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Abstract

Product structure is a method to describe the global structure of a graph class in terms of
simple graphs such as paths and graphs of bounded treewidth. Dvořák et al. [Matrix Annals
2021] have shown that Euclidian unit disc graphs have product structure. Euclidian unit
disc graphs are a well-known and well-studied graphs class. A graph is a Euclidian unit disc
graph if there is an embedding of the vertices such that two connected vertices are at most 1
apart. Hyperbolic unit disc graphs are an extension of Euclidian unit disc graphs. They are
de�ned by using hyperbolic instead of Euclidian geometry. Hyperbolic unit disc graphs are an
interesting graph class because of their connection to hyperbolic random graphs which can
be used to model real-world networks like the internet or social networks. Therefore, in this
thesis we extend the approach of Dvořák et al. They partition the graph using an embedding
and a tiling of the Euclidian plane. We extend this to hyperbolic tilings. We can then show
that our approach does not work for proving product structure in hyperbolic unit disc graphs.
Additionally, deviating from the way Dvořák et al. partition the graph does not yield product
structure for some families of hyperbolic tilings as well.

Zusammenfassung

Product structure ist ein Werkzeug, um die globale Struktur von Graphklassen mit Hilfe von
einfachen Graphen wie zum Beispiel Pfaden oder Graphen mit beschränkter Baumweite zu
beschreiben. Dvořák et al. [Matrix Annals 2021] haben gezeigt, dass euklidische unit disc
Graphen product structure haben. Euklidische unit disc Graphen sind eine bekannte und
gut erforschte Graphklasse, die alle Graphen enthält, für die eine Einbettung der Knoten
existiert, so dass verbundene Knoten höchstens eine Entfernung von 1 haben. Hyperbolische
unit disc Graphen sind eine Erweiterung der euklidischen unit disc Graphen. Anstelle der
euklidischen Geometrie nutzen sie die hyperbolische Geometrie. Hyperbolische unit disc
Graphen sind von Interesse auf Grund ihrer Verwandschaft mit hyperbolischen Zufallsgraphen,
die zur Modellierung von realen Netzwerken wie zum Beispiel dem Internet oder sozialen
Netzwerken benutzt werden können. Wir nähern uns deshalb in dieser Arbeit der Frage der
product structure von hyperbolischen unit disc Graphen an, indemwir den Ansatz von Dvořák
et al. erweitern. Sie partitionieren die Graphen anhand einer Einbettung des Graphen und
eines Tilings der euklidischen Ebene. Wir verwenden hyperbolische anstelle von eukldischen
Tilings. Wir können zeigen dass diese Herangehensweise nicht geeignet ist, um product
structure bei hyperbolischen unit disc Graphen nachzuweisen. Außerdem erbringt auch ein
Abweichen von der Art der Partitionierung durch Dvořák et al. keine product structure für
einige Familien von hyperbolischen Tilings.
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1 Introduction

Product structure is a tool to gain structural insight into the global structure of graph classes.
This is done by describing the graph class as the strong product of simple graphs, often ones
with bounded treewidth. Product structure has been shown for graph classes like planar and
apex-minor-free graphs [Duj+20b] and can be used to bound certain graph parameters, e.g.,
the non-repetitive chromatic number of planar graphs [Duj+20a]. It has also been shown for
Euclidian unit disc graphs [Dvo+21]. Those graphs are a well-known and well-studied graph
class. They can, for example, be used to simulate wireless networks. A graph is a Euclidian
unit disc graph if there is an embedding of the set of vertices into the Euclidian plane such
that the distance between two connected vertices is at most 1. In Figure 1.2 on the left-hand
side, a Euclidian unit disc graph is depicted. The red circle shows the outline of the disc of the
vertex marked in red. Dvořák et al.’s [Dvo+21] proof of product structure shows that �xing
each vertex to the nearest gridpoint only increases the clique number by a constant factor
and reveals a Euclidian grid structure. In addition, every Euclidian grid is the product of two
paths. An example of this is shown in Figure 1.1.

A generalization of Euclidian unit disc graphs that has only recently been studied are
hyperbolic unit disc graphs [BFKS21]. They are de�ned in a similar way to Euclidian unit disc
graphs. The di�erence is that the underlying geometry is hyperbolic. We note that the radius
of the discs is important for hyperbolic unit disc graphs, as there is no scaling operation in the
hyperbolic plane. A special case of hyperbolic unit disc graphs are the strongly hyperbolic
unit disc graphs. These are graphs where the vertices are embedded in a circle of radius ',
and all discs have radius '. In Figure 1.2 on the right-hand side, a strongly hyperbolic unit
disc graph is depicted. Again, the red circle shows the outline of the disc of the vertex marked
in red. Strongly hyperbolic unit disc graphs exhibit a hierarchical structure in contrast to the
grid structure of Euclidian unit disc graphs. This di�erence is shown in Figure 1.2.

⇥

Figure 1.1: The strong product of two paths is a Euclidian grid.
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1 Introduction

Figure 1.2: On the left side is a Euclidian unit disc graph, and on the right is a strongly
hyperbolic unit disc graph. Illustration made using the interactive tool available tool at
https://thobl.github.io/hyperbolic-unit-disk-graph/

Another related type of graphs are the hyperbolic random graphs. These are a random
graph model �rst introduced by Krioukov et al. [Kri+10]. They are great at depicting real-life
networks like social networks or the internet [BPK10] and can be seen as strongly hyperbolic
unit disc graphs. This is because they are generated by placing = vertices in a hyperbolic
circle with radius ' ⇡ 2 log(=). Two vertices are connected if the hyperbolic distance between
them is at most '.

Product structure has not yet been shown for hyperbolic unit disc graphs. Its discovery
would have some implications for related graph classes. First, the treewidth of strongly
hyperbolic unit disc graphs would be bound by some function of the clique number because
strongly hyperbolic unit disc graphs can be considered the neighborhood of one vertex in
a hyperbolic unit disc graph. Additionally, product structure implies that the treewidth of
the neighborhood of a vertex is bounded [Bos+22 | DMW17]. As a result, large grids would
only be possible with large cliques in strongly hyperbolic unit disc graphs. Because of their
de�nition, the same consequences would apply to hyperbolic random graphs.

Dvořák et al.[Dvo+21] use a Euclidian grid. We extend their approach to hyperbolic grids
for hyperbolic unit disc graphs. These can be derived from hyperbolic tilings, the same
way as grids are derived from Euclidian tilings in the Euclidian space. A regular hyperbolic
(?,@)-tiling is a tiling of the hyperbolic plane using ?-gons where @ ?-gons meet at each
corner. Tilings in the hyperbolic plane work di�erently from hyperbolic tilings. First, there is
only a limited number of regular Euclidian tilings, three to be exact. For hyperbolic tilings,
there is an in�nite number. Second, Euclidian tilings can be scaled. This is impossible in
the hyperbolic space, as no scaling operation exists. Therefore, the size of a single tile in
a (?,@)-tiling is a �xed value depending only on ? and @. Figure 1.3 shows a cutout of a
(5, 4)-tiling in the hyperbolic plane.
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1.1 Contribution

Figure 1.3: A cutout of a (5, 4)-tiling in the Poincaré disc model.

1.1 Contribution

We generalize Dvořák et al.’s [Dvo+21] approach by using hyperbolic tilings. For this, we
de�ne three families of graph classes as possible global structures for hyperbolic unit disc
graphs. These families are using di�erent behaviors of ? and @. We show that geometric
partitioning similar to Dvořák et al. is not possible for any of the three graph families. In
addition, we show that product structure cannot be achieved at all using two of the families.

Hyperbolic tilings are not only a suitable choice to consider because Euclidian tilings were
used to show product structure for Euclidian unit disc graphs but also because the treewidth
of their duals is in O(log=). The type of product structure that we conjecture would bound
the treewidth of hyperbolic unit disc graph ⌧ by tw(� ) · 5 (l (⌧)) for some graph � and
some function 5 . Using the duals of hyperbolic tilings would therefore result in a treewidth
of log(=) · 5 (l (⌧)). This matches the recent �nding that hyperbolic unit disc graphs with
a threshold radius greater than some constant have a treewidth in O(log(=) · l) (Thomas
Bläsius, personal communication, August 8, 2023).

1.2 Related Work

The topic of this thesis touches on the areas of product structure, hyperbolic unit disc graphs,
and hyperbolic tilings. We present some relevant work for each area one after the other.

1.2.1 Product Structure

Product structure was �rst found for planar graphs [Duj+20b]. It has since been discovered for
other graph classes like k-planar graphs, graphs of Euler genus 6 or apex-minor-free graphs,
as well [DMW22 | Dvo+21]. Product structure has also been used to optimize upper bounds for
non-repetitive coloring [Duj+20a], centered coloring [DFMS] and vertex ranking [BDJM22]
for planar graphs. For planar graphs there is an optimalO(=) algorithm to compute the factors
of the strong product [BMO22]. We are interested in geometrically de�ned graph classes,
especially Euclidian unit disc graphs, as they are de�ned similarly to hyperbolic unit disc
graphs. Of great interest for us is that Dvořák et al. [Dvo+21] have shown product structure
for Euclidian unit disc graphs. We have already discussed their approach in short and will
come back to it in Chapter 3.
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1 Introduction

1.2.2 Hyperbolic unit disc graphs

Multiple graph problems using hyperbolic geometry have been studied. For example, in
the hyperbolic traveling salesman problem (TSP), the vertices are placed in the hyperbolic
plane, and the length between two vertices is the hyperbolic distance. Kisfaludi-Bak found an
algorithm that computes a solution for hyperbolic TSP in =O (log2 =) max{1,1/U } where U is the
minimal distance between vertices [Kis20].

Hyperbolic unit disc graphs are only a recently studied graph class. Recognizing a hyperbolic
unit disc graph is 9í-complete.[BBDJ23]. In addition, routing can be solved faster than on
general graphs [BFKS21].

Multiple graph classes are closely related to hyperbolic unit disc graphs. Euclidian unit disc
graphs are a subclass of hyperbolic unit disc graphs [BFKS21]. This is because the hyperbolic
plane is Euclidian locally. Euclidian unit disc graphs have been studied extensively, especially
in the context of wireless networks. For example, the generally NP-complete problem of
�nding a maximum clique can be done in polynomial time, and routing can be performed
more e�ciently than in general graphs [RS03 | KMRS18].
As mentioned previously, hyperbolic random graphs can be seen as strongly hyperbolic

unit disc graphs. They have been found to closely resemble real-life networks such as social
networks or the internet [BPK10]. This is because of their hierarchical structure, low diameter,
high cluster coe�cient, and power-law degree distribution [Kri+10 | FK18 | GPP12]. Multiple
properties of hyperbolic random graphs have been studied like the expected treewidth, size
of a separator [BFK16] and clique number[BFK18].

Geometric inhomogeneous random graphs (GIRGs) are an extension of hyperbolic random
graphs. They are constructed by sampling a point Ga in í3 for every vertex a and assigning a
weightFa in í. Two vertices a,D are connected if |GD � Ga |  FD ·Fa . GIRGs with points in
one dimension are approximately equivalent to hyperbolic random graphs [BKL19]. Every
strongly hyperbolic unit disc graph can be displayed in the GIRG model by using the mapping
in [BKL19]. We use this GIRG representation for strongly hyperbolic unit disc graphs in
Chapter 5.
Kisfaludi-Bak gives a di�erent de�nition of hyperbolic unit disc graphs [Kis]. He de�nes

the graph classes UBGà3 (?) that contain all hyperbolic unit disc graphs with discs of size
? . For constant ? some problems that are NP-hard on general graphs can be solved in quasi-
polynomial time or polynomial time [Kis]. However, this cannot be transferred to the graph
class de�ned by Bläsius et al. [BFKS21]. This is because Kisfaludi-Bak parameterizes the graph
class using the radius of the discs, thus de�ning an in�nite family of graph classes instead
of one class. The di�erence can be visualized using stars. All stars are hyperbolic unit disc
graphs as seen in Chapter 2. However, for each class UBGà3 (?) only stars (: up to a speci�c
size : are included because the radius ? limits the number of non-connected vertices in the
neighborhood of a vertex.
Noisy variants of hyperbolic unit disc graphs have also been studied [Kis]. But they go

beyond the scope of this thesis.

1.2.3 Hyperbolic tilings

Throughout this thesis, we use only regular hyperbolic (?,@)-tilings, but there are further
hyperbolic tilings. One example would be asymmetric or semi-regular tilings [Goo05 | DG21].
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1.3 Outline

1.3 Outline

We start with a brief introduction to hyperbolic geometry and formal de�nitions of the used
concepts. In Chapter 3, we present several notions of product structure and generalize the
approach of Dvořák et al. [Dvo+21] We then introduce hyperbolic tilings in Chapter 4 and
show that they are unsuitable for geometric partitioning. In Chapter 5, we construct a grid
with a clique number linear in the grid size as a strongly hyperbolic unit disc graph.
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2 Preliminaries

All graphs ⌧ = (+ , ⇢) are undirected if not de�ned otherwise. We de�ne + (⌧) as the set of
vertices of a graph ⌧ and ⇢ (⌧) as the set of edges of ⌧ .

Treewidth has been introduced by Robertson and Seymour[RS86] as a measure of the
likeness of a graph to a tree. A tree decomposition of a graph⌧ = (+ , ⇢) is a tuple (- ,) ) where
) = (- , � ) is a tree and - contains bags of vertices such that:

1
–
-8 2 - -8 = +

2 for every edge {D,a} 2 ⇢ (⌧) there is a bag -8 2 - such that D,a 2 -8 .

3 for every vertex a 2 + (⌧) the subgraph of ) induced by {-8 2 - | a 2 -8} is a tree.

The width of a tree decomposition is de�ned as max-8 2 - |-8 |. The treewidth of ⌧ is the
minimum width of all tree decompositions.

2.1 Hyperbolic geometry

This thesis uses the 2-dimensional hyperbolic plane à2. There are multiple models to depict
the hyperbolic plane in the Euclidian plane. We will introduce hyperbolic geometry using the
Poincaré disc model. In this model, the hyperbolic plane is mapped to the unit circle. The
origin of the hyperbolic space is mapped to the Hyperbolic lines are mapped to circular arcs
that meet the border of the unit circle at a right angle. This is bijective, so every circular
arc that meets the border of the unit circle at a right angle is a hyperbolic line. Therefore,
hyperbolic lines through the origin of the hyperbolic plane are mapped to Euclidian lines
through the center of the unit circle. These can be seen as circular arcs of a circle with in�nite
radius. Figure 2.1 shows multiple hyperbolic lines in the Poincaré disc. We can see that
for the hyperbolic line ✓ , multiple hyperbolic lines through ? do not intersect ✓ . There are
indeed an in�nite number of hyperbolic lines through ? that do not intersect ✓ . Axiomatically,
this is the only di�erence to Euclidian geometry. This results in multiple properties that
di�er from the Euclidian geometry. The area of a triangle can, for example, be c at most.
In addition, the hyperbolic space has exponential expansion. For comparison, the Euclidian
space only expands polynomially. Besides the hyperbolic lines, Figure 2.1 shows a hyperbolic
triangle and a hyperbolic circle in the Poincaré disc model. It can be seen that the Poincaré
disc model maps hyperbolic circles to Euclidian circles. In the Poincaré disc, most of the
hyperbolic space is mapped rather close to the border of the unit circle. This is why we use
polar coordinates when displaying hyperbolic unit disc graphs. In Figure 1.2, the two graphs
are depicted by embedding the polar coordinates of the vertices in the Euclidian plane. To use
polar coordinates, we designate a pole $ and a ray originating at $ as the polar axis. Every
point ? 2 à2 can then be represented by the distance to the origin A (?), called radius, and the
angle between the ray from $ to ? and the polar axis i (?). We write A and i if the referred
hyperbolic point is clear. The distance between two points ? and @ can be calculated using

3à(?,@) = arcosh(cosh(A (?)) (cosh(A (@)) � sinh(A (?)) sinh(A (@)) cos(�i (?,@)) (2.1)

7



2 Preliminaries

`

p

Figure 2.1:Multiple lines, a triangle and a circle in the Poincaré disc model.

where �i (?,@) = c � |c � |i (?) � i (@) | | is the angular distance between ? and @, cosh(G) =
4G+4�G

2 , sinh(G) = 4G�4�G
2 , and arcosh(G) = log(G +

p
G2 � 1) with log(G) as the natural

logarithm. By rearranging Equation (2.1) we get a formula for the maximal angular distance
such that two points (A1,i1) and (A2,i2) are less than ' apart from each other

\ (A1, A2) = arccos
✓
cosh(A1) cosh(A2) � cosh(')

sinh(A1) sinh(A2)

◆
(2.2)

For more information on the hyperbolic space and its models, we refer to [Jam99].

2.2 Hyperbolic unit disc graphs

A graph ⌧ is a Euclidian unit disc graph if there is an embedding q : + (⌧) 7! í2 such
that {D,a} 2 ⇢ (⌧) if and only if |q (D) � q (a) | < 1. We de�ne hyperbolic unit disc graph
analogously in the hyperbolic plane. A graph⌧ = (+ , ⇢) is a hyperbolic unit disc graph that has
an embedding q : + 7! à2 such that q (a) is at most A away from the origin of the hyperbolic
plane for every a 2 + and {D,a} 2 ⇢ if and only if 3à(D,a) < '. For us, a hyperbolic unit
disc graph is a combinatorial object. When an embedding is needed, we say so explicitly. We
call A 2 í the radius of the ground space and ' 2 í the threshold radius. We note that '
cannot be omitted as it can be in the Euclidian setting. This is because di�erent graphs can
be constructed using di�erent threshold radii. Recall our discussion of the remarks on the
alternative de�nition of hyperbolic unit disc graph by Kisfaludi-Bak[Kis] in the Introduction
on this topic. The name hyperbolic unit disc graph is still appropriate because all the circles
have the same radius. We de�ne a strongly hyperbolic unit disc graph as a hyperbolic unit disc
graph that has an embedding with ' = A .

2.2.1 Stars are hyperbolic unit disc graphs

We use stars in multiple proofs later on. So, in this section, we show that stars of arbitrary
size are hyperbolic unit disc graphs. The Star (: is a graph with : + 1 vertices. It has one
central vertex connected to the remaining : leaves. The graph has no other edges. We note
that only stars with up to �ve leaves are Euclidian unit disc graphs.

8



2.3 Strong Product

We now construct an embedding for (: . We want the central vertex to be the origin
of the hyperbolic space. The leaves have distance ' from the origin. Recall that \' (',')
(Equation (2.2)) is the maximum angular distance so that points with distance A1, A2 to the
origin have a distance smaller than ' to each other. Using the upper bound c

p
4�' � \' (',')

we can see that \' (',') is monotonically decreasing [BFKS21]. This way, we know that there
is an ' such that \' (',') < 2c/: . We set this ' as the threshold and ground space radius
of the embedding of (: . We then place the leaves at distance ' from the origin and angular
distance q from the neighboring leaves with q < \' (',') < 2c/: . This way, neighboring
leaves have no edges between each other. On the other hand, the central vertex has distance
' from the leaves and is thus connected to all of them.

2.3 Strong Product

We de�ne the strong product of the graph � with a graph  to be a graph � ⇥  = ⌧ where
+ (⌧) is + (� ) ⇥+ ( ) and {(D� ,D ), (a� ,a )} 2 ⇢ (⌧) if one of the following is true

{D� ,a� } 2 ⇢ (� ) and D = a 

{D ,a } 2 ⇢ ( ) and D� = a�

{D� ,a� } 2 ⇢ (� ) and {D ,a } 2 ⇢ ( )

A simple, strong product has been shown in Figure 1.1 in the Introduction.
We can show that the clique number of the factors determines the clique number of a strong

product.

Lemma 2.1: Let ⌧ = � ⇥& for some graphs � and & . Then l (⌧) = l (� ) · l (&).

Proof. We start by showing that l (⌧) � l (� ) · l (&). Let ⇠� ,⇠& be cliques of size l (� )
and l (&) in � and & respectively. Then ⇠ := ⇠� ⇥⇠& is a clique in ⌧ . We veri�ed this by
checking the three de�nitions for edges in strong products. Let (D1,a) < (D2,a) be vertices in
⇠ . Then there is an edge between the vertices because D1,D2 2 ⇠� and thus {D1,D2} 2 ⇢ (� ).
The remaining two types of edges can be the same way. It follows that l (⌧) � l (� ) · l (&).

We now show that l (⌧)  l (� ) ·l (&). Let⇠ be a clique of size l (⌧) in⌧ . Set +� = {D |
(D,a) 2 ⇠} and +& = {a | (D,a) 2 ⇠}. We can see that ⇠ ✓ +� ⇥+& , so |⇠ |  |+� | · |+& |. We
show that+� and+& are cliques, and their size is thus boundedl (� ) orl (&), respectively. We
take two di�erent vertices D < a in+� . By the de�nition of+� there areF1,F2 2 +& such that
(D,F1), (D,F2) are in⇠ . Using the de�nition of the strong product, we can see that there is an
edge between D and a in � either using case 1 (F1 = F2) or case 3 (F1 < F2). This means that
+� is a clique because there is an edge between any twoD,a in+� . Applying the same argument
to +& shows that it is a clique as well. It follows that l (⌧) = |⇠ |  |+� | · |+& |  l (� ) ·l (&).

Combining both results, it follows that l (⌧) = l (� ) · l (&).

For the treewidth of a strong prodcut�⇥& we know that tw(�⇥&)  (tw(� )�1) |+ (&)�1
[HW21]. For the special case of� ⇥ = the treewidth is (tw(� )�1)=�1 [HW21]. We are often
interested in the strong product of a graph � and a complete graph  = . The resulting graph
retains the global structure of � but every vertex is blown up to a complete graph. Figure 2.2
shows an example of this product. A di�erent view on product structure is to partition the
vertices of the graph. The structure between the parts of the partition is called the quotient
and is one of the factors in the strong product. Each part of the partition can then be blown

9



2 Preliminaries

Figure 2.2: The right side shows the strong product of the graph on the left and  3.

up to the partition width by multiplying with  FP (⌧ ) whereFP (⌧) to recreate the original
graph. Formally, the quotient of a graph ⌧ and partition P of the set of vertices of ⌧ to be
the graph � = ⌧

�
P with+ (� ) = P and ⇢ (� ) = {{?,@} | 9D 2 ?9a 2 @ : {D,a} 2 ⇢ (⌧)}. We

explore the connection between product structure and partitions in more depth in Chapter 3
A graph � is a minor of a graph ⌧ if � can be received from ⌧ by

1 removing edges in ⌧

2 removing vertices in ⌧

3 contracting edges in ⌧

A A -shallow minor is a minor where the radius of contracted subgraphs is at most A . We know
that A -shallow minors are a subgraph of a strong product if the original graph is a strong
product.

Lemma 2.2 ([HW22]): If⌧ is a A -shallow-minor of � ⇥ % ⇥ ; where � has treewidth at most C
and % is a path, then ⌧ ✓ � ⇥ % ⇥  ; (2A+1)2 where � has treewidth at most

�2A+1+;
C

�
� 1.

10



3 Product structure of hyperbolic unit disc
graphs

In this section, we de�ne di�erent notions of product structure and generalize the approach
used to show product structure in Euclidian unit disc graphs.

As already mentioned, Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [Duj+20b] have
shown that every planar graph is a subgraph of the strong product of a path and a graph with
bounded treewidth. This concept is called product structure. In general, we say a graph class
G has product structure if there is a constant 2 such that for every⌧ 2 G we have⌧ ✓ % ⇥) for
some path % and some graph ) with tw() )  2 . This type of product structure is not possible
for hyperbolic unit disc graphs since cliques of arbitrary size are HUDGs. An alternative
de�nition considers this and states that product structure is present in a graph class when
a graph parameter is bounded. This is equal to the factors being dependent on this graph
parameter. The following de�nition uses the clique number as the graph parameter, as we
will use the clique number going forward.

Definition 3.1 (5 (l)-bounded product structure): A graph class G has 5 (l)-bounded product
structure for some function 5 : é 7! é if for every ⌧ 2 G we have ⌧ ✓ % ⇥) for some path %
and graph ) with tw () )  5 (l (⌧)).
There is a third option for product structure that moves the dependency on the clique

number to a third factor. Intuitively, the �rst two factors de�ne the global structure of the
graph, and the third blows the graph up to the correct size.

Definition 3.2 (strong 5 (l)-bounded product structure): A graph class G has strong 5 (l)-
bounded Product Structure for some function 5 : é 7! é if there is a constant 2 such that for
every⌧ 2 G we have⌧ ✓ % ⇥) ⇥ 5 (l (⌧ ) ) for some path % and some graph) with tw () )  2 .

We can show that De�nition 3.2 implies De�nition 3.1

Lemma 3.3: If a graph class G has strong 5 (l)-bounded product structure for some function
5 : é 7! é, it has 6(l)-bounded product structure for some function 6 2 ⇥(5 ).
Proof. Let G be a graph class that has strong 5 (l)-bounded product structure, and ⌧ 2 G
with ⌧ ✓ % ⇥) ⇥  5 (l (⌧ ) ) = % ⇥) 0 using ) 0 = ) ⇥  5 (l (⌧ ) ) . We bound the treewidth of ) 0

using the inequality tw(⌧1 ⇥⌧2)  (tw(⌧1) + 1) |+ (⌧2) | � 1 [HW21]. Applying it to) 0 yields

tw() 0) = tw() ⇥  5 (l (⌧ ) ) )  (tw() ) + 1) 5 (l (⌧)) � 1  (2 + 1) 5 (l (⌧)) � 1 =: 6(l (⌧))
where tw() )  2 because of the strong 5 (l)-bounded product structure. Thus ⌧ ✓ % ⇥) 0

where tw() 0) = 6(l (⌧)).

It is unknown whether De�nition 3.1 and De�nition 3.2 are equivalent. The question has
not been answered for product structure bounded by di�erent graph parameters either. For
:-planar graph, product structure according to De�nition 3.1 has been found early on using
the parameter : [DMW22]. It took a while to show that :-planar graph have product structure
according to De�nition 3.2. The proofs use di�erent techniques and therefore do not promote
a connection between the two types of product structure.
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3 Product structure of hyperbolic unit disc graphs

Using these de�nitions, we can now de�ne our goal.

Conjecture 3.4: Hyperbolic unit disc graphs have strong 5 (l)-bounded product structure, i.e.,
there is a constant 2 and a function 5 such that every hyperbolic unit disc graph ⌧ is a subgraph
of % ⇥) ⇥  5 (l (⌧ ) ) for some path % and some graph ) with tw() )  2 .

Not restricting 5 in anyway is a problem for some graph classes. Whenl (⌧) 2 ⇥(5 ( |+ (⌧) |)
holds for all graphs of a graph calss G, then G has strong 5 �1-bounded product structure
because the clique factor alone has |+ (⌧) | vertices. For hyperbolic unit disc graphs this is not
the case as there is a family of graphs with no connection between the number of vertices
and the clique number. An example would be stars.

3.1 Product Structure in Euclidian unit disc graphs

Dvořák et al. [Dvo+21] have that Euclidian unit disc graph have 5 (l)-bounded product
structure. We give the idea of the proof here in order to generalize it afterward.
Consider a Euclidian unit disc graph ⌧ with an embedding. First, tile the Euclidian plane

into squares with edge length 1. We call these squares tiles. We now aim to limit the number
of cliques that have to be used to cover one square and then analyze the structure of edges
between squares. For the �rst part, we divide each square into four smaller squares with
edge length 1/2. We call these squares subtiles. The diameter of a subtile is

p
1/2 due to the

Pythagorean theorem. Because the diameter is smaller than 1, all vertices in one subtile form
a clique. Four cliques can thereby cover each tile. The remaining part is to look at the edges
between tiles. Each tile has edges to only its eight neighboring tiles. We can show this by
considering the minimal distance between tiles. The distance between a tile and its neighbors
is 0. Recall that the edge length of a tile is 1. Therefore, the distance to a tile other than the
neighbors is greater than 1. The graph that shows the possible edges between tiles is called a
king’s graph and can be written as % ⇥ % for some path % . Combining our observations, we
can conclude that every Euclidian unit disc graph is a subgraph of % ⇥ % ⇥  4·l (⌧ ) for some
path % .

In short, they partition the graph using squares and analyze the edges between parts of the
partition. We generalize this approach in the next de�nition.

Definition 3.5 (5 (l)-bounded H-partition): Let⌧ be a graph. A � -partition of a graph⌧ is a
partition P of + (⌧) such that ⌧/P is � . The width of a � -partition is F� (⌧) = max?2P |? |.
Let H and G be a graph class. A H-partition of a graph ⌧ is a partition P of + (⌧) such that
� = ⌧/P is in H. The H-partition-width of a graph ⌧ isFH(⌧) = min� 2HF� (⌧).

We say a graph class G has a 5 (l)-boundedH-partition if for every⌧ 2 G we haveFH(⌧) 
5 (l (⌧)).

Rephrasing the result for Euclidian unit disc graphs, we say that every Euclidian unit disc
graph has a 5 (l)-bounded {%1 ⇥ %2 | %1, %2 are paths}-partition. In this case, the graph class
H has product structure. The next lemma shows that this is important for the equivalence to
strong 5 (l)-bounded product structure.

Lemma 3.6: Let G be a graph class. Then the following two statements are equivalent:

1 G has strong 5 (l)-bounded product structure.

2 G has a 5 (l)-bounded H-partition for a graph class H that admits product structure.

12



3.1 Product Structure in Euclidian unit disc graphs

Proof. First, assume that G has strong 5 (l)-bounded product structure, i.e., every graph⌧ 2 G
is a subgraph of a graph % ⇥) ⇥  5 (l ) for some path % and some graph ) with tw() )  2 .
For every ⌧ 2 G we want to �nd a � -partition with width at most 5 (l (⌧)) such that � is
part of a graph class that admits product structure. So, let ⌧ be a graph in G. We �rst �nd a
partition P of the vertices of⌧ with width at most 5 (l (⌧)). For this, consider the partition
P⌧ = {{(D,a,F) | F 2 + ( 5 (l (⌧ ) ) )} ✓ + (⌧) | D 2 + (%),a 2 + () )}, i.e., all vertices of a
copy of  5 (l (⌧ ) ) restricted to the vertices in ⌧ are one partition. This partition has width
of at most 5 (l (⌧)) because each copy of  5 (l (⌧ ) ) only contains 5 (l (⌧)) vertices. We set
H = {⌧/P⌧ | ⌧ 2 G}. This way ⌧ has a 5 (l)-bounded H-partition because of the de�nition
of the quotient. It remains to show thatH has product structure. Consider the quotient⌧/P⌧ .
Each set in P⌧ is a subset of a copy of  5 (l ) in % ⇥) ⇥ 5 (l ) . An edge in⌧/P⌧ is thereby an
edge between vertices of di�erent cliques in % ⇥) ⇥ 5 (l ) . All possible edges between copies
of  5 (l (⌧ ) ) are present in % ⇥) . It is therefor⌧/P⌧ ✓ % ⇥) . This shows that H has product
structure as it only contains graphs of the form ⌧/P⌧ .
We now assume that every ⌧ 2 G has a H-partition withFH(⌧)  5 (l (⌧)) for some H

with product structue and want to prove that ⌧ is a subgraph of % ⇥) ⇥  5 (l (⌧ ) ) . For this
let ⌧ be a graph in G with a � -partition of widthF� (⌧)  5 (l (⌧)) for some � 2 H. Let P
be the partition of the vertices of ⌧ . Recall that � ✓ % ⇥) for a path % and a graph ) with
constant treewidth. We can easily see that all vertices of⌧ are present in % ⇥) ⇥ 5 (l (⌧ ) ) . We
have at most |+ (%) | · |+ () ) | partitions in P because � ✓ % ⇥) and each partition contains at
most 5 (l (⌧)) vertices.
We now show that every edge in ⌧ is present in % ⇥) ⇥  5 (l (⌧ ) ) . For this, identify each

partition of P by the vertex (D,a) ⇢ + (%) ⇥+ () ). An edge between vertices of one partition
is present because each partition is represented by a copy of  5 (l (⌧ ) ) . Consider an edge
between vertices of di�erent partitions. This edge is present in % ⇥ ) ⇥  5 (l (⌧ ) ) as well
because all possible connections between partitions are modeled in % ⇥) .
We conclude that ⌧ ✓ % ⇥) ⇥  5 (l (⌧ ) ) for some path % and graph ) with tw() )  2 .

Using this lemma, we can rewrite Conjecture 3.4. We use this version for the remainder of
the thesis.

Conjecture 3.7: Every hyperbolic unit disc graph has a 5 (l)-bounded H-partition for some H
with product structure.

We now explore di�erent possibilities for H in Conjecture 3.7 and start with {%1 ⇥ %2 |
%1, %2 are paths}. This is an obvious choice as it is the graph class used for Euclidian unit disc
graphs [Dvo+21]. It is, in any case, not possible to copy the exact course of action of Dvořák
et al. since regular squares of the same size with four squares meeting at one corner cannot
tile the hyperbolic plane. But even considering any partition with a king’s grid as the quotient
does not lead to 5 (l)-bounded partitions.

Lemma 3.8: For every function 5 there is a hyperbolic unit disc graph ⌧ such that ⌧ has no
5 (l)-bounded {%1 ⇥ %2 | %1, %2 are paths}-partition.

Proof. We use stars to show the lemma. We have already shown that stars of arbitrary size
are hyperbolic unit disc graphs. The high-level argument is that stars have a constant clique
number, and % ⇥ % has a constant maximum degree. Stars, on the other hand, have a growing
maximum degree. This cannot be hidden in the width of the partition because of the constant
clique number of stars.

13



3 Product structure of hyperbolic unit disc graphs

We choose a star graph ( with at least 9· 5 (2)+1 vertices. Assume that ( has a 5 (l)-bounded
{%1 ⇥ %2 | %1, %2 are paths}-partition. This means that we have a partition P of + (() and
� = (/P = % ⇥% for some path % . Let a be the vertex in � that corresponds to the partition in
P that contains the central vertex 2 of the star. All remaining vertices of the star are adjacent
to 2 and can thus only be contained in the partitions that the neighbors of a correspond to.
Each vertex in the graph % ⇥ % has at most eight neighbors. Recall that stars have a constant
clique number of 2. The corresponding partitions of a and its neighbors can only contain
9 · 5 (2) vertices. It is, therefore, impossible to distribute the 9 · 5 (2) + 1 vertices of the star to
the partitions of a and its neighbors.

14



4 Hyperbolic tilings

To explore other possible graph classes for H we use hyperbolic tilings. So, this chapter
starts by giving an overview of hyperbolic tilings. From here on, we only consider regular
tilings, i.e., tilings with regular polygons. We name tilings using the number of vertices of
the polygon ? and the number of polygons that meet at one vertex @. A (?,@)-tiling for us
has an unique embedding in the plane. This embedding has the center of one tile at the
origin of the hyperbolic plane. A (?,@)-tiling is Euclidian if and only if 1/? + 1/@ = 1/2 and
a (?,@)-tiling is hyperbolic is hyperbolic if 1/? + 1/@ < 1/2 [EEK82]. Combinations with
1/? +1/@ > 1/2would be tilings of the sphere. But these are not of interest to us. Examples for
Euclidian tilings are a (6, 3)-tiling and a (4, 4)-tiling. A Euclidian (6, 3)-tiling and a hyperbolic
(5, 3)-tiling are shown in Figure 4.1.

Figure 4.1: A (6, 3)-tiling in the Euclidian space on the left and a cutout of a (5, 4)-tiling of
the hyperbolic space in the Poincaré disc model on the right.

We now provide equations for various lengths in hyperbolic tilings that we use later. We
need the hyperbolic laws of cosine to prove the correctness of these equations.

Lemma 4.1 ([Jam99]): Given a hyperbolic triangle with vertices �,⌫,⇠ , angles U, V,W and edges
�⌫ = 2,⌫⇠ = 0 and �⇠ = 1, then the following hold true:

cosh0 = cosh1 cosh 2 � sinh1 sinh 2 cosU (4.1)
cosU = � cos V cosW + sin V sinW cosh0 (4.2)

We can now calculate the radius of the incircle, the radius of the circumcircle, and the
edge length of the polygons in a hyperbolic tiling. We denote them by Ain(?,@), Aout(?,@) and
✓ (?,@) respectively, and omit ? and @ if they are clear from the context.
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4 Hyperbolic tilings

Lemma 4.2: Given a hyperbolic tiling (?,@) and let Ain be the radius of the incircle, Aout the
radius of the circumcircle, and ✓ the edge length. Then

Ain = arcosh
©≠≠
´
cos

⇣
c
@

⌘

sin
⇣
c
?

⌘ ™ÆÆ
¨
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´
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c
@

⌘
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⇣
c
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sin
⇣
c
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sin

⇣
c
?

⌘ ™ÆÆ
¨
, and ✓ = 2 · arcosh

©≠≠
´
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⇣
c
?

⌘

sin
⇣
c
@

⌘ ™ÆÆ
¨
.

(4.3)

Proof. Construct a triangle using the center of a tile⇠ , a vertex of the tile �, and the midpoint
of an edge" . Because we assume a regular tiling of ?-gons, there are 2? congruent triangles
around the center of a ?-gon. One of the triangles is shown in Figure 4.2. The angle at the
center of the ?-gon for one of the triangles is thus ]�⇠" = (2c)/(2?) = c/? . Applying the
same argument to the vertex of a ?-gon yields ]⇠�" = c/@. The angle at " is c because
⇠" is orthogonal to an edge in regular tilings. Applying the second rule of Lemma 4.1 to ⇠"
yields

cos
✓
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@
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✓
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◆
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◆
sin (c) cosh (Ain)
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⇣
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⇣
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?

⌘ = cosh (Ain)

Ain = arcosh
©≠≠
´
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⇣
c
@

⌘

sin
⇣
c
?

⌘ ™ÆÆ
¨

Applying the second rule of Lemma 4.1 in the same fashion to the other edges of the triangle
yields Aout and ✓/2.

C

A

M

rin

rout

`

Figure 4.2: The Triangle used in proof the of Lemma 4.2

We, later on, look at di�erent families of tilings. Therefore, the behavior of Ain in di�erent
tilings is of interest to us.
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Lemma 4.3: For constant @, 5 (?) := arcosh (cos (c/@)/sin (c/?)) is log(?) ±O(1).

Proof. It is known that sin(G) ⇡ G for small G and arcosh(G) ⇡ log(G). Applying these
approximations to 5 (?) yields 5 (?) ⇡ log(?). We now show this claim more formally.
Using the Taylor series at G = 1 we can see that sin

� 1
G

�
= G � O

⇣
1
G3

⌘
. Applying this to

sin
⇣
c
?

⌘
yields
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(4.4)

Recall that arcosh = log
⇣
G +

p
G2 � 1

⌘
. Using this we can rewrite arcosh as

arcosh (G) = log
⇣
G +

p
G2 � 1

⌘

= log

 
G

 
1 +

r
1 � 1

G2

!!

= log (G) + log
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r
1 � 1
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!
. (4.5)

We can see that
p
1 � 1/G2  1 because 1/G2 > 0. Thus

log

 
1 +

r
1 � 1

G2

!
 log(2) .

This can be used to further simplify Equation (4.5) to

log (G) +O (1)

Applying this to 5 (?) yields
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As @ is constant, this can be further simpli�ed to

� log
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sin

✓
c

?

◆◆
+O (1) (4.6)
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4 Hyperbolic tilings

Combining Equations (4.4) and (4.6) we get
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¨
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The last transformation is valid because

log
✓
1 �O

✓
1
?2

◆◆
2 ±O(1)

as O
�
1/?2

�
shrinks for increasing ? . We can thus conclude that

5 (?) = log(?) ±O(1) .

4.1 Partitions using tilings

After this brief introduction to hyperbolic tilings, we use them in the context of product
structure. Our goal is to use hyperbolic tilings similar to the proof for product structure
in Euclidian unit disc graphs. We call this geometric partitioning. Given an embedding of a
hyperbolic unit disc graph, we choose a tiling and then place it onto the hyperbolic plane
and assign each vertex to the tile it lies in. Our goal is to cover the vertices in one tile with a
bounded number of cliques. This is more di�cult in the hyperbolic space than in the Euclidian
space. One reason for this is that we cannot resize tilings. The size of a tile is �xed by the
parameters ? and @ of the tiling. So, we have to consider di�erent tilings for hyperbolic unit
disc graphs of di�erent sizes. The di�culty is in choosing the right tiling. This is a trade-o�
between the number of cliques required to cover a tile (i.e., the size of a tile) and the number
of tiles to which edges are possible.
We now de�ne three families of tilings and, based on them, possible graph classes H for

Conjecture 3.7. For this, we regard a tiling as an in�nite planar graph. For a planar graph ⌧ ,
the dual is a graph ⇡ where the set of vertices is the set of faces of⌧ . Two faces are connected
if they share an edge in ⌧ . The dual of a planar graph is itself a planar graph. We want
to extend the dual to the extended dual. The extended dual has additional edges between
faces that share a vertex. This means that for a (?,@)-tiling, all @ tiles that share a vertex
are connected in the extended dual. Note that the extended dual of a Euclidian grid, i.e., a
(4, 4)-tiling, is an in�nite king’s graph. This is the graph class used to show that Euclidian
unit disc graphs have strong 5 (l)-bounded product structure. We get di�erent extended
duals for di�erent hyperbolic (?,@)-tilings. We want to explore three options for choosing ?
and @. We only want to handle �nite graphs. So we de�ne all of the three following graph
classes to contain all possible subgraph of the extended dual of the respective tilings. The
three families of graph classes are:

18



4.1 Partitions using tilings

Figure 4.3: Top: Cutout of a (7, 3)-tiling. Middle: Cutout of a (3, 7)-tiling. Bottom: Cutout of
a (7, 7)-tiling. All tilings are shown in the Poincaré disc model.
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4 Hyperbolic tilings

1 ? and @ are constant. We call this graph class H?,@ .

2 ? is constant and @ variable. We call this graph class P? .

3 @ is constant and ? variable. We call this graph class Q@ .

Figure 4.3 shows three cutouts of hyperbolic tilings with di�erent parameters to illustrate the
di�erence between tilings with low and high choices for ? and @.

We start with the case that both ? and @ are constant.

Lemma 4.4: For every function 5 and ?,@ 2 é there is a hyperbolic unit disc graph⌧ such that
⌧ has no 5 (l (⌧))-bounded H?,@-tiling.

Proof. We use stars similar to Lemma 3.8. The high-level argument is the same as well. We
already know that stars of arbitrary size are hyperbolic unit disc graphs. The extended weak
dual of a (?,@)-tiling has bounded maximum degree. Stars, on the other hand, do not have
bounded maximum degree. That is, we show that graphs with unbounded degree cannot be
partitioned into a graph with bounded degree while bounding the width of the partition.
We choose a star ( with more than (? · (@ � 2) + 1) · 5 (2) vertices. Assume that ( has a

H?,@,-partition withFH(()  5 (l (()) This means that we have a partition P of + (() with
� = (/P 2 H?,@ , and F� = (⌧)  5 (l (⌧)). Let a be the vertex in � that corresponds to
the partition in P that contains the central vertex 2 of the star. All remaining vertices of the
star are adjacent to 2 and can thus only be contained in the partitions that the neighbors of a
correspond to. Each vertex in the extended weak dual of a (?,@)-tiling has at most ? · (@ � 2)
neighbors. This is because there are @�1 neighbors for every vertex of a tile. This includes the
neighbors that are connected via edge-edges. We subtract 1 per vertex of the tiling to not count
neighbors twice. Recall that stars have a clique number of 2. The parts of P corresponding to
a and its neighbors can thereby contain (? · (@ � 2) + 1) · 5 (2) vertices. It is, therefore, not
possible to distribute the (? · (@ � 2) + 1) · 5 (2) + 1 vertices of the star to the parts of P that
correspond to a and its neighbors.

Next, consider the case that ? is constant and @ grows. We show that the resulting graph
class P? of the extended duals does not have product structure. This automatically rules it
out for Conjecture 3.7.

Lemma 4.5: Let ? be constant. For every 2 there is a � 2 P? such that � * % ⇥) for every path
% and every graph ) with tw() )  2 .

Proof. Recall that P? contains all subgraphs of the extended dual of (?,@)-tilings for growing
@. Consider the vertex-edges in the extended dual of a (?,@)-tiling. Every tile that contains
this vertex is connected with every other tile that contains the vertex. This results in a clique
of size @ in the extended dual. So the clique number of the extended dual of (?,@)-tilings
increases with @. This is a problem for product structure. The high-level argument is that big
cliques in the product can only be caused by big cliques in the factors.
We choose @ larger than 22 . Assume for the sake of contradiction that the extended dual

of a (?,@)-tiling is the subgraph of % ⇥) for some path % and some graph ) with tw() )  2 .
Recall that the clique number of the weak extended dual of a (?,@)-tiling is at least @. Using
Lemma 2.1 we see that the treewidth of ) is at least tw() ) � l (⌧)/2 � @/2 > (2/2) · 2 = 2 .
This is a contradiction to our assumption.

20



4.1 Partitions using tilings

(f, 4)
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Figure 4.4: Left: � 0; Middle: � 0 after reconstructing the face nodes; Right: extended dual (� 00)
of a (5, 4)-tiling.

We have shown that a constant ? and @ and a constant ? with a growing @ are not suitable
choices for Conjecture 3.7. We can rule out the third optionQ@ only for geometric partitioning.
We start by showing that Q@ admits product structure.

Lemma 4.6: For every @ Q@ admits product structure.

Proof. Let � 2 Q@ be the extended dual of a (?,@)-tiling. We want to show that � is a
2-shallow minor of a planar graph. As every planar graph is a subgraph of % ⇥) for some
path % and graph ) with tw() )  6 [UWY21], we can then use Lemma 2.2 to show that �
is the subgraph of % ⇥ � ⇥  25·@ for some path % and some graph � with tw(� ) 

�5+@
6
�
� 1.

This proves that Q@ admit product structure as � ⇥  25·@ has a constant upper bound on the
treewidth that is only dependent on @.
It remains to show that � is the 2-shallow minor of a planar graph. For a (?,@)-tiling,

construct the graph � where every face and every vertex of the tiling is a vertex of the graph.
We call vertices that represent a face face-nodes and vertices that represent a vertex of the tiling
vertex-nodes. There is an edge between a face-node and every vertex-node that it is connected
to in the tiling. We can easily see that � is planar. Now, consider the graph � 0 = � ⇥  @ . We
construct a 2-shallow minor � 00 of � 0 and afterwards show that � 00 is equal to � . We start
by restoring the face-nodes. For a face-node 5 in � , contract the edges between the vertices
{(5 ,:) | : 2 [@]}. This can be done because the vertices in the set are a clique. Denote the
resulting vertex with 5 0. We then distribute the vertices that resulted from a vertex-node. Let
a be a vertex node and 51, . . . , 5@ the face-nodes that are adjacent to a . We then contract 5 08
and (a, 8) for 8 2 {1, . . . ,@}. See Figure 4.4 for an example of this step. The resulting vertex
is called 5 008 . We can con�rm that � 00 is a 2-shallow minor using Figure 4.5. It shows the
subgraph that is contracted to form 5 00. The distance between two verties (a, 8) and (D, 8) is
2. The remaining vertices form a clique and have thus distance 1. After constructing � 00 it
remains to show that � 00 is isomorphic to � . By construction, � 00 contains no vertices other
than 5 00 for every face 5 . The connections between tiles that share a vertex are created by
contracting 5 0 and the (a, 8). This includes the connections between tiles that only share an
edge because these tiles also share two vertices. No other edges are present in � 00. This shows
that � 00 is indeed the extended dual of a (?,@)-tiling.
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4 Hyperbolic tilings

(v, i) (u, i)

Figure 4.5: The subgraph of � 0 that is contracted to 5 00 in a (5, 4)-tiling.

So the graph classes Q@ remain a valid choice. We continue by exploring geometric
partitioning for Q@ . The trade-o� between the number of cliques to cover a tile and the
number of edges between tiles has already been discussed earlier. The number of cliques
required to cover a tile is dependent on the threshold radius ' and the size of a tile. We �rst
explore this relation between the threshold radius and the size of a tile.

Lemma 4.7: Let ⇠,@ 2 é be constant. There is a : 2 é such that for every (?,@)-tiling and
every HUDG ⌧ with an embedding with a treshold radius ' such that Ain(?,@)  '/2 +⇠ , the
vertices contained in a tile can be covered by at most : cliques.

Proof. Recall that Ain = log(?) ± O(1). Let ⇠,@ 2 é. Let then ? 2 é be such that (?,@) is a
hyperbolic tiling. Let ⌧ be a HUDG with an embedding such that Ain  '/2 +⇠ .
We start by showing that Aout = log(?) ± O(1). For this, recall the transformations for

arcosh from Lemma 4.3. We can use them to rewrite Aout as

Aout = log
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The last transformation is valid because @ is constant. We can then apply the transformation
for � log (sin (c/?)) from !4<<0 4.3 to further simply Aout to

log
✓
cos

✓
c

?

◆◆
+ log (?) ±O(1)

For ? � 3 cos(c/?) is greater than 1/2. So log(cos(c/?)) is between log(1/2) and 0. We can
thus simply Aout further to log(?) ± O(1). So Ain and Aout di�er at most by a constant value.
We can use this to rewrite out requirement to Aout  '/2 +⇠00 for some constant ⇠00.
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4.1 Partitions using tilings

We now show that a hyperbolic circle with radius '/2 +⇠00 can be covered by a constant
number of cliques using the threshold radius '. For this, we use the inequality

\ (A1, A2) �
p
4'�A1�A2 (4.7)

shown by [BFKS21]. This inequality holds if (i) ' > 1 (ii) A1, A2 2 (0,'] (iii) A1 + A2 � '
(iv) |A1 � A2 |  ' � 1 We always use A1 = A2 = '/2 + 2 for some 2  ⇠ . We can easily see
that for ' > 1 requirements (i), (iii), and (iv) are always ful�lled. This is because A1 + A2 =
'/2 + 2 + '/2 + 2 = ' + 2 · 2 � ' and |A1 � A2 | = |'/2 + 2 � '/2 � 2 | = 0  ' � 1. We can also
see that there is a '0 > 1 such that every ' � '0 requirement 2 is ful�lled. This is because for
4 ·⇠ =: '0 it holds that '0/2 + 2 = 2 ·⇠ + 2  3 ·⇠  '0 (2  ⇠). For any '0 > ' this is true as
well because ⇠ is a constant.
We will �rst handle the case that ' < '0. There is only a �nite amount of (?,@)-tilings for

which this case can happen. For each (?,@)-tiling the minimum threshold radius such that an
embedding of a HUDG can use this tiling is 2(Ain(?) �⇠). Let  ? be the number of circles
with radius 2(Ain(?) �⇠) that are required to cover the whole tile. This is an upper limit on
the number of cliques in a graph with threshold radius 2(Ain(?) �⇠) as every circle can be
covered by one clique. Embeddings with a threshold radius larger than (Ain(?) �⇠) can be
covered by the same number of cliques. As we only have a �nite number of (?,@)-tilings for
which this happens, we can cover all these cases by at most  = max?  ? cliques.

Next, we handle the case that ' � '0. For this case, we use a similar proof to Lemma 8 in
[BFKS21]. That is we cover a circle of size Aout = '/2 + 20 with circles of size '. The center of
the circles with radius ' will be on the boundary of the circle with radius Aout. We required at
least : = c/\ (Aout, Aout) circles with radius R to cover the central circle. Using Equation (4.7)
we can rewrite \ (Aout, Aout) to

\

✓
'

2
+ 20, '

2
+ 20

◆
�

p
4'�'/2+20�'/2+20 =

p
4�2·20 (4.8)

Using this, we can approximate : by

: =
c

\ ('/2 + 20,'/2 + 20)  cp
4�2·20

= c42
0

As every circle can be covered by 2 cliques [BFKS21], we can cover the circle with radius
'/2 + 20 using 2:  2c420  2c⇠0 .
We can conclude that we can cover the vertices in a tile using max{2c4⇠0

, } cliques.

The bound in Lemma 4.7 is tight, i.e., replacing the constant with a non-constant function
leads to the tiles not being coverable by a constant amount of cliques.

Lemma 4.8: Let @ 2 é be constant. For every ⇠ 2 é and function 5 2 l (1) there is a (?,@)-
tiling and a HUDG with an embedding with treshold radius ' and Ain = '/2 + 5 (') such that
the vertices in a tile cannot be covered by ⇠ cliques.

Proof. We use a similar argument as Lemma 4.7. That is, we �nd a lower bound for the number
of unconnected vertices in a tile that grows with the threshold radius '. This is also a lower
bound for the number of cliques required to cover a tile. For this we use the inequality

\ (A1, A2)  c
p
4'�A1�A2 . (4.9)
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4 Hyperbolic tilings

shown by [BFKS21]. The inequality holds if A1, A2 2 (0,'] and A1 + A2 � '.
Let 5 2 l (1) and Ain = '/2 + 5 ('). We know that there is a '0 such that 5 (') � 0 for

every ' � '0. In this case the second requirement of Equation (4.9) is ful�lled because
A1 + A2 = '/2 + 5 (') + '/2 + 5 (') = ' + 2 · 5 ('). If Ain = '/2 + 5 (') is greater than ' we can
place at least (2c)/\ (','). This grows with ' because

2c
\ (',') � 2

p
4' .

if ' > '0 but '/2 + 5 (')  ' we can approximate the number of isolated vertices using

2c
\ (A1, A2)

� 2p
4'�A1�A2

=
2p

4�2·5 (')
= 24 5 (') .

After exploring the coverability of a tile, we now deal with the reach of tiles. For this,
we show that there are edges that can connect tiles with arbitrary distance. Recall that we
called the process of partitioning a hyperbolic unit disc graph by laying a (?,@)-tiling ontop
of an embedding geometric partitioning. We say the distance between two vertices D,a of a
hyperbolic unit disc graph⌧ in a (?,@)-tiling is the distance between the parts of the partition
they are assigned to when using geometric partitioning.

Lemma 4.9: Let @ 2 é and⇠ 2 í be constant. For every 3 2 é there is a ? 2 é such that there
exists a HUDG ⌧ with an embedding with a threshold radius ' with Ain = '/2 �⇠ such that
geometric partitioning using a (?,@)-tiling leads to edges in ⌧ that have distance at least 3 in
the extended dual of (?,@).

Proof. We want to construct a graph ⌧ that contains only one edge. The vertices of the edge
should have a distance of 3
Recall that ✓ is the edge length of a (?,@)-tiling and the formular for ✓ in Equation (4.3).

We show that lim?!1 ✓ 2 ±O(1). Using the transformations of arcosh in Lemma 4.3, we can
rewrite ✓/2 to

log
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c
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±O(1).

The last transformation can be done because @ is constant. We know that cos(c/?) approaches
cos(0) = 1 for growing ? . This means that ✓/2 approaches log(cos(0)) ±O(1) = ±O(1) for
growing ? . Thus lim?!1 ✓ = 2 · (±O(1)) = ±O(1). We know that ✓ is always non-neative as
there is no negative edge length. So lim?!1 ✓ 2 O(1). Using this we know that there is a ?
such that ✓ (?) < 2(Ain(?) +⇠)/3 because ✓ (?) approaches a constant and Ain(?) is growing
logarithmically. We now construct a graph that contains only one edge between two vertices
that have distance 3 in the (?,@)-tiling. See Figure 4.6 for a visualization. We start by placing
the �rst vertex a in the middle of an edge of the central tile. We then move to the second
vertex using 23 steps. First, move to one of the corners incident to the edge. Then move to
the middle of an edge that is neighboring two tiles with distance 1 to the center. Placing the
second vertex there would result in a distance of 1 in the tiling. Again, move to the vertex at
the opposite side and continue to an edge that is adjacent to two tiles with distance 2 to the
center. We repeat this 3 times such that the distance is 3 in the tiling. We place our second
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4.2 Arbitrary partitions using Q@

`
2

`
2

Figure 4.6: The �rst interation for constructing the edge of Lemma 4.9 in a (5, 4)-tiling.

vertex D at this place. The two vertices are connected since their hyperbolic distance is at
most 3 · ; < 2(Ain(?) +⇠) = ', but their distance in the tiling is by construction 3 . We note
that the following construction works for larger ? as well because, again, ; (?) approached a
constant and Ain(?) is growing.

An implication of Lemma 4.9 is that geometric partitioning using (?,@)-tilings with constant
@ and growing ? is impossible. For any tiling choosen for geometric partitioning, we can
construct an embedding of a hyperbolic unit disc graph that contains a path from Lemma 4.9.
This path then connects partitions that are not connected in the extended dual of a (?,@)-tiling.

4.2 Arbitrary partitions using Q@

For partitions di�erent from geometric partitions, we conjecture that 5 (l)-bounded Q@-
partitions for hyperbolic unit disc graph are impossible as well. We will now outline a proof
idea for the case @ = 3. For this, we use the dual of (?, 3)-tilings and the paths constructed in
Lemma 4.9. In order to use duals of (?, 3)-tilings we need to show that they are hyperbolic
unit disc graphs. This is true for the duals of (?,@)-tilings in general. An example embedding
would be to choose threshold radius 2 · Ain and place a vertex at the center of each tile. Vertices
in neighboring tiles are then connected because they have a distance of exactly 2 · Ain. Vertices
in non-neighboring tiles are not connected as the shortest line between them covers at least
Ain distance in both tiles and more than Ain in at least one of the tiles, otherwise they would be
neighbors. So the distance between non-neighboring tiles in greater than 2 · Ain. Note that
for @ = 3, the dual and extended dual of a graph are the same graph. Recall that we de�ned
tilings to have a unique embedding into the hyperbolic plane such that the center of one tile
is at the origin. This tile is called the central tile the associated vertex in the extended dual
is the central vertex. We say the dual with : layers of a (?,@)-tiling is the subgraph of the
extended dual that contains all vertices with a distance up to : from the central vertex. The
:-th layer in the extended dual are vertices with distance : to the central vertex.

The idea for showing that 5 (l)-bounded Q@-partitions for hyperbolic unit disc graph are
impossible is as follows: We start by showing that for every 5 there is a dual of a (?, 3)-tiling⌧
such that a partition P of⌧ with⌧/P 2 H?0,3 for any ?0 < ? has width greater than 5 (l (⌧)).
This means that only a partition with a quotient in H?,3 would be possible. We then use the
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4 Hyperbolic tilings

edges of Lemma 4.9 to shorten the distance between vertices in the extended dual of the
(?, 3)-tiling and cause the size of the parts of the partition to increase until they are greater
than 5 (l (⌧)) as well.

For this, we look at the number of vertices =: in the :-th layer. We easily see that =0 = 1 and
=1 = : . For the third layer, we see that every tile in the second layer has the central tile and
two tiles of the second layer as neighbors. This means ?�3 neighbors are in the next layer. We
thus have ? (? � 4) vertices in the third layer when accounting for twice-counted tiles. In the
third layer, we have two types of layers. The �rst type is the same as in the second layer. That
is, they have ? � 3 neighbors. The second type is the tiles that were counted twice in the third
layer. So, there are ? tiles of this type. They have two neighbors in the previous layer and two
neighbors in the current layer, thus only ? � 4 neighbors in the next layer. After removing
twice counted tiles we can see that =4 = (? (? � 4) �?) (? � 4) +? (? � 5) = ? (? � 4) (? � 4) �? .
For the next layers, this continues. There are always =:�1 tiles with ? �4 neighbors in the next
layer and =: � =:�1 tiles with ? � 3 neighbors. Thus, the recursion for the number of vertices
in a layer is =: = (=:�1 �=:�2) (? � 4) +=:�2(? � 5) = =:�1(? � 4) �=:�2. This function grows
exponentially with base depending on ? because of the factor (? � 4) in the recursion.
For ?0 < ? , the argument why for every 5 there is a dual of a (?, 3)-tiling such that every

partition P with ⌧/P 2 H?0,3 has width greater than 5 (l (⌧)) is that there are simply not
enough vertices in the dual of a (?0, 3)-tiling. Note that the clique number of the dual of
a (?, 3)-tiling with more than 1 layer is 3. All vertices in the �rst : layers of the dual of a
(?, 3)-tiling need to be assigned to vertices in the �rst : layers of the dual of a (?0, 3)-tiling.
This is because for a graph⌧ , a partition P of⌧ , two vertices D,a in+ (⌧) and the parts of the
partition G,~ that D and a have been assigned to, it holds that 3⌧/P (G,~)  3⌧ (D,a) where 3
is the distance in the respective graph. So let P be a partition of a dual of a (?, 3)-tiling with
: layers ⌧ such that ⌧/P 2 H?0,3. We know that if =⇤: (?)/=⇤: (?0) > 2 there is a part of the
partition with a size greater than 2 . So if =⇤: (?)/=⇤: (?0) > 5 (3) for a : then a partition using the
dual of a (?,@)-tiling is not possible for this function 5 . Using the approximation =: (?) ⇡ ?:
we can approximate the number of vertices up to the :-th layer by =⇤: (?) = (?:+1 � 1)/(? � 1)
using a geometric series. When using the approximation =: (?) ⇡ ?: we can �nd a : for any
pair ?, ?0 with ?0 < ? and any function 5 such that =⇤: (?)/=⇤: (?0) > 5 (3).
For ? < ?0 we use a di�erent argument. The :-th layer of the dual of a (?, 3)-tiling is a

circle with =: (?) vertices. The :-th layer of the dual of a (?0, 3)-tiling is, in this case, a circle
with more than =: (?) vertices. So the :-th layer of the (?, 3)-tiling cannot be embedded in
the :-th layer of a (?0, 3)-tiling. Instead, it has to be embedded in a lower layer. Using our
approximation this would have to be at most the log?0 (?: )-th layer. For su�ciently large :
the �rst log?0 (?: )-th layers of the (?0, 3)-tiling should have less vertices than the : layers
of the (?, 3)-tiling. So, again, there are not enough vertices available in the (?0, 3)-tiling to
accommodate the vertices of the dual of the (?, 3)-tiling. This would show that a su�ciently
large dual of a (?, 3)-tiling can only be mapped to (?, 3)-tiling.
Knowing that there is a dual of a (?, 3)-tiling that can only be embedded in a (?, 3)-tiling,

we can add edges that reduce the distance in the graph between the vertices of the tiles. The
edges will pull certain vertices to the center of the tiling and lead to vertices gathering near
the center of the tiling. This can be done by using the edge from Lemma 4.9 with 3 = 4. It
reduce the distance of a tile in the 4th layer to 3 (central vertex - �rst vertex of the path -
second vertex of the path - vertex in 4th layer). Figure 4.7 shows a cutout of a (?, 3) with the
added edge from Lemma 4.9 that reduces the distance between the gray vertex (4-th layer)
and the central vertex (blue) to 3. By using larger 3 and adding multiple paths to the graph we
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4.2 Arbitrary partitions using Q@

Figure 4.7: Cutout of a (?, 3)-tiling with the edge of Lemma 4.9 added. The blue vertex is the
central vertex of the tiling. Di�erent layers of the graph are shown in di�erent colors. The
edge of Lemma 4.9 is marked in red. The distance of the gray vertex to the center has been
shortened to 3 because of the extra edge.

can move even more vertices near the center. In addition, we can iterate the process and add
paths from the 3th layer outwards. This causes parts of the graph that are far away from the
center to be relatively close. The hope is that these paths add enough vertices to the center
that do not �t into the partition. This concept does not extend to @ > 3. This is because the
dual and the extended dual di�er in this case. When viewing the layers of the two graphs
based on the distance, i.e., the BFS layers, we can see that the number of vertices in the dual
grows slower than the number of vertices in the extended dual. This makes both arguments
void. We still believe that there is only a limited range of (?0,@)-tilings that a (?,@)-tiling of
appropriate size can be mapped to.
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5 Grids in strongly hyperbolic unit disc
graphs

In the Introduction we discussed the implications product structure would have one grids in
strongly hyperbolic unit disc graphs. If 5 (l)-bounded product structure were to be found for
hyperbolic unit disc graphs large grids with constant clique number would not be hyperbolic
unit disc graphs. In other words, construction a large grid with a constant clique number
would disprove product structure in hyperbolic unit disc graphs. This chapter approaches the
subject from this direction by constructing a grid with the clique number linear in the grid
size.
For this, we use an alternative representation of strongly hyperbolic unit graphs. A

weighted graph (also GIRG-representation) is a graph ⌧ = (+ , ⇢) where + ⇢ í ⇥ í+ and
{(GD,~D), (Ga ,~a )} 2 ⇢ if and only if~D ·~a � |GD�G~ |. Every weighed graph can be embedded
in the hyperbolic plane by using the mapping in [BKL19]. In terms of geometry, there is
a wedge around every vertex that contains all the vertices this vertex is connected to. See
Figure 5.1 for an example of these wedges.

Theorem 5.1: There is a GIRG with a maximum clique of size l (odd) that contains a grid of
size (l � 1) ⇥ (l � 1) as a subgraph.

Proof. We construct three columns of the grid, but more columns can be added easily. Vertices
of the constructed graph are named a8, 9 where 8 is the row the vertex is in and 9 is the column.
We note that the rows are not numbered from top to bottom but instead indicate order the
which they are constructured.

Start the construction by placing three vertices a1,: such that they have the same weight,
but only adjacent points have edges between them. Second place a vertex directly beneath
a2,2 at the intersection of the wedges of a1,1 and a1,3. See the upper row in Figure 5.1 for this
step. Add vertices in the outer columns with the same weight. From now on we repeat the
following steps until there are l � 1 vertices in each column.

1 Place a vertex a8,2 above a8�1,2 but beneath the intersection of the wedges of a8�1,1 and
a8�1,3.

2 Place vertices a8,1 and a8,3 in columns one and three at the same height as a8,2.

3 Place a vertex a8+1,2 at the intersection of the wedges of a8,1 and a8,3 in column two.

4 Place vertices a8+1,1 and a8+1,3 in columns one and three at the same height as a8+1,2.

(8 is the number of already placed vertices in one column at the start of the iteration)
The columns of the grid are the columns we created. The rows of the grid can be seen by
�ipping every other column horizontally. By adding more columns we can expand the grid to
the size of l � 1 ⇥ l � 1. Concerning the clique number, we can easily see that all vertices in
a column are a clique of size l . Additionally, every vertex in column is connected to the �rst
vertex in the neighboring columns. This increases the clique number to l only as the �rst
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5 Grids in strongly hyperbolic unit disc graphs

v1,1 v1,2 v1,3

v2,2

v1,1 v1,2 v1,3

v2,2

v1,1 v1,2 v1,3

v3,1
v3,2 v3,3

Figure 5.1: From left to right, top to bottom the �rst 3 steps of the construction. Note that
some vertices and wedges are omitted for clarity. Bottom right: edges of the 4 ⇥ 4 grid.

vertices in the neighboring columns are not connected with each other. When considering
only the upper l � 2 vertices of a column, we see that they form a clique with the �rst two
vertices of the neighboring column. So this does not form a clique larger than l . For any
other set of vertices this is the same.
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6 Conclusion

The focus of this thesis was on hyperbolic tilings and their possible use as partitions for
hyperbolic unit disc graphs. The most promising of our three graph classes based on tilings
was Q@ . This graph class contains all extended duals for (?,@)-tilings with constant @ and
growing ? . Note that for @ = 3 this is equivalent to the dual. ForQ@ we showed that geometric
partitioning is not possible. We did not manage to show that Q@ can not be used for arbitrary
5 (l)-bounded partitions. So this remains an interesting question. For the special case of
@ = 3, we proposed a proof idea in Chapter 4. An obvious question for further research would
be if hyperbolic unit disc graphs have 5 (l)-bounded Q@-partitions for any function 5 and
any @.
Another direction of research could be to use di�erent hyperbolic tilings. We focused

on regular (?,@)-tilings of ?-gons where @ ?-gons meet at one corner. But there are more
hyperbolic tilings that use multiple geometric �gures or di�erent patterns [Goo05 | DG21].
One could consider these tilings and their (extended) duals for (geometric) partitioning of
hyperbolic unit disc graphs.
A third option would be to consider di�erent limitations for 5 . Our de�nition of 5 (l)-

bounded H-partition does not limit the function 5 at all. A linear function 5 , for example,
would mean that every part of the partition can be covered by a constant number of cliques.
Our proofs, however, would still work with this limit. For interesting results, we would
therefore have to introduce a lower bound for l (⌧), e.g., l (⌧) 2 ⇥(log(=)). This would
invalidate our proofs as we use counterexamples with constant clique number.
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