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Abstract

A rigid framework refers to an embedding of a graph, in which each edge is represented
by a straight line. Additionally, the only continuous displacements of the vertices,
that maintain the lengths of all edges, are isometries. If the edge lengths are allowed
to only be perturbed in first order, the framework is called infinitesimally rigid.

In this thesis the degrees of freedom of a certain, new type of rigidity, called edge-x-
rigidity, for a given framework in the 2-dimensional Euclidean space are examined.
It does not operate on the length of an edge, but on the intersection of an edge’s
support line and the x-axis. This may then help to determine the class of graphs
where every edge intersection with the x-axis can be repositioned along the x-axis,
such that there still exists a framework that satisfies these position constraints.

Deutsche Zusammenfassung

Ein starres Fachwerk bezeichnet eine Einbettung eines Graphen - bei der jede
Kante durch ein gerade Linie repräsentiert wird - und es keine stetige nicht-triviale
Verschiebung der Knoten gibt, welche die Längen aller Kanten gleich lässt. Dürfen
sich die Kantenlängen jedoch um einen hinreichend kleinen Betrag verändern, so
spricht man von einem infinitesimal starrem Fachwerk.

In dieser Arbeit werden die Freiheitsgrade eines neuen, speziellen Starrheitsbegriffs,
genannt Kanten-x-Starrheint, für ein gegebenes Fachwerk im 2-dimensionalen Euk-
lidischen Raum untersucht. Hier dienen die Schnittpunkte der Stützlinien von Kanten
mit der x-Achse, statt den Kantenlängen, als Invariante. Dies soll dann genutzt
werden um die Klasse der Graphen zu klassifizieren, deren Kantenschnittpunkte
mit der x-Achse beliebig neupositioniert werden dürfen, sodass immer noch eine
Fachwerk-Einbettung gefunden werden kann, die diese Positionsbeschränkungen
erfüllt.
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1. Introduction

Although Augustin Cauchy [AZ01] and James Maxwell [Max70] introduced the mathemati-
cal theory of structural rigidity in mid 19th century, this concept only gained popularity in
the last fifty years after the work of Laman. He gave a combinatorial characterization for a
certain class of rigid graphs, later to become known as the Laman graphs. Although the
Austrian mathematician Hilda Geiringer gave a characterization similar to Laman’s almost
forty years earlier, her work has unfortunately not received enough attention. Since then,
rigidity theory has been thoroughly studied. Based on this and recent work of Dujmović
et al. [DFG+18], in the scope of this thesis a new type of rigidity is introduced to deduce
properties of a certain class of graphs.

A framework, alternatively also called realization, consists of a graph G = (V,E) and a
map p, which maps every vertex of G to a point in Rd. It is important to note, that a
framework is not the same as an embedding in the usual manner. The only restrictions
that a framework needs to fulfil is, that two adjacent vertices must not share the same
position in Rd. Particularly this means, that edges may cross or overlap and two vertices,
that are not joined by an edge, may share the same location in Rd.

Figure 1.1 provides a basic example of K2,2 realized as a flexible unit square, which can
be continuously transformed to a parallelogram where every edge has the same length as
the corresponding edge in the original realization. Adding a diagonal edge, restricts the
degrees of freedom in such a way, that only rotations and transformations, i.e. the trivial
motions, may be applied to the framework as length-preserving continuous transformations.
Therefore, this framework is rigid.

(a) Continuous displacement of the unit
square to a parallelogram.

(b) K2,2 with an additional diagonal edge
resulting in a rigid framework.

Figure 1.1.: Basic example for rigidity.

In order to refine the term rigidity, the terms length-preserving, isometry and rigidity’s
complement, flexibility, are introduced. A map T : U →W is called length-preserving, if
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1. Introduction

‖Tx− Ty‖W = ‖x− y‖U holds for all x, y ∈ U . The isometries of Rd → Rd are exactly the
length-preserving maps of Rd → Rd. A framework is called flexible, if there is a continuous
family of length-preserving maps

{
p(i) ∈ Rd

∣∣∣ i ∈ V } =: p(V ) → Rd, that can not be
extended to isometries. Otherwise, the framework is called rigid. Here, isometries refer
to the space of trivial motions as they can be applied to any framework, maintaining the
distances between any two points and in particular the length of each edge. In other words,
a rigid framework admits only trivial motions as continuous length-preserving displacements
of its vertices.

In this thesis, the first aim is to give a profound introduction in rigidity theory with its
many kinds of different rigidity constraints and summarize important results. While the
constraints for the different types of rigidity may appear unrelated, most of the concepts
introduced are basically equivalent or more precisely dual. Next, an own set of constraints
is introduced defining a new type of rigidity with the aim of establishing an equivalence to
the well-known rigidity types.

1.1. Motivation and Application

Rigidity theory found its way into many different scientific fields with a large amount of
corresponding applications. Among other examples, rigidity theory is applied within the
field of chemistry, more precisely in the determination of molecular conformation, as the so
called NP-hard molecule problem [Hen95a]. For the molecule problem, a set of elements
with unknown locations in three-dimensional Euclidean space is given and the task is to
retrieve the locations of the objects relatively to each other, with only information on some
subset of their pairwise distances [Hen95a].

A problem similar to the molecule problem is known as network localization, within the
field of networking and communication. It relates to a set of nodes, some of which know
their own locations while others need to calculate their locations by only knowing their
distances to their neighbours. The main question is, when is such a localizability unique
and, additionally, how to construct localizable networks that are unique [AEG+06].

The field of control theory presents a completely new application concept. This scenario
considers mobile agents and its formations. The goal is to define a type of rigidity that
maintains the shape of a given formation. The crucial point is that the formation must be
maintained while it is in motion. For example, in the leader-follower approach, there is
one Leader agent that dictates the trajectory of movement and every other agent (follower
agent) must follow in such a way that the formation is preserved [Ere12].

Finally, the application of statical rigidity in structural engineering and statics should be
mentioned, where external forces act on every vertex of the structure. Here the interest lies
in those frameworks, which can resolve all these external forces by arising internal forces,
i.e. at every vertex sum of internal and external forces is zero [Rot81; Whi96; Izm09a].

1.2. Scope of this thesis

The question of this thesis is shortly introduced in the following. It is related to the concept
of free and (free) collinear sets, which are described in more detail in Section 4.2, and
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1.2. Scope of this thesis

the work of Dujmović et al. In particular, Dujmović et al. [DFG+18] have solved an open
problem and in Chapter 4 it is tried to extend their statement by using the extensively
studied theory of rigidity.

A plane straight-line drawing is an embedding of a graph G = (V,E), such that no two
vertices coincide and no two edges intersect. A subset S ⊆ V is a collinear set, if there is a
plane straight-line embedding, such that all vertices in S lie on one same line l. Furthermore,
a subset S ⊆ V is called a free set, if for every point set X ⊆ R2 of cardinality |S|, there
exists a one-to-one map p : S → X and a plane straight-line embedding of G where every
vertex v ∈ S is placed at the position p(v). Analogously are free collinear sets S ⊆ V
defined, where S is a collinear set and free for sets X of collinear points.

Examples for applications of free sets are, as given by Dujmović [Duj17],

• column planarity,

• universal point subsets and

• (partial) simultaneous geometric embeddings.

Dujmović et al. have proven, that “Every collinear set is a free collinear set”. To refine
this, they have shown, that, given a plane straight-line drawing with collinear S ⊆ V on
line l, the vertices can be arbitrarily displaced on l, not changing order along l, while the
edge intersections may be prescribed ε-precisely. That is, every crossing point is at most ε
away from its prescribed location. The example provided in Figure 1.2 describes a set of
free collinear points, red vertices, with respect to the line in orange. The red vertices in
Figure 1.2a were moved along the orange line and the position of the edge intersections
could be prescribed absolutely, yielding the drawing in Figure 1.2b. Take note, that this
hard prescription may not be possible in general.

×

×

×
×

1

2

3

(a) Original plane straight-line drawing.

×

×

×
×

1

2

3

(b) Resulting plane straight-line drawing af-
ter displacing the vertices in red.

Figure 1.2.: Visualization of free collinear sets for a basic plane straight-line drawing.

The question that forms the basis of this work: “may those crossing points be prescribed
absolutely?”. Hence, in this thesis a new type of rigidity is introduced in order to characterize
those graphs where these intersections may not be changed, what is called edge-x-rigidity.
Subsequently, the newly introduced concept of edge-x-rigidity is used to classify those
graphs able to change the crossing point arbitrarily for every edge, called edge-x-free
graphs. All indications are, that infinitesimal edge-x-rigidity is projectively equivalent to
infinitesimal rigidity, which is well studied. In fact, in the theory of infinitesimal rigid
frameworks, there exists a characterization of a particular class of infinitesimally rigid
graphs, called minimally infinitesimally rigid graphs. These minimally infinitesimally rigid
graphs are precisely the Laman graphs and establishing a projective equivalence between
infinitesimal edge-x-rigidity and infinitesimal rigidity would yield this characterization for
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1. Introduction

infinitesimal edge-x-rigidity as well. That is, the minimally infinitesimally edge-x-rigid
graphs would exactly be the Laman graphs. Here, analogously, infinitesimal edge-x-rigid
allows the crossing point to change in first-order. Furthermore, minimally means, that
deleting any edge of the framework, but no vertices, would result in a flexible framework.
Deleting such an edge e would then also yield a non-trivial continuous displacement Φ of the
vertices. Applying Φ to the framework and reinserting the edge e afterwards, changes the
crossing point of e. If the intersection can be moved arbitrarily, the minimally infinitesimal
edge-x-rigid graphs are particularly edge-x-free.

1.3. Outline

In the upcoming chapter, Chapter 2, the necessary terms and notions for the subse-
quent chapters are defined. Here the terms (a, b)-sparsity, (a, b)-tightness and algebraical
dependence which are frequently used in the course of this work must be highlighted.

In Chapter 3 different types of rigidity are introduced starting with (continuous) rigidity
that arises in a somehow natural way. Second, a local version of continuous rigidity, which
is called infinitesimal rigidity. Next, two further types of rigidity are considered that
basically are different views on the model of infinitesimal rigidity. In other words, these
three concepts are essentially equivalent. Last, generic rigidity then establishes a link
between continuous and infinitesimal rigidity, which shall be applied in the final chapter,
Chapter 4.

There, a new system of constraints is introduced in order to define a new type of rigidity,
called edge-x-rigidity, regarding the intersection points of edges’ supporting lines and the
x-axis.
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2. Preliminaries

This chapter provides the formal background required to fully understand the concept
behind rigidity of graphs.

Throughout this thesis graphs are assumed to be finite, simple and undirected, whereas
planarity is not a prerequisite. In particular, a graph G shall be denoted by an ordered pair
of finite sets V = {1, . . . , n} and E ⊆ {{u, v} | u, v ∈ V }, namely vertices and edges, i.e.
G = (V,E). Occasionally the concept of vertex-induced subgraphs of a graph G = (V,E),
denoted by G [V ′] = (V ′, E [V ′]), is used. V ′ denotes an arbitrary subset of V and
E [V ′] := { {i, j} | i, j ∈ V ′ } is the set of edges where every endpoint lies in V ′. Every
subgraph G [V ′] with |V ′| =: k is called a k-subgraph of G. If for every 2 ≤ k ≤ |V | all k-
subgraphs G [V ′] of G satisfy |E [V ′]| ≤ a |V ′|−b, G is said to be (a, b)-sparse. Additionally,
if G is (a, b)-sparse and |E| = a |V | − b, G is called (a, b)-tight. There are two further graph
properties, or rather classes of graphs, that are of importance for this thesis. Namely, these
are the complete graph on x-vertices Kx and the complete bipartite graph Kx,y.

Kx := ({1, . . . , x} , { {i, j} | i 6= j ∈ {1, . . . , x} }) , x ∈ N.
Kx,y := (V = V1 ∪̇V2, { {i, j} | i ∈ V1, j ∈ V2 }) , x, y ∈ N.

Here |V1| = x, |V2| = y and |V | = x+ y hold. In other words, Kx is the graph on x vertices
where each vertex is connected to every other vertex. For Kx,y, V is separable into two
disjoint subsets, V1 and V2, where each vertex of one subset is connected to the vertices of
the other subset.

A realization or framework of a graph G refers to a map p : V → Rd that maps every vertex
of G to a point in the Euclidean space Rd, such that two vertices joined by an edge do not
lie on the same position, where d ∈ N refers to an arbitrary dimension. Another important
difference between a framework and an embedding of G is, that for the former every edge is
given as a straight-line segment between the incident vertices. Such a framework is denoted
by (G, p) or G(p). Moreover, pi describes the position of vertex i in Rd given by the map p
and ‖·‖ : Rd → [0,∞) , (x1, . . . , xd) 7→

√∑d
i=1 x

2
i denotes the Euclidean norm.

The Euclidean scalar product is given by 〈·, ·〉 : Rd × Rd → Rd; 〈x, y〉 := x>y = ∑d
i=1 xi · yi

where xi and yi denote the i-th entry of x and y, respectively, for all x, y ∈ Rd. Take note,
that the Euclidean norm is induced by the Euclidean scalar product, i.e.

√
〈x, x〉 = ‖x‖,

for all x ∈ Rd.
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2. Preliminaries

A vector space V over the scalar field K (also K-vector space) is a set, whose elements
shall be called vectors, with an addition + : V × V → V and (scalar) multiplication
· : K × V → V associative, distributive and satisfying 1K · v = v for all v ∈ V where 1K
denotes the neutral element of the field K (see Beutelspacher [Beu14]). The associative and
distributive property state that α · (β · v) = (α · β) · v and α · (u+ v) = α · u+ α · v and as
well (α+ β) · v = α · v + β · v for all α, β ∈ K, u, v ∈ V , respectively. The Euclidean space
Rd is nothing else than the vector space V = Rd over the field R, with component wise
addition and scalar multiplication, equipped with the Euclidean scalar product. Sometimes
Ed shall denote the Euclidean space of dimension d, instead of Rd. Furthermore, take note
that the scalar field K always induces a vector space.

The term of dual space or dual vector space V ∗ of a corresponding vector space V will be
of need as well. Thus, the notion linear map or linear transformation is introduced for two
vector spaces V and W , over the same field K, given through a map f : V →W fulfilling
the additivity and homogeneity property, i.e. f(u+ v) = f(u) + f(v) and f(α · v) = α · f(u)
for all α ∈ K, u, v ∈ V , respectively. In the case of W being equal to K, f is said to be
a (linear) functional of V . Then V ∗ is said to be the set of all functionals of V and in
particularly V ∗ forms a vector space where the addition and multiplication means the
point-wise defined addition and multiplication on functions. That is, e.g. for addition, for
any two functionals f and g of V : (f+g)(x) := f(x)+g(x), for all x ∈ V (see Beutelspacher
[Beu14]).

The kernel ker(·) of a matrix A ∈ Rn×m, with n,m ∈ N, subsists of the set of all
x ∈ Rm satisfying A · x = 0. Furthermore, rank(·) of a matrix A ∈ Rn×m refers to the
dimension of the image space of A considered as linear transformation f of Rm to Rn, i.e.
rank(A) = dim(Im(f)), namely the rank of the matrix A.

Given a set of vectors x1, . . . , xn ∈ Rd, n ∈ N fulfilling ∑n
i=1 λi · xi = 0, with λi ∈ R

not all zero, x1, . . . , xn are called linearly dependent and linearly independent otherwise.
Particularly, x1, . . . , xn are said to be affinely independent, if x2 − x1, . . . , xn − x1 are
linearly independent.
Given a vector y = (y1, . . . , yd)> ∈ Rd, (y)i := yi denotes the i-th entry of y, for
i ∈ {1, . . . , d}.

In the following occasionally also the concept of an isometry appears, which is a bijec-
tive map Φ between Rd and Rd leaving distances between any two points invariant, i.e.
‖Φ (x)− Φ (y)‖ = ‖x− y‖, for all points x, y ∈ Rd. The set of all isometries of Rd is
denoted by Iso(Rd). One can show that every isometry Φ ∈ Iso(Rd) has the following
(unique) form: Φ (x) = Ax+ b, for some A ∈ O(d) := {A ∈ Rd×d | A>A = Id = AA>} and
b ∈ Rd. O(d) is called the orthogonal group, see Izmestiev [Izm09a].

Two spaces V and W are said to be canonically isomorph or naturally isomorph if there
exists a canonical map that is a bijective homomorphism, i.e. isomorphism. Written V 'W ,
which defines an equivalence relation. A canonical map is a map that arises in a somehow
naturally meaning from the construction or definition. As stated by Beutelspacher in
[Beu14], there is a natural isomorphism between a finite-dimensional vector space V and
its double-dual space V ∗∗ := (V ∗)∗ in such a way, that no fixed bases for construction are
needed:

ϕ : V → V ∗∗,

ϕ(v) := v∗∗,

with v∗∗(f) := f(v).

Furthermore, a set A = {α1, . . . , αm} of distinct real numbers is said to be algebraically
dependent, if there exists a polynomial h(X1, . . . , Xm) ∈ Z[X1, . . . , Xm], non-identical to
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zero, such that h(α1, . . . , αm) = 0. If A is not algebraically dependent, it is called generic
(see Connelly [Con05], Whiteley [Whi96]). Hereby Z[X1, . . . , Xm] denotes the multivariate
polynomial ring with coefficients in Z. Hence, its elements are exactly the polynomials in
m variables with integer coefficients, i.e.

Z[X1, . . . , Xm] :=

 ∑
k=(k1,...,km)∈Nm

0

λkX
k1
1 · . . . ·X

km
m

∣∣∣∣∣∣ (λk)k∈Nm
0
⊂ ZNm

0

.
Finally, d

dtf(t) = f ′(t) denotes the derivative of a function f to t, whereas the derivative of
f to t at a point a is given by d

dtf(t)
∣∣∣
t=a

:= f ′(a).
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3. Concepts of rigidity

The main interest of this chapter lies in giving an introduction to different types of rigidity,
for which a strong relation shall be presented, beginning with the length preserving concept
of rigidity.

By length preserving the lengths of edges of a particular framework are demanded to
remain unchanged under motions of the whole framework as a “rigid” body. If the only
motions that fulfil these criteria are trivial, i.e. isometries, such a framework is called rigid
and otherwise flexible. In a next step, further interest consists of examining that concept,
where edge-lengths may change in first-order. Hence, introducing a local version of rigidity
so-called infinitesimal rigidity. For this notion there exist certain criteria to deduce whether
a given realization is infinitesimally rigid or not. If a framework is not infinitesimally rigid,
it is called infinitesimally flexible.

Another mentionable concept of rigidity form the so called parallel designs. Parallel means,
that transformations of frameworks need to keep the slope of every edge fixed. As earlier,
the trivial transformations, i.e. dilation and translation, of frameworks play a major role.

From there on the term statically rigid is treated, which is mostly relevant in statics. At
this point the framework is additionally equipped with a so called dependence which is
actually nothing else than assigning forces to every edge. A framework is then statically
rigid, if it can “resolve all the permitted external loads” [Whi96]. Finally, it shall be seen
that the latter three concepts (infinitesimal rigidity, parallel designs and statical rigidity)
are essentially equivalent or more precisely dual.

An important result provides, that every infinitesimal rigid framework is particularly rigid.
Therefore, the following question comes up: “how to treat the other direction?”. This then
yields the concept of generic rigidity in order to establish an equivalence under certain
restrictions.

9



3. Concepts of rigidity

3.1. Rigidity

Definition 3.1 (Izmestiev [Izm09a]).
A motion1 of Rd is a continuous family Φt of isometries of Rd, such that Φ0 is the identity.
Formally, a motion of Rd is a continuous map

[0, 1]→ Iso(Rd),
t 7→ Φt,

such that 0 7→ id.

Definition 3.2 (Izmestiev [Izm09a]).
A motion2 of a framework P = G(p) is a continuous family of frameworks P (t) = (G, p(t))
for t ∈ [0, 1], such that P (0) = P and

‖pi(t)− pj(t)‖ = ‖pi − pj‖ , (3.1)

for all {i, j} ∈ E and for all t ∈ [0, 1].

As stated by Izmestiev [Izm09a] that is, each point pi moves along a trajectory pi(t) so
that the distances between points joined by an edge are preserved.

Here, P denotes the original framework and P (t) its motion. The additional parameter t
should diffuse any ambiguity.

Definition 3.3 (Izmestiev [Izm09a]).
A motion {P (t)}t∈[0,1] of a framework P is called trivial, if it is induced by a motion of Rd:

P (t) = Φt ◦ P, ∀t ∈ [0, 1] ,

for some motion {Φt}t∈[0,1] of Rd.

The framework given in Figure 3.1 (straight black lines) is rotated by 45° about the origin,
given as the blue cross, and yields the framework given through the dashed lines. In this
scenario a trivial motion is applied, since rotations are part of the group of isometries. The
trajectory of this particular trivial motion is given by the red arrows. That is, moving
the vertices of the given framework along these curves, yields a motion of the respective
framework that is trivial in particular.

Figure 3.1.: Motion of a framework given by a rotation by 45° about the origin.

Definition 3.4 (Izmestiev [Izm09a]).
A framework is called rigid3, if all of its motions are trivial. A framework is called flexible
if it is not rigid.

1or also (continuous) flex of Rd.
2or also (continuous) flex of a framework P .
3sometimes this type of rigidity is referred to by canonical rigidity, natural rigidity or as well continuous
rigidity, in order to distinguish more clearly between the large amount of different types of rigidity.

10



3.1. Rigidity

To conclude this section a variety of examples for rigid and flexible frameworks shall be
presented. Starting with basic rigid frameworks in Figure 3.2. Those frameworks look like
they were constructed, which is actually the fact, as shall be seen in Section 3.5. Those
construction steps are called Henneberg constructions (see Theorem 3.30). Furthermore,
these graphs belong to a certain class of graphs, the Laman graphs, which shall be examined
in further detail in Section 3.5 as well.

Figure 3.2.: Basic rigid frameworks.

After providing examples of basic rigid frameworks, more complex rigid frameworks are
presented in a further step, see Figure 3.3. Here it is not as easy to see, that there actually
does not exist any non-trivial motion, but in the upcoming sections useful criteria to
analyse rigidity of certain frameworks shall be provided.

Figure 3.3.: More complex rigid frameworks [Izm09a].

Contrastly, Figure 3.4 depicts two basic flexible frameworks. On the left-hand side, see
Figure 3.4a, is a triangle with a bridge, that can be arbitrarily rotated, indicated by the red
arrowed curve. Moving the node continuously along this trajectory presents a non-trivial
motion of the framework and therefore the framework can not be rigid.

Furthermore, on the right hand side, see Figure 3.4b, a realization as the unit square is
given where the upper two nodes may be moved along the curves given in red and therefore,
here again, a non-trivial motion is obtained. That is, the unit square has been transformed
to a parallelogram with the length of the sides being equal to the corresponding sides of
the unit square. This proves the flexibility of the unit square.

Finally, two complex flexible frameworks, as given by Laman [Lam70], are depicted in
Figure 3.5. Here applies the same notation as above in the case of Figure 3.1, i.e. moving the
vertices uniformly and continuously along the red trajectories yields a non-trivial motion
of the framework. The transformed frameworks are given through the dashed lines and
also straight lines if the respective vertices have not been transformed.

The up-following presents a concrete motion of the framework on the right-hand side, see
Figure 3.5b, as given by Laman [Lam70]. Take note, that the underlying graph of the
particular framework is K3,3. Later it shall be seen, that K3,3 belongs to a special class of

11



3. Concepts of rigidity

(a) Motion of a triangle with a bridge. (b) Motion of the unit square to a parallelo-
gram.

Figure 3.4.: Basic flexible frameworks.

(a) A continuous motion similar
to a rotation.

(b) Stretching and squeezing of a frame-
work.

Figure 3.5.: Complex flexible frameworks [Lam70].

graphs, where almost every realization yields a (infinitesimally) rigid framework. So the
question that now appears is “why is this framework flexible?”. This is due to the fact, that
the points 1, 3, 5 and 2, 4, 6 are collinear - indicated by the two lightgray dotted lines - and
thus form a so called singular realization of the respective graph. This shall be examined
in further detail in Section 3.2 and Section 3.5.
The corresponding graph is then given by G = (V,E) with V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 1}, {2, 5}, {3, 6}}, whereas the realization p is
given by

p : V → R2,

{
i 7→ (ξi, 0)>, for i = 1, 3, 5.
j 7→ (0, ηi)>, for j = 2, 4, 6,

with ξi, ηj ∈ R \ {0}, for i ∈ {1, 3, 5}, j ∈ {2, 4, 6}.
A non-trivial motion for G(p) is then obtained by

P : [−τ, τ ]→ {G(q) | q is an arbitrary realization for G }; t 7→ G(qt),

where

τ = min{ |ηj | | j ∈ {2, 4, 6} } and qt : V → R2,


i 7→

(
ξi

√
1 + ξ−2

i · t, 0
)>

, i ∈ {1, 3, 5}.

j 7→
(
0, ηj

√
1− η−2

j · t
)>

, j ∈ {2, 4, 6}.

12



3.2. Infinitesimal rigidity

3.2. Infinitesimal rigidity

As aforementioned, this section deals with a local version of rigidity where the vertices
may move in a sufficiently small neighbourhood or rather the length of every edge may
change about a very small amount. Frameworks that preserve this property shall then be
called infinitesimally rigid as presented in a more formal sense in the upcoming paragraphs.
Furthermore, important relations between natural rigidity and infinitesimal rigidity are
treated. This yields powerful criteria for deducing rigidity properties of frameworks. More
precisely infinitesimal rigidity or rather infinitesimal motions refer to derivatives of motions
fulfilling the length-preserving constraint (3.1) of continuous motions evaluated at time
t = 0. Another point of view is to consider infinitesimal motions as the tangent space of
continuous motions, which shall not be elaborated in the scope of this thesis. Infinitesimal
rigidity can be construed as a linearised version of natural rigidity, since the invariants
subsist of linear equations, but still are able to preserve rigidity properties for almost
all realizations. Therefore, it is much easier to consider infinitesimal rigidity instead of
continuous rigidity since solely linear algebra plays a major part.

Furthermore, the idea of infinitesimal rigidity must be highlighted at this point since similar
concepts form an essential role in order to deal with a new type of rigidity introduced as
part of this work, see Chapter 4.

Definition 3.5 (Izmestiev [Izm09a]).
An infinitesimal motion4 of Rd is a vector field

ξ : Rd → Rd,
x 7→ ξ(x)

such that moving each point of Rd along the vector applied at that point does not change
the distances in first order:

d

dt
‖(x+ tξ(x))− (y + tξ(y))‖

∣∣∣∣
t=0

= 0, (3.2)

for all x, y ∈ Rd.

Definition 3.6 (Izmestiev [Izm09a]).
An infinitesimal motion5 of a framework G(p) is a map

Q : V → Rd,
i 7→ qi

such that
d

dt
‖(pi + tqi)− (pj + tqj)‖

∣∣∣∣
t=0

= 0, (3.3)

for all {i, j} ∈ E.

As in Section 3.1 the terms trivial infinitesimal motions and infinitesimal rigid frameworks
are introduced analogously.

Definition 3.7 (Izmestiev [Izm09a]).
An infinitesimal motion Q of a framework P = G(p) is called trivial if it is induced by
some infinitesimal motion ξ of Rd:

Q = ξ ◦ P.

Which can also be rewritten as qi = ξ(pi), for all i ∈ V .
4or also infinitesimal flex of Rd.
5or also infinitesimal flex of a framework G(p).

13



3. Concepts of rigidity

Definition 3.8 (Izmestiev [Izm09a]).
A framework is called infinitesimally rigid if all of its infinitesimal motions are trivial,
otherwise it is called infinitesimally flexible.

Prior to giving concrete examples of infinitesimally rigid and flexible frameworks, the
following provides a characterization for trivial infinitesimal motions analogously to the
definition of isometries, as given by Izmestiev [Izm09a] and Schulze and Whiteley [SW17].
In respect thereof skew-symmetric matrices are defined to be of the following form:

S ∈ Rk×k skew-symmetric :⇐⇒ S> = −S

Lemma (Izmestiev [Izm09a], Schulze and Whiteley [SW17]).
Every infinitesimal motion ξ of Rd is of the form ξ(x) = S ·x+ b, for b ∈ Rd and S ∈ Rd×d
skew-symmetric.

Since trivial infinitesimal motions are induced by infinitesimal motions of the whole space
Rd, this statement particularly applies to them as well. In this context S is also said to be
an infinitesimal rotation and b is called an infinitesimal translation.

The infinitesimal rigid framework given in Figure 3.6, as in [Lam70], looks very similar to
the framework given in Figure 3.5. Only the uppermost vertex has been moved in positive
x-direction yielding an infinitesimal rigid framework, as proven by Laman [Lam70].

Figure 3.6.: Framework that is infinitesimal rigid [Lam70].

Lemma 3.9 (Izmestiev [Izm09a]).
A vector field ξ is an infinitesimal motion of Rd if and only if

〈ξ(x)− ξ(y), x− y〉 = 0, ∀x, y ∈ Rd. (3.4)

Similarly, a map Q : V → Rd, i 7→ qi is an infinitesimal motion of a framework P if and
only if

〈qi − qj , pi − pj〉 = 0, ∀{i, j} ∈ E. (3.5)

Proof. It suffices to show the equivalence between (3.3) and (3.5). The equivalence between
(3.2) and (3.4) is proven analogously.
In Chapter 2 it was stated that

√
〈x, x〉 = ‖x‖. Therefore, taking the derivative of the

Euclidean scalar product results in d
dt〈f(t), g(t)〉 = 〈 ddtf(t), g(t)〉+ 〈f(t), ddtg(t)〉 and thus

d
dt〈v, v〉 = 2〈 ddtv, v〉 = d

dt ‖v‖
2, for any vector v that depends on t. And thus it holds:

d

dt
‖(pi + tqi)− (pj + tqj)‖

∣∣∣∣
t=0

= 0

⇐⇒ d

dt
‖(pi + tqi)− (pj + tqj)‖2

∣∣∣∣
t=0

= 2〈qi − qj , (pi − pj) + t(qi − qj)〉|t=0

= 2〈qi − qj , pi − pj〉 = 0.

14



3.2. Infinitesimal rigidity

As given by Izmestiev [Izm09a], Figure 3.7 ought to clarify the condition given in (3.5),
which states that the vectors qi − qj and pi − pj are orthogonal. Geometrically spoken, the
signed lengths of the projections of qi and qj onto the line pipj match, see Figure 3.7a.

pi

pj

qj

qj

qi
qi − qj

(a) General scenario.
pi

qj = 0

pj

qi

(b) Scenario with qj = 0.

Figure 3.7.: A geometric meaning of the condition (3.5) as stated in [Izm09a].

Also, qj = 0 results in 〈qi, pi − pj〉 = 0, which means that qi is perpendicular to the edge
{pi, pj} or simplified qi⊥ (pi − pj). The motion of pi along qi is called an infinitesimal
rotation around pj , see Figure 3.7b.

Laman [Lam70] provided a somehow different characterization for infinitesimal motions
that is equivalent to the one given in this thesis, as shall be seen. There are some differences
in notion which need clarification first. For instance, he names frameworks plane skeletal
structures. In particular Laman only considers the two-dimensional case, i.e. d = 2, but
these terms can be transferred analogously to the higher-dimensional case as well, what shall
happen here silently. In his paper Laman called motions of a framework length-preserving
displacements and introduced the term infinitesimal displacement, which is basically an
infinitesimal motion, but without the restriction of length-preservation. That is, a vector
v ∈ Rd is assigned to every vertex of a framework. As stated in [Lam70] one might think
of this vector as velocity since every vertex of the framework is moved along its respective
trajectory spanned through these velocities. Higher values in the components yield bigger
steps in moving the certain vertex.

In a next step Laman introduces small displacement as an ordered triple (µ, α, pt), where
µ denotes an infinitesimal displacement, α is a real number greater than zero (i.e. α > 0)
and pt is the movement of a vertex along its trajectory defined through the infinitesimal
displacement µ, fulfilling

pt(i) = p(i) + t · µ(i) + o(t) for every real t with |t| ≤ α.

G(p) was silently assumed to be a framework with its realization p.

Here “o” refers to the Little-o notation, with f(x) ∈ o(g(x)) or f(x) = o(g(x)) meaning
that f(x) is asymptotically negligible compared to g(x). In a more formal sense this means
f(x) = o(g(x)) :⇐⇒ limx→a

∣∣∣f(x)
g(x)

∣∣∣ = 0, where a ∈ R := R ∪ {−∞,+∞}. The limit x→ a

is essential and can yield different statements for different a. As given by Laman [Lam70],
the assignment a = 0 is of interest in this scenario.

In addition, Laman introduces the term admissible small displacement for which an
equivalence to infinitesimal motion is established in the following. A small displacement
(µ, α, pt) is called admissible, if every edge {i, j} ∈ E satisfies:

‖pt(i)− pt(j)‖ − ‖p(i)− p(j)‖ = o(t) ∀t : |t| ≤ α.
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3. Concepts of rigidity

To show the equivalence, let G(p) be a framework and (µ, α, pt) a small displacement. Then
it holds

‖pt(i)− pt(j)‖ − ‖p(i)− p(j)‖ = ‖(pi + t · µ(i))− (pj + t · µ(j))‖ − ‖pi − pj‖ = o(t)

⇐⇒ lim
t→0

∣∣∣∣‖(pi + t · µ(i))− (pj + t · µ(j))‖ − ‖pi − pj‖
t− 0

∣∣∣∣ = 0

⇐⇒ d

dt
‖(pi + t · µ(i))− (pj + t · µ(j))‖

∣∣∣∣
t=0

= 0.

Therefore, these terms are equivalent and it is legitimate to speak of “change of distances
in first order”.

Take note, that for sake of simplicity the extra “+o(t)” has been omitted in the equation
chain for the small displacement (µ, α, pt). �

Finally, two important theorems for characterizing infinitesimal rigidity and rigidity and
their relation to each other shall be presented.

Theorem 3.10 (Izmestiev [Izm09a]).
Not every rigid framework is infinitesimally rigid.

Proof. This can be seen by simply considering the so called degenerated triangle:

V = {1, 2, 3}, E = {{1, 2}, {2, 3}, {1, 3}} and

p : V → R2,


1 7→ (−1, 0)>,
2 7→ (0, 0)>,
3 7→ (1, 0)>.

Q : V → R2,


1 7→ 0,
2 7→ (0, 1)>,
3 7→ 0.

The given framework is visualized in Figure 3.8. The dashed arrow displays the infinitesimal
motion of the vertex 2. Since applying any motion on the framework breaks the length-
preserving invariant, the framework is rigid. But moving the framework according to the
infinitesimal motion Q, changes distances only in first order and is particularly non-trivial.
Therefore, the degenerated triangle is rigid but not infinitesimally rigid.

It is not easy to see that Q is non-trivial, but Theorem 3.15 provides an easier criterion to
tell whether a given framework is infinitesimally rigid or not.

1 2 3

(
0
1

)

Figure 3.8.: Degenerated triangle as seen by Izmestiev [Izm09a] and Laman [Lam70] that
is rigid but infinitesimally flexible.

Figure 3.9 displays another framework, with a more complex structure, that is rigid but
infinitesimally flexible. Here, solely rotating the inner triangle yields an infinitesimal motion
that is certainly not trivial.
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3.2. Infinitesimal rigidity

p1 p2

p3

p4

p5

p6

Figure 3.9.: More complex framework that is rigid but infinitesimally flexible (see Izmestiev
[Izm09a]).

Theorem 3.11 (Izmestiev [Izm09a]).
Every infinitesimally rigid framework is rigid.

A further important part in the theory of infinitesimal rigid frameworks plays the rigidity
matrix RG(p) ∈ Rm×(d·n) of a framework G(p), which eases deciding whether a given
framework is infinitesimally flexible or infinitesimally rigid. Take note that throughout this
thesis m and n refer to the amount of edges and vertices, respectively.

Each edge {i, j} ∈ E corresponds to a row r{i,j} of RG(p). For l ∈ {1, . . . , d}, the columns
d(i− 1) + l and d(j − 1) + l hold the values (pi − pj)l and (pj − pi)l, respectively, and 0
elsewhere. Therefore, the rigidity matrix is of the following structure

RG(p) =


d(i− 1) + 1, . . . , di d(j − 1) + 1, . . . , dj

...
{i, j} 0 . . . 0 (pi − pj)> 0 . . . 0 (pj − pi)> 0 . . . 0

...


Astonishingly, the rigidity matrix encodes properties of (infinitesimal) rigidity through
linear equations, whereas non-linear equations formed the starting point in the case of
continuous rigidity. Therefore, a deeper look into this linearity and where it comes from
might be of help.

The non-linearity of ‖x‖ :=
√∑d

i=1 x
2
i is quite obvious. Since this is the exact usage for

rigidity in (3.1) in Section 3.1 and no simplifications were made, dealing with non-linear
equations in this scenario is still necessary. But in (3.3) the derivative of the invariant
(3.1) to t at the point 0 has been added and therefore a much simpler characterization for
infinitesimal motions, as in Lemma 3.9, could be obtained. The necessary condition in the
case of infinitesimal motions of frameworks was reduced to 〈qi− qj , pi− pj〉 = 0, as in (3.5),
which is actually nothing else than

〈qi − qj , pi − pj〉 =
d∑

k=1
(qi − qj)k · (pi − pj)k = 0.

This then provides linear equations for infinitesimal motions of frameworks and as well of
Rd, which can be seen along the same lines.
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3. Concepts of rigidity

Remark 3.12.
A further mentionable powerful tool for rigidity specifies the so called edge function f , for a
framework G(p) of graph G = (V,E), whose derivative yields the rigidity matrix RG(p), see
also Roth [Rot81]. The edge function f : Rd × · · · × Rd → Rm is formally given as follows

f(q1, . . . , qn) :=
(
‖qi − qj‖2

)
{i,j}∈E

, (3.6)

where qi ∈ Rd represents the realization of the vertex i ∈ V . That is, f(p1, . . . , pn) yields a
vector consisting of the squared length of every edge of G(p).

The derivative of f is defined as

df(q) :=



i j

...
{i, j} 0 · · · 0 ∂f

∂qi
0 · · · 0 ∂f

∂qj
0 · · · 0

...


= 2RG(q),

since ‖qi − qj‖2 = 〈qi − qj , qi − qj〉 = ∑d
k=1(qi − qj)2

k =: ζ(qi, qj) : Rd × Rd → R and
∂ζ(qi,qj)
∂(qi)k

= 2(qi − qj)k, for k ∈ {1, . . . , d}.
This yields ∂f

∂qi
:= 2(qi − qj)>. Conclusively, it holds ker df(p) = kerRG(p), which will

prove to be useful in the upcoming sections and chapters. ♦

Remark 3.13.
An infinitesimal motion Q of G(p) can be identified with a vector Q ∈ Rdn, where Q denotes
the map V → Rd and as well the corresponding vector in Rdn. This can be seen by defining
a map ϕ – that converts such an infinitesimal motion to its vectorial representation – and
its inverse function ϕ−1.

Here the map ϕ : (V → Rd)→ Rdn is defined as follows:

ϕ(Q) := (Q(i))ni=1 ,

which is bijective with ϕ−1(v) := { i 7→ (vk)dik=d(i−1)+1 , for all i ∈ {1, . . . , n} = V .
Take note, that ϕ and ϕ−1 are higher-order functions. In the case of the map ϕ, the
first and only argument refers to a map V → Rd. By contrast, ϕ−1 returns a map V → Rd.
Furthermore, this procedure is not restricted to infinitesimal motions, but can be generalised
to arbitrary maps {1, . . . , k} →M l, with k, l ∈ N and any set M . �

Lemma 3.14.
All infinitesimal motions Q of G(p) are solutions to the system of linear equations
RG(p) · x = 0, i.e. the infinitesimal motions Q of G(p) lie in kerRG(p).

Proof. To prove the statement, let Q : V → Rd, i 7→ qi be an infinitesimal motion of a
framework G(p).

RG(p)·Q =
(
(pi − pj)> · qi + (pj − pi)> · qj

)
{i,j}∈E

=
(
(pi − pj)> · (qi − qj)

)
{i,j}∈E

(3.7)

and since (pi − pj)> · (qi − qj) = 〈pi − pj , qi − qj〉, it follows by Lemma 3.9, that
〈pi − pj , qi − qj〉 = 0, for all {i, j} ∈ E due to Q being an infinitesimal motion of G(p).

Therefore, (3.7) is identically 0 and particularly Q in fact lies in the kernel of the rigidity
matrix, i.e. Q ∈ kerRG(p).
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3.2. Infinitesimal rigidity

Theorem 3.15 (Schulze [Sch10]).
A framework G(p) is infinitesimally rigid if and only if either

(1) rankRG(p) = d |V | −
(d+1

2
)
, or

(2) G = K|V | is the complete graph and the points pi, i ∈ V , are affinely independent.

Proof. Here, only a proof for the rank condition (1) shall be given and additionally only
for the case d = 2. The higher-dimensional case is proven analogously under making use
of the statement dim O(d) = d(d−1)

2 , with O(d) denoting the orthogonal group, and then
yielding dim Iso(Rd) = dim O(d) + d =

(d+1
2
)
. Here the term “+d” refers to the dimension

of translations. The second statement (2) is necessary for the Henneberg construction and
shall become clear in Theorem 3.30. So let G(p) be a framework where G is not complete.
First of all the Rank-nullity theorem for a linear map f : X → Y , where X and Y denote
vector spaces, needs to be mentioned. The statement reads dimX = rank f + dim(ker f)
and a proof is given by Beutelspacher [Beu14].

Every trivial motion is a linear combination of the following three linearly independent
vectors:

Tx =
(
1 0 . . . 1 0 . . . 1 0

)>
∈ R2|V |

Ty =
(
0 1 . . . 0 1 . . . 0 1

)>
∈ R2|V |

Tr =
(
−b1 a1 . . . −bi ai . . . −b|V | a|V |

)>
∈ R2|V |

with pi = (ai, bi), for i ∈ V . Here Tx and Ty denote infinitesimal x- and y-translations,
respectively, whereas Tr refers to infinitesimal rotations. To be more specific, Tx, Ty and
Tr define the direction of the infinitesimal motion and multiplying with a scalar changes
the amount of translating for Tx and Ty or the angle of rotation for Tr.

Furthermore,M := {µ | µ infinitesimal motion of G(p) } ' R2|V | defines the vector space
of infinitesimal motions of G(p). It holds dimM = 2 |V |, as provided by Laman [Lam70].

In addition,MT := span{Tx, Ty, Tr} ⊂ M refers to the vector space of trivial infinitesimal
motions of G(p). Here it holds dimMT = 3.

According to Lemma 3.14 this yields dim(kerRG(p)) ≥ 3, in particular kerRG(p) =MT if
and only if G(p) is infinitesimally rigid. Moreover, RG(p) can be construed as a linear map
R2|V | → R|E|, x 7→ RG(p)x.

Hence, the Rank-nullity theorem concludes the proof since

G(p) infinitesimally rigid
⇐⇒ dim(kerRG(p)) = 3
⇐⇒ dimM = 2 |V | = rankRG(p) + 3
⇐⇒ rankRG(p) = 2 |V | − 3.

Before concluding this section, two further definitions that are commonly used in working
with rigidity properties are presented. Also, the rank condition (1) of an infinitesimal rigid
framework as given in Theorem 3.15, shall be emphasized at this point. This is due to the
term on the right side of the equation appearing more often throughout this thesis, which
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is of great benefit in order to analyse rigidity properties of frameworks or even graphs (see
Definition 3.26).

rankRG(p) = d |V | −
(
d+ 1

2

)
(3.8)

Furthermore, it is of intuitive nature, that graphs with too few edges can not be rigid,
which is actually the fact as given by Laman [Lam70] and Asimow and Roth [AR78]. Here
again the rank condition (1) appears:

Corollary (Laman [Lam70], Asimow and Roth [AR78]).
Let G(p) be a framework. Then, if |E| < d |V | −

(d+1
2
)
, G(p) is infinitesimally flexible.

Thus, |E| ≥ d |V | −
(d+1

2
)
, is a necessary condition for infinitesimal rigidity. This also

explains why there is no realization p of K2,2 such that (K2,2, p) is infinitesimally rigid, as
stated by Laman [Lam70].

Definition 3.16 (Schulze and Whiteley [SW17]).
Let G(p) be a realization. G(p) is

(a) independent, if the corresponding rigidity matrix has linearly independent rows.

(b) isostatic, if it is infinitesimally rigid and independent.

Theorem 3.17 provides a characterization for isostatic frameworks in Rd, which plays a
major part in Section 3.5. The following statement is quoted as given by Schulze and
Whiteley [SW17], but with respect to the style of notion applied in this thesis.

Theorem 3.17 (Schulze and Whiteley [SW17]).
For a framework G(p) in d-space, with |V | ≥ d, the following are equivalent:

(a) G(p) is isostatic.

(b) G(p) is infinitesimally rigid with |E| = d |V | −
(d+1

2
)
.

(c) G(p) is independent with |E| = d |V | −
(d+1

2
)
.

(d) G(p) is infinitesimally rigid, and removing any one bar (but no vertices) leaves an
infinitesimally flexible framework.

Instead of (d), in Theorem 3.17, one could also speak of minimally infinitesimally rigidity,
for which similar concepts are investigated in Section 3.5 and are of interest in the last
chapter, Chapter 4, where a new type of rigidity is introduced.

Also, common is the term “first-order” instead of “infinitesimally”. This can be explained
by the notion of an admissible small displacement, as given by Laman [Lam70]. There the
edge lengths may change in first-order, what has been expressed with the Little-o notation.
Since one could also consider “second-order rigidity” along the same terms, this idea is
mentionable (see Connelly and Whiteley [CW96] for further details).

3.3. Parallel designs

This chapter’s purpose is to present parallel designs as given by Whiteley [Whi96]. Interest-
ingly, parallel designs in fact provide a different geometrical interpretation for infinitesimal
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rigidity. In the scenario of parallel designs the role of the invariant is played by the slope
of each edge instead of their lengths. Therefore, fitting terms would also be directional or
slope-preserving rigidity.

Although this chapter only treats the two-dimensional case of parallel designs, it can be
considered in broader general as well by transferring the terms analogously as presented to
the higher-dimensional setting.

The rotation of a vector by 90° counter-clockwise shall be denoted by ⊥. In the upcoming
sections and chapters ⊥ shall always refer to this particular rotation. More precisely
(·)⊥ : R2 → R2 is defined as(

x
y

)⊥
:=
(

0 −1
1 0

)
·
(
x
y

)
=
(
−y
x

)
.

For a given framework G(p) and a transformed framework G (q) the system of constraints
that needs to be satisfied in order to preserve the direction of each edge, is

〈(pi − pj)⊥ , qi − qj〉 = 0, ∀{i, j} ∈ E. (3.9)

In other words, the vector ( #      »pjpi)⊥ is perpendicular to the vector #      »qjqi, that is obtained by
the framework’s transformation G(p) to G(q), for every edge {i, j} ∈ E.

Definition 3.18 (Whiteley [Whi96]).
The solutions to the homogeneous linear system (3.9) are called parallel designs G (q) of the
original plane design G(p). A parallel design G (q) for G(p) is trivial, if q is a translation
or dilation of p. Otherwise, the parallel design is non-trivial.

Figure 3.10 provides a simple example of non-trivial parallel designs of a cuboid.

Figure 3.10.: A cuboid with two non-trivial parallel drawings.

In contrast, Figure 3.11 displays the example of a trivial parallel design for the two-
dimensionally embedded unit cube. This can be obtained by stretching every edge by a
factor of 3.

For parallel designs there exists a similar concept as the rigidity matrix in Section 3.2: the
so called parallel design matrix PG(p). It is defined analogously to the rigidity matrix, but
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Figure 3.11.: A cube with a trivial parallel drawings

instead of (pi − pj)> and (pj − pi)> the entries hold (pi − pj)⊥ and (pj − pi)⊥ as values,
respectively. That is,

PG(p) =


2i− 1, 2i 2j − 1, 2j

...
{i, j} 0 . . . 0 (pi − pj)⊥ 0 . . . 0 (pj − pi)⊥ 0 . . . 0

...


Take note that the necessary > has been omitted to simplify reading. The actual values
of the parallel designs matrix PG(p) therefore consist of, e.g.

(
(pi − pj)⊥

)>
. Since the

parallel design matrix and the rigidity matrix look very similar one could think that there
somehow is a relation between PG(p) and RG(p), which is actually the fact as stated in the
following Lemma.

Lemma 3.19 (Whiteley [Whi96]).
The terms infinitesimal motion and parallel design are equivalent.

Proof. For proving the statement an equivalence between the both constraints ((3.5) and
(3.9)) is established. Let G(p) be a framework with an infinitesimal motion U : V → R2,
i 7→ ui. It then holds:

〈pi − pj , ui − uj〉 = 0 (3.5)
⇐⇒ 〈pi − pj , ui〉+ 〈pj − pi, uj〉 = 0
⇐⇒ 〈(pi − pj)⊥, u⊥i 〉+ 〈(pj − pi)⊥, u⊥j 〉 = 0
⇐⇒ 〈(pi − pj)⊥, qi〉+ 〈(pj − pi)⊥, qj〉 = 0 (3.9)

Here, qi refers to qi = (ui)⊥+ pi, for all vertices i ∈ V . This is possible due to p itself being
a (trivial) solution to the system.

In Figure 3.12a the solid black lines refer to a framework, whereas the gray dashed lines
display a non-trivial design of the same framework, which can be obtained by moving
every vertex along the trajectory spanned by the vectors in dashed red. Figure 3.12b
considers the same framework, but there every vector (dashed red) has been rotated by
90° clockwise, yielding an infinitesimal motion of the framework. These figures ought to
clarify the relation between parallel designs and infinitesimal motions, as mentioned in
Lemma 3.19, through concrete examples.

It might not be obvious to see that trivial continuous motions, e.g. rotations, can also be
used to obtain a parallel design. To see this, a conversion scheme to convert infinitesimal
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3.3. Parallel designs

(a) Non-trivial parallel design. (b) Infinitesimal motion of the same frame-
work.

Figure 3.12.: Framework with non-trivial parallel design that induces a non-trivial infinites-
imal motion of the same framework.

rotations to dilations shall be presented. Take note, that every continuous motion induces
an infinitesimal motion, where each tangent at the original vertex realization corresponds
to the vertex’ respective velocity.

Figure 3.13 displays such a transformation of a trivial motion for a framework. The left-
hand side, Figure 3.13a, depicts a framework that has been rotated by π

4 = 45° clockwise
about the origin (given as the blue cross). The red arrows indicate the tangent of the circle
- spanned by the origin, the original vertex and the rotated vertex - at the position of the
original vertex. The trajectory along which the vertices shall be moved is displayed in
dotted lightgray. Rotating the tangents by 90° counter-clockwise, yields a parallel design
as displayed on the right-hand side, in Figure 3.13b. Therefore, the tangents form a trivial
infinitesimal motion, which then again induces a trivial parallel design, where the framework
just gets uniformly dilated.

(a) Rotation of the framework by 22.5° clock-
wise.

(b) Trivial parallel design.

Figure 3.13.: Framework with trivial motion inducing a trivial parallel design

More formally spoken, for a α ∈ [0, 2π), by which the framework shall be rotated, the
transformation matrix is given as follows:

A =
(

cos(α) − sin(α)
sin(α) cos(α)

)
,
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3. Concepts of rigidity

and applied on every point of the respective realization and therefore, retrieving a new
realization, called q. In order to calculate the associated tangent for every vertex i, first
determine the normal, which is given by #»pi. Next, calculate a tangential vector by simply
rotating the normal #»pi by 90° (clockwise), i.e. the tangential vector is #»

ti := − ( #»pi)⊥. It
remains to adjust the tangential vector’s length, such that it corresponds to the distance of
the rotation:

#»
ti
‖ #»pi‖ ‖

#»pi − #»qi‖, which then shall be again called #»
ti .

Whiteley [Whi96] states the following correspondences:

1. the trivial infinitesimal motions correspond to trivial parallel designs.

2. a translation by b corresponds to a translation by b⊥.

3. a rotation about the origin corresponds to a dilation towards the origin
(see Figure 3.13).

4. a non-trivial infinitesimal motion corresponds to a non-trivial parallel
design (see Figure 3.12).

3.4. Statical rigidiy

As a final reinterpretation of infinitesimal rigidity this sections deals with the statical
rigidity of frameworks. This section is concluded by presenting the important theorem that
states the duality of infinitesimal and statical rigidity.

Definition 3.20 (Izmestiev [Izm09a]).
A load on a framework G(p) is a collection of vectors, called forces, applied at the vertices
of G(p). Formally, a load is a map

F : V → Rd,
i 7→ fi.

A load is called an equilibrium load, if the sum over the forces
∑
i∈V fi is equivalent to

zero.

Definition 3.21 (Izmestiev [Izm09a]).
A stress on the framework G(p) is a map

Ω : E → R,
{i, j} 7→ ωi,j .

The stress Ω is said to resolve the load F , if

fi +
∑
j∈V

ωi,j(pi − pj) = 0 for all i ∈ V, (3.10)

where ωi,j = 0 for all {i, j} /∈ E.
In this situation F is also said to be resolvable (by Ω).

The inequality ωi,j > 0 means that the edge {i, j} is under compression, so that it pushes
the vertices i and j apart, whereas the inequality ωi,j < 0 means that the edge {i, j} is
under tension, so that it pulls the vertices i and j towards each other (as mentioned by
Izmestiev [Izm09a] and Whiteley [Whi96]). Furthermore, it holds Ω({i, j}) = ωi,j = ωj,i,
for all {i, j} ∈ E.
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3.4. Statical rigidiy

Example (Izmestiev [Izm09a]).
The following example is adopted literally as it was presented by Izmestiev [Izm09a].
Let ∆ be a triangle in R2. A load that consists of three non-zero forces f1, f2 and f3 is an
equilibrium load if and only if the lines along which the forces act (dashed lines) intersect
at a point and f1 + f2 + f3 = 0, as in Figure 3.14.

f1 f2

f3

Figure 3.14.: An equilibrium load on a triangle framework in R2.

Lemma (Izmestiev [Izm09a]).
Every resolvable load is an equilibrium load.

Proof. Let G(p) be a framework and Ω a stress resolving the load F . Then

∑
i∈V

fi
(3.10)=

∑
i∈V

∑
j∈V

ωi,j (pj − pi)

=
∑
{i,j}∈E

ωi,j (pj − pi) + ωi,j (pi − pj) = 0

holds and F is an equilibrium load.

Definition 3.22 (Izmestiev [Izm09a]).
The framework G(p) is called statically rigid, if every equilibrium load on G(p) can be
resolved.

Following the example of Izmestiev [Izm09a], Figure 3.15 presents a quadrilateral that is
not statically rigid. Here, let f1 and f3 be two forces acting on p1 and p3, respectively,
along the diagonal of the quadrilateral such that f1 + f3 = 0, i.e. f1 and f3 cancel each
other out. Since the sum over these forces is identically zero, they specify an equilibrium
load. Let Ω a stress on the quadrilateral that resolves the load, then Ω is uniquely defined
and the stress Ω is given through the blue vectors in Figure 3.15. But at the other two
vectors, p2 and p4, where zero exterior forces are applied, the stresses create non-zero
interior forces. And therefore (3.10) does not hold there.

Theorem 3.23 (Izmestiev [Izm09a]).
A framework is infinitesimally rigid if and only if it is statically rigid.
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3. Concepts of rigidity

p1

p2

p3

p4

f1

f3

p1 − p2

p
2 −

p
3

p3 − p4

p 4
−
p 1

ω1,4

ω1,2

ω1,2

ω1,4

ω2,3

ω2,3

ω3,4

ω3,4

Figure 3.15.: An equilibrium non-resolvable load on a quadrilateral [Izm09a].

3.5. Generic rigidity

It is important to notice that infinitesimal rigidity as in Section 3.2 strongly depends on
the given realization of frameworks. Thus, two different realizations of one fixed graph G
may yield an infinitesimal rigid and an infinitesimal flexible framework, respectively.

To see this, the example of Laman [Lam70] given in his paper is considered in the up-
following.

The underlying graph G = (V,E) is given through V = {1, 2, 3, 4, 5, 6} and
E = ⋃5

i=1{{i, i+ 1}} ∪ {{1, 6}, {1, 4}, {2, 5}, {3, 6}}. Take note, that the graph G = (V,E)
describes the well-known graph K3,3, i.e. G = K3,3. Furthermore, the edge set could
be defined to consist of exactly those edges {i, j}, where i is even and j is odd, i.e.
E = { {i, j} | i ∈ (2 · N) ∩ V, j ∈ (2 · N0 + 1) ∩ V }. The following considers two realizations
ϕ and ψ, whereby Q denotes a non-trivial infinitesimal motion for ϕ:

ϕ : V → R2,



1 7→ (1, 0)>,
2 7→ (1

2 ,
1
2
√

3)>,
3 7→ (−1

2 ,
1
2
√

3)>,
4 7→ (−1, 0)>,
5 7→ (−1

2 ,−
1
2
√

3)>,
6 7→ (1

2 ,−
1
2
√

3)>.

Q : V → R2,


1, 6 7→ q1 := q6 := (−1

2
√

3,−1
2)>,

4, 5 7→ q4 := q5 := (−1
2
√

3, 1
2)>,

i 7→ 0, otherwise

ψ : V → R2,

{
1 7→ (δ, 0)>, with δ 6= 1,
i 7→ ϕ(i), for i ∈ {2, 3, 4, 5, 6}.

Figure 3.16a visualizes the realization ϕ that induces an infinitesimal flexible framework
since the infinitesimal motion Q is non-trivial for the framework G(ϕ). In contrast,
Figure 3.16b displays the infinitesimal rigid framework G(ψ).

Therefore, a goal of this chapter is to consider graphs that fulfil the property of (infinitesimal)
rigidity for “almost” all realizations. These graphs shall then be called (infinitesimally)
generically rigid. Furthermore, the class of so called minimally rigid or in the 2-dimensional
case, i.e. d = 2, Laman graphs shall be introduced. The term Laman graph is influenced
through the work of Laman, who gave a characterisation of this particular class of graphs

26



3.5. Generic rigidity

1

23

4

5 6

q1

q6

q4

q5

(a) Infinitesimal flexible realization ϕ of G.

1

23

4

5 6

(b) Infinitesimal rigid realization ψ of G.

Figure 3.16.: The same graph G, but with two different realizations ϕ and ψ yielding
infinitesimal flexible and infinitesimal rigid frameworks, respectively.

in [Lam70]. Minimally rigid is adequate since removing any edge would break the property
of rigidity and therefore these graphs are minimal in this sense. Conclusively, an important
style in notation should be mentioned: To every notion introduced so far, the prefix
“d-” could be added to clarify in which space realizations take place. That is, e.g. for a
d-infinitesimally rigid framework G(p), the realization p is of the form p : V → Rd. This
notation is important in certain situations, which Theorem 3.28 shall exemplarily clarify.

Suggestively, there was talk of these properties for graphs, and not realizations or rather
frameworks. That is, Laman graphs are a subclass of generically rigid graphs. In the case
of d = 2, it is even possible to state that every generically rigid graph consists of Laman
graphs. One says that the Laman graphs “form the bases” for the generically rigid graphs.
This is vaguely formulated due to the lack of matroidal knowledge. Nonetheless, this
statement is refined by a brief excursion to the theory of rigidity matroids of frameworks
and graphs in Remark 3.27. For higher-dimensional cases there has not been found such a
characterization for generically rigid graphs yet and hence forms an open problem.

As in Lemma 3.14, a realization p of framework G(p) identifies with a vector in Rdn.

Definition 3.24 (Connelly [Con05], Whiteley [Whi96]).
A realization is generic, if its dn coordinates are generic (as defined in Chapter 2). Other-
wise, the realization is said to be singular. A graph G is called generically rigid, if G(p) is
rigid for every generic realization p.

The following presents a further important theorem, which gives a connection between
generic, infinitesimal and natural rigidity. Figuratively spoken, Theorem 3.25 provides
the “other direction”: Theorem 3.11 states that infinitesimally rigid implies rigid but
Theorem 3.10 yielded that the converse is not true. But generic rigidity provides this exact
direction under certain restrictions.

Theorem 3.25 (Hendrickson [Hen95b], Gluck [Glu75]).
If a graph has a single infinitesimally rigid realization, then all its generic realizations are
infinitesimally rigid.

In other words Theorem 3.25 states, that infinitesimal rigidity and natural rigidity are
almost always equivalent. More precisely, if p is a generic realization

G(p) is infinitesimally rigid ⇐⇒ G(p) is naturally rigid.

27



3. Concepts of rigidity

See also Asimow and Roth [AR79].

As already mentioned, Laman [Lam70] presented a convenient way for characterizing the
minimally rigid graphs, if d = 2, which shall be examined step by step.

Definition 3.26.
A graph G is called a Laman graph if G is (2, 3)-tight.

Remark 3.27 (Excursion to matroids).
Given a framework G(p) of a graph G = (V,E), RG(p) = (E, I) defines the rigidity matroid
of G(p). Here, I ⊆ P(E) denotes the so called independent sets and the elements are
those sets of edges where the corresponding rows in the rigidity matrix RG(p) form linearly
independent sets.

Given two generic configurations p and q, it holds RG(p) = RG(q) and therefore one can
speak of the rigidity matroid of G for generic realizations of G. It is simplified written as
RG.

For a matroid (E, I) one can define the bases B as the set of maximum elements of I with
respect to the set inclusion ⊆. As part of this work the following two results must be
highlighted:

1. the Laman graphs with n vertices form the bases of the rigidity matroid of a complete
graph.

2. in broader general one can even say that for every rigid framework G(p) the spanning
Laman subgraphs induce the bases of RG(p).
In particular, for a generically rigid graph G the bases of RG are Laman graphs and
G has spanning subgraphs that are Laman.

For a more precise treatment of this topic, see [Whi96]. �

The term “generically” can be seen in greater general, as indicated by the upcoming theorem
and sections. For further concepts of rigidity putting “generically” in front of the respective
notions, which shall happen silently, refers to generic realizations as in Definition 3.24.
Nevertheless, it should be inferred from the context what “generically” is actually meant
to be.

Theorem 3.28 (Laman [Lam70], Schulze [Sch10], Schulze and Whiteley [SW17], Borcea
and Streinu [BS02]).
Let G be a graph. The following are equivalent:

(a) G is a Laman-graph.

(b) G is generically 2-isostatic.

(c) G is minimally 2-rigid.

Figure 3.17 depicts realizations of Laman graphs with 6 ≤ n ≤ 12 vertices, starting in the
upper left corner with n = 6 and concluding with n = 12 in the bottom right corner as
given by Capco et al. [CGG+17].

The upcoming theorem, Theorem 3.30, implies that a Laman graph on n vertices is not
unique. Nonetheless, the Laman graphs given in Figure 3.17 have a special property. In
fact, those are the Laman graphs where the number of possible complex realizations - up
to isometries - is maximal, which is examined in further detail by Capco et al. [CGG+17].
This number is also called Laman number and denoted by Lam(G) for a Laman graph
G. Complex realization refers to a realization p, but with image space C2, i.e. p : V → C2.
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3.5. Generic rigidity

Figure 3.17.: Realizations for Laman graphs with 6 ≤ n ≤ 12 vertices as in [CGG+17].

Capco et al. give a keen introduction on the complexity of calculating the Laman number
Lam(G), which is highly non-trivial. Capco et al. were the first to provide a recursive,
purely combinatorial formula calculating the exact Laman number, and thereby solved an
open problem. Until then, there has only been known an upper bound of Lam(G) ≤

(2n−4
n−2

)
for a graph G on n vertices, as given by Borcea and Streinu [BS02].
Finally, the so called Henneberg constructions are presented, which provide an inductive
approach in order to determine the class of all Laman graphs, that shall be given in
Theorem 3.30. But first of all the construction steps are formally defined, along the same
lines as given by Schulze and Whiteley [SW17].
Definition 3.29 (Schulze and Whiteley [SW17], Capco et al. [CGG+17]).
A Henneberg d-construction, for a graph G = (V,E), is either
(a) vertex addition: G′ = (V ∪̇ {t}, E ∪̇ {{u1, t}, . . . , {ud, t}})

for distinct u1, . . . , ud ∈ V

or

(b) edge splitting: G′ = (V ∪̇ {t}, (E \ {u, v}) ∪̇ {{u, t}, {v, t}, {u1, t}, . . . , {ud−1, t}})
for distinct u, v, u1, . . . , ud−1 ∈ V and {u, v} ∈ E;

and therefore yields a new graph G′.

Rephrased, the vertex addition firstly adds a new vertex, which shall then be connected
to d further vertices (of the original graph). Hereby, it does not matter whether those
d vertices are already connected through an edge or not. The edge splitting subsists of
adding a new vertex and in a next step choosing an edge in the original graph. This edge is
then deleted, and the new vertex is connected to both of the endpoints. Next, connecting
the new vertex to d− 1 other vertices of the original graph concludes the construction step.
Figure 3.18 tries to visualize the just introduced concept of Henneberg 2-construction. On
the left, Figure 3.18a, the transformation given by a vertex addition is depicted. The figure
on the other side, Figure 3.18b, displays the construction step of an edge splitting.
Theorem 3.30 (Schulze and Whiteley [SW17]).
Let G be a graph. If there exists a sequence of Henneberg d-constructions (V1, E1), . . . , (Vk, Ek),
such that (V1, E1) = Kd is the complete graph on d vertices and (Vk, Ek) = G, then G is
generically d-isostatic. In the case of d = 2, the equivalence is true, i.e. additionally it
holds, that every generically 2-isostatic graph can be constructed by a sequence of Henneberg
2-constructions - starting with K2.
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u1 u2 u1 u2

t

→

(a) Vertex addition in the 2-dimensional case.

u v

u1

u v

u1 t

→

(b) Edge splitting in the 2-dimensional case.

Figure 3.18.: Visualization of the Henneberg construction for the case d = 2 [CGG+17].

3.6. Global rigidity

As final concept of rigidity, this section provides a short introduction to global rigidity
where the focus solely lies in presenting a definition. The main interest is to present another
equivalent definition for natural rigidity as in Section 3.1, which might provide a deeper
insight to the structure of its motions. Also, this section serves as a reminder that there are
much more types of rigidity not presented in this work but nonetheless just as important.

The following both terms are introduced as in Connelly [Con05]. Let G(p) and G(q) be
two frameworks. G(p) and G(q) are called equivalent, denoted by G(p) ≡ G(q), if:

G(p) ≡ G(q) :⇐⇒ ‖pi − pj‖ = ‖qi − qj‖ , ∀{i, j} ∈ E. (3.11)

In other words, the edge lengths of the realization p match with the respective edge lengths
realized by q.

Furthermore, two configurations p = (p1, . . . , pn) and q = (q1, . . . , qn) are congruent, written
as p ≡ q, if:

p ≡ q :⇐⇒ ‖pi − pj‖ = ‖qi − qj‖ , ∀i, j ∈ V. (3.12)
Those two conditions (3.11) and (3.12) look very similar, but the second notion is strictly
stronger, i.e. p ≡ q =⇒ G(p) ≡ G(q). This is true since (3.12) quantifies over every
possible pair of vertices and (3.11) only over the edges of the graph. The inversion is
generally not true, i.e. G(p) ≡ G(q) 6=⇒ p ≡ q, for which a counterexample is given in
Figure 3.19.

Furthermore, the congruence of two realizations means that not only the lengths of edges
needs to be preserved but also the distance, in the case of natural rigidity: The Euclidean
distance, of any two vertices.

Figure 3.19.: Shifting of the unit square where the diagonal becomes larger.

Definition 3.31 (Connelly [Con05]).
A framework G(p) is said to be rigid, if:

∃ε > 0∀q ∈ Rdn : ‖p− q‖ < ε and G(p) ≡ G(q) =⇒ p ≡ q.

In other words Definition 3.31 states, that for a realization q sufficiently close to the original
realization p, such that every edge length is the same as in the original realization, then
also the distances between any two vertices are the same as for the original framework.
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3.6. Global rigidity

It might be difficult to see the link between natural rigidity as in Section 3.1 and the new
characterization as in Definition 3.31, since for natural rigidity continuous motions played
a major role and here just another configuration sufficiently close to the original realization.
But those terms are in fact equivalent as stated in the following theorem:

Theorem 3.32 (Schulze and Whiteley [SW17]).
For a framework G(p) the following conditions are equivalent:

(a) the framework is rigid.

(b) for every motion {P (t)}t∈[0,1] of G(p), {P (t)}t∈[0,1] is trivial.

(c) there is an ε > 0 such that, if G(p) and G(q) are equivalent and ‖p− q‖ < ε, then p
is congruent to q.

Definition 3.33 (Connelly [Con05]).
A framework G(p) is called globally rigid if

G(p) ≡ G(q) =⇒ p ≡ q.

That is, the globally rigid framework are precisely those for which G(p) ≡ G(q) ⇐⇒ p ≡ q.
Figure 3.20 gives examples of frameworks that are rigid, but not globally rigid. Particularly,
the framework depicted in Figure 3.20a is not globally rigid, since a non-congruent realization
is obtainable by reflecting vertex 1 at the line l for which the distance of 1 and 2 has changed,
but every edge length remains unchanged and hence forming an equivalent framework.

1

2 l

(a) Rigid framework. (b) Rigid framework with generic realization.

Figure 3.20.: Frameworks that are not globally rigid [Con05].

In contrast, Figure 3.21 provides a framework that is globally rigid. These examples are
examined in further detail by Connelly [Con05].

Figure 3.21.: Globally rigid framework [Con05].

As aforementioned, globally rigidity shall not be expanded at this point since it would go
beyond the scope of this thesis.
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3. Concepts of rigidity

3.7. Summary

3.7.1. Glossary

Natural and infinitesimal rigidity

motion of Rd: continuous family Φt of isometries (for all t ∈ [0, 1]), with Φ0 = id.

infinitesimal motion of Rd: derivative of a motion of Rd evaluated at t = 0, or equiva-
lently a vector field such that moving each point Rd along the velocity applied at that
point preserves distances in first-order.

(infinitesimal) motion of G(p): a (infinitesimal) motion only applied to the vertices of
G(p).

trivial (infinitesimal) motion of G(p): a (infinitesimal) motion P (t) (or Q) of
P = G(p), that is induced by a (infinitesimal) motion Φt (or ξ), i.e. P (t) = Φt ◦ P (or
Q = ξ ◦ P ), for every t ∈ [0, 1].

(infinitesimally) rigid framework G(p): every (infinitesimal) motion of G(p) is trivial.

rigidity matrix of G(p): the m× (n · d) matrix RG(p) for the system of equations
〈pi − pj , qi − qj〉 = 0, where Q : V → Rd, i 7→ qi infinitesimal motion of G(p).

RG(p) =


...

0 · · · (pi − pj)> · · · (pj − pi)> · · · 0
...



edge function of G(p): map f : Rd × · · · × Rd → Rm, (q1, . . . , qn) 7→ (‖qi − qj‖2){i,j}∈E ,
with df(p) = 2RG(p).

Parallel designs

parallel design G(q) of G(p): every edge given in q is parallel to the given edge in p.
That is, for every edge {i, j} ∈ E it holds 〈(pi − pj)⊥, qi − qj〉 = 0.

trivial parallel design G(q) of G(p): q is a translation or dilation of p.

Statical rigidity

load: collection of vectors fi, called forces, applied at the vertices of a framework.

equilibrium load: load, where sum over forces is equivalent to zero, i.e. ∑i∈V fi = 0.

(resolving) stress: a map of scalars ωi,j = ωj,i to every edge {i, j} ∈ E.
(It resolves the load F , if fi +∑

j∈V ωi,j(pi − pj) = 0, for all i ∈ V .)

statically rigid framework G(p): every equilibrium load on G(p) can be resolved.

Generic rigidity

generic realization: realization, with its dn coordinates being generic, i.e. for every
dn-multivariate polynomial (non-identical to zero) the coordinates do not evaluate to
zero.

generically rigid graph G: if every generic realization G(p) of G is rigid.

Laman graph: graph that is (2, 3)-tight, i.e. |E| = 2 |V | − 3 and every k-subgraph has at
most 2k − 3 edges, where k ≥ 2.
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3.7. Summary

Henneberg d-construction: for a graph G that yields a new graph G′

(a) vertex addition: adding vertex t to G and connecting t to d further vertices of
G.

(b) edge splitting: adding vertex t to G, removing edge {u, v} of G and connecting
t to the endpoints u and v, and to d− 1 further vertices of G.

Global rigidity

equivalent frameworks G(p) and G(q): G(p) ≡ G(q) :⇐⇒ for every edge {i, j} ∈ E it
holds ‖pi − pj‖ = ‖qi − qj‖.

congruent realizations p and q: p ≡ q :⇐⇒ for all i, j ∈ V it holds ‖pi − pj‖ = ‖qi − qj‖.

rigid framework G(p): every realization q sufficiently close to p, with equivalent frame-
works, is congruent to p.
That is, there exists an ε > 0 such that for every q ∈ Rdn with ‖p− q‖ < ε and
G(p) ≡ G(q) it holds p ≡ q.

globally rigid framework G(p): If two frameworks are equivalent, then the realizations
are congruent, i.e. G(p) ≡ G(q) =⇒ p ≡ q.
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oncepts

ofrigidity

3.7.2. Overview

G(p) rigid
Thm. 3.11⇐=
6=⇒

Thm. 3.10


G(p) infinitesimally rigid

Thm. 3.23⇐⇒ G(p) statically rigid
Lem. 3.19⇐⇒ G(p) trivial parallel designs only~ww

G generically rigid
:⇐⇒G(p) rigid for almost all p

Thm. 3.25=⇒
∃ infinitesimal rigid

realization

G(p) infinitesimally rigid for almost all p

~ww
G is a Laman-graph

⇐⇒ G is minimally rigid
(only for d = 2)

Def. 3.26:⇐⇒ G is (2, 3)-tight :⇐⇒


|E| = 2 |V | − 3

and every k-vertex subgraph, k ≥ 2,
has at most 2k − 3 edges.

34



4. Freedom of edge intersections

In this chapter, the main interest of this thesis is introduced. The goal is to be able to
apply the knowledge of rigidity provided in the earlier chapters. Starting by defining some
new terms and delivering the origin of this thesis’ idea in order to fully understand the
concept behind the vague title “freedom of edge intersections”. This leads to a new kind of
rigidity and therefore is examined in the language of rigidity theory.

4.1. Introduction

The following terms shall be presented as given by Dujmović et al. [DFG+18].

A plane straight-line drawing of a graph G is essentially a framework but without coinciding
vertices and crossing edges. For a planar graph G = (V,E), with a plane straight-line
drawing, a set S ⊆ V of vertices is said to be free, if for any set of points, X ⊆ R2, with
|X| = |S|, there exists a one-to-one map p : S → X and a plane straight-line drawing of G,
where every vertex v ∈ S is placed at the point p(v).

Furthermore, a set of vertices S ⊆ V is called collinear, if there exists a plane straight-line
drawing of G where all vertices of S lie on one line.

Finally, a set S ⊆ V of vertices is said to be free collinear, if S is free but with X restricted
to only collinear sets of points. Figuratively spoken this means, for a set of points that
all lie on one line these points may be arbitrarily moved along this line and still a plane
straight-line drawing of the graph is obtainable. Arbitrarily is not quite correct, since
the order of the points must not change along that line. In contrast, the term of a free
set intuitively seems to be strictly stronger than the notion of a free collinear set, since
vertices may be placed arbitrarily in the whole space R2 and do not need to restrict on
a hyperplane of R2. In fact, Dujmović et al. [DFG+18] provide the following astonishing
result for any set S ⊆ V of any planar graph G = (V,E):

S is free set ⇐⇒ S is collinear set ⇐⇒ S is free collinear set.

As the title of their paper suggests this means:
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4. Freedom of edge intersections

“Every collinear set in a planar graph is free”
— Dujmović, Frati, Gonçalves, Morin, and Rote

Figure 4.1 ought to indicate the concept of free collinear sets. A set of collinear points
is given, which are displayed by coloured points on the gray line. The dotted lines at
each vertex represent the edges incident to a certain vertex. In fact, only a truncated
interesting part of an arbitrary graph is displayed, and therefore focus lies on the collinear
points. The actual graph might be larger but is not of interest in this situation. This
style of visualization shall occur again in Figure 4.3. The original drawing is suggested in
Figure 4.1a and Figure 4.1b indicates a new drawing with the vertices displaced on the
line of collinearity. Hereby also the respective edges undergo certain transformations.

(a) Initial plane straight-line
drawing.

(b) New drawing with moved
vertices.

Figure 4.1.: Visualization of a free collinear set.

This whole concept may be called “freedom of collinear vertices” or as well in broader
general “freedom of vertices”. Hopefully, thereby one gets a slight idea of what awaits behind
the notion “freedom of edge intersections”. Nonetheless, the subject shall be discussed step
by step.

Given a plane straight-line drawing of a graph G, there possibly are edges that intersect
with the x-axis. Here, not only the edge is considered but the actual line defined by the
edge so-called supporting line. In the following, an edge and its supporting line shall be
identified. In the work of Dujmović et al. [DFG+18] it was also presented that for a free
collinear set S ⊆ V on line l, not only the vertices v ∈ S may positioned arbitrarily, but
also the intersections of supporting lines with line l may be prescribed ε-precisely. That
is, the crossing point is at most ε away from its prescribed position. This leads to the
question: “may these positions be prescribed absolutely?”. The following sections treat this
question and present an idea of answering it with tools of rigidity theory. Without loss
of generality and for sake of simplicity, this work only considers the x-axis as line l and
not any arbitrary line. In fact, for this scenario, zeros and intersections with the x-axis of
supporting lines are equivalent. Therefore, the following special situations may occur

infinitely many zeros: if the supporting line is the x-axis, i.e. the incident vertices both
lie on the x-axis.

no zeros: if the supporting line is parallel to the x-axis, i.e. the y-coordinates
of the incident vertices coincide.

no supporting line: in the situation of frameworks it is possible that the realization of
two vertices may coincide and therefore there exist infinitely many
supporting lines. But since the vertices may only coincide if they
are not incident, this scenario is not relevant in this consideration.

Another question that may appear is “how can the first two special situations be eliminated?”.
The answer is quite simple, since every line, that is not horizontal, has exactly one zero.
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4.2. Definitions

Therefore, it could be useful to prohibit horizontal edges in general. Every pair of points
that does not induce one of these special situations shall be called good-natured.

For the sake of simplicity, in this work it shall solely be spoken of intersections instead
of “intersections of edges and the x-axis”, where no ambiguity may occur. There are two
questions that are of interest as part of this thesis:

• “Can those intersections be arbitrarily displaced on the x-axis such that one still
obtains a plane straight-line drawing or at least a straight-line drawing?”

• “How do the trivial motions look like if one wants the intersections to stay invariant?”

Of further interest is the class of graphs where those crossing points can be arbitrarily
displaced along the x-axis. Desirable would be a characterization of those graphs as given
by Laman the (2, 3)-tightness for rigidity (see Definition 3.26). That is, hope is to find an
invariant such that those graphs with free edge intersections can be classified as rigid and
therefore apply theorems of rigidity theory.

Section 4.5 presents a principle that may be used to only answer the second question and
instantly retrieving a result for the first question as well. Of particular interest is answering
the first question. The detour via results for the second question is only proposed since it
seems to be considerably easier.

4.2. Definitions

This section turns out to be relatively technical, since all necessary terms need to be
formally defined. Next, contributions to this topic as part of this work are presented.
Throughout this section G = (V,E) defines a graph and G(p) denotes a framework of this
graph. The framework G(p) is restricted to only have edges which are non-horizontal. This
is due to the treatment of zeros or rather the intersection of an edge’s supporting line with
the x-axis, which proves to be difficult for horizontal edges. For this purpose the following
map is defined:

z : R2 × R2 → R,

z

(
pi :=

(
ai
bi

)
, pj :=

(
aj
bj

))
:= − bi ·

aj − ai
bj − bi

+ ai

= −biaj + aibj
bj − bi

= −〈p
⊥
i , pj〉

bj − bi
.

∀i, j ∈ V

Essentially, z is an explicit term for the zero of the line in parameter-form given as
#»pi + t · #      »pipj , for t ∈ R. Take note, that z does not consider the aforementioned special
situations. In this work they are assumed to not occur, i.e. only good-natured lines are
evaluated.

First, the edge zeros are proposed as invariant, i.e. examining continuous motions of a
framework such that the intersections stay the same. Considering a continuous motion
{Φ(t) := (G, p(t))}t∈[0,1] of G(p), this motion needs to satisfy:

z(pi(t), pj(t)) = z(pi, pj), (4.1)

for all t ∈ [0, 1] and for all {i, j} ∈ E.
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4. Freedom of edge intersections

4.2.1. Zeros-preserving Motions

Analogously to the introduction of length-preserving maps in Section 3.1, this section
provides definition for maps that preserve zeros of the line spanned by two arbitrary
2-dimensional points so-called zeros-preserving maps. These zeros-preserving maps are
then used to introduce the term zeros-preserving motions, as it was the case for length-
preserving motions or rather motions in the scenario of natural rigidity in Section 3.1.
These terms shall be abbreviated with motions, but must be treated with caution due to
its ambiguous character. Furthermore, a local version of these (zeros-preserving) motions
shall be introduced and referred to by infinitesimal (zeros-preserving) motions. Particular
interest lies in those motions that are trivial, which proves to be more difficult to examine.

definition.
Let Φ: R2 → R2 be a map. Φ is called zeros-preserving, if:

z(Φ(x),Φ(y)) = z(x, y), ∀ good-natured x, y ∈ R2.

The terms (zeros-preserving) motions, infinitesimal motions and trivial (infinitesimal)
motions are defined along the same lines of the definitions presented for natural rigidity
and infinitesimal rigidity, see Section 3.1 and Section 3.2, respectively, but with respect to
zeros-preservation instead of length-preservation. Particularly this means, that infinites-
imal motions may change zeros in first-order. In order to provide a characterization for
infinitesimal motions, the other way around shall be taken. That is, by defining a zeros
function, obtaining an edge matrix similar to the rigidity matrix and examining its kernel.
For further details see Remark 3.12 and Section 4.4.

It is not quite obvious to see how the class of trivial motions looks like but one can certainly
say, that x-shearing and y-stretching of the framework are part of it. This question shall be
treated more precisely in Section 4.3 and Section 4.4 deals with their infinitesimal pendants.

Before continuing an understanding for x-shearing and y-stretching shall be provided by
giving concrete examples and then a definition in a formal sense. Also, shearing and
stretching simplified denote x-shearing and y-stretching, respectively. Figure 4.2a visualizes
the stretching of the coordinate system, given in dashed black, by a factor of two, resulting
in the red thick grid. With the same notation a shearing happens in Figure 4.2b, but by
factor 1

2 .

Both shearing and stretching are linear transformations given through matrices of certain
forms which shall be elucidated hereby

Stretching

TSt :=
{(

1 0
0 k

)
∈ R2×2

}
defines the set

of stretching matrices.
A stretching is then of the form x 7→ A ·x,
for A ∈ TSt, and k is called the factor of
the stretching.

Shearing

TSh :=
{(

1 k
0 1

)
∈ R2×2

}
defines the set

of shearig matrices.
A shearing is then of the form x 7→ A · x,
for A ∈ TSh, and k is called the factor of
the shearing.

Concretely, the stretching matrix corresponding to Figure 4.2a is
(

1 0
0 2

)
and the shearing

matrix that corresponds to Figure 4.2b is
(

1 1
2

0 1

)
.
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4.2. Definitions

x

y

(a) Stretching of the coordinate system by
the factor 2.

x

y

(b) Shearing of the coordinate system by the
factor 1

2 .

Figure 4.2.: Trivial motions for preserving edge intersections.

4.2.2. Edge-x-rigidity and Edge-x-freedom

Finally, the definition of edge-x-rigidity and edge-x-freedom may be provided.

Definition 4.1.
A framework is called edge-x-rigid if all of its motions are trivial. A framework is called
edge-x-flexible if it is not edge-x-rigid.

Recent work of Dewar [Dew18] states the following propositions that may be helpful:

“For any graph G with |V (G)| ≥ 2, G is isostatic in the Euclidean plane if and
only if G is (2, 3)-tight.”

“Let X be a non-Euclidean normed plane. Then a graph G is isostatic in X if
and only if G is (2, 2)-tight.”
— Dewar

In this context isostatic graphs refer to “[...]rigid graphs with no proper spanning rigid
subgraphs[...]”, whereas non-Euclidean normed plane denotes “[...]a 2-dimensional space
with a norm that is not induced by an inner product[...]” – Dewar. Investigating this further
would go beyond the bounds of this thesis, however a short summary of this proposition
might be of help. If the invariant, for edge-x-rigidity, could be defined in such a way that
it deals with a norm1 (not induced by an inner product), the infinitesimally edge-x-rigid
frameworks, with |E| = 2 · |V |− 2, are exactly the (2, 2)-tight graphs. Provided it is a norm
for a non-Euclidean normed plane. Section 4.3 provides at least three degrees of freedom,
which contradicts the theory of an realization in a non-Euclidean plane, as shall be seen
there.

The following provides definitions for the terms edge-x-freedom and its complement, edge-x-
tiedness, introduced in this thesis.

Definition 4.2.
A graph G = (V,E) is said to be edge-x-free if for every Z ∈ RE it holds

∃ realization q : z(qi, qj) = (Z){i,j} , ∀{i, j} ∈ E.

Otherwise, G is called edge-x-tied.

This definition might be too strict in that sense, that there might only be graphs that are
edge-x-free for almost all configurations of zeros Z ∈ RE . That is, graphs may only be

1“dealing with a norm” describes the situation given in the invariant for natural rigidity
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4. Freedom of edge intersections

edge-x-free for generic configurations Z ∈ RE , as it is the case for Laman graphs that are
rigid for almost all configurations of edge lengths.

Figure 4.3 displays an edge-x-free framework with the original situation given in 4.3a and
a transformed scenario in 4.3b. Hereby, the same notation as in the description of free
collinear sets take place (see Figure 4.1).

(a) Original placement of edge
intersections with the x-
axis.

(b) Displacement of the edge
intersections along the x-
axis.

Figure 4.3.: Visualization of an edge-x-free graph.

Since only edge-x-free frameworks were considered so far one could also ask oneself how it
is the case with edge-x-free sets, i.e. only the intersections of certain edges may be displaced
along the x-axis. More formally this leads to the following definition:

Definition 4.3.
For a graph G = (V,E) a set E′ ⊆ E is called edge-x-free if for every Z ∈ RE′ it holds

∃ realization q : z(qi, qj) = (Z){i,j} , ∀{i, j} ∈ E′.

It is important to notice that realizations are not demanded to be free of edge crossings.
The interest solely subsists of the question of the existence of a straight-line drawing
(basically a framework) at all. That is, an edge-x-free framework is a graph G = (V,E)
with E being an edge-x-free set.

The concept of edge-x-free sets shall not be examined in further detail here, but appears as
a tool for simplification of notation in Section 4.4.

4.3. Trivial motions

Finally, the degrees of freedom for any edge-x-rigid graph may be investigated in this
section. In a next step, it is tried to transfer the knowledge of edge-x-rigidity acquired so far
to infinitesimal edge-x-rigidity. The ideal case would be, that infinitesimal edge-x-rigidity is
just a projective transformation of infinitesimal rigidity. This would then allow application
of every statement of rigidity theory – considering infinitesimal rigidity – to infinitesimal
edge-x-rigidity. In particular, one would retrieve the following statement for a graph G:

G is Laman graph Thm. 3.28⇐⇒ G is 2-minimally rigid ?⇐⇒ G is minimally edge-x-rigid.

A short excursion to projective geometry shall now be presented.

definition (Beutelspacher and Rosenbaum [BR04], Izmestiev [Izm09a]).
Let Rd+1 be a d + 1-dimensional vector space and ∼ denotes an equivalence relation on
Rd+1 \ {0} given by

x ∼ x′ :⇐⇒ ∃λ ∈ R×, such that x′ = λx.
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4.3. Trivial motions

Then the d-dimensional real-projective space RPd is defined as the quotient space Rd+1\{0}/∼.
The equivalence classes of points (x1, . . . , xd+1)> ∈ Rd+1 or rather points of the projective
space are denoted by [x1 : . . . : xd+1] ∈ RPd and called homogeneous coordinates.

In other words, the points of RPd are 1-dimensional subspaces of Rd+1 without the origin.

definition (Izmestiev [Izm09a]).
Let π̃ be a linear map of Rd+1. A projective transformation π of RPd is a map RPd → RPd
with

π([x]) = [π̃(x)], ∀[x] ∈ RPd.

Theorem 4.4 (Schulze and Whiteley [SW17], Izmestiev [Izm09b]).
For a framework G(p) and a projective transformation T of RPd, where no point of p is
projected to infinity, G(p) is infinitesimally rigid if and only if G(T ◦ p) is infinitesimally
rigid.

As stated in [Izm09a], every affine transformation of Rd is a projective transformation. More
precisely the “Affine transformations of Rd are exactly those projective transformations
of RPd that map the line at infinity l∞ to itself” – Izmestiev [Izm09a]. In the terms of
Theorem 4.4 this does not only establish projective invariance for infinitesimal rigidity, but
also an affine invariance.

As seen so far, shearing and stretching are always applicable in order to preserve edge-
x-rigidity. In the following the degrees of freedom shall be visualized by considering a
concrete Laman graph on 7 vertices that is obtained by only applying vertex addition of
the Henneberg constructions onto K2. The graph is then given in Figure 4.4. There the
red marks denote the intersection for the corresponding edge. The dotted lines represent
the supporting line of an edge, that does not directly cross the x-axis (displayed by the
green thick line). This notation shall be applied to all upcoming figures of this section.

A

B

C

D

E

F

G

+ + + + + + + + +++

Figure 4.4.: Realization of a Laman-graph with 7 vertices, constructed by only using vertex
addition as Henneberg construction.

In Figure 4.5a a simple stretching of the framework is depicted – the framework has been
compressed towards the x-axis – and Figure 4.5b visualizes a simple shearing.

The following turns towards the (hopefully) last degree of freedom, where it is not quite
clear what it even does, but shall be discussed more detailed. At first, a little visualization
of what is happening is provided in Figure 4.6.
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4. Freedom of edge intersections

A

B

C

D
E

F

G

+ + + + + + + + +++
(a) Stretching of the frame-

work by a factor of 1
2 .

A

B

C

D

E

F

G

+ + + + + + + + +++
(b) Shearing of the framework

by a negative factor.

Figure 4.5.: Visualization of shearing and stretching as trivial motions that preserve the
intersections.

A

B

C

DE

F

G

+ + + + + + + + +++

Figure 4.6.: Another – possibly trivial – motion of the framework.

Comparing it to the other figures it looks like the vertex A did not change its position,
which is actually the case. Furthermore, every other vertex X moves along the line given
by {A,X} towards the intersection of the edge {A,X}. This means A is somehow the
centre of this particular motion. One question that may appear is, what if the framework
is realized in C∞ := C ∪ {∞}, i.e. p : V → C∞. Additionally, A is mapped to ∞ and every
edge incident to A becomes the vertical line with the same point of intersection. Figure 4.7
gives a glimpse on this kind of realization, which in this work is called the semi-hyperbolic
realization of a graph. Since attaching vertex A eliminates two degrees of freedom, the
shearing and stretching, and only the motion of interest remains. The motion depicted in
Figure 4.6 shall be referred to as a central collineation (with respect to centre A), which is
clarified in the next step.

For the semi-hyperbolic realization the vertices may only be displaced along the correspond-
ing orange lines, that display the edges incident to A. In fact, the only motion applicable
here is again a stretching of the graph. One might think, that a graph with fewer vertices is
considered and therefore also fewer edges, but this is actually not the case here. The vertex
A is still part of the graph, it is just not visible any more, since it lays at infinity. The

42



4.3. Trivial motions

B

C

D

E

F

G

+ + + + + + + + ++++ + + +

Figure 4.7.: Semi-hyperbolic realization of the graph, such that the intersections are the
same as in the original embedding.

same holds for the “vertical edges” or rather orange lines, which enforce the x-coordinate
or rather real part of every vertex X to be the same as the intersection of the edge {A,X}
of the realization in the classical sense. Regarding Theorem 4.4 the problem becomes clear,
since A has been mapped to infinity, which does not preserve the projective invariance of
infinitesimal rigidity in general. Therefore, another option to handle this certain motion is
necessary, which then explains the usage of the term central collineation.

Definition 4.5 (Beutelspacher and Rosenbaum [BR04]).
Let RPn be a projective space of dimension n ≥ 2, and π : RPn → RPn be a collineation.
Then, π is called a central collineation, if it satisfies the following two conditions:

1. there is a point Z ∈ RPn, such that every line g through Z is a fixline of π, i.e.
π(g) = g.

2. there is a hyperspace H, i.e. a (n − 1)-dimensional subspace of RPn, such that
π|H = id.

Then Z is said to be the centre and H is said to be the axis of π.

The correspondence to the unknown motion now becomes very clear. For this motion, A
refers to the centre and the x-axis is the axis. Now there appears the question: “is there a
reason for taking A as centre?”. And the answer simply is “no, there is not”. Any other
vertex or even point could have been chosen as centre for this motion, as long as the axis
stays the x-axis.

Finally, a useful theorem in order to handle central collineations shall be presented.

Theorem 4.6 (Beutelspacher and Rosenbaum [BR04]).
Let π : RPn → RPn be a central collineation with center Z and axis H.
Then for any point X ∈ RPn, with X 6= π(X), the tuple (X,π(X)) uniquely determines π.
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4. Freedom of edge intersections

4.4. Infinitesimal motions

Since the analysis of trivial motions in the scenario of edge-x-rigidity proved to be difficult,
this section deals with a local version of edge-x-rigidity. Local version here refers to the
equivalent of infinitesimal rigidity as presented for natural rigidity, see Section 3.2.

Therefore, the examination of the respective infinitesimal motions or rather trivial in-
finitesimal motions form the basis of this section. For this, obtaining a matrix similar
to the rigidity matrix RG(p) in Section 3.2, that encodes the infinitesimal edge-x-rigidity
properties plays a major part. This matrix shall be called edge matrix and simply referred
to by EG(p), where the same notation applies as for the rigidity matrix. The subsequent
task is to determine the kernel of the edge matrix kerEG(p) and a corresponding base or
rather a base for a subspace of the kernel.

First, in order to define the edge matrix, the zeros function e is introduced, analogously to
the edge function f in Remark 3.12, which gives the zeros of every edge. That is, for a
graph G = (V,E), the zeros function is defined as

e : R2 × · · · × R2 → Rm

e(q1, . . . , qn) := (z(qi, qj)){i,j}∈E . (4.2)

Analogously to the edge function f , the derivative de of e is determined, which then yields
the edge matrix, i.e. de(q) = EG(q). For this purpose, set qi = (ui, vi) ∈ R2, for i ∈ V . In
respect thereof, the partial derivatives of z are given as

∂z

∂ui
(qi, qj) = − vj

vi − vj
∂z

∂vi
(qi, qj) = (ui − uj)vj

(vi − vj)2 = 1
vi − vj

(−z (qj , qi) + uj)

and hence

∂z

∂qi
(qi, qj) :=

(
∂z

∂ui
,
∂z

∂vi

)
= 1
vi − vj

(−vj ,−z (qj , qi) + uj)

= vj
vj − vi

(
1, ui − uj
vj − vi

)
=: z′qi

∈ R2.

In order to define the edge matrix, take note that z is symmetric, i.e. z(qi, qj) = z(qj , qi).
Therefore, the derivative de(q) of e – and in particular the edge matrix EG(q), is given as

de(q1, . . . , qn) =



i j

...
{i, j} 0 · · · 0 z′qi

0 · · · 0 z′qj
0 · · · 0

...


:= EG(q).

(4.3)

Now it is possible to examine the kernel of the matrix EG(p), which is given as the solutions
to EG(p) · q = 0 and in fact yields the following equations. Throughout this section the
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4.4. Infinitesimal motions

following notion is applied: pk = (ak, bk), for k ∈ V , and bi 6= bj for any {i, j} ∈ E. As a
reminder: bi 6= bj denotes the non-horizontalness of every edge of the framework G(p).

〈z′pi
, qi〉+ 〈z′pj

, qj〉 = 0

⇐⇒ 1
bi − bj

(
〈
(

−bj
−z(pj , pi) + aj

)
, qi〉 − 〈

(
−bi

−z(pi, pj) + ai

)
, qj〉

)
= 0

⇐⇒ 〈
(

0
−z(pj , pi)

)
+
(
−bj
aj

)
, qi〉 − 〈

(
0

−z(pj , pi)

)
+
(
−bi
ai

)
, qj〉

= 〈
(

0
−z(pj , pi)

)
, qi − qj〉+ 〈p⊥j , qi〉 − 〈p⊥i , qj〉 = 0, ∀{i, j} ∈ E. (4.4)

Given a framework G(p), Ti,p ∈ R2|V | defines an infinitesimal central collineation as follows

Ti,p :=
(
bj · (pj − pi) ∈ R2

)
j∈V

.

An infinitesimal x-shearing and y-stretching is given by

Tx :=
(
b1 0 . . . bi 0 . . . bn 0

)>
∈ R2|V | and

Ty :=
(
0 b1 . . . 0 bi . . . 0 bn

)>
∈ R2|V |,

respectively.
Theorem 4.7.
Let G(p) be a framework with no horizontal edge and i ∈ V fixed, then

span{Tx, Ty, Ti,p} ⊆ kerEG(p) = ker e(p).

And particularly Tx, Ty and Ti,p are linearly independent, that is

dim(kerEG(p)) ≥ 3 = dim(span{Tx, Ty, Ti,p}).

A proof for Theorem 4.7 is given in Appendix A due to its length and chaotic character.
Corollary 4.8 (of Theorem 4.7).
For a framework G(p), it holds rankEG(p) ≤ 2n− 3.

Proof of Corollary 4.8. This directly follows from the Rank-nullity theorem (see Theo-
rem 3.15), which states rankEG(p) = 2n − dim(kerEG(p)) and since Theorem 4.7 gives
dim(kerEG(p)) ≥ 3.

Lemma 4.9.
Let G(p) be framework with only non-horizontal edges and i ∈ V fixed, then

Tj,p = (ai − aj) · Tx + (bi − bj) · Ty + Ti,p ∈ span{Tx, Ty, Ti,p}, ∀j ∈ V \ {i}
♦

In other words, Lemma 4.9 states, that the centre of any infinitesimal central collineation
can be changed by linearly combining an infinitesimal central collineation, with different
centre, with infinitesimal shearing and stretching.
Conjecture 4.10.
Let G(p) be an edge-x-rigid framework. Fixing the position pi of any vertex i, yields

ker e(q) = kerEG(q) = span{Ti,q}

Corollary 4.11 (of Conjecture 4.10).
Let G(p) be a framework without horizontal edges.
G(p) is infinitesimally edge-x-rigid if and only if rankEG(p) = 2n− 3.
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4. Freedom of edge intersections

4.5. Outlook

This final section outlines the concept of answering both of the questions given at the end
of Section 4.1. At first, a classification is sought for the class of minimally edge-x-rigid
graphs, as established in Theorem 3.28 for the minimally 2-rigid graphs. There it was
proven that the minimally 2-rigid graphs are exactly the Laman graphs or rather the
(2, 3)-tight graphs. Here minimally means that the deletion of any edge yields a flexible (or
edge-x-flexible) graph. The following shall illuminate this in the case of continuous rigidity
and then transferring the results to minimally edge-x-rigid graphs.

Therefore, let G = (V,E) be a minimally 2-rigid graph. Definition 3.31 states that rigid
means, that not only the length of every edge is preserved but also the distances between
any two vertices. In particular, removing any edge e = {u, v} ∈ E – denoted by G \ e
– gives a flexible graph, since G is minimally 2-rigid. That is, there exists a non-trivial
motion Φt, that leaves the edge lengths unchanged, but alters the distance between two
vertices that are not adjacent. Due to the minimality of the edge e, the distance ‖u− v‖ is
modified. In a more formal sense ‖Φt(u)− Φt(v)‖ 6= ‖Φ0(u)− Φ0(v)‖ = ‖u− v‖ holds, for
a 0 < t ≤ 1.

Proposition 4.12.
Let G = (V,E) be a minimally 2-rigid graph and e = {u, v} ∈ E an edge.
Then G \ e is flexible and in particular there exists a non-trivial motion for G \ e that
changes the distance of the nodes u and v.

Proof. Let p be a generic configuration. The flexibility of G′(p) := G(p) \ e then follows by
the definition of minimally rigid graphs.
Since G′(p) is flexible, there is a non-trivial motion Φt of G′(p) that does preserve the length
of every edge of G′(p). If Φt would also preserve the distance between any two points, the
edge e would not be necessary for rigidity. This is a contradiction to the minimality of G
and therefore for at least one pair of vertices the distance between them is modified.
Now it remains to show that the distance between u and v is altered. This is again due to
the minimality of the edge e. If Φt changes the distance of, say, e.g. a ∈ V and b ∈ V that
are not connected by an edge and {a, b} is not the edge e, then it would be possible to
apply the non-trivial motion Φt to the original framework G(p). This could be done since
Φt preserves the length of every edge in G \ e and particularly also the distance between
u and v, i.e. the length of the edge e. Therefore, Φt fulfils the condition for a non-trivial
motion of G(p). This, again, is a contradiction, since G(p) was assumed to be rigid and
therefore completes the proof.

The same principle introduced in Proposition 4.12 shall now be applied to minimally
edge-x-rigid graphs. In a short summary this means, that for a minimally edge-x-rigid
graph G removing any edge e results in an edge-x-flexible graph and most importantly the
intersection of e can be altered by a non-trivial motion for G \ e. Hope is to achieve the
ability of moving this intersection arbitrarily along the x-axis. Is this possible, e is inserted
into a set E′ that is edge-x-free with respect to G. The next step is to reinsert the edge e –
with changed intersection – that yields G(p′), which in turn is again minimally edge-x-rigid
since it is a property for graphs and not only for frameworks. Repeating this procedure for
every edge e′ ∈ E \ E′ completes the construction and finally it holds E = E′. Therefore,
G is edge-x-free.

Achieving a characterization for the minimally edge-x-rigid graphs, as Laman [Lam70] did
for the minimally 2-rigid graphs ((2, 3)-tightness), would then give a characterization of
the edge-x-free graphs. In fact, those classes of graphs would coincide. The statement in
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4.5. Outlook

Proposition 4.12 means for Laman graphs, that for almost all configuration of edge lengths
there exists a realization. Here “almost all” is obligatory since for, e.g. a triangle, the
lengths of the edges may not be prescribed to be 1, 1 and 100, respectively. As stated by
Capco et al. [CGG+17], the Laman graphs are graphs for which every generic configuration
of edge lengths yields a rigid realization.
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5. Conclusion

Based on the concept of rigid frameworks and graphs, a new type of rigidity, concerning
free and collinear sets, was introduced as edge-x-rigidity. Chapter 4 gave an introduction
to edge-x-rigidity, where three degrees of freedom were deduced for any framework. These
three degrees are shears, stretches and central collineations or rather their infinitesimal
pendants. This type of rigidity raises further questions regarding those graphs that are
minimally rigid in that sense and the class of graphs, where its edges can be placed
arbitrarily along the x-axis.
Question 5.1. Do (infinitesimal) shearing, stretching and central collineation fully form
the space of (infinitesimal) trivial motions?

This question can be answered by considering the complete graph Kn on 2 ≤ n ∈ N vertices
and its corresponding edge matrix EKn(q). If the maximum rank of EKn(q) is 2n− 3 the
question can be answered positively. For complete graphs on small amounts of nodes n ≤ 5,
the question has been answered positively by trial and error.
In the scope of this thesis it has been proven so far, that infinitesimal shearing, stretching
and central collineation are linearly independent. Furthermore, those transformations all lie
in the kernel EG(p) of any framework G(p) that does not have horizontal edges. Regarding
infinitesimal central collineations, a proof of changing its centre by linearly combining
shearing, stretching and central collineation has been given as well. Therefore, central
collineations with different centre are not actual new trivial infinitesimal motions.
Question 5.2. Are the Laman graphs exactly the minimally edge-x-rigid graphs?

Question 5.3. How can the minimally edge-x-rigid graphs be characterized?

Question 5.4. Are the terms infinitesimal edge-x-rigid and infinitesimal rigid projectively
equivalent?

With regard to Theorem 4.4, answering Question 5.4 positively would then instantly proof
Question 5.2 to be true as well. This would present an easier way in order to answer the
main question Question 5.6. Nonetheless, results considering Question 5.3 would just be as
useful in dealing with the main question.
In Section 4.5 the principle of relating minimally edge-x-rigid with edge-x-free graphs has
been presented in the terms of natural rigidity. In the case of natural rigidity it has been
stated, that one could find a realization of Laman graphs for almost all prescriptions of
edge lengths. This yields the following question in terms of minimally edge-x-rigidity.
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5. Conclusion

Question 5.5. May the crossing points only be prescribed almost arbitrarily?

Question 5.6. How can the edge-x-free graphs be characterized?

In order to treat the questions Question 5.6 and Question 5.3 a leading approach could be
an examination of edge-x-rigidity in a matroidal way, as it was presented in Remark 3.27.
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Appendix

A. Proof of Theorem 4.7

Proof of Theorem 4.7. For a realization pk = (ak, bk) ∈ R2, k ∈ V , refers to its coordinate
components. Let G(p) be a framework without horizontal edges, i.e. bk 6= bj for all
k 6= j ∈ V , and i ∈ V fixed. First of all it shall be shown, that Tx, Ty and Ti,p actually
lie in the kernel of EG(p). For this, let qk and qj be the entries 2k − 1, 2k and 2j − 1, 2j,
respectively, of Tx, Ty and Ti,p. Then, it suffices to show, that qk and qj satisfy the condition
given in (4.4).

I Tx ∈ kerEG(p): set qk := (Tx)k =
(
bk
0

)
and qj := (Tx)j =

(
bj
0

)
.

〈
(

0
−z(pj , pk)

)
, qk − qj〉+ 〈p⊥j , qk〉 − 〈p⊥k , qj〉

= 0 + (−bj) · bk − (−bk) · bj = 0.

II Ty ∈ kerEG(p): set qk := (Ty)k =
(

0
bk

)
and qj := (Ty)j =

(
0
bj

)
.

〈
(

0
−z(pj , pk)

)
, qk − qj〉+ 〈p⊥j , qk〉 − 〈p⊥k , qj〉

=
(
bj ·

ak − aj
bk − bj

− aj

)
(bk − bj) + aj · bk − ak · bj

= − aj · bk + aj · bj + bj · ak − bj · aj + aj · bk − ak · bj = 0.
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5. Appendix

III Ti,p ∈ kerEG(p): set qk := (Ti,p)k = bk · (pk − pi) and qj := (Ti,p)j = bj · (pj − pi).

〈
(

0
−z(pj , pk)

)
, qk − qj〉+ 〈p⊥j , qk〉 − 〈p⊥k , qj〉

= − z(pj , pk)(bk(bk − bi)− bj(bj − bi))− bjbk(ak − ai)
+ ajbk(bk − bi) + bkbj(aj − ai)− akbj(bj − bi)

= − z(pj , pk)bk(bk − bi) + z(pk, pj)bj(bj − bi)
+ bjbk((ak − ai)− (aj − ai)) + ajbk(bk − bi)− bkbj(bj − bi)

= bk(bk − bi)(−z(pj , pk) + aj) + bj(bj − bi)(z(pk, pj)− ak)− bjbk(ak − aj)

= bk(bk − bi)
(
bj
ak − aj
bk − bj

)
− bj(bj − bi)

(
bk
ak − aj
bk − bj

)
− bjbk(ak − aj)

= (ak − aj)
(
−bjbk + bjbk((bk − bi)− (bj − bi))

bk − bj

)
= (ak − aj)(−bjbk + bjbk) = 0.

It remains to show the linear independence of the three vectors, which can be seen by only
considering two vertices k 6= i and j whose positions do not coincide, and then considering
linear combinations of their respective trivial motions qk and qj . Therefore, if there is no
non-zero solution to the following equation proves the statement:

λ1


bk
0
bj
0

+ λ2


0
bk
0
bj

+ λ3


bk(ak − ai)
bk(bk − bi)
bj(aj − ai)
bj(bj − bi)

 = 0

In order to fulfil the constraints a necessary condition would be, e.g. λ1 = (ak − ai) and
λ2 = (bk − bi). This then yields the equations

bj(ak − ai) = −λ3bj(aj − ai)
bj(aj−ai)6=0
⇐⇒ −λ3 = ak − ai

aj − ai

bj(bk − bi) = −λ3bj(bj − bi)
bj(bj−bi)6=0
⇐⇒ −λ3 = bk − bi

bj − bi
,

which does not have a solution and therefore concludes the proof.
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