u2 u3

Figure 4.1: Leftmost algorithm visualization

Now we have to describe when a node should be the leftest node. First of all this is
nondeterministic since there often exist many permutations with the optimal number of
crossings and therefore the leftmost node is not unique. We have to define a metric from
which one can tell which node can be the leftest node.
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4. Heuristics Using Machine Learning

4.1.1 Score One-Sided Crossing Minimization

Consider a two layered networkN = (V,U,E, x) with V = {v1, v2, ..., vn}, U = {u1, u2, ..., um}
and a trivial ordering x.The solution to the problem is a vector

s =


s1
s2
...
sn

 ∈ Nn
0

with

si = score(vi)

which is defined as the minimum number of crosses if vi is placed on the leftest position on
the upper horizontal line. We call this the score of this node.

4.1.1.1 Reduction to ILP

For every node in V we need to calculate the minimum number of crosses under all
permutations with this node being on the leftmost position. This is the one-sided crossing
minimization with the additional costraint of one node being on the leftmost position.
Since our binary variables tell for every pair of nodes the relative position, we need to tell
that one node is on the left of every other node. So for the l-th entry sl we need to solve
the ILP

minimize
n∑

i=1

n∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. mn,i = 1 i 6= l i ∈ {1, .., n}
5. mi,n = 0 i 6= l i ∈ {1, .., n}

4.1.2 Binary Score One-Sided Crossing Minimization

Consider a two layered networkN = (V,U,E, x) with V = {v1, v2, ..., vn}, U = {u1, u2, ..., um}
and a trivial ordering x. The solution to the problem is a vector

s =


s1
s2
...
sn

 ∈ {0, 1}n

with si is one if and only if the score of vi is the lowest among all scores. Note that there
can be more than one entry one.
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4.1. Learned Leftmost Node

4.1.3 [0, 1]-Iterpolated Score One-Sided Crossing Minimization

Consider a two layered networkN = (V,U,E, x) with V = {v1, v2, ..., vn}, U = {u1, u2, ..., um}
and a trivial ordering x.The solution to the problem is a vector

s =


s1
s2
...
sn

 ∈ [0, 1]n

where this vector is the affine transformated score one-sided crossing minimization vector
onto the interval [0, 1]. We here map the lowest score to one and the highest score to zero.
If all scores are the same we map all entries to one.

4.1.4 Input Graph

Given a two layered networkN = (V,U,E, x) with V = {v1, v2, ..., vn} and U = {u1, u2, ..., um}
with trivial ordering x we have to transform this in a directed, attributed graph. One
important question is how to tell the network the properties of this problem in the structure
of the graph and its embeddings. Since the two layered network N represents a directed
graph we can obtain this structure and add for every edge its reversed edge. We also have
to somehow tell the network the order x of the nodes in U . Our idea was to encode this by
adding edges between neighbouring in U in condext of the ordering x. Therefore the graph
given to the graph network is Gin = (V ∪̇U,E′) with

E′ = E′1 ∪ E′2 ∪ E′3 ∪ E′4
E′1 = E

E′2 = {(ui, vj) ∈ U × V |(vj , ui) ∈ E}
E′3 = {(ui, ui+1) ∈ U × U |i ∈ {1, 2, ..,m− 1}}
E′4 = {(ui+1, ui) ∈ U × U |i ∈ {1, 2, ..,m− 1}}

v1 v2 v3 v4 v1 v2 v3 v4

u1 u2 u3 u4 u1 u2 u3 u4

Figure 4.2: Construction of the input graph

Now we have to add embeddings as node, edge and global attributes. The goal is to add
some informations that the model could help to update the embeddings. Even though
every information from the two layered network N is saved in the structure of Gin we can
help the network by adding the information. We added every embedding the numbers
|V |, |U | and additionally we wanted to add the rank of the nodes in U .

The global feature vector is 
u1
u2
...
ueG
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4. Heuristics Using Machine Learning

where ueG−1 is |V |, ueG is |U | and u1 until ueG−2 is a learned vector.

The node feature vector is 
n1
n2
...

neV


where neV −1 is |V | and neV is |U |. For nodes in V we have n1 until neV −2 as a learned
vector and the node ui in U has neV −2 as i which is the rank of the node and n1 until
neV −3 is a learned vector.

The edge feature vector is 
e1
e2
...
eeE


where eeE−1 is |V | and eeE is |U |. Every E′i has its own learned vector for the entries from
e1 until eeE−2.

We want the models to update the embeddings such that the embeddings of the nodes in
V predict its binary score or interpolated score.

4.1.5 Algorithm

Our algorithm works like in the beginning of this section described and since we trained
our network to predict the binary scores or the interpolated scores we interpreted the node
with the hightes vote from our network as the leftmost node.

4.2 Learned Switch
In this approach we want to start in a random order y for V and then we want to iterate
and make our solution better and better by switching the positions of some nodes. The
only question is how to formally describe when we have to switch nodes. Let vi and vj be
two nodes in V who appear to be next to each other with vi being on the left of vj . When
we calculate the optimal number of crossings one time with the restriction vi is on the left
of vj and the other time vj is on the left of vi and we find out that when vj is on the left of
vi our best possible number of crosses is better then we have to switch these nodes. If these
two numbers are the same then that means the there exist permutations with y(vi) < y(vj)
and y(vi) > y(vj) with a perfect solution so we don’t switch these nodes.

We can make a graph network predict for two given nodes if they have to be switched or
not but this would be very inefficient. First of all our algorithm would take θ(|V1|2) predic-
tions of our neural network. Additionally every node and edge has at the end important
informations in its feature vectors and we would like to use more of its information. So we
can train our network to predict this decision for every pair of nodes.

With this one undefined state comes up. What should we do when the network predicts for
two or even more pairs directly next to each other that they have to be switched? Consider
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4.2. Learned Switch

this question with two pairs and let call pair one with nodes u and v and pair two with
nodes v and w. We know we have to swap both of these. We know v should be on the left
of u and w should be on the left of v. Then there exists just one way how to order these,
they have to be reversed. This is visualized in the figure below.

swap swap swap swap swap swap

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v3 v2 v1 v4 v8 v7 v6 v5 v10 v9

old order

new order

Figure 4.3: Switch algorithm visualization

Now we have to formally describe what we want our graph network to do.

4.2.1 Switch One-Sided Crossing Minimization

Consider a two layered network N = (V,U,E, x) with trivial ordering y of V where
V = {v1, v2, ..., vn}, U = {u1, u2, ..., um} and x is also trivial ordering for U . The solution
to the problem is a matrix

S =


s1,1 s1,2
s2,1 s2,2
...

...
sn−1,1 sn−1,2

 ∈ Nn−1×2
0

with

si,1 = min
y order of V

y(vi)<y(vi+1)

crossesG(y)

si,2 = min
y order of V

y(vi)>y(vi+1)

crossesG(y)

Each row in the solution Matrix S corresponds to a pair of nodes. In row i the left entry is
the optimal number of crosses over all orders where vi is somewhere on the left of vi+1 and
the right entry is the optimal number of crosses over all orders where vi is somewhere on
the right of vi+1.

4.2.1.1 Reduction to ILP

For every entry in the matrix we need to calculate the minimum number of crosses with an
additional constraint that is for sl,1 that vl is somewhere on the left of vl+1 and for sl,2
that vl is somewhere on the right of vl+1. So for sl,1 we add the constraint ml,l+1 = 1 and
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4. Heuristics Using Machine Learning

ml+1,l = 0 since we want to force the l-th node before the l + 1th node we similary set
ml,l+1 = 0 and ml+1,l = 1 for sl,2. So for sl,1 is the solution to the ILP

minimize
n∑

i=1

n∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. ml,l+1 = 1
5. ml+1,l = 0

and for sl, 2

minimize
n1∑
i=1

n1∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. ml,l+1 = 0
5. ml+1,l = 1

4.2.2 Binary Switch One-Sided Crossing Minimization

Consider a two layered network N = (V,U,E, x) with trivial ordering y of V where
V = {v1, v2, ..., vn}, U = {u1, u2, ..., um} and x is also trivial ordering for U .The solution
to the problem is a vector

s =


s1
s2
...

sn−1

 ∈ {0, 1}n−1

with

si = 1↔ min
y order of V

y(vi)>y(vi+1)

crossesG(y) < min
y order of V

y(vi)<y(vi+1)

crossesG(y)

If we solve the switch one-sided crossing minimization matrix S we can easy and fast
calculate s because si is 1 if and only if si,2 < si,1.

4.2.3 Input Graph

Consider a two layered network N = (V,U,E, x) with trivial ordering y of V where
V = {v1, v2, ..., vn}, U = {u1, u2, ..., um} and x is also trivial ordering for U . We construct
the input graph like for the learned leftmost approach but we have to add some more
informations since in this approach we have a current ordering y of V . The network is told
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4.2. Learned Switch

this ordering the same way as the its told the ordering x of U . Therefore the graph given
to the graph network is Gin = (V ∪̇U,E′) with

E′ = E′1 ∪ E′2 ∪ E′3 ∪ E′4 ∪ E′5 ∪ E′6
E′1 = E

E′2 = {(ui, vj) ∈ U × V |(vj , ui) ∈ E}
E′3 = {(ui, ui+1) ∈ U × U |i ∈ {1, 2, ..,m− 1}}
E′4 = {(ui+1, ui) ∈ U × U |i ∈ {1, 2, ..,m− 1}}
E′5 = {(vi, vi+1) ∈ V × V |i ∈ {1, 2, .., n− 1}}
E′6 = {(vi+1, vi) ∈ V × V |i ∈ {1, 2, .., n− 1}}

v1 v2 v3 v4 v1 v2 v3 v4

u1 u2 u3 u4 u1 u2 u3 u4

Figure 4.4: Construction of the input graph

Now we have to add embeddings as node, edge and global attributes. We added like in
the learned leftmost approach every embedding the numbers |V |, |U | and the rank of the
nodes in U and additionally the rank of the nodes in V .

The global feature vector is 
u1
u2
...
ueG


where ueG−1 is |V |, ueG is |U | and u1 until ueG−2 is a learned vector.

The node feature vector is 
n1
n2
...

neV


where neV −1 is |V | and neV is |U |. For nodes in V we have n1 until neV −3 as a learned
vector and NeV −2 as the rank of y and the node ui in U has neV −2 as i which is the rank
of the node and n1 until neV −3 is a learned vector.

The edge feature vector is 
e1
e2
...
eeE
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4. Heuristics Using Machine Learning

where eeE−1 is |V | and eeE is |U |. Every E′i has its own learned vector for the entries from
e1 until eeE−2.

We want the models to update the embeddings such that the embeddings of the edges in
E′5 predict the binary switch value.

4.2.4 Algorithm

We described the algorithm at the beginning ob this chapter. We started in a random
permutation and then let our neural network predict which nodes to swap. This is repeated
up to |V | times or the network sais no swaps have to be done and save the permutation
that has the lowest number of crosses. Since we trained the networks to predict the binary
switch we interpreted values as a switch command if and only if they were higher than 0.5.

However this algorithm did work very bad on graphs with a low density so we added one
optimization.

Let N = (V,U,E, x) be a two layered network with trivial ordering y of V and a trivial
ordering x for U . The problem is that if node vk has no adjacent edges then the position
of this node y(vk) is irrelevant. When we now look at our switch one-sided crossing
minimization matrix S then

sk,1 = min
y is order of V
y(vk)<y(vk+1)

crossesG(y) = min
y is order of V
y(vk)>y(vk+1)

crossesG(y) = sk,2

which tells our algorithm to not swap this node with its right neigbour and also

sk−1,1 = min
y is order of V
y(vk−1)<y(vk)

crossesG(y) = min
y is order of V
y(vk−1)>y(vk)

crossesG(y) = sk−1,2

which tells our algorithm to not swap this node with its left neighbour and so a node with
no adjacent edges will never change its position.

v1 v2 v3

u1 u2

Figure 4.5: Bad example for initial switch algorithm

Therefore we optimized our algorithm by deleting all nodes with no adjacent edges in the
beginning and then continue how already described.
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5. Training and Evaluation

In this chapter we will explain how we trained the models and compare the different with
different properties among each other and also compare these with existing heuristics. The
models are trained on Google Colab and uploaded to Github.

5.1 Trainingdata
We generated two layered networks with the Erdős–Rényi model for two layered networks
G(n,m, p) with all three independent discrete uniformly distributed random variables

n ∼ U(5, 20)
m ∼ U(5, 20)
p ∼ U(5, 95)

Learned Leftmost

Since we train with supervised learning we need to label our generated two layered networks.
Therefore we have to calculated the scores for each two layered network using our reduction
to ILP. With the nodes being V = {v1, v2, ..., vn} and the corresponding crossing matrix C
we need to solve the optimization problem

minimize
n∑

i=1

n∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. mn,i = 1 i 6= l i ∈ {1, .., n}
5. mi,n = 0 i 6= l i ∈ {1, .., n}

for the l-th node. Since we need to solve for two layered network |V | ILPs and these
have many things in common we can optimize building these ILPs. Every ILP has the
constraints 1., 2., and 3. because they make sure that the solution is really a permutation
and every ILP has the same objective which is the number of crosses. So this is our base
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5. Training and Evaluation

and for every optimization problem of this perticular two layered network we just add the
constraints 4. and 5. and delete them after optimizing our ILP model. We saved the scores
of the nodes and if we wanted to know the binary scores or the interpolated scores we
calculated them at runtime.

Learned Switch

We need to label our two layered networks for learned switch as well. With the nodes
being V = {v1, v2, ..., vn} and the corresponding crossing matrix C we need to solve the
optimization problem for sl,1

minimize
n∑

i=1

n∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. ml,l+1 = 1
5. ml+1,l = 0

and for sl, 2

minimize
n1∑
i=1

n1∑
j=1
j 6=i

mi,j · ci,j subject to

1. mi,j +mj,k −mi,k ≤ 1 i 6= j, j 6= k, i 6= k i, j, k ∈ {1, .., n}
2. 0 ≤ mi,j ≤ 1 i 6= j i, j ∈ {1, .., n}
3. mi,j = 1−mj,i i 6= j i, j ∈ {1, .., n}
4. ml,l+1 = 0
5. ml+1,l = 1

which also have a lot of constraints in common. The constraints 1., 2. and 3. are our base
and are used in every of the 2 · (n− 1) ILPs. So for every optimization problem we add the
constraints 4. and 5. and remove them afterwards.

We use Gurobi to solve the ILPs and use Protobuf to save our trainingdata.

5.2 Training
In this section we want to present the different trained models. We trained those to
minimize the mean squared error between the prediction and the target function. We used
the Adam optimizer with a learning rate of 0.0001 and batched graph with about 3750 nodes.

Models

All models have two layer perceptrons with a layernormalization afterwards as edge, node
and global update functions for the encoder and core networks. The decoder network’s
update functions have the same structure but have additionally one layer with one neuron
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5.2. Training

afterwards that has no activation function. All activation functions are the rectified linear
unit. All models have one parameter k that tells how big the embeddings of the input
graph for node, edge and global attributes are and k is also the size for all embeddings of
the output of the encoder and core networks. Since the decoder network has one neuron
on the last layer the embedding sizes from the output of the decoder network is one.

We have the n-layer process encode decode called 9-LPED with n = 9 and k = 80.

We have the n-process encode decode called 9-PED with the core network being used nine
times and k = 80.

We have the n-process encode decode called U -PED with the core network being used |U |
times and k = 80.

We have the n-recursive layer process encode decode called 9-RLPED with n = 9 and k = 20.

Target Function

We trained each of those networks to predict the binary scores, the interpolated scores and
the binary switch.

Loss and Accuracy

We created one data file containing 10.000 graphs from the same distribution as our
Trainingdata for the learned leftmost approach and for the learned switch approach. We
measured in the first step the average loss on this data file and then we measured the
percentage how many problems the network solved correctly called accuracy.

In context of learned leftmost we say that our network predicted one problem correctly if
the node with the highest vote has actually the lowest score for both the binary scores and
the interpolated scores.

In context of learned switch we say that our network predicted one problem correctly if
the rounded vector our model predicts has the same entries as the binary switch vector.
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5. Training and Evaluation

Model Target function Loss Accuracy
9-LPED interpolated score 0.00398 0.928
9-PED interpolated score 0.00688 0.905
|U |-PED interpolated score 0.00960 0.851
9-RLPED interpolated score 0.00604 0.901
9-LPED binary score 0.01227 0.971
9-PED binary score 0.02422 0.964
|U |-PED binary score 0.02787 0.959
9-RLPED binary score 0.01670 0.967
9-LPED binary switch 0.01940 0.763
9-PED binary switch 0.02216 0.740
|U |-PED binary switch 0.02408 0.725
9-RLPED binary switch 0.02646 0.692

Table 5.1: All models with its loss and accuracy

5.3 Comparison
In this subsection we will compare all models and all existing heuristics. We used the
implementation of the Open Graph Drawing Framework for the existing heuristics.

We tested all heuristics, learned heuristics and existing heuristics, by calculating an order
of a given two layered newtork N = (V,U,E, x) on four datasets which all consist of 2.000
two layered networks but from different distributions.

We wanted to see the average performance in comparison to the optimum depending on
the density of the two layered network. Therefore we created two datasets one with a lower
size. So dataset 1 is distributed from the G(10, 10, p) model with p ∼ U(5, 95) and dataset
2 is distributed from the G(20, 20, p) model with p ∼ U(5, 95).

Another interesting aspect is how the algorithm scales on problems whith a size it was not
trained on. So dataset 3 is distributed from the G(n, n, 0.25) model with n ∼ U(4, 49) and
dataset 4 is distributed form the G(n, n, 0.75) model with n ∼ U(4, 49).

We created plots where the average relative error in dependency of density or number of
nodes. We said a graph has density of for example 0.2 when the number of edges in a
graph divided of the number of possible edges is higher than 0.15 and lower than 0.25 is.

5.3.1 Existing Heuristics

In this subsection the existing heuristics are tested against each other on the four datasets.

In the figure below one can see the performance on the first two datasets. In the first
two plots all heuristics are portrayed and on the two plots afterwards just the barycenter
and median heuristic since they have by far the best performance. We can see that all
algorithms have a better performance with higher density.
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Figure 5.1: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.2: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)
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Figure 5.3: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.4: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)

On our last two datasets with differing node sizes the barycenter heuristic still has the best
performance and the median heuristic has the second best performance. The difference
between barycenter rises with higher densities which we can see good in figure 5.8. One
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Figure 5.5: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.6: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

can see that the barycenter heuristic has overall the best performance. On graphs with
low densities the heuristic has equaling performance than the median heuristic but with
increasing density the barycenter heuristic has by far the best performance.
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Figure 5.7: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.8: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

5.3.2 Interpolated Score

In this subsection the models that are trained to predict the interpolated score are tested
against each other on the four datasets.

In the figures below we can see the performance of our models on the first two datasets.
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Figure 5.9: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.10: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)
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Figure 5.11: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.12: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)

We can see that in the 9-LPED model has in both cases overall the best performance
in comparison to the other models. On smaller node sizes the 9-LPED has even better
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performance than the barycenter heuristics for small densities and for higher densities they
are about the same. With increasing node sizes it gets a little worse.

In the two figures below we tested our models on the last two datasets. We can see that
the 9-LPED model has once more the best performance smaller node sizes and on higher
node sizes the 9-RLPED gets a slightly better.
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Figure 5.13: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.14: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

Therefore we displayed the 9-LPED and the 9-RLPED in comparison to the baryenter
heuristic in the two figures below. We can see that the 9-LPED is compatible to the
barycenter heuristic on small instance sizes and on small densities but in the other cases it
is slightly worse.
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Figure 5.15: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.16: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

5.3.3 Binary Score

In this subsection the models that are trained to predict the binary score are tested against
each other on the four datasets.

In the figures below we can see the performance of our models on the first two datasets.
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Figure 5.17: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.18: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)

One can see that also here the 9-LPED has the best performance. In the figure below this
model is compared to the barycenter heuristic and on low instance sizes our learned model
has almost overall better performance which lowers with higher instance sizes.
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Figure 5.19: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

1.000

1.005

1.010

1.015

1.020

1.025

1.030

av
er

ag
e 

re
la

tiv
e 

er
ro

r

9-LPED
barycenter
opt

Figure 5.20: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)

In the figure below we can see how our algorithm scales to larger inputs. In both plots
the 9-LPED has overall the best performance. The U -RLPED seems to have the worst
performance on low inputs. The reason for this may be the lower number of GN block
iterations. The other models all have 9 GN block iterations and this model has on small
instance sizes less.
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Figure 5.21: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.22: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)
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We displayed the 9-LPED in comparison to the baryenter heuristic in the two figures
below. We can see that the 9-LPED is slightly better than the barycenter heuristic on
small instance sizes and on high densities but in the other cases not.
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Figure 5.23: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.24: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

5.3.4 Binary Switch

In this subsection the models that are trained to predict the binary switch are tested
against each other on the four datasets.

In the figures below we can see the performance of our models on the first two datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

1.00

1.02

1.04

1.06

1.08

1.10

1.12

av
er

ag
e 

re
la

tiv
e 

er
ro

r

9-LPED
9-PED
9-RLPED
U-PED
opt

Figure 5.25: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.26: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)

One can see that the learned switch approaches have a better performance overall but on
low densities. This time the 9-LPED has almost the same performance than the 9-PED
and the 9-RLPED has the worst.

In the figures below the performance on different node sizes is pictured. Figure 5.31 shows
the 9-LPED in comparison to the barycenter heuristic and this model has except for very
low instance sizes better performance for two layered networks with even much higher sizes
than the trainingdata.
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Figure 5.27: performance on the
distribution from
G(10, 10, p) with
p ∼ U(5, 95)
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Figure 5.28: performance on the
distribution from
G(20, 20, p) with
p ∼ U(5, 95)
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Figure 5.29: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.30: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)
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Figure 5.31: performance on the
distribution from
G(n, n, 0.25) with
n ∼ U(5, 49)
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Figure 5.32: performance on the
distribution from
G(n, n, 0.75) with
n ∼ U(5, 49)

5.3.5 Model Comparison

The 9-LPED has overall the best performance from all trained models. We can see that
our algorithms have a good performance on our trainingdata and the 9-LPED for the
learned leftmost approach showed for the instance sizes it was trained on performances com-
patible to the barycenter heuristic. However this algorithm didn’t scale well to larger inputs.

The learned switch algorithm with the 9-LPED did scale very well and even had for
node sizes up to 50 better results than the barycenter heuristic. The 9-PED also had a
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performance that was almost as good as the 9-LPED. The other models were worse and
did not scale good as one can see in figure 5.30.
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6. Conclusion

The One-SidedCrossingMinimizationProblem is NP-hard [Wor94] and therefore there prob-
ably won’t exist an efficient algorithm solving this. There exist some well-studie heuristics
for approximating this problem. In tests from Michael Jünger and Petra Mutzel [MJ97]
the barycenter heuristic lead to the best results in terms of low computation time and
quality. They came to the conclusion that on node sizes of up to 60 nodes one can calcu-
late the optimal solution and on higher instance sizes the barycenter heuristic should be used.

We were able to create two heuristics. The learned leftmost approach determines the node
that has to be placed in the leftest position and by iterating one can calculate a whole
order for the nodes. The learned switch approach starts in a random order and then tries
to switch neighbouring nodes with the goal of minimizing the number of crosses.

We compared our appraches using machine learning with existing heuristics. In our test the
barycenter heuristic also has the best among the other existing ones like in this paper[MJ97].
We created an algorithm with the learned switch approach that does scale well and has
better performance than the barycenter heuristic on most inputs.

6.1 Future Work
We saw that machine learning is a powerful tool that could be used for crossing minimization
and think we created heuristics with good performances. We saw that training to predict
the interpolated score was in some aspects superior to the binary score. One idea could be
to define the interpolated switch and train the models to predict this target function.

Michael Jünger and Petra Mutzel [MJ97] think that for node sizes under 60 the optimal
solution can be computed efficiently and for node sizes above the barycenter heuristic can
be used. Since our algorithm seems to have very low difference to the barycenter heuristic
on this big instance sizes we don’t think that our models will improve the state of the
art. However if we train models on bigger instance sizes the algorithms may have better
performance on very big instances.
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