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Abstract

A covering number measures how “difficult” it is to cover all edges of a host graph
with guest graphs of a given guest class. E.g., the global covering number, which has
received the most attention, is the smallest number k such that the host graph is the
union of k guest graphs from the guest class. In this thesis, we consider the global,
the local and the folded covering number and compare them for same pairs of host
and guest classes.

We investigate by how much global, local and folded covering number can differ. We
give an example of a hereditary union-closed guest class where the folded covering
number is at most 2, whereas the local covering number can be arbitrarily large.
In contrast we show that within every host class the global covering number with
regards to a topological minor-closed union-closed guest class is bounded if and only
if its corresponding folded covering number is bounded.

In the context of computational complexity, we construct a host class within which
computing the local covering number with regards to interval graphs is NP-hard,
whereas computing the global covering number is possible in constant time. Further,
we give an example of a union-closed guest class and a host class within which the
global covering number is easily computable and the local covering number is not
computable at all.

Moreover, we spend major attention to the guest class of linear forests (collections of
paths). We prove the Local Linear Arboricity Conjecture, and show that the folded,
the local and the global linear arboricity of a graph can differ and that deciding
whether the linear arboricity is at most k is NP-complete for every k ≥ 2.

Finally, we consider the boxicity of a graph H as global covering number of the
complement Hc and introduce the corresponding union-closed covering number as
union boxicity and the local covering number (which in this setting coincides with
the folded covering number) as local boxicity. We present geometric interpretations
for these parameters and show that the boxicity may be arbitrarily large for host
graphs with local and union boxicity 1.

This thesis answers thereby several questions raised by Knauer and Ueckerdt [KU12].

Deutsche Zusammenfassung

Eine Überdeckungszahl misst wie “schwer” es ist alle Kanten eines Gastgebergraphen
mit Gastgraphen einer gegebenen Gastklasse zu überdecken. Die globale Überdeck-
ungszahl ist z.B. die kleinste Zahl k für die der Gastgebergraph die Vereinigung von
k Gastgraphen ist. Sie hat bisher am meisten Aufmerksamkeit erhalten. In dieser
Arbeit betrachten wir die globale, die lokale und die gefaltete Überdeckungszahl und
vergleichen sie bezüglich gleicher Paare von Gastgebergraph und Gastklasse.

Wir untersuchen wie stark die globale, die lokale und die gefaltete Überdeckungszahl
voneinander abweichen können. Wir geben ein Beispiel einer hereditären Gastgeberk-
lasse an, bezüglich der die gefaltete Überdeckungszahl höchstens 2 ist, während die
entsprechende lokale Überdeckungszahl beliebig groß werden kann. Im Gegensatz
dazu zeigen wir, dass in jeder Klasse von Gastgebern die globale Überdeckungszahl
bezüglich einer Gastklasse, die für jeden enthaltenen Graph auch all seine topolo-
gischen Minoren enthält und unter disjunkter Vereinigung abgeschlossen ist, genau
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dann beschränkt ist, wenn die entsprechende gefaltete Überdeckungszahl beschränkt
ist.

Im Kontext der Berechnungskomplexität konstruieren wir eine Gastgeberklasse für
deren Gastgebergraphen die Berechnung der lokalen Überdeckungszahl bezüglich
der Gastklasse der Intervalgraphen NP-schwer ist, während die globale Überdeck-
ungszahl in konstanter Zeit berechnet werden kann. Wir geben weiter ein Beispiel
einer Gastklasse, die unter disjunkter Vereinigung abgeschlossen ist, und eine Gast-
geberklasse, in der die globale Überdeckungszahl einfach berechenbar ist, die lokale
Überdeckungszahl jedoch überhaupt nicht berechenbar ist.

Darüber hinaus schenken wir der Gastklasse der linearen Wälder (disjunkter Vere-
inigungen von Pfaden) größere Aufmerksamkeit. Wir beweisen die Local Linear
Arboricity Conjecture, und zeigen, dass die globale, die lokale und die gefaltete
Überdeckungszahl voneinander abweichen können und, dass es für jedes k ≥ 2 NP-
schwer ist zu entscheiden, ob die lineare Arboricity eines gegebenen Gastgebergraphen
höchstens k beträgt.

Schließlich betrachten wir die Boxicity eines Graphen H als eine globale Überdeck-
ungszahl seines Komplements Hc und führen die entsprechende Überdeckungszahl
bezüglich dem Abschluss der Gastklasse unter disjunkter Vereinigung als die union
Boxicity sowie die entsprechende lokale Überdeckungszahl (die in diesem Fall mit der
gefalteten übereinstimmt) als lokale Boxicity ein. Wir geben für diese geometrische
Interpretationen an und zeigen, dass die Boxicity für Gastgeberklassen mit union
und lokaler Boxicity 1 beliebig groß werden kann.

Diese Arbeit beantwortet damit verschiedene Fragen, die Knauer und Ueckerdt
aufgestellt haben [KU12].
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1. Introduction

The (global) covering number of a host graph H with regards to a guest class G of guest
graphs is the smallest number d such that H has d subgraphs G1, . . . , Gd ∈ G that form
a cover of H, i.e., every edge of H is contained in at least one of them. The first survey
addressing the general problem of covering graphs was written by Beineke in 1969 [Bei69].
A similar problem is the problem of decomposing graphs, which asks for the minimum
number d such that H has d edge-disjoint subgraphs G1, . . . , Gd ∈ G that form a cover
of H. Actually, these two problems coincide sometimes, especially for guest classes that
are hereditary (closed under taking subgraphs). Already in 1891 Petersen presented a
decomposition of 2n regular graphs into n 2-factors, which coincides with covers using n
collections of cycles [Pet91].
Another example is the covering number with regards to forests, called arboricity. Nash-
Williams proved for the arboricity cFg (H) of every host graph H that we need only as
many forests as guests, as needed to provide enough edges to cover every subgraph, i.e.,
that cFg (H) = maxH′⊆Hd|H|/(||H|| − 1)e [NW64]. In 1970, Akiyama, Exoo and Harary
stated the Linear Arboricity Conjecture (LAC) with a similar assertion for the covering
number with regards to linear forests (collections of paths), introduced by Harary [Har70]
as linear arboricity. It states for every host graph H with maximum degree ∆ that its linear
arboricity, denoted by cPg (H), is either d∆/2e or d(∆ + 1)/2e [AEH80]. Since linear forests
have maximum degree 2, we need at least d∆/2e guests to cover all edges incident to a
vertex v of degree ∆ and, if a path of a guest ends in v, we need d(∆+1)/2e, correspondingly.
The LAC has received much attention, but it is still open today. We give an overview of
related work in Chapter 4.
Covering numbers we consider in this thesis beneath the arboricity and the linear arboricity
are the star arboricity (w.r.t. star forests) [AA89], the caterpillar arboricity (w.r.t. caterpillar
forests) and the track-number (w.r.t. interval graphs) [GW95] as well as the chromatic
index (w.r.t. matchings).
There are several applications for covering numbers. E.g., in VLSI layout we use multiple
layers to realize graphs. While every vertex is present in every layer, edges are realized in
single layers. However, if two edges would cross in the same layer, the layer of one of them
must be changed to avoid this by a “cross cut” instead. Since too many cross cuts cause
high costs, it is of interest to avoid them. Further, a high number of layers increases the
costs, too. We want therefore to reduce the number of used layers. The covering number
with regards to planar graphs (called thickness) gives the smallest number of layers such
that no cross cut is needed [AKL+85].
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1. Introduction

Another example is secure broadcasting [SLY06]. We can think of messages and receivers
as the two partition sets of a bipartite graph H where a message is connected to those
receivers who shall receive this message. To avoid that other receivers can read the message
we use keys to encrypt the messages. As those keys are costly, we want to use a minimum
number of keys in total. Every message encrypted with the same key is received by all
receivers knowing that key. Therefore, the distribution of one key covers a complete
bipartite subgraph of H and the number of keys needed in total is given by the covering
number with regards to complete bipartite graphs called bipartite dimension.

Knauer and Ueckerdt introduced the local and folded covering number [KU12]. Let H be
a host graph and G be a guest class. The local covering number considers, instead of the
total number of guest graphs, the maximum number of guest graphs containing a common
vertex. I.e., the local covering number of H with regards to G, denoted by cGl (H), is defined
as the minimum number d such that H has some subgraphs G1, . . . , Gm ∈ G such that
every edge is contained in at least one of them and every vertex is contained in at most d
of them. The folded covering number is based on the concept of folding. Folding describes
the process of identifying two non-adjacent vertices v and w giving a new vertex u that is
connected to every vertex that has been connected to v or w before. The folded covering
number of H with regards to G is denoted by cGf (H) and is the smallest number d such
that there is a guest graph G ∈ G such that H can be received by foldings in G such that
every vertex v in H is the result of folding at most d vertices of G.

Two local covering numbers have already been investigated: The bipartite degree was
introduced by Fishburn and Hammer as local covering number with regards to complete
bipartite graphs [FH96] and the local covering number with regards to complete graphs
has been introduced by Javadi, Maleki and Omoomi [JMO12] under the name local clique
cover number, while Skums, Suzdal and Tyshkevich considered it before [SST09].

The interval number is the folded covering number with regards to interval graphs and
has been extensively studied. It was introduced by Trotter and Harary [TH79] and,
e.g., has applications in DNA sequence comparison [JMT92], RNA secondary structure
prediction [Jia10] as well as scheduling and resource allocation as already stated by Trotter
and Harary and explained by Butman et al. [BHLR10].

One of their examples is loss minimization. We can view the run-time of a process as a set of
intervals on the time line. If the run-times of two processes overlap, this can be expressed by
an edge between them in the corresponding intersection graph H. A maximum independent
set on H yields therefore an optimal choice of processes that can run without interference.
Instead of run-times of processes we can also consider e.g. requests of clients. The problem
of serving a maximal number of clients without overlapping requests is equivalent. Clients
with requests that fill multiple intervals in the time line are a natural scenario in, e.g.,
remote education where clients make breaks during video programs [BYHN+06].

Further, more abstract problems can be formulated in terms of covering numbers. E.g.,
vertex covers can be formulated as covers with regards to the guest class of stars and the
intersection number equals the covering number with regards to complete graphs [Rob85].

Since it is possible to consider other problems as covering problems, covering numbers are
equally interesting for mathematicians and computer scientists.

Let us consider union-closed guest classes, i.e., those that are closed under taking disjoint
unions. For the folded covering number we can consider the disjoint union of guest graphs
as one guest graph and then identify (fold) vertices of different components, which allows
all covers allowed for the local covering number. Additionally, we allow foldings within
single components. Thereby, the folded covering number is a relaxation of the local covering
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number. Since every vertex is covered by at most all guest graphs of a cover, the local
covering number is itself a relaxation of the global covering number.
Since the folded and local covering number are relaxations for union-closed guest classes,
we have an inequality stating that in this case the folded covering number is at most the
local covering number and this again is at most the global covering number [KU12].
It appears that it is also computationally easier to deal with folded and local covering
number rather than with the global one. I.e., Knauer and Ueckerdt observed cases in which
determining the global, the local and the folded covering number is NP-hard and cases
where determining the global covering number is NP-hard, whereas the local and folded
covering number can be computed in polynomial time. However, we are not aware of any
case where determining the folded or the local covering number is NP-hard, whereas the
global covering number is computable in polynomial time [KU12].
As stated by Beineke, the usual approach to learn about global covering numbers is first
to prove upper bounds and then find host graphs for which these are sharp [Bei69]. Now
we have another approach considering folded and local covering number. They give (for
union-closed guest classes) lower bounds and sometimes the corresponding covers can be
transformed to covers yielding also upper bounds. Additionally, it can be seen as indication
for the upper bound of a global covering number to be correct if this upper bound holds
for the folded or local covering number. In this context it is interesting in which cases
the differences between folded, local and global covering number are bounded and by how
much they may differ. Knauer and Ueckerdt have given examples of pairs of guest and host
class where the local covering number is constant, whereas the global covering number can
be arbitrarily large, and asked for a similar result for the comparison of the folded and the
local covering number [KU12].
This thesis is organized as follows.
In Chapter 2 we give basic definitions considered in this thesis.
In Chapter 3 we state alternative definitions of the global, the local and the folded covering
number in terms of edge-surjective graph homomorphisms and give related definitions.
Further, we introduce some of the guest classes we use, especially interval graphs, and
state general conclusions, thereby identifying conditions on guest classes under which a
reasonable comparison of the different covering numbers is possible.
In Chapter 4 we treat the Linear Arboricity Conjecture and give related work. Its main
goal is to prove the corresponding Local Linear Arboricity Conjecture stated by Knauer and
Ueckerdt [KU12]. It states for every host graph H with maximum degree ∆ that its local
covering number with regards to linear forests (its local linear arboricity) is either d∆/2e
or d(∆ + 1)/2e. This conjecture is a consequence of following the approach of considering
folded and local covering number to attack a problem for the global covering number.
In Chapter 5 we deal with separations of different covering numbers. I.e., we consider
the possible difference between two covering numbers for the same guest class and host
class/graph taking different restrictions to the guest class into account. First, we state
results of Knauer and Ueckerdt. Then we prove for the hereditary union-closed guest class
of bipartite graphs that the folded covering number is at most 2, whereas the local covering
number can be arbitrarily large. Further, we prove that the folded, the local and the global
linear arboricity may differ. Finally, we discuss results for even more restricted guest classes
and prove that for topological minor-closed union-closed guest classes the global covering
number in every host class is bounded if and only if the corresponding folded covering
number is bounded.
In Chapter 6 we discuss the computational complexity of determining a covering number
of a given host graph especially considering whether it can be computationally harder
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1. Introduction

to compute a folded or local covering number than the corresponding global covering
number. We prove that deciding whether the local track-number, the covering number
with regards to interval graphs, is at most k is NP-complete for every k ≥ 2 as stated
by Knauer and Ueckerdt. Further, we present an induced-hereditary union-closed guest
class and a union-closed host class such that determining the local covering number for a
given host graph is NP-complete, whereas the global covering number is easily computable.
We even prove that for a union-closed guest class and a union-closed host class the local
covering number may be not computable at all, whereas the global covering number is
easily computable. Finally, we prove that deciding whether the linear arboricity of a given
host graph is at most k is NP-complete for every k ≥ 2, which is a new result for k ≥ 3 .

In Chapter 7 we consider the boxicity of graphs in terms of covering numbers. It was
introduced by Roberts and considers graphs as intersection graphs of multidimensional
intervals, called boxes [Rob69]. As Cozzens and Roberts already observed, the boxicity of
a graph H equals the global covering number of its complement Hc with regards to Ic,
the class of complements of interval graphs [CR83]. Correspondingly, we introduce the
local and global covering number of Hc with regards to Ic, the union-closure of Ic, as
the local boxicity and the union boxicity of H. For these parameters we give geometric
interpretations: A graph with union boxicity d is the intersection graph of boxes whose
dimensions can be partitioned into d sets such that every box is the Cartesian product of
intervals that equal R in all but at most one dimension of every set. A graph with local
boxicity d, however, is the intersection graph of boxes that are the Cartesian product of
intervals that equal R in all but at most d dimensions. Further, we give examples of graphs
with local and union boxicity 1 that have arbitrarily large boxicity.
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2. Preliminaries

For any set S we define
(S

2
)

= {{a, b} : a, b ∈ S, a 6= b}. For any mapping φ : A→ B and
any subset C ⊆ A we write φ(C) for {φ(c) : c ∈ C}. Further, we define φ|C : C → B as
x 7→ φ(x). For any k ∈ N>0 we write [k] for {i ∈ N>0 : i ≤ k}.

In this thesis a graph G is a tuple (V,E) with the finite vertex set V and the edge set
E ⊆

(V
2
)
and ∀e ∈ E : ∃u, v ∈ V : u 6= v, e = {u, v}. The graph G is said to be a graph on

V . Elements of V are called vertices and elements of E are called edges. An edge {v, u} is
shortly denoted as vu. By V (G) we denote the vertex set of G and by E(G) its edge set.
We sometimes write v ∈ G for v ∈ V (G). We call |V | the order of G and it is denoted by
|G|. We call |E| the size of G and it is denoted by ||G||.

For two edges vu,wv ∈ E we call the vertices v and u adjacent, we call the edges uv and
vw adjacent and we call the vertex v and the edge uv incident. We say vu connects v and
u.

A graph G′ = (V ′, E′) is called subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. The graph G
is then called a supergraph of G′ and said to contain G′ and we write in short G′ ⊆ G. The
graph G′ is called induced subgraph of G if V ′ ⊆ V and E′ = E ∩

(V ′

2
)
. We say V ′ induces

G′ in G. The graph G′ is called spanning in G if G′ ⊆ G and V ′ = V . A subset W ⊆ V is
called independent if it induces a graph without edges. The graph induced by W is then
also called independent set. The chromatic number of G is the smallest number k such
that V (G) can be partitioned into k independent sets. We write χ(G) for the chromatic
number of G. If χ(G) ≤ 2 we call G a bipartite graph. If its two independent sets are
fully connected, the graph G is called complete bipartite. We say a subset F ⊂ E induces
(U,F ) in G where U is the set of all vertices incident to an edge of F in G (U =

⋃
F ). A

set of pairwise non-adjacent edges is called matching. We also call a graph a matching if
its induced by a matching. A spanning matching is called perfect. A k-regular spanning
subgraph is called k-factor.

The intersection of two graphs G1 and G2 is defined as (V (G1) ∩ V (G2), E(G1) ∩ E(G2))
and denoted by G1 ∩G2.

The union of disjoint sets is itself called disjoint. If we speak of the disjoint union of graphs
we assume their vertex sets to be disjoint (Formally, for a family {Gi : i ∈ I} of graphs
with index set I we replace for every i ∈ I every vertex v in the vertex set Vi (and all
edges) of Gi by (v, i) and speak of (v, i) (V (Gi)× {i}) as v in Gi (V (Gi)).
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2. Preliminaries

Let G and H be graphs. The disjoint union of G and H is denoted by G ·∪H and is defined
as the graph with vertex set V (G) ·∪ V (H) and edge set E(G) ·∪ E(H).

For any vertex v ∈ V its neighbourhood is defined as {u ∈ V : vu ∈ E} and denoted by
N(v). Its elements are called neighbours of v. The degree of v is defined as |N(v)| and is
denoted by degG(v) or simply deg(v). If deg(v) = 0, then v is called isolated. If deg(v) = 1,
then v is called a leaf. If deg(v) is even, then v is called even. Otherwise v is called odd.
The maximum degree of G is defined as ∆(G) := maxv∈V deg(v) and the minimum degree
of G is defined as δ(G) := minv∈V deg(v). If δ(G) = ∆(G) =: r, then G is called r-regular
and has regularity r. The average degree avd(G) of a graph G is Σv∈V (G) deg(v)

|V (G)| = 2|E(G)|
|V (G)| .

By the maximum average degree mad(G) of a graph G we denote the maximum average
degree of all induces subgraphs of G,i.e., mad(G) = maxH⊆G avd(H).

The complement G of G is defines as the graph (V,
(V

2
)
\ E).

If E =
(V

2
)
then G is called complete, a clique and to be a Kn with n = |G|. We call the

graph (∅, ∅) the empty graph. The graph G is called a path if up to relabeling of vertices
V = {v0, . . . , vn−1} and E = {vivi+1 : 0 ≤ i < n}. Graph G is then denoted by Pn and its
ends are v0 and vn−1. Note that for n > 1 a path Pn has two ends and ∆(Pn) ≤ 2. In a
graph G we say two vertices are connected by a path if they are the ends of a subgraph of
G that is a path. The length of Pn is n − 1 for n ∈ N>0 and denoted by ||Pn||. A cycle
Cn is a graph received from a path Pn+1 with n ≥ 3 by identifying its ends. Note that a
cycle is 2-regular. The girth of G is the smallest size of a cycle that is a subgraph of G.
We denote the girth by g(G). A graph is called forest if it has girth ∞, i.e., it has no cycle
as subgraph. The graph G is called triangle-free if g(G) ≥ 4. A spanning path is called
Hamilton path. A spanning cycle is called Hamiltonian cycle.

We say G is connected if any two vertices of G are connected by a path. If G′ is an
inclusion-maximal connected subgraph of G, then it is called a (connected) component of
G. Connected forests are called trees.

The line graph L(G) of G is defined as the graph (E,F ) with edge set

F = {{e1, e2} : e1, e2 ∈ E, e1 and e2 are adjacent in G}.

A planar graph is a graph G with an embedding into the plane. An embedding into the
plane is an injective mapping from the vertices of G to elements of R2 and a mapping from
the edges of G to Jordan curves such that the ends of the Jordan curves are the images of
the ends of the corresponding edges and the Jordan curves do neither intersect otherwise
nor contain images of vertices otherwise.

Let G and H be graphs. A function φ : V (G) → V (H) is called a homomorphism if
vu ∈ E(G) implies φ(v)φ(u) ∈ E(H). We also write φ : G→ H. Note that two adjacent
vertices u, v ∈ G may not be mapped onto the same vertex x ∈ H, since this would
imply an edge from x to itself, which is not possible in graphs in this thesis. If for every
xy ∈ E(H) there is an edge vu ∈ E(G) such that φ({v, u}) = {x, y} (φ({u, v} is the image
{φ(u), φ(v)}), then φ is called edge-surjective. If this edge vu ∈ E(G) is unique for every
edge xy ∈ E(H), then φ is called edge-bijective. Let G′ ⊆ G. We write φ(G′) for the graph
(φ(V (G′)), F ) where F = {φ(e) : e ∈ E(G′)}.

An Eulerian tour of G is an edge-bijective homomorphism from a cycle to G.

An bijective, edge-bijective homomorphism is called an isomorphism. A graph G is called
isomorphic to a graph H if there is an isomorphism φ : G → H. In this case we write
G ' H. Note that ' is an equivalence relation.

In this paper we assume all graph classes to be closed under taking isomorphic graphs.
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3. Covering Numbers

3.1 Motivation
Knauer and Ueckerdt have considered the classical covering number and introduced some of
its generalizations [KU12]. They defined a) the local covering number as a generalization
of the bipartite degree introduced by Fishburn and Hammer [FH96] and the local clique
covering number introduced by Javadi, Malexi and Omoomi [JMO12] and b) the folded
covering number as a generalization of the interval number introduced by Trotter and
Harary [TH79]. They called the classical covering number itself the global covering number.

We show that the local covering number is a relaxation of the global covering number, and
for union-closed graph classes the folded covering number is also a relaxation of the local
covering number. It further appears to be easier to deal with the folded covering number
than to deal with the local one, and that it is easier to deal with the local one than with
the global one. This encourages considering the new covering numbers whenever they are
sufficient. Further it motivates the approach to consider them in order to learn more about
global covering numbers. To support this approach, it is of interest to analyse how the
covering numbers are related.

3.2 Global, Local and Folded Covering Number
Let G be a class of graphs. A cover of H with regards to G is a finite multiset S =
{G1, . . . , Gn} with Gi ∈ G for i ∈ [n] and an edge-surjective homomorphism c from
G1 ·∪ . . . ·∪Gn to H. The size of c is defines as |S|. The elements of S are called guests of c.
We say that a graph R ⊆ G1 ·∪ . . . ·∪Gn covers a vertex v ∈ H if v ∈ c(V (R)) and it covers
an edge uv ∈ H if there is an edge xy ∈ E(R) with c(x) = u and c(y) = v. We say that
a vertex v ∈ G1 ·∪ . . . ·∪Gn covers c(v) and an edge vw ∈ G1 ·∪ . . . ·∪Gn covers c(v)c(w) if
this is an edge in H. We call G the guest class, its elements guest graphs and H the host
graph of c. The cover c is injective if for all i ∈ [n] the restriction c|V (Gi) is injective. An
injective edge-bijective cover is called a decomposition. Figure 3.1 shows two examples of
covers using paths as guests.

Let H be a graph and G be a graph class. The global covering number of H with regards
to G is denoted by cGg (H) and defined as

cGg (H) = min{size of c : c is injective cover of H with regards to G}.

7
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Figure 3.1: On the left: Injective cover of size 2 with regards to P. On the right: non-
injective cover of size 1 with regards to P. Here P denotes the class of all
paths.

We can imagine it as the smallest number of colours needed to colour all edges of H
(allowing multiple colours on the same edge) such that the edges of every colour induce a
guest graph (a graph in G).

The local covering number of H with regards to G is denoted by cGl (H) and defined as

cGl (H) = min{max
v∈H
|c−1(v)| : c is injective cover of H with regards to G}.

We can imagine it as a colouring number as we do for the global covering number, but here
we do not count the total number of colours but rather the maximum number of colours
used on the edges incident to any single vertex.

The folded covering number of H with regards to G is denoted by cGf (H) and defined as

cGf (H) = min{max
v∈H
|c−1(v)| : c is cover of H with regards to G of size 1}.

We call a cover of size 1 that is not necessarily injective a folded cover. For a folded cover
c : G → H with G ∈ G and any vertex v ∈ H we say that the vertices in c−1(v), which
is an independent set in G, are folded into v by c. We can imagine the folded covering
number with regards to G as the smallest k ≥ 0 such that we can partition the vertex set
of a guest graph into independent sets of size at most k such that identifying the vertices
in each partition class into a single vertex yields H. (By definition the empty graph has
folded covering number −∞, but we do not consider it. For independent sets it is 0 and
otherwise it is at least 1.)

Example 3.1
Figure 3.2 and Figure 3.3 give two example of the covering numbers of two different graphs
with regards to C4, the class of all disjoint unions of C4 cycles. (We introduce the line over
a class as notation for the closure under taking disjoint unions later.)

Consider the injective cover of the graph H1 in Figure 3.2. Since all three C4 cycles are
edge disjoint and the only C4 cycles in H1, every injective cover of H1 with regards to C4
must contain these three cycles to cover all edges. Therefore there are at least three guests
in an injective cover of H1. Thus, we have cC4

g (H1) = 3. Further, there are at most two
guests covering the same vertex in the given injective cover. Thus, we have cC4

l (H1) = 2.
Now consider the non-injective cover of H1 of size 1. The maximum number of vertices
covering the same vertex is 2 (the vertices covered twice are the vertices of the triangle).
Hence, we have cC4

f (H1) = 2. Note that a folded or global covering number of 1 means the
host graph is in the guest class. The same holds for local covering numbers if the guest
class is closed under taking disjoint unions.

Now Consider the injective cover of the graph H2 in Figure 3.3 using four C4 cycles as
guests. For each cycle C of them there is an edge only covered by C. Further, they are
the only C4 cycles in H2, therefore every injective cover of H2 with regards to C4 must
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contain these four cycles to cover all edges. Since they cover all edges, we have cC4
g (H2) = 4.

Further, they cover all the same vertex x. Therefore we have also cC4
l (H2) = 4. On the

other hand, consider the given non-injective cover on the right of Figure 3.3. By this
mapping every vertex is covered at most twice and therefore we have cC4

f (H2) = 2.

Figure 3.2: On the left is a graph H1 injectivly covered by three C4 cycles. On the right is
the same graph H1 covered by the corresponding non-injective cover of size 1,
which has the disjoint union of the three C4 cycles as guest.

x

b

a a

x

b

Figure 3.3: On the left is a graph H2 injectivly covered by four C4 cycles. On the right is
a non-injective cover, which can be obtained by using the disjoint union of the
four guests of the cover on the left as the guest, while using the same mapping
except that the vertices of the top-right and bottom-left C4 that are originally
mapped to x are mapped instead to a and b, respectively.

Let k ∈ N0. We call an injective cover a k-global (G-)cover if it has a size of at most k.
We call it k-local (G-)cover if it does not map more than k vertices to the same vertex.
And we call a cover of size 1 a k-folded (G-)cover if it maps at most k vertices to the
same vertex. We say k-(G-)cover in short for any of these terms and may replace the word
cover by decomposition if the cover is a decomposition. In particular, the global covering
number cGg (H) is the smallest k for which there is a k-global G-cover of H. We call a
k-cover optimal if the corresponding covering number equals k.

3.3 Considered Graph Classes
In this section we introduce some of the graph classes that we consider as guest classes,
and that may be unknown to the reader.

A star is a tree in that every vertex, except at most one, is a leaf. A caterpillar is a tree
that contains a path such that all vertices are leaves or elements of the path. We denote
the class of all stars by St and the class of all caterpillars by Cp.

To introduce interval graphs we first consider the more general definition of intersection
graphs.

An intersection graph of a family f of sets s1, . . . , sn is a graph G with vertex set V (G),
a bijection b : {1, . . . , n} → V (G) and edge set E(G) = {b(i)b(j) : si ∩ sj 6= ∅}. I.e., two
vertices are connected by an edge if and only if their corresponding sets in f have a common
element. The family f is then called a representation of G.
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An interval graph is an intersection graph with a representation containing only closed
intervals in R. Such a representation is called an interval representation. (Actually, it
is equivalent to allow any intervals or only open intervals). Interval graphs were firstly
examined by Lekkerkerker and Boland in 1962 [LB62]. Note that stars and caterpillars are
interval graphs as shown in Figure 3.4. It gives an example for stars, caterpillars and for
interval graphs. We denote the class of interval graphs by I.

Figure 3.4: From left to right: a star, a caterpillar and an interval graph. Below are
corresponding interval representations.

We call a graph class G union-closed if it is closed under taking disjoint unions, i.e., if
G1, G2 ∈ G, then G1 ·∪G2 ∈ G. We show later that if a guest class has this property, then
the corresponding covering numbers are better comparable. Let G be a graph class. Then
G denotes the union-closure of G that is defined as the class of all finite disjoint unions
of graphs in G. Note that we have generally G = G. We denote the class of paths by P.
We call the graphs in P linear forests, the graphs in St are called star forests, the graphs
in Cp are called caterpillar forests. The classes of forests (denoted by F), planar graphs
and interval graphs are other examples for union-closed graph classes. Note that by a
result of Eckhof [Eck93] the caterpillar forests are exactly the triangle-free interval graphs
(no point is shared by more than two intervals, therefore the interval representation of
every component is that of a caterpillar. On the other side every caterpillar has an interval
representation (see Figure 3.4)).

Further, we call G induced-hereditary if it is closed under taking induced subgraphs, i.e., if
G ∈ G, then all induced subgraphs of G are also contained in G. And G is hereditary if it is
closed under taking subgraphs. Observed that C4 is not induced-hereditary, the graph in
Figure 3.3 gives an example where the global and local covering number are lower for the
closure of the guest class under taking induced subgraphs. All forests mentioned before
and planar graphs are hereditary. We denote the class of all complete graphs by K. The
classes K and I are induced-hereditary, but not hereditary.

The following proposition shows properties making it interesting to consider induced-
hereditary and hereditary guest classes.

Proposition 3.2
Let G be an induced-hereditary guest class and let H and H ′ ⊆ H be host graphs.

(i) If there is a k-folded/local/global G-cover of H and H ′ is an induced subgraph of H,
then there is a k-folded/local/global G-cover of H ′.

(ii) If there is a k-folded/local/global G-cover of H and G is hereditary, then there is a
k-folded/local/global G-cover of H ′.
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(iii) If there is a k-folded/local/global G-cover of H and G is hereditary, then there is an
edge-bijective k-folded/local/global G-cover of H

Proof. For item (i) and (ii) remove all vertices and edges from the guests that are not
mapped into H ′ by c. For item (iii) just remove all but one edge from the guests of c
mapped to the same edge in the host graph for every edge in H.

In Chapter 5 we consider host graphs with an arbitrarily large difference between folded
and local covering number. I.e., we show that this is easily achieved by a ‘dirty trick’ using
non-induced-hereditary guest classes. Demanding an induced-hereditary guest class makes
the result much more interesting. Further, we argue in the next section that it is more
fruitful to consider union-closed graph classes in terms of covering numbers.

We call a graph class G closed under taking folded components if for any G ∈ G, any
homomorphism φ : G → H into some graph H and every component C of G the class
contains the graph φ(C). We show that folded and local covering number with regards to
guest classes closed under taking folded components are equal. Examples for such graph
classes are stars, star forests, complete graphs and the union-closure of complete graphs.
Later we consider complements of interval graphs, another class with this property.

The covering number of a host class H with regards to a guest class G is the maximum
covering number of a host graph in H, i.e.,

cGi (H) = sup
H∈H

cGi (H)

for i = f, l, g.

3.4 General Conclusions
In this thesis we make often use of the following proposition about covering numbers by
Knauer and Ueckerdt.

Proposition 3.3 (Knauer, Ueckerdt [KU12])
Let G and G′ be guest classes, let H and H′ be host classes and let H be a host graph. Let
k ∈ N0. Then each of the following holds:

(i) For H any k-global G-cover is also a k-local G-cover. Especially cGl (H) ≤ cGg (H).

(ii) If G is union-closed, then any k-local G-cover of H yields a k-folded G-cover. Especially
cGf (H) ≤ cGl (H).

(iii) If G is closed under taking folded components, then cGf (H) ≥ cGl (H).

(iv) If H ⊆ H′, then cGi (H) ≤ cGi (H′) for i = f, l, g.

(v) If G ⊆ G′, then cG′

i (H) ≤ cGi (H) for i = f, l, g.

Proof. Since a k-global G-cover c of H has size at most k and is injective, at most k
vertices are mapped onto any vertex of H. Therefore c is also a k-local G-cover. By
definition there is a cGg (H)-global G-cover of H. This is also cGg (H)-local and therefore
proves cGl (H) ≤ cGg (H) (i).

Let G be union-closed and c be a k-local G-cover of H. Then we receive a k-folded G-cover
of H from c as follows: Let G be the disjoint union of all guests of c. Then map every
vertex v ∈ G to c(v). This proves (ii).
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Let G be closed under taking folded components. Let k = cGf (H) and c : G → H be a
k-folded G-cover. Then we receive a k-local cover from c as follows: Let C1, . . . , Cn be
the components of G. We know c(Ci) ∈ G for i ∈ [n], since G is closed under component
folding. We define c′ : c(C1) ·∪ . . . ·∪ c(Cn) → H with c′|c(Ci) being the identity function
for i ∈ [n]. Since c is a cover, so is c′. Obviously, c′ is injective. For any v ∈ H we
have k ≥ c−1(v) = c−1(c′−1(v)) ≥ c′−1(v). This proves that c′ is a k-local cover and
therefore (iii).

Items (iv) and (v) follow from the definition of covering numbers.

So, if G is a union-closed guest class, we have

cGf (H) ≤ cGl (H) ≤ cGg (H). (*)

I.e., by determining folded or local covering number we receive lower bounds for the
global covering number. In Chapter 5 we prove, however, that an upper bound for
the global covering number cannot be deduced from folded or local covering number in
general. Inequality (*) shows that it is much more interesting to consider union-closed
guest classes when comparing different covering numbers. An extreme example for a
non-union-closed class is the guest class K2 containing only K2. While cK2

l (H) = ∆(H),
we have cK2

g (H) = ||H||, and only K2 graphs have a folded cover at all. If, however, you
consider the class of matchings, the union-closure of K2, we have cK2

f (H) = cK2
l (H) = ∆(H)

and cK2
g (H) ∈ {∆(H),∆(H) + 1}.

The next Lemma is used to prove that certain guest graphs cannot be used to cover a
certain host graph, which is part of the proof of the upcoming proposition.

Lemma 3.4
Let G and H be graphs and let c : G→ H be a homomorphism. Then χ(G) ≤ χ(H).

Proof. Let V (H) be partitioned into k = χ(H) independent sets S1, . . . , Sk. Then also
c−1(Si) is an independent set for i ∈ [k], since an edge induced by c−1(Si) would induce an
edge in Si by definition of a homomorphism. Since the sets c−1(S1), . . . , c−1(Sk) form a
partition of V (G) into independent sets, we conclude χ(G) ≤ k = χ(H).

The following proposition gives general upper bounds for the covering numbers of any host
graph H in terms of ||H|| or ∆(H). Due to the fact that folded covers use only one guest
graph, there is no general upper bound of the folded covering number for non-union-closed
graph classes (see item (iv) of the following proposition).

Proposition 3.5
Let G be a guest class, H be a host class and H be a host graph. Then each of the following
holds:

(i) cGi (H) =∞ or cGi (H) ≤ ||H|| for i = l, g.

(ii) If G is union-closed then cGf (H) =∞ or cGf (H) ≤ ||H||.

(iii) If G is induced-hereditary and contains a graph G with ||G|| > 0, then cGl (H) ≤ ∆(H).

(iv) Let f : N0 → N0 be any monotonically increasing function. Then there are guest
and host classes G and H such that max{cGf (H) : |H| = n,H ∈ H} ∈ Ω(f(n)), while
every graph H ∈ H still has a folded G-cover.
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Proof. If there is an injective G-cover c of H, then we can choose for every edge of H a
guest G(e) covering this edge. By restricting c to those guests its size is at most ||H|| and
it is still edge-surjective. Therefore cGg (H) ≤ ||H||, and by Proposition 3.3(i) follows the
statement (i) for i = l.

Item (ii) follows from (i) and Proposition 3.3(ii).

If G is induced-hereditary and contains a graph G with ||G|| > 0, then it contains a
matching of size 1, i.e., a single edge with its ends. By covering each edge of H with
another edge, all edges are covered and every vertex v ∈ H is covered by deg(v) guests.
This proves (iii).

Let f : N0 → N0 be a monotonously increasing function. By a result of Erdős [Erd59] we
know that for arbitrarily large n and k there is a graph G with g(G) ≥ n and χ(G) ≥ k.

We define a sequence of graphs (Gi)i∈N0 as follows: G0 is a K3. For i > 0 let Gi be a graph
with χ(G) ≥ 3 and g(Gi) ≥ |Gi−1|. Now we define the host class H as the graphs in this
sequence. We define the guest class G also as the graphs of the sequence, but we add to
every Gn f(n)|Gn|2 isolated vertices resulting in guest graph G′n for n ∈ N0.

Every host graph Gi has a folded cover: Use G′i as guest and let the cover be a bijection
from the Gi of G′i to the host Gi, in which the isolated vertices are mapped arbitrarily.
Since there are at least f(i)|Gi| vertices in G′n per vertex in the host graph for n ≥ i, using
one of those as guest does not provide a (f(i)|Gi| − 1)-folded cover of Gi.

Assume there is a folded cover c of Gi using a G′n with n < i as guest. Then c(V (Gn))
would induce a forest F in Gi: Since g(Gi) > |Gn| (follows from induction on i), the
graph induced by c(V (Gn)) is smaller than every cycle in Gi and therefore no cycle. Since
χ(F ) ≤ 2 we conclude by Lemma 3.4 that χ(Gn) ≤ 2, which is a contradiction. Therefore
we have f(i)|Gi| ≤ cGf (Gi). That concludes the proof of (iv).
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4. Local Linear Arboricity Conjecture
and Related Work

4.1 Linear Arboricity Conjecture
A quite natural way to cover a graph is using forests as guests. The global covering number
with regards to forests is called arboricity. Since the class of all forests is hereditary, the
global covering number of a graph H is the size of a smallest partition of E(H) into forests.

Nash-Williams proved that every graph can be covered using only as many forests as needed
to provide enough edges in every subgraph (a forest F has at most |F | − 1 edges).

Theorem 4.1 (Nash-Williams [NW64])
For any graph H we have cFg (H) = maxH′⊆H

⌈
||H′||
|H′|−1

⌉
.

Folded or local covering number with regards to forests (called folded and local arboricity)
cannot be smaller (pigeonhole principle): Let H ′ ⊆ H. In every guest of a cover of H ′

there are at least
⌈
|H′|
|H′|−1

⌉
vertices per edge. That makes at least

⌈
||H′||
|H′|−1

⌉
guest vertices

per host vertex in a cover. With Proposition 3.3 follows:

Corollary 4.2 (Knauer, Ueckerdt [KU12])
For every graph H we have cFf (H) = cFl (H) = cFg (H).

Further, by a result of Edmonds [Edm65] an optimal F -cover can be computed in polynomial
time.

For restricted kinds of forests (see Section 3.3 in the last chapter) there are no such
strong results. Instead it has been shown to be NP-complete to decide cGg (H) ≤ k for
k = 2 and any graph H for the guest class of star forests (St) by Hakimi, Mitchem and
Schmeichel [HMS96], for the class of caterpillar forests (Cp) by Shermer [She96] and for the
class of linear forests (P) by Péroche [Pé84]. In Chapter 6 we proof NP-completeness for
any k ≥ 2 and P. This discourages to find a simple characterization of the corresponding
global covering numbers.

In this chapter we consider linear forests only. The corresponding covering numbers are
called (local/folded) linear arboricity. The linear arboricity was introduced by Harary [Har70]
in 1970. Figure 4.1 gives two examples of optimal P-covers.

The following lemma gives a lower bound on the (local/folded) linear arboricity based on
the maximum degree.
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Figure 4.1: Optimal P -covers for K6 and K3,3.

Lemma 4.3 (Knauer, Ueckerdt [KU12])
For every graph H with maximum degree ∆ holds cPg (H) ≥ cPl (H) ≥ cPf (H) ≥

⌈
∆
2

⌉
. If ∆

is even and H is regular, we have even cPg (H) ≥ cPl (H) ≥ cPf (H) ≥
⌈

∆+1
2

⌉
Proof. Since the maximum degree of any linear forest is at most 2, at least

⌈
∆
2

⌉
vertices

of linear forests must be mapped to a vertex v of degree ∆ to cover all edges incident to
v. Therefore we have cPf ≥

⌈
∆
2

⌉
. By Proposition 3.3 follows the statement, since P is

union-closed.

Let H be a ∆-regular graph with ∆ even. Consider a folded P-cover of H. The paths in
the guest have to end in some vertices, enforcing that those vertices are covered at least⌈

∆+1
2

⌉
times.

Similar to Nash-Williams’ Theorem 4.1, Akiyama, Exoo and Harary stated 1980 the Linear
Arboricity Conjecture (LAC) that states all graphs can be optimally covered by linear
forests considering these bounds. Despite much attention, this conjecture is still open
today.

Conjecture 4.4 (Linear Arboricity Conjecture (LAC); Akiyama, Exoo, Harary [AEH80])
The linear arboricity of any graph H with maximum degree ∆ is either

⌈
∆
2

⌉
or
⌈

∆+1
2

⌉
.

So far, the conjecture has been proven for ∆ = 3, 4, 5, 6, 8 and 10: Akiyama, Exoo and Harary
proved the conjecture for ∆ = 3, 4 in the paper stating the conjecture [AEH80][AEH81].
Enomoto and Péroche were able to prove it for ∆ = 5, 6, 8 [EP84] and by a result of
Guldan the conjecture holds also for ∆ = 10 [Gul86a]. It was also investigated for certain
host graphs: Wu and Wu proved it for planar graphs (using one paper of 11 pages filled
with case-distinctions solely for the case of maximum degree 7) [Wu99][WW08]. An easy
observation is truth for the case of complete graphs (follows e.g. from Theorem 4.10, but
you can state optimal covers directly, see Figure 4.1). Complete bipartite graphs where
also covered by Akiyama, Exoo and Harary in the paper stating the conjecture [AEH80].
Alon proved the conjecture for all graphs of even regularity with girth at least 50 [Alo88].
He used this result to prove LAC to be asymptotically true [Alo88]. Moreover, Guldan
proved the best-known upper bound cPg (H) ≤

⌈
3∆+2

5

⌉
[Gul86b]. Note that, further, there

is research on linear k-arboricity using only linear forests as guests in which all paths have
length at most k [AW98]. Another associated parameter is the vertex linear arboricity of
a graph H that is the smallest d such that the vertex set can be partitioned into d sets,
each inducing a linear forest. Matsumoto has proven upper bounds for it reminding to the
LAC [Mat90].

Following the approach of considering folded and local covering number, Knauer and
Ueckerdt introduced the folded and local linear arboricity mentioned before [KU12]. They
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proved for any graph H with maximum degree ∆ that
⌈

∆
2

⌉
≤ cPf (H) ≤

⌈
∆+1

2

⌉
, which

proves the folded variant of LAC, and stated the corresponding conjecture for the local
linear arboricity:

Conjecture 4.5 (Local Linear Arboricity Conjecture (LLAC); Knauer, Ueckerdt [KU12])
The local linear arboricity of any graph H with maximum degree ∆ is either

⌈
∆
2

⌉
or
⌈

∆+1
2

⌉
.

4.2 Reduction to Graphs of Odd Regularity
The main goal of this chapter is to prove this conjecture. The first step to reach this goal is
the reduction to graphs of odd regularity. This can be achieved using the following lemma.

Lemma 4.6
Every graph H with maximum degree ∆ is an induced subgraph of a ∆-regular graph.

Proof. If the graph H is not regular itself, then its minimum degree δ is smaller than ∆.
We can obtain a graph H ′ that contains H as induced subgraph, has the same maximum
degree ∆ and has a minimum degree that is by one greater than δ. To this end, we copy
the graph H and connect every vertex with degree δ with its copy. By repeating this step
we finally obtain a ∆-regular graph containing H as induced subgraph.

The next theorem reduces LAC and LLAC to regular graphs.

Theorem 4.7 (N. Alon [Alo88]; local version by Knauer, Ueckerdt [KU12])
For any ∆ ∈ N0 the following two statements are equivalent:
(i) The local/classical linear arboricity of any ∆-regular graph H is

⌈
∆+1

2

⌉
.

(ii) The local/classical linear arboricity of any graph with maximum degree ∆ is either
⌈

∆
2

⌉
or
⌈

∆+1
2

⌉
.

Proof. “(i)⇒ (ii)”: By Lemma 4.6 every graph H with maximum degree ∆ is a subgraph
of a ∆-regular graph S. If S has local/classical linear arboricity

⌈
∆+1

2

⌉
, then we know by

Proposition 3.2(ii) that the local/classical linear arboricity of its subgraph H is at most⌈
∆+1

2

⌉
. By Lemma 4.3 follows statement (ii).

“(i) ⇐ (ii)”: Since in any ∆-regular graph H that is covered by linear forests there is
a vertex v in which a linear forest F ends (and therefore has degree 1 in v) the cover
must contain at least

⌈
∆−1

2

⌉
more linear forests covering v to cover all edges incident

to v. Together with F that are at least
⌈

∆+1
2

⌉
linear forests covering v. This proves

cPg (H) ≥ cPl (H) ≥
⌈

∆+1
2

⌉
. This shows that statement (ii), which gives

⌈
∆+1

2

⌉
as upper

bound of the local/classical linear arboricity, induces statement (i).

With the following lemma we finally reduce LAC and LLAC to graphs of odd regularity.

Lemma 4.8 (Knauer, Ueckerdt [KU12])
To prove LAC or LLAC it suffices to prove for every odd ∆ that any ∆-regular graph has
classical or local linear arboricity

⌈
∆+1

2

⌉
.

Proof. Let H be a (∆ + 1)-regular graph with ∆ odd. There is a spanning linear forest F
in H [Gul86b](every k-regular graph with k even has a 2-factor, by deleting one edge of
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every circuit of the 2-factor we obtain a spanning linear forest.). By removing the edges of
F we receive a graph H ′ with maximum degree ∆.

By Lemma 4.6 and Proposition 3.2 we know, if all ∆-regular graphs have classical/local
linear arboricity at most

⌈
∆+1

2

⌉
, then the classical/local linear arboricity of H ′ is at most⌈

∆+1
2

⌉
= ∆+1

2 . Since every cover of H ′ can be extended to a cover of H by adding F as

linear forest, the classical/local linear arboricity of H is then at most ∆+1
2 + 1 =

⌈
(∆+1)+1

2

⌉
.

By Lemma 4.3 we get the lower bound. This completes the proof with Theorem 4.7.

4.3 Path Decomposing Graphs of Odd Regularity
Now, for graphs of odd regularity LLAC follows from a theorem of Lovasz, which we state
here. Roughly speaking, the proof of that theorem transforms a graph of odd regularity
into one that contains exactly one even vertex, and then uses the following lemma for
induction. Note that we say that a vertex is even/odd if its degree is even/odd and that
we denote the class of paths by P.

Lemma 4.9 (László Lovász[Lov68])
Let H be a graph with a vertex x adjacent to exactly one even vertex y and let d be the
minimum number such that H −xy has a d-global P-decomposition. Then H has a d-global
P-decomposition.

Proof. Let d be the minimum number, such that H − xy has a d-global P-decomposition.
Let c be such a d-decomposition of H − xy. In every odd vertex u there has to end at least
one path p(u) (for the graphs for which we apply this lemma later it is actually exactly
one path). The idea is to add edge xy to the path p(y). This causes a cycle in p(y) if it
already contains an edge vx at x. But this edge can again be added to the path p(v).

We claim that repeating this step terminates if we add an edge to a path that does not
contain x and therefore stays a path with the new edge. To prove this, we introduce an
order on N(x) such that the problematic edge is passed only in one direction. This enforces
termination. Figure 4.2 shows an example for such an exchange of path edges and is used
for further explanation.

xs0xs0

s1 s2

s3

s4

s1 s2

s3

s4

Figure 4.2: On the left: Cover of H − xy (s0 = y). On the right: Induced cover of H.

Let v ∈ N(x) be a neighbour of x in H. Then v is of odd degree in H − xy and therefore
we have the path p(v) of c ending in v. Starting in v and following p(v) we call the last
vertex before x the successor succ(v) of v. If x is not contained in p(v), then there is no
successor of v. In Figure 4.2 vertex s5 has no successor.

If v has a vertex w with succ(w) = v, called predecessor, then it is unique, since p(w) must
contain vx and v separates w and x in p(x). Since y /∈ N(x) it has no predecessor.
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4.3. Path Decomposing Graphs of Odd Regularity

Define the sequence s by s0 = y and si+1 = succ(si) (if succ(si) does not exist, then the
sequence terminates) for i ∈ N0. The sequence s contains no element twice (otherwise the
first repeated had two different predecessors). Therefore sequence s has a last element
sm. Now we can cover H as follows: For every v ∈ s \ {sm} add vx and remove succ(v)x
from p(v). Thereby every path becomes a new path (see e.g. the path starting in s0 in
Figure 4.2, the paths can be modified on both sides of x (see the path starting in s1),
but modifying one side does not affect the order of the other side) and still every edge in
H − xy is covered by exactly one path. Finally smx can be covered by adding it to p(sm),
which, per definition of sm, does not contain x.

That way every edge is covered by exactly one path: If an edge does not connect x to
an element of s, then it is covered by the same path as in H − xy, and every edge xsi

(0 ≤ i ≤ m) is covered by p(si). Since we did not introduce new paths their number did
not increase.

Note that this lemma allows multiple even vertices in H, and actually this can be used for
generalizations of the next theorem if we can order the edges correspondingly for reduction.

Note that the number of odd vertices in a graph is always even.

Theorem 4.10 (László Lovász[Lov68])
Let H be a graph that contains n odd vertices and at most one non-isolated even vertex.
Then H has a n

2 -global P-decomposition.

Proof. We use Lemma 4.9 for induction on the number of edges. If H is a K2, then it can
be covered by at most 2

2 edge-disjoint paths, using the edge as one path. Now let H be a
graph with at most one non-isolated even vertex and assume the statement holds for all
such graphs with less edges. Without loss of generality we may assume H to be connected
(otherwise we can separately consider every component).

Case 1: If H contains an even vertex y, then there is a neighbour x of y. Since y is the
only even vertex, x has y as its only even neighbour vertex. In H − xy the parity of x and
y is switched, while all other vertices have the same parity as in H. Thus, x is the only
even vertex in H − xy. Since it has one edge less than H, the induction hypothesis holds
for H − xy. The Theorem follows for H by Lemma 4.9, since the number of odd vertices
in both graphs is the same.

Case 2: Let H contain no even vertex. Then it contains an edge xz with deg(x) > 1.
(Otherwise, since H is connected, it is trivial or a K2. That is the base case of the
induction.)

Subdivide the edge xz to xy and yz with y /∈ V (H) and call the resulting graph H ′ (see
Figure 4.3). In H ′ the vertex y is the only even vertex. Hence, in H ′ − xy only x is even
and since degH′−xy(x) = degH(x)− 1 > 0 it is non-isolated. Therefore there is a neighbour
v of x in H ′ − xy. Finally consider graph H ′ − xy − xv. In H ′ − xy − xv only v is even.
Since it has one edge less than H, we can use the induction hypothesis on H ′ − xy − xv.
Since H ′, H ′ − xy and H ′ − xy − xv have the same number of odd vertices, the induction
hypothesis follows for H ′ by applying Lemma 4.9 first for H ′ − xy and H ′ − xy − xv and
second for H ′ and H ′ − xy.

The odd vertices of H and H ′ are the same. Considering H ′ to be covered with n
2 edge-

disjoint paths, in every vertex but y there has to end a path, so in y there cannot end a
path. Therefore, since H ′ can be covered with at most n

2 edge-disjoint paths, this induces
a way to cover H with the same number of edge-disjoint paths (replace xy and yz in the
same path by xz). This concludes the proof.
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4. Local Linear Arboricity Conjecture and Related Work

z

x

v

z
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v

y

z

x

v

y

z

x

v

y

H H ′ H ′ − xy H ′ − xy − xv

Figure 4.3: The different graphs for Case 2 in the proof of Theorem 4.10.

Actually László Lovász proved that any graph H can be covered by
⌈
|H|
2

⌉
edge-disjoint

cycles and paths. Theorem 4.10 follows directly if you consider that in every vertex of odd
degree at least one path ends (to achieve this number of paths all guests must be paths).
The proof given here is an adaption of László Lovász’s proof considering only such graphs.

We can now finally conclude that LLAC is true.

Corollary 4.11
The Local Linear Arboricity Conjecture (Conjecture 4.5) holds.

Proof. Due to Lemma 4.7 it is sufficient to consider graphs of odd regularity. Let H be
a ∆-regular graph with ∆ odd and |H| = n. According to Theorem 4.10, graph H can
be decomposed into at most n

2 paths. Since in every odd vertex there has to end a path,
and there are at most n

2 · 2 = n path endings, at every vertex there ends exactly one path.
Therefore every vertex is covered by 1 + ∆−1

2 = ∆+1
2 paths and cannot be covered by less.

Since paths are linear forests, we get cPl (H) = d∆+1
2 e.

The proofs yield an algorithm to compute an optimal local P-cover of a graph G in
O(|H|+ ||H||2).

The constructed cover is a P-cover. To receive a k-global P-cover with small k it is
necessary to partition the guest paths into a small number of linear forests. But it appears
difficult to realize that. The base case of the induction is a matching that is already a
linear forest. Ideally k = d∆+1

2 e, which would prove LAC. During the induction steps
the guest paths start sharing common vertices and thus must be put into distinct linear
forests. This and the choices which edge to remove next for the induction step must
be made with a global foresight avoiding future collisions. Since every induction step
potentially changes the ends of multiple paths it seems hard to find structural properties
giving such a foresight. Another approach to use LLAC to prove LAC is the question
whether local and global arboricity are always equal, as it is the case for the arboricity
(see Corollary 4.2). Unfortunately, that statement does not hold, as we prove in the next
chapter in Theorem 5.4.
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5. Separability

In this chapter we deal with the question by how much global, local and folded covering
numbers can differ for the same host and guest classes, i.e., if the difference between two
covering numbers can be arbitrarily large.

Recall from Proposition 3.3 that for any host graph H and any guest class G we have
cGf (H) ≤ cGl (H) ≤ cGg (H), provided G is union-closed (closed under taking disjoint unions).
We are mainly interested in such guest classes (We already argued in Section 3.3 of Chapter 3
that it is more interesting to compare covering numbers with regards to union-closed guest
classes.). Therefore, we consider separations of global and local covering number as well
as separations of local and folded covering number. Clearly both separations imply a
separation of global and folded covering number.

Considering only union-closed guest graphs makes it considerably more difficult to find
such a separation. It excludes, for example, guest classes with bounded number of edges or
components. Such guest classes are troublesome for the total number of guest graphs of a
cover, whereas it is not necessarily a problem for the number of graphs covering a single
vertex.

Knauer and Ueckerdt proved that the guest class K of collections of complete graphs and
the host class L of line graphs provide cKg (L) = ∞ and cKl (L) = 2 [KU12, Theorem 10].
They also indicated the following separation of local and global covering number with
respect to interval graphs.

Theorem 5.1 (Milan [MSW12], Whitney [Whi32])
For the guest class I of interval graphs and the host class L of line graphs, we have
cIg (L) =∞ and cIl (L) = 2.

Proof. Milans, Stolee and West [MSW12] proved cIg (L(Kn)) ∈ Ω(log∗(n)), whereas by a
result of Whitney [Whi32] for every line graph L and the guest class K of complete graphs
we have 2 ≥ cKl (L) ≥ cIl (L), since complete graphs are interval graphs. This inequality is
best-possible.

5.1 Separability of Folded and Local Covering Number
Also for comparison of the folded and local covering number with respect to the same guest
and host classes we consider only union-closed guest classes.
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5. Separability

One trick to separate folded and local covering number for a union-closed guest class G
and a host class H is to choose G and H such that ‘essential’ guest graphs of G are not
subgraphs of host graphs in H. Thereby, those guest graphs cannot be guests in injective
covers and therefore do not affect the local covering number, whereas folding them once
can be enough to make them subgraphs of host graphs and, thereby, provide a small folded
covering number. Knauer and Ueckerdt provided an example using the guest class of
collections of cycles and the host class of paths [KU12, Observation 11], in which the local
covering number is ∞, since no injective covering exists. On the other hand, the folded
covering number is 2, since every path can be covered by a cycle such that every vertex is
covered at most twice.

Figure 5.1: On the left: a 2-folded G-cover of a star. On the right: an optimal 5-global
G-cover of the same star.

An example in which local covers exist uses the guest class G of all matchings and all
supergraphs of C4, i.e., G := {G : G is a matching or C4 ⊂ G} and the host class St of star
forests. Here the supergraphs of C4 are not subgraph of any star forest, since star forests do
not contain C4. Therefore only matchings can be used for injective covers. This, however,
means the local covering number with regards to G of a star forest F equals its maximum
degree ∆(F ) (see Figure 5.1). This can be arbitrarily high. Hence, we have cGl (St) =∞.
On the other side, if a star forest H is no matching, then it contains a path P3 of two edges.
By connecting the ends of this path with a new vertex v we receive a graph containing a
C4, which is therefore a guest graph. By folding the vertex in the middle of the path with
v we obtain H. This proves cGf (H) = 2 and therefore cGf (St) = 2.

To avoid this trick we can consider only induced-hereditary guest graphs (closed under
taking induces subgraphs). This excludes a desired part of a guest graph to be excluded
because it has another part that is not useful and prevents the graph from being used.

The class B of bipartite graphs is a union-closed guest class and is even hereditary (closed
under taking any subgraphs). However, B still provides an arbitrarily large separation of
folded and local covering number.

Theorem 5.2
For the guest class B of bipartite graphs and the host class G of all graphs, we have
cBl (G) =∞ and cBf (G) = 2.

Proof. First, we prove cBf (H) ≤ 2 for any graph H. Therefore, we define a bipartite graph
B with vertex set V = V (H)× {1, 2} and edge set E = {(v, 1)(w, 2) : vw ∈ E(H)}. You
can see that B is obtained from H by splitting every vertex into a first and a second vertex
and keeping the edges such that no edge connects two first or two second vertices. An
example for a 2-folded B-cover of K4 can be seen in Figure 5.2.

The graph B is bipartite with partition classes V (H)×{1} and V (H)×{2}. Now consider
the function φ : V (B)→ V (H), (v, i) 7→ v. It is an edge-surjective homomorphism from B
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5.2. Separation of Linear Arboricities

Figure 5.2: Two drawings of the same 2-folded B-cover of K4.

to H, since for every edge vw in H there are the edges (v, 1)(w, 2) and (w, 1)(v, 2) in B
with φ((v, 1)) = φ((v, 2)) = v and φ((w, 1)) = φ((w, 2)) = w and only such edges exist in
B. It is therefore a cover and has size 1. For every v ∈ H we have φ−1(v) = {(v, 1), (v, 2)},
which is a set of size 2. Thus, we have cBf (H) ≤ 2.

To prove cBl (G) =∞, we prove cBl (K) =∞ for the class of complete graphs K. We use the
same argument as used by Fishburn and Hammer [FH96, Theorem 5], which states the
same allowing only complete bipartite graphs as guest graphs: Assume cBl (K) = k <∞.
Let n be a number with cBl (Kn) = k.

Let N = (n−1) ·k+2. Then any cover of KN includes k bipartite graphs Bi ∈ B (1 ≤ i ≤ k)
that cover a common vertex v, by definition of k. Since the graphs Bi must cover (n−1)·k+1
edges incident to v, there is a bipartite graph Bi in which v has at least n neighbours
between whom no edge is in Bi, since it is bipartite (see Figure 5.3).

. . .
. . .

v

NB1
(v)

NBi
(v)

NBk
(v)

KN

Figure 5.3: View of v in Kn. For 1 ≤ i ≤ k the neighbourhood NBi(v) of v within Bi is
independent. As deg(v) = (n− 1) + k + 1, one of them contains n vertices.

Since these have to be covered, at least cBl (Kn) = k more bipartite graphs cover a single
vertex of those neighbours and therefore cBl (KN ) ≥ k+ 1. This contradicts our assumption
and concludes the proof.

5.2 Separation of Linear Arboricities
In Chapter 4 we argued that an equivalence of cPg and cPl would imply the Linear Arboricity
Conjecture (LAC). Unfortunately this equivalence does not hold in general. We show here
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5. Separability

that this two covering numbers differ at least as much as possible without contradicting
LAC. A byproduct of this discovery is a proof of NP-completeness of deciding cPg (H) ≤ k
for any graph H and k ≥ 2, which was unknown for k ≥ 3 before. It is part of Chapter 6.
For the folded linear arboricity we prove a characterisation allowing a separation of folded
and local linear arboricity.

For separation of cPg and cPl , we transform graphs to achieve a relation between coverings
with matchings and coverings with linear forests. Therefore, we define the graph En (E for
‘every end enforcer’) for n ∈ N0 as the union of K2n and a vertex v that is connected to n
vertices of K2n (see Figure 5.4 for an E2 graph as example). We denote the class of all
matchings by K2.

E2

E2

E2

H

Figure 5.4: Graph H ′ for H = K3 in Lemma5.3 with a 2-local 3-global P-cover.

Lemma 5.3
Let H be a n-regular graph. Let H ′ be the graph obtained by identifying every vertex of H
with vertex v in another copy of En. Then holds:

cK2
g (H) ≤ n⇔ cPg (H ′) ≤ n

Proof. For both directions we first consider En and then show the actual statement.
Figure 5.4 gives an example for the construction of H ′.

“⇐”: Let c be a n-global P-cover of En. Then no linear forest may end in N(v), since those
vertices have all degree 2n. In every vertex w ∈ H \ (N(v) ·∪ {v}) at most one linear forest
may end, since it has degree 2n− 1. And since every linear forest has at least 2 ends, that
are in total at least 2n ends, leaving n ends that have to be in v. As those have to be n
ends of different forests, in every of the n vertices of degree 2n− 1 there ends another of
the n linear forests. Since these have no other ends, they have exactly two ends. Therefore
they are paths.

Let x be a vertex in H. Now suppose there is a n-global P cover of H ′. Since Ex
n, the

copy of En whose vertex v is identified with x, is subgraph of H ′, all edges of Ex
n incident

to v = x belong to different linear forests. And since there are only n linear forests, all n
edges incident to x in H belong to different linear forests. Since x was chosen freely, this
means that the n linear forests partition all edges of H into n disjoint sets of non-adjacent
edges, i.e., n matchings.
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5.2. Separation of Linear Arboricities

“⇒”: We can construct a n-global P-cover of En as follows: We consider a n-global P-cover
of K2n (by Theorem 4.10 follows that such a cover exists, since all vertices have odd degree).
Since in every vertex there ends exactly one path, we can choose n vertices such that every
path ends in exactly one of them. Now we connect those n vertices to a new vertex v and
add every new edge xv to the path ending in x. Since every path is expanded exactly once
to v, this forms a n-global P-cover of En.

Suppose c is a n-global K2-cover of H. Then c can be extended to H ′ by identifying each of
n paths of a n-global P-cover of every En with another matching covering H. This yields
a n-global P-cover of H ′ (as paths are only linked in their ends, the maximum degree is
for every guest 2. Any cycle C ⊆ H ′ is subgraph of H or a copy of En, but in those graphs
no paths are linked).

Note that cK2
g (H) ≥ n (all edges incident to a vertex v with deg(v) belong to different

guests) and cPg (H ′) ≥ n (see Lemma 4.3). Knowing there are n-regular graphs without a
n-global K2-cover, the following theorem is straightforward.

Theorem 5.4
For every n ≥ 2 exists a host graph H ′ with maximum degree ∆ = 2n such that:

cPg (H ′) > n = cPl (H ′).

Proof. For every n ≥ 2 there is a n-regular graph H that does not contain a perfect
matching (standard exercise [Wes01][3.3.7]) and hence, has no n-global K2-cover. By
Lemma 5.3 follows for the graph H ′ obtained by identifying every vertex of H with vertex
v in another copy of En that cPg (H ′) > n.

However, a n-local P-cover can be constructed as follows (see Figure 5.4 for an example):
Let c be a n-local K2-cover of H (e.g., use every edge as another guest). Then c can be
extended to H ′ by identifying for every vertex x ∈ H each of the n paths of a n-global
P-cover of Ex

n, the copy of En containing x as v, with another edge incident to H. This
yields a n-local P-cover of H ′ (every guest has now degree 2 in every x ∈ H. As paths are
only linked in their ends, the maximum degree is for every guest 2. Any cycle C ⊆ H ′ is
subgraph of H or a copy of En, but in those graphs no paths are linked).

For the folded linear arboricity we have a characterization that allows it easily to separate
it from the local linear arboricity. Knauer and Ueckerdt already proved

d∆/2e ≤ cPf (H) ≤ d(∆ + 1)/2e (**)

for any graph H with maximum degree ∆ using Euler tours [KU12] and its easily extended
to a full characterization.

Theorem 5.5
Let H be a graph with maximum degree ∆ > 0. Then holds:

cPf (H) >
⌈∆

2

⌉
⇔ ∆ is even and there is a ∆-regular connected component C of H.

Proof. “⇐”: If ∆ is even and there is a ∆-regular connected component, then the left
statement follows directly from Lemma 4.3.

“⇒”: Assume that the right statement is false. By (∗∗) follows for odd ∆ directly that the
left statement is false. Hence, ∆ is even and there is no ∆-regular component. Note that
since Σv∈G deg(v) = 2||G||, the number of odd vertices is even in every graph G.

25



5. Separability

Let C be a component of H. Define H ′ as the graph obtained by adding a vertex y and
connecting it to all vertices of H of odd degree. By definition all vertices of H ′ are even.
Therefore there is an Euler tour on H ′, i.e., there is an edge-bijective ∆

2 -folded cover c of
H ′ using a cycle Cm as guest.

y
y

v

Figure 5.5: Two 2-folded P-covers of two different graphs induced by Euler tours. On the
left deleting y splits the cycle, on the right the cycle is split in v.

If deg(y) > 0, then this cover induces an edge-bijective ∆
2 -folded cover of C using a linear

forest as guest (at least one vertex of Cm was mapped to y and can be removed). Otherwise
C contains no odd vertex and therefore a vertex v with deg(v) ≤ ∆ − 2. By splitting a
vertex u ∈ c−1(v) such that the guest becomes a path, only the number of vertices covering
v is increased by one, but was at most ddeg(v)/2e ≤ (∆− 2)/2 before (see Figure 5.5 for
two examples). Therefore, the obtained cover is also a ∆

2 -folded cover of C but uses a path,
which is a linear forest, as guest. Therefore also the left statement is false. This concludes
the proof.

Note that, since cPf (H) ∈ {d∆/2e, d(∆ + 1)/2e}, this theorem allows to determine cPf (H)
easily by evaluating the right statement. Further, it allows easily to separate local and
folded linear arboricity.

Corollary 5.6
For every n ≥ 2 exists a graph H with maximum degree ∆ = 2n and cPl (H) > n = cPf (H).

Proof. It suffices to consider a connected graph H in which every vertex has degree 2n,
except of two vertices x and y that have degree 2n − 1. An example of such a graph is
K2n+1 minus an edge. By Theorem 5.5 follows cPf (H) = n. On the other hand, assume
cPl (H) ≤ n. Then there is a n-local P-cover c of H. Then in x and y there may end one
linear forest and in all other vertices there may end no linear forest. This allows at most 2
ends of linear forests and therefore at most one linear forest. This implies 2n = ∆(H) ≤ 2
and therefore contradicts n ≥ 2. Hence, we have cPl (H) > n. This concludes the proof.

5.3 Separations with Stronger Restrictions
We have already seen that there are strong separations for local and global covering number
using induced-hereditary union-closed guest classes and for folded and local covering number
even hereditary union-closed guest classes. Now we can further ask, whether there are
separations for even stronger restrictions.

A stronger restriction than being hereditary is being topological minor-closed, i.e., closed
under taking topological minors. Recall that a graph G is topological minor of a graph H
if G can be derived from H by removing edges and vertices and smoothing. Smoothing
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5.3. Separations with Stronger Restrictions

means removing a vertex of degree 2 and connecting its 2 neighbours by an edge. See
Figure 5.6 for an example.

Figure 5.6: On the left: a graph G containing K4 as topological minor. In the middle:
G′ after removing vertices and edges not in the minor. On the right: the
topological-minor K4 after smoothing.

Examples for union-closed, topological minor-closed graph classes are forests, star forests,
caterpillar forests, linear forests, planar graphs and graphs of bounded degree. The class
of all bipartite graphs is hereditary but not topological minor-closed (e.g., C4 is bipartite
and C3 is not). It turns out this restriction restricts separations in a way that a host
class cannot have a finite folded covering number, while the corresponding global covering
number is ∞. To prove this we use a theorem from extremal graph theory.

Recall that the average degree avd(G) of a graph G is Σv∈V (G) deg(v)
|G| = 2||G||

|G| . And we define
the maximum average degree of a graph G denoted by mad(G) as the maximum average
degree of all induced subgraphs of G, i.e., mad(G) = maxH⊆G avd(H).

Theorem 5.7 (Bollobàs, Thomason [BT98])
There is a constant c ∈ R such that, for every r ∈ N0, every graph G of average degree
avd(G) ≥ cr2 contains Kr as a topological minor.

Further we consider an upper bound for the star arboricity of graphs (cSt
g , where St denotes

the class of star forests) in terms of the maximum average degree. We denote the class of
forests by F .

Lemma 5.8
Let H be a graph. Then cSt

g (H) ≤ 2 mad(H).

Proof. First note for all subgraphs H ′ of H we have

||H ′||
|H ′| − 1 = ||H||

|H|
· |H|
|H| − 1 = avd(H)

2 · (1 + 1
|H| − 1) ≤ avd(H).

By Theorem 4.1 follows cFg ≤ avd(H).

By Alon et al. we know cSt
g (H) ≤ 2cFg (H) [AMR92], since cSt

g (F) = 2. This implies
cSt

g (H) ≤ 2cFg (H) ≤ 2 mad(H).

Note that keeping the factor |H|
2(|H|−1) gives significantly better upper bounds for a high

order of H.

Theorem 5.9
Let G be a union-closed topological minor-closed class of graphs. Let H be a class of graphs
such that cGf (H) = c <∞. Than there is a constant d = d(G, c) with cGg (H) ≤ d.
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5. Separability

Proof. Since G is hereditary we can assume H to be also hereditary, since we can apply
Proposition 3.2(ii) for all subgraphs.

We shall consider two properties of the guest graphs: Maximum average degree and
maximum degree. We shall show that if mad(H) is unbounded for H ∈ H, then G must be
the class of all graphs. Otherwise there is an a ∈ N0 such that mad(H) ≤ a for all H ∈ H
and therefore cSt

g (H) <∞. In that case, if ∆(G) is unbounded for G ∈ G, then cGg (H) ≤ ∞.
Otherwise there is a b ∈ N0 with ∆(H) ≤ b for H ∈ H and this allows coverings with a
bounded number of matchings.

Case 1: For every n ∈ N0 there is a guest graph G ∈ G with avd(G) ≥ n. By Theorem 5.7
follows every Ki (i ∈ N0) is contained in a guest graph of G as topological minor. Since G
is topological minor-closed, it therefore contains all complete graphs. Since G is hereditary,
it follows that G is the class of all graphs. Thus, we have cGg (H) ≤ 1 for any graph H and
especially for all host graphs.

Case 2: There is a constant a such that supG∈G avd(G) ≤ a. Let H be a host graph in H.
Since cGf (H) ≤ c, there is a guest graph G and an edge-surjective homomorphism φ from
G to H with maxv∈H |φ−1(v)| ≤ c. Since every edge in H is covered by at least one edge
of G, we have ||H|| ≤ ||G||. Since maxv∈V (H) |φ−1(v)| ≤ c, the number of vertices in G is
at most c|H|. Therefore we have avd(H) = 2||H||

|H| ≤
2||G||
1
c
|G| ≤ ca. And therefore we have

∀H ∈ H : mad(H) ≤ ca.

By Lemma 5.8 follows cSt
g (H) ≤ 2ca for any H ∈ H. If G contains all star forests, then

this concludes the proof with d = 2ca. Otherwise there exists a constant ∆0 ∈ N0 with
∆0 = supG∈G ∆(G), since a graph with a vertex of degree k has the star Sk with k leaves
as subgraph.

Let H be a host graph in H. Since cGf (H) ≤ c, we have deg(v) ≤ c∆0. As we already know,
H can be covered by 2ca star forests. Since H has maximum degree at most c∆0 this is
also an upper bound for the sizes of the stars in the covering star forests. Therefore every
star forest can be covered by at most c∆0 matchings. By replacing every star forest by at
most c∆0 matchings we get therefore a cover of H using at most 2ac2∆0 matchings and
therefore d ≤ 2ac2∆0.

If H contains only independent sets, then the global covering number is 0. Otherwise G
must contain a graph containing an edge. Since it is hereditary it then contains a K2. Since
it is union-closed, it therefore contains all matchings. Therefore we have cGg (H) ≤ 2ac2∆0.
This concludes the proof.

Note that Theorem 5.9 does not exclude that folded and local or local and global covering
number differ arbitrarily for union-closed topological minor-closed guest graphs, since the
covering numbers could grow differently fast.

By a result of Knauer and Ueckerdt we know that we can find graphs such that the difference
between local and global covering number is arbitrarily large for certain union-closed guest
classes that are even minor-closed (star and caterpillar forests). A graph class G is called
minor-closed if it is hereditary and it contains for every G ∈ G and each edge vw ∈ G also
graph G′, which is obtained by removing edge vw and identifying the vertices v and w.

Theorem 5.10 (Knauer, Ueckerdt [KU12])
Let k ≥ 1. Then there is a bipartite graph H such that

cIl (H) = cCp
l (H) ≤ cSt

l (H) ≤ k + 1 ≤ 2k ≤ cIg (H) = cCp
g (H) ≤ cSt

g (H).
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On the other hand, we have only separations of local and global covering number, such
that the local covering number is finite and the global one is infinite, for induced-hereditary
non-hereditary guest classes. Especially, both investigated separations use guest classes
containing all complete graphs. This would imply being the class of all graphs if closed
under taking subgraphs. Such a separation is at least not possible for the host class of all
graphs.

Theorem 5.11
Let K denote the class of all complete graphs and let G be a class of graphs and r the
smallest natural number with Kr /∈ G. Let r <∞. Then cGl (K) =∞.

Proof. We use an argument similar to the one used in the proof of Theorem 5.2. We enforce
a large enough gap in a guest graph such that the number of guest graphs covering the
vertices at the gap is increased, whereas the incident edges of the host graph in the guest
graph’s gap are still to be covered.

Assume for contradiction that cGl (K) = d < ∞. Let s be the smallest number such that
cGl (Ks) = d. By Ramsey’s Theorem we know that for every n ∈ N0 there exists an t ∈ N0
such that every graph of order at least t contains either Kn or Kc

n as subgraph.

Let n = max(r, s) and t be the order enforcing Kn or Kc
n to be induced subgraph of a

graph by Ramsey’s Theorem.

Let l = d(t − 1) + 2. Consider the graph Kl. Since cGl (Kl) = d there is a cover c of
Kl with regards to G with maxv∈V (Kl) |c

−1(v)| = d. Let v denote a vertex in Kl. Since
deg(v) = l − 1 = d(t − 1) + 1, there is at least one guest graph component G of order
at least t covering v. Since G does not contain Kr as a subgraph, it must have Kc

s as a
subgraph by the definition of t. Consider the cover c|V (Ks), that is the cover c restricted
to the vertices of the copy of Kc

s in Kl. By definition of s there is a vertex w ∈ Ks with
c−1
|V (Ks)(w) ≥ d. But since w is also covered by G we have c−1(w) ≥ d+ 1 in contradiction
to its definition.

Note that by Proposition 3.3 (i) this theorem can also be used to prove several classical
covering numbers to be unbounded.
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In the last chapter we compared the three different kinds of covering numbers by their
value for common guest and host classes. In this chapter we compare the different kinds of
covering numbers by the computational complexity of determining them.

Knauer and Ueckerdt observed that for the class of interval graphs I as guest class and G
as host class computing any of the three covering numbers is NP-hard. This was proved
for the folded covering number called interval number by Shmyos and West [WS84] and for
the global covering number called track number by Jiang [Jia13]. Knauer and Ueckerdt
claimed Jiang’s proof is adoptable for the local covering number with regards to I. A
detailed proof is given in this chapter.

Further, they observed cases in which the computational complexity of determining the
global covering number is NP-hard, while determining the local and folded covering number
is possible in polynomial time for certain guest and host classes. In particular the problems
of determining cSt

g (G) and determining cK2
g (G) for a graph G with regards to the class of

all star forests St and the class of all matchings K2 are NP-complete, while the folded
and local covering numbers cSt

f (G) = cSt
l (G) and cK2

f (G) = cK2
l (G) can be determined in

polynomial time [KU12].

On the other hand, we know no case in which the global covering number can be determined
in polynomial time, while determining the folded or local covering number is NP-hard.
Therefore, Knauer and Ueckerdt raised the question whether there is such a case [KU12,
Question 2]. In this chapter we give a general construction of such cases and use the guest
class of interval graphs as example, therefore we need the NP-hardness of determining the
corresponding local covering number.

Part of a problem’s NP-completeness is its membership in the class NP . This property is
usually given for covering problems, as the following Lemma shows. Let LGi (H) denote the
problem of determining cGi (H) for a given H ∈ H for i = g, l, f .

Lemma 6.1
Let G and H be graph classes such that the corresponding recognition problems are in NP
and G is union-closed and induced-hereditary. Then for i = f, l, g the problem LGi (H) is in
NP.

Proof. If G contains only graphs without edges, the covering numbers can be determined
trivially. Otherwise we know by Lemma 3.5(i) and (iii) that the covering numbers are
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bounded by ||H||. Therefore, a witness consisting of all guests and corresponding recognition-
witnesses has a polynomial size and allows to verify cGi (H) ≤ k for any k such that a
k-G-cover of H exists. The problem of deciding cGi (H) ≤ k is therefore in NP. And since
we can apply binary search, the statement holds.

6.1 Complexity of the Local Track Number Determination
We prepare now for proving that determining cIl (H) given any host graph H is NP-hard.
To this end we rely on the next theorem and enhance parts of its proof. Thereby, we can
transform graphs for a reduction on determination of the local covering number.

Theorem 6.2 (Jiang [Jia13])
Deciding cIg (H) ≤ k is NP-complete for every k ≥ 2.

Recall that an intersection graph of a family f of sets s1, . . . , sn is a graph G with vertex
set V (G), a bijection b : {1, . . . , n} → V (G) and edge set E(G) = {b(i)b(j) : si ∩ sj 6= ∅}.
I.e. two vertices are connected by an edge if and only if their corresponding sets in f have
a common element. The family f is then called a representation of G.

A d-track interval is the union of d disjoint intervals on d disjoint parallel lines called tracks,
one interval on each track.

A d-local track interval graph G is an intersection graph of a family f of d-track intervals
that not necessarily share the same d tracks. On the other side, a d-track interval graph H
is an intersection graph of a family fH of d-track intervals that share the same d tracks. The
representation f of G is called d-local track interval representation of G. The representation
fH of H is called d-track interval representation. See Figure 6.1 for an example.
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b

cd

e

f

f
a c

b
c e

f
b d

a
d e

f b d
ea

e f a b c

Figure 6.1: On the left: A 2-local track interval representation of L(K3) using four tracks.
On the right: A 2-track interval representation of L(K3). Blocked ends are
indicated by squares.

We say that a track t realizes an edge uv of G with regards to f if u and v are assigned to
two d-track intervals that share a point on t. Let I be a d-track interval in a d-(local) track
interval representation r of a graph G. Let v ∈ G denote the vertex assigned to I. Let It

be the interval of I in a track t. Then an end of It is called blocked end (of I and v in r) if
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6.1. Complexity of the Local Track Number Determination

it is not contained in another d-track interval in r. Otherwise it is called free end (of I and
v in r). The representation r has a free end in a track t if t contains an interval It of I
such that It has an end that is neither end of nor contained in another d-interval of r.

For later use we state a slightly stronger version of Jiang’s Theorem 6.2, which easily
follows from his proof.

Theorem 6.3
Deciding cIg (H) ≤ d for H being a graph with cIg (H) ≤ d + 1 is NP-complete for every
d ≥ 2.

Proof. Directly from Jiang’s proof of Theorem 6.2 follows, that the graph H for which cIg (H)
is to determine can be restricted such that the following holds: There is a subgraph S of H
with maximum degree 3 and a d-track interval representation r ofH ′ = (V (H), E(H)\E(S))
such that there is a track t in which all vertices in V (S) have no blocked ends [Jia13].
Recall that Akyama showed that graphs of maximum degree 3 have a linear arboricity
of 2 [AEH80]. Since linear forest are interval graphs, this means the track number of S
is at most 2. Therefore there is a 2-track interval representation s of S. By arranging
the intervals of the vertices of S in t in r as in the first track of s and adding the second
track of s as a new track to r we receive a d+ 1-track interval representation of H (see
Figure 6.2). Therefore we have cIg (H) ≤ d+ 1.
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a

b
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d

a
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b d

d− 1 other tracks realizing

S

H ′

t

E

E

H ′the remainings of

Figure 6.2: Sketch of a d+ 1-track interval representation of H. The parts of H ′ realized
in track t are presented as A, B, C, D and E.

The following lemma delivers a component for which in every d-local track interval repre-
sentation no vertex has two free ends in the same track.

Lemma 6.4
For every number d ∈ N>0 holds cIg (K2d,2d−1) = d and every d-local track interval repre-
sentation of K2d,2d−1 is a d-track interval representation.

Proof. By a result of Akiyama, Exoo and Harary [AEH80], we know cPg (K2d,2d−1) = d.
Since linear forests are interval graphs, we get cIg (K2d,2d−1) ≤ d.

Let r be a d-local track interval representation of K2d,2d−1. Since K2d,2d−1 is a bipartite
graph and therefore triangle-free, every point is contained in at most two intervals of r. So,
when we read a track of the representation from left to right, we obtain at most one new
edge at the left endpoint of each interval except of the first (triangle-free interval graphs
are caterpillar forests). Therefore every track realizes at most |K2d,2d−1| − 1 = 4d− 2 edges.

Note that ||K2d,2d−1|| = 2d(2d− 1) = (4d− 2)d. Thus, if the intervals of all vertices are
distributed on the same d tracks, then in r every track must realize 4d− 2 edges. Therefore,
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in every track each but the first interval intersects the previous interval. In particular, all
d tracks must be used.

Using more tracks in total (but only d for each vertex) means more first intervals, and
results thereby in a lower number of realizable edges. Thus, realizing all edges of K2d,2d−1
in a d-local track interval representation is not possible using more than d tracks in total
(whereas every vertex uses only d tracks). In Figure 6.3 you can see a representation of
K4,3 as part of a graph we define next.

We define Xd as follows: Take 2d copies K1, . . . ,K2d of K2d,2d−1 and connect one vertex
vi of degree 2d− 1 of every copy Ki by an edge to the same new vertex x, which then has
degree 2d. See Figure 6.3 for an example. The next lemma allows us to use it to enforce
usage of d certain tracks.

x

K4

v4
v3v2v1

a b c

v3 x v4 v1 v2b c

v1 x v2 v3 v4a

Figure 6.3: Graph X2 with three added vertices a, b and c and a 2-track interval
representation.

Lemma 6.5
Let d ≥ 1. Then holds:

(i) Let H be the graph that is received by adding a new vertex u to K2d,2d−1 and connecting
it by an edge with a vertex v with deg(v) = 2d. Let r′ be a d-local track interval
representation of H. Then v blocks an end of u in r′.

(ii) There is a d-track interval representation of Xd and a d-track interval L that is in
each track proper, a subset of the d-track interval J of x and disjoint to the d-track
intervals of all other vertices of Xd.

(iii) Let r be a d-local track interval representation of Xd. Then all ends of vertex x are
blocked in r.

Proof. (i): There is no track t such that the interval of v can be contained in the interval
of u in t, since within K2d,2d−1 and t another vertex w must block an end of v and would
therefore be connected with u. Therefore vertex v must block an end of u.

34



6.1. Complexity of the Local Track Number Determination

(ii): We prove that Xd has a d-track interval representation by constructing a corresponding
cover: By Akiyama, Exoo and Harary [AEH80] we know there is a global cover of K2d,2d−1
using d linear forests. Since in every of the 2d vertices of degree 2d− 1 ends at most one
and in vertices of degree 2d ends no linear forest, in every vertex of degree 2d − 1 ends
a path. Cover each copy of K2d,2d−1 with d linear forests (which actually are paths) and
extend the path pi ending in vi to x. Identify for every 1 ≤ i ≤ d the paths p2i−1 and p2i.
Finally identify all other paths arbitrarily such that there remain d linear forests as guest
graphs. Thereby, we receive a cover of Xd using d linear forests. This proves that there
are d-track interval representations of Xd that have in each track t a proper interval Lt

contained in the interval Jt of x and disjoint to all other intervals in the track. (There are
two intervals intersecting Jt in t. These may not intersect and have to block both ends of
Jt allowing space in between.)

(iii): By (i) follows that every copy of K2d,2d−1 blocks another end of x in each d-local
track interval representation r of Xd. Therefore vertex x has no free end in r.

Now we can prove the following announced theorem.

Theorem 6.6
Deciding cIl (H) ≤ d for a given host graph H with cIg (H) ≤ d+ 1 is NP-complete for every
d ≥ 2.

Proof. Interval graphs can be recognized in linear time, as shown by Booth and Lueker
[BL76]. By Lemma 6.1 follows the problem of deciding cIl (H) ≤ d is in NP.

For every graph H and every number d ≥ 2 we construct a graph G(H, d) in polynomial
time with

cIg (H) ≤ d⇔ cIl (G(H, d)) ≤ d.

Thereby we reduce the NP-complete problem of determining cIg (H) ≤ d to the problem of
determining cIl (H) ≤ d. To solve the problem for the global covering number, it suffices to
solve the local problem on the constructed graph. This proves NP-hardness.

Let d ≥ 2 and H be a graph with cIg (H) ≤ d+ 1. Without loss of generality, graph H is
connected (otherwise separately decide for every component).

We take H and d copies X1, . . . , Xd of Xd. Let xi denote the vertex x of Xi for 1 ≤ i ≤ d.
Then we connect every vertex xi to every vertex of H. Call the resulting graph G(H, d)
(see Figure 6.4 for a sketch).

We have cIg (G(H, d)) ≤ d+ 1, since we can extend a d+ 1-global I-cover of H to G(H, d):
First, represent X1, . . . , Xd on the same d tracks t1, . . . , td. By Lemma 6.5(ii) follows that
we may demand for every 1 ≤ i ≤ d an interval Ji in track ti that is subset of the interval
of xi and does not intersect another interval. Now embed d tracks of a d+ 1-track interval
representation of H in d different intervals Ji (add disjoint intervals for vertices that are
not on the original track) and add the remaining track as new track to our representation.
Thereby, we receive a d+ 1-track interval representation of G(H, d).

“⇒:” If cIg (H) ≤ d, then there is a corresponding cover and a corresponding d-track interval
representation r with d tracks t1, . . . , td. Without loss of generality, we may assume that
every vertex has an interval in every track. Now consider a d-track interval representation
s with d tracks s1, . . . , sd for the (disjoint) union of X1 . . . , Xd provided by Lemma 6.5(ii).
We can embed track ti in the interval Li of Xi in si such that all intervals of ti are contained
in Li. This provides the desired representation.
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Figure 6.4: Graph G(H, 2) and a 2-local track interval representation for four vertices. The
part of the representation for X1 and X2 has been omitted, but they block the
ends of x1 and x2 as indicated by squares. The tracks t1 and t2 yield a 2-track
interval representation of H.

“⇐:” If cIl (G(H, d)) ≤ d, then there is a corresponding cover and a corresponding d-local
track interval representation. By Lemma 6.5(iii) it follows that every vertex xi has all
interval ends blocked. Let v ∈ H. The d-track interval of v intersects xi for 1 ≤ i ≤ d, and
since the intervals of those vertices are disjoint, every interval of v is subset of the interior
of an interval of another xi. Now, for every 1 ≤ i ≤ d we can embed all d intervals of xi

disjoint into the same new track ti (we are no longer interested in representing G(H, d)
completely.). Thereby v has one interval in every of the d tracks ti (see Figure 6.4). Further,
the intersections with other intervals of vertices in H stay the same. Hence, we have found
a d-track interval representation of H. In other words, it is possible to identify all interval
graphs covering an edge to the same vertex xi to one new guest. This guest is then itself
an interval graph.

If d is larger than the number of vertices, then the local and global covering number are
smaller than d and no computation is needed. Otherwise adding the copies of K2d,2d−1 is
possible in O(|H|d(4d− 1 + 4d2 − 2d+ 1)) = O(|H|d2) ⊆ O(|H|3).

Therefore the given problem is NP-complete.

6.2 Computationally Easier Determination of the Global Cov-
ering Number

The following theorem gives a construction plan for host classes such that determining
the local covering number is NP-hard, while determining the global covering number is
possible in constant time.

Theorem 6.7
Let G be a union-closed guest class and H′ be a host class, such that:

(i) cGg (H′) = d <∞.
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(ii) Determining cGl (H) < d for H ∈ H′ is NP-hard.

(iii) There is a graph G ∈ H′ such that cGl (G) < d = cGg (G).

Let H = {H ·∪ G : H ∈ H′}. Then determining cGl (J) for J ∈ H is NP-hard, while
determining cGg (J) for J ∈ H is possible in constant time.

Proof. By the first and third item follows that the global covering number with regards to
G of any graph in H is d. Therefore determining cGg (H) for H ∈ H can be done by just
returning d. This is possible in constant time.

To prove that determining cGl (J) < d for J ∈ H is NP-hard, we reduce the problem of
determining cGl (H) < d for H ∈ H′ to it: Given any graph H ∈ H′ we can construct in
polynomial time J := H ·∪G. Since cGl (G) < d, we have cGl (J) < d⇔ cGl (H) < d. Therefore
we can now decide cGl (H) < d by deciding cGl (J) < d. This concludes the proof.

Note that we can replace the local by the folded covering number in this theorem. Further,
we may replace H by H.

Now, with previous results this theorem provides a family of host classes to the guest
class of interval graphs with the desired property. The following lemma provides graphs
matching the description of G in Theorem 6.7(iii) for many different numbers d.

Lemma 6.8
For any n ≥ 3 we have cIg (L(Kn+1)) ≤ cIg (L(Kn)) + 2.

Proof. Kn+1 can be seen as M := Kn plus another vertex v connected to all other vertices
of M by an edge. Consider the line graph L(Kn+1). It contains the line graph J of M .
There are n edges incident to v in Kn+1. Therefore the line graph L(Kn+1) contains,
additionally to J , a disjoint copy of Kn. We refer to it by K. Every edge in M is incident
to exactly two vertices in M and therefore to two edges incident to v. Therefore every
vertex of J in L(Kn+1) is connected to exactly two vertices of K. Those edges are together
with the edges of M all edges of L(Kn+1). See Figure 6.5 for an example for n = 3.

v

a

bc
M

a

bcJ

K

Figure 6.5: On the left: The graph K4. On the right: The line graph L(K4) with a cover
constructed as in the proof of Lemma 6.8.

Let d := cIg (J). There is an optimal d-global I-cover of J . Since n ≥ 3 we know d ≥ 1.
Therefore, we can take the disjoint union of K and G, one of the guest graphs, as a new
guest graph replacing G. We create two new guest graphs G1 and G2 as follows: For every
vertex u of J we know deg(u) = 2. Therefore we can add one of the incident edges to G1
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and the other one to G2. Thereby G1 and G2 are star forests and therefore interval graphs.
By adding these two guest graphs to the cover, we receive an injective cover of L(Kn+1)
with regards to I of size d+ 2. That concludes the proof.

Let n(d) = min{n ∈ N0 : cIg (L(Kn)) = d}, J≤d := {J : cIg (J) ≤ d} and
Jd := {J ·∪ L(Kn(d)) : J ∈ J≤d}.

Corollary 6.9
Let m ≥ 2. Then there is a d ∈ {m,m + 1} such that determining cIl (H) for H ∈ Jd is
NP-complete, while determining cIg (H) for H ∈ Jd is possible in constant time.

Proof. Let d ≥ 2 such that there is a n ∈ N0 : cIg (L(Kn)) = d. By Lemma 6.1 follows the
problems of deciding cIl (H) < d and cIg (H) ≤ d are in NP, since interval graphs can be
recognized in polynomial time as proved by Booth and Lueker [BL76]. Then for the guest
class I and the host class Jd we have: By construction of J≤d follows cGg (J≤d) = d <∞
corresponding to item (i) of Theorem 6.7. By Theorem 6.6 follows item (ii) and by definition
of d and by Theorem 5.1 follows item (iii). This proves the statement for the given d.

Since L(K3) = K3 ∈ I we have cIg (L(K3)) = 1. Let m ≥ 2 and k ∈ {m,m + 1}
with n0 ∈ N0 such that cIg (L(Kn0)) = k. Then let n = max{n : cIg (L(Kn)) = k.}. If
k = m+ 1, then k ∈ {m+ 1,m+ 2}. Otherwise we have k = m and by Lemma 6.8 follows
cIg (L(Kn+1)) ∈ {k + 1, k + 2} = {m+ 1,m+ 2}. Therefore, there is a k′ ∈ {m+ 1,m+ 2}
such that cIg (L(Kn+1)) = k′. By induction follows the statement.

Note that the guest class I is union-closed and induced-hereditary, while the host class is
artificial. Actually, if the host class is not restricted, then even worse results are possible, as
the following theorem shows. Recall that P denotes the class of linear forests. Let S ⊂ N0.
We define PS as the closure of P ∪ {Ck : k ∈ S} under taking disjoint unions. By choosing
S such that deciding k ∈ S for k ∈ N0 is undecidable, we get a pair of guest and host class
such that determining the local covering number is not possible at all, while the global
covering number is constant. Also weaker results, where the local covering number can
be computed with high complexity, are possible, but therefore the complexity of deciding
k ∈ S must be at least exponential.

Theorem 6.10
There is a class of graphs H such that: For all S ⊂ N0 such that 3, 4 ∈ S and 5, 6 /∈ S let
INS be the problem of deciding k ∈ S for k ∈ N0. Then INS can be reduced in O(k) time
to the problem of determining cPS

l (H) for H ∈ H, while determining cPS
g (H) for H ∈ H is

possible in constant time.

Proof. We firstly construct a graph G with cPS
l (G) = 2 and cPS

g (G) = 3 that additionally
ensures 4-regularity. We use it to construct the graphs of a graph class comparable to the
host class in Theorem 6.7. A difference is that the complexity is not delivered by the host
class, but by the guest class.

We start the construction of G with the complete bipartite graph K2,3 with partition class
A of 2 vertices and partition class B of 3 vertices. We add 3 edges between the vertices
of B, such that B induces a K3. Finally we add a new vertex v and connect it to both
vertices of A by an edge. Thereby all vertices of G have degree 4 except of v that has
degree 2. See Figure 6.6.

Since the maximum degree of G is 4 and the maximum degree of any graph in P is at most
2, the local covering number of G with regards to PS is at least 2. On the other hand,
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v

A

B

Figure 6.6: Graph G with an optimal 2-local 3-global PS-cover

there is a cover proving cPS
l (G) = 2: The first guest graph is the K3 induced by set B.

The second guest graph is the C4 on v, A and any vertex u ∈ B. The third guest graph is
the C4 on the remaining 4 edges. Since the guest graphs are edge-disjoint, every vertex in
G is contained in at most 2 guest graphs. That proves cPS

l (G) = 2. Note that the cover
also proves cPS

g (G) ≤ 3.

Assume for sake of contradiction that cPS
g (G) ≤ 2. In that case there is a cover of G using

only two guests. Since every vertex but v in G has degree 4, no path may end in another
vertex but v. Therefore, no guest may contain a path component. Since G contains only 6
vertices and P does not contain C5 or C6, all components in the guest graphs have to be C3
or C4. Since v is not contained in an induced K3 of G and there are only 5 other vertices,
there cannot be 2 disjoint copies of K3 in G. Therefore, both guest graphs have to be a C3
or a C4 covering at most 2 · 4 = 8 < 10 = |E(G)| edges of G in contradiction to every edge
being covered. We have therefore cPS

g (G) > 2. With our previous note follows cPS
g (G) = 3.

We can now construct the graphs of class H. Let k ≥ 3. We construct Hk as follows:
Consider a Ck and for each vertex of Ck a copy of G. Finally identify each vertex of Ck

with vertex v of the corresponding copy of G. Now we can define H = {Hk : k ≥ 3}.

Let k ≥ 3. Since Hk contains G as induced subgraph, we know cPS
g (Hk) ≥ 3. By

construction Hk is 4-regular. As a result of Akiyama, Exoo and Harary we know 4-regular
graphs have linear arboricity 3 [AEH81]. Since P ⊂ PS this shows cPS

g (Hk) = 3.

On the other hand, assume cPS
l (Hk) = 2. Then there is an injective cover c of Hk such that

every vertex is contained in at most 2 guest graphs. Since the guest graphs have maximum
degree at most 2, every guest graph has to have in every vertex degree 2 and therefore
must be a disjoint union of cycles. Since the copies of G are biconnected components of Hk,
all guest graph components covering them cover no edge of the Ck in Hk. Further every
vertex of the Ck is contained in a guest graph component covering v in the corresponding
copy of G. Therefore, every vertex of Ck may be covered by at most one guest graph
component covering an edge of Ck. Therefore, cycle Ck has to be a guest graph component
i.e., Ck ∈ PS , as PS is closed under taking components (and even taking subgraphs).

If, however, Ck ∈ PS then we can cover every copy of G as stated before and consider Ck

as another guest graph proving cPS
l (Hk) = 2. This concludes to cPS

l (Hk) = 2⇔ Ck ∈ PS .

Since Hk can be constructed in O(k) we can therefore reduce the problem of deciding
k ∈ S to the problem of determining cPS

l (H) for H ∈ H. Since for every graph H ∈ H
holds cPS

g (H) = 3, the global covering number can be determined in constant time by just
returning 3. This closes the proof.
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Note that k as input of a problem has size log(k). Therefore, the reduction in Theorem 6.10
has exponential complexity, and provides only interesting results for problems with a higher
complexity. Especially, if the problem of deciding k ∈ S is not decidable at all, e.g., for
S being the set of encodings of halting Turing machines, then neither is the problem of
determining the local covering number of graphs in H. Since H ∈ H is equivalent to
cPS

g (H) = 1, a pair of host and guest class for that determining the local covering number
is harder than determining the global covering number due to complexity of the guest class
is only possible if the host class is not hereditary. Therefore it is interesting to consider
only hereditary host graphs or at least guest graphs that can be recognized in polynomial
time.

6.3 Computational Complexity of the Linear Arboricities
Péroche proved that deciding cPg (G) ≤ 2 is NP-complete. We can extend our result
on differing local linear arboricity and linear arboricity to prove NP-completeness for
cPg (G) ≤ k with any k ≥ 2 and thereby generalize his result.

But first we extend Péroche’s result to the local and folded linear arboricity.

Let H = {H : ∆(H) = 4, δ(H) = 3 and |{v ∈ V (H) : deg(v) = 3}| = 4}.

Theorem 6.11 (Péroche [Pé84])
Deciding cPg (H) ≤ 2 for H ∈ H is NP-complete.

Corollary 6.12
Deciding cPl (H) ≤ 2 for H ∈ H is NP-complete.

Proof. It suffices to prove for allH ∈ H that cPg (H) ≤ 2⇔ cPl (H) ≤ 2. By Proposition 3.3(i)
we have cPg (H) ≤ 2⇒ cPl (H) ≤ 2. On the other hand, if there is an injective cover c of H
with ∀v ∈ V (H) : c−1(v) ≤ 2, then in every vertex at most one path ends, and in every
vertex of degree 4 no path ends. This allows at most 4 path ends and hence at most 2
paths in c. In particular, c is an injective cover of H with regards to P of size 2. This
proves cPg (H) ≤ 2⇔ cPl (H) ≤ 2. This concludes the proof.

We claim that, if the recognition of compositions of k directed Hamilton cycles is NP-
complete for any k ≥ 2, then it is NP-complete to decide cPl (H) ≤ k for a given graph H
(Péroche’s proof is based on the case k = 2).

Theorem 6.13
Let k ≥ 2. Then the problem Lk

g of deciding cPg (H) ≤ k for a given graph H is NP-complete.

Proof. Theorem 6.11 proves the statement for k = 2. Therefore we can assume k ≥ 3.
Since linear forest can be recognized in polynomial time, we know by Lemma 6.1 that Lk

g

is in NP.

We reduce the problem of deciding whether a k-regular graph has a 1-factorization (a
decomposition into r perfect matchings), which is NP-complete (for k ≥ 3) as proven by
Leven and Galil [LG83], in polynomial time to Lk

g . This proves NP-hardness and therefore
concludes the proof.

Let H be a k-regular graph. Then identify every vertex of H with v in another copy of En

(see Section 5.2 for a definition). Since |V (En)| ∈ O(n2), this is possible in polynomial time.
Call the resulting graph H ′. By Lemma 5.3 we know cK2

g (H) ≤ n⇔ cPg (H ′) ≤ n and since
the left statement just means there is a 1-factorization of H our reduction is complete.
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6.3. Computational Complexity of the Linear Arboricities

Note that Theorem 5.5 yields a linear time algorithm to determine the folded linear
arboricity. Therefore, the class of linear forests is a first example of a guest class where
it is NP-complete to determine the local covering number, whereas the folded covering
number can be computed in polynomial time.
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7. Boxicity as Covering Number

The boxicity is a parameter generalizing the concept of interval graphs and was introduced
by Fred S. Roberts [Rob69]. In this chapter we consider it as a global covering number
of complement graphs, as Cozzens and Roberts already did [CR83], and introduce the
corresponding local and folded boxicity, as well as the global covering number with regards
to the corresponding union-closed guest class, called union boxicity. We argue why we
choose the union-closed guest class also for local and folded boxicity and that those coincide.
Further, we give geometric interpretations of these parameters and present graphs for that
the local and union boxicity are 1, while the classical boxicity can be arbitrarily large.

7.1 Introduction of Union Boxicity and Local Boxicity
Recall from Section 3.3 that an intersection graph of a family f of sets s1, . . . , sn is a
graph G with vertex set V (G), a bijection b : {1, . . . , n} → V (G) and edge set E(G) =
{b(i)b(j) : si ∩ sj 6= ∅} meaning two vertices are connected by an edge if and only if their
corresponding sets in f have a common element. The family f is then called an intersection
representation of G.

We already considered the class I of interval graphs that are the intersection graphs of
intervals in R. An intersection representation of a graph G containing only intervals is
called an interval representation of G.

A natural generalization is to consider intervals of higher dimension that can be described
as Cartesian products of intervals in R. We call them boxes, and the dimension of a box
b is the number of intervals whose Cartesian product is b. Actually, every graph G is an
intersection graph of d-dimensional boxes for some d ≤ |G|/2[Rob69]. Correspondingly, the
boxicity is the smallest d ∈ N0 such that G is an intersection graph of d-dimensional boxes.

The following theorem characterizes the boxicity of a graph H as the smallest number of
interval graphs whose intersection is H. Figure 7.1 gives an (suboptimal) example for such
an intersection.

Theorem 7.1 (Roberts [Rob69])
For any graph G we have box(G) ≤ d⇔ ∃I1, . . . , Id ∈ I : G = I1 ∩ . . . ∩ Id.

Proof. Consider an intersection graph G of d dimensional boxes. For every dimension
1 ≤ i ≤ d we can consider the family Fi of all intervals I(v)

i ⊂ R corresponding to any vertex
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7. Boxicity as Covering Number

t1

t2 I1

I2 I1 ∩ I2

Figure 7.1: Top left: Representation of a graph H as intersection graph of 2-dimensional
boxes with the projections of the boxes into the both tracks t1 and t2. Top
right: Interval graph I1 represented on track t1. Bottom left: Interval graph I2
represented on track t2. Bottom right: Graph G = I1 ∩ I2.

v of G and its corresponding box I(v) = I
(v)
1 × · · · × I(v)

d . Then we have the intersection
graph Ii of Fi that is an interval graph and has the same vertex set as G. We realize two
boxes I(a) = I

(a)
1 × · · · × I(a)

d and I(b) = I
(b)
1 × · · · × I

(b)
d intersect if and only if for every

dimension 1 ≤ i ≤ d the intervals I(a)
i and I(b)

i intersect. This again is equivalent to a and
b being neighbours in Ii. Therefore we have G = I1 ∩ . . .∩ Id. That means G is intersection
of d interval graphs.

If on the other side there is a graph H that is intersection of d interval graphs I1, . . . , Id

with fixed interval representations, then for every vertex v of H there is the box I(v) =
I

(v)
1 × · · · × I(v)

d in which I
(v)
i describes the interval in the interval representation of Ii

corresponding to vertex v for 1 ≤ i ≤ d. We just saw, two of these boxes intersect if and
only if the corresponding vertices intersect in each of the interval graphs, and therefore if
and only if the corresponding vertices are connected by an edge in H. This shows H to be
an intersection graph of d dimensional boxes.

Hence, the boxicity box(G) of a graph G can also be characterized as the minimum number
d such that G is intersection of d interval graphs G = I1 ∩ . . . ∩ Id.

Recall that De Morgan’s Law states for any sets S1, . . . , Sn that Sc
1∩. . .∩Sc

n = (S1∪. . .∪Sn)c.
Therefore, the equation G = I1 ∩ . . . ∩ Id is equivalent to Gc = Ic

1 ∪ . . . ∪ Ic
d. That is just

another way to say that the global covering number of G with regards to the class Ic of
complements of interval graphs equals d. Therefore, we can view the boxicity of a graph as
a covering number of its complement [CR83]. We call a graph that is the complement Ic

of an interval graph I ∈ I also cointerval graph.

Since we usually are interested in union-closed guest classes, we define the union boxicity
of a graph G, denoted by box(G), as the global covering number of Gc with regards to Ic,
the class of collections of cointerval graphs. Correspondingly, we define the local boxicity of
G, denoted by boxl(G), as the local covering number and the folded boxicity of G, denoted
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7.1. Introduction of Union Boxicity and Local Boxicity

by boxf (G), as the folded covering number of Gc with regards to the class Ic. I.e., we
define box(G) := cI

c

g (Gc), boxl(G) := cI
c

l (Gc) and boxf (G) := cI
c

f (Gc).

Considering the closure with regards to disjoint union of the guest class Ic is more interesting
for the folded covering number, since, as we show below, it is always 1 or ∞ with regards
to Ic (with trivial exceptions where it is 0). For the local covering number this has no
effect, since we can consider in every d-local cover every component as another guest and
receive still a d-local cover.

Recall that a homomorphism φ from a graph G to a graph H is a function φ : V (G)→ V (H)
such that if two vertices v and w are connected by an edge in G, then their images in H are
also connected. Recall that we call a graph class G closed under taking folded components
if for any G ∈ G, any homomorphism φ : G→ H into some graph H and every component
C of G the class contains the graph φ(C). By contracting two vertices v and w in a graph
G we mean the process of removing the vertices v and w from G and adding a new vertex
u that is adjacent to all remaining vertices that were adjacent to v or w.

Lemma 7.2
If a guest class G is closed under contracting non-adjacent vertices, then for every host
graph H except independent sets we have cGf (H) <∞⇔ H ∈ G ⇔ cGf (H) = 1.

Proof. The right equivalence follows by definition. The induction from right to left in
the left equivalence is thereby obvious, and it is left to show that a finite folded covering
number equals always 1. If and only if there is a folded cover c of H, then the folded
covering number is finite. We use induction over the number of folded vertices that equals
|D| − |I| for a cover c : D → I.

Start of induction: If no vertices are folded in a folded G-cover c, then it is injective and
therefore cGf (Img(c)) = 1.

Induction Hypothesis: Let n ∈ N0 and every folded G-cover c folding n vertices fulfills
cGf (Img(c)) = 1.

Induction Step: Then let c′ : G→ H be a folded G-cover of H folding n+ 1 vertices. There
are two folded vertices v and w with c(v) = c(w). Consider graph G′ that we receive by
contracting v and w in G. Since two vertices can only be folded if they are non-adjacent,
and G is closed under contracting non-adjacent vertices we know G′ ∈ G. The cover c′
induces a folded G-cover c : G′ → H in which only n vertices are folded (map every vertex
as in c′ and map the new vertex as v and w). Therefore we can apply the Induction
Hypothesis, which proves cGf (Img(c′)) = 1. This concludes the proof.

The following lemma allows us to apply this proposition to cointerval graphs and allows us
to prove that folded and local boxicity coincide.

Lemma 7.3 (i) Let Ic ∈ Ic be a cointerval graph. Then Ic has at most one non-trivial
connected component.

(ii) The class of cointerval graphs Ic is closed under contracting non-adjacent vertices.

(iii) The class of cointerval graphs Ic is closed under taking folded components.

Proof. Let Ic ∈ Ic. We know that C4 is not induced subgraph of any interval graph [LB62].
Hence, we have C4 6⊆ I and therefore Cc

4 6⊆ Ic. Since the complement of C4 is a matching of
two non-adjacent edges, all edges of Ic are adjacent and therefore in the same component.
Therefore item (i) holds.
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7. Boxicity as Covering Number
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Figure 7.2: Top: Cointerval graph Ic, interval graph I and its interval representation.
Bottom: Cointerval graph I ′c resulting from contraction of v and w in Ic,
interval graph I ′ and its interval representation.

Let v and w be non-adjacent vertices in a cointerval graph Ic and r be an interval
representation of interval graph I with the intervals Sv and Sw corresponding the vertices
v and w (see Figure 7.2). Then the intersection S = Sv ∩ Sw is non-empty. The interval of
any vertex z intersects S if and only if it intersects Sv and Sw. This, however, is equivalent
to z being neither adjacent to v nor adjacent to w in Ic. Let u be the vertex and I ′c be
the graph resulting from contracting v and w in Ic. We receive an interval representation
of I ′ by replacing Sv and Sw in r by S and associating S with u. As we have seen, an
interval of a vertex z intersects S if and only if z is neither adjacent to v nor to w and is
therefore not adjacent to u in I. The intersections of other intervals and the adjacency of
other vertices did not change. Therefore, we have an interval representation for I ′ proving
I ′c ∈ Ic. Therefore Ic is closed under contracting non-adjacent vertices and item (ii) holds.

Let Jc ∈ Ic and φ : Jc → H be a graph homomorphism. Since Ic is induced-hereditary, as
is I, every component Ic of Jc is also a cointerval. To show item (iii) it suffices to show
φ(Ic) ∈ Ic. Since φ|Ic : Ic → φ(Ic) is edge-surjective, it is a folded Ic cover of φ(Ic). By
Lemma 7.2 follows φ(Ic) ∈ Ic and thereby item (iii).

As a consequence of Lemma 7.2 and Lemma 7.3 (ii), the folded covering number of host
graphs that are not independent sets with regards to cointerval graphs is always 1 or ∞.
Note that this is due to the definition of homomorphisms that allows only non-adjacent
vertices to be folded. One may ask instead for the smallest number d for a graph H such
that it is the result of contractions (of adjacent vertices) in a cointerval graph Ic where
every vertex is the result of at most d contractions.

As seen in Chapter 5 the folded and local covering number with regards to the same
pairs of guest and host class can differ arbitrarily. But the following theorem shows, as a
consequence of Lemma 7.3 (iii), that they coincide with regards to Ic.

Theorem 7.4
Let G be any graph. Then boxf (G) = boxl(G).
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7.2. Geometric Interpretation

Proof. Since Ic is union-closed by definition and closed under taking folded components
by Lemma 7.3 (iii), we can apply Proposition 3.3 (ii) and (iii) and have therefore

cI
c

f (Gc) ≤ cIc

l (Gc) and cIc

f (Gc) ≥ cIc

l (Gc).

Therefore boxf (G) = cI
c

f (Gc) = cI
c

l (Gc) = boxl(G).

7.2 Geometric Interpretation
The next Theorem provides a geometric interpretation of the local boxicity in terms of
intersection graphs. While for a boxicity of d we may use only d-dimensional boxes, for
a local boxicity of d we may choose boxes of arbitrary dimension but restrict every box
I = I1 × · · · × Im by demanding Ii = R for all but at most d numbers i ∈ {1, . . . ,m}. See
Figure 7.3 for an example.

Theorem 7.5
Let H be a graph on n vertices. Then boxl(H) ≤ d⇔ H is intersection graph of boxes in
Rm(m ∈ N0) each being the Cartesian product of m non-empty intervals in R of which at
most d do not equal R.

Proof. The left statement boxl(H) ≤ d is equivalent to cIc

l (Hc) ≤ d and means there is a
disjoint union of cointerval graphs and an injective homomorphism from each of them to
Hc such that every edge of Hc is covered by one of these homomorphisms and every vertex
of Hc is covered at most d times.

Equivalently, you can colour every edge of Hc allowing multiple colours on each edge such
that for every vertex the incident edges have at most d different colours and the edges of
any colour and all vertices of Hc form a cointerval graph (Ic is closed under adding isolated
vertices). This means for every colour we have an interval representation in which without
loss of generality every vertex that is isolated with regards to this colour has interval R.

Consider one representation rc for every colour c and for every vertex v the Cartesian
product of the intervals of v of rc for every colour c. Two of the boxes retained that way
intersect exactly if the intervals of the corresponding vertices x and y intersect in every
representation. This, however, is equivalent to xy being not contained in any colour set
and therefore not contained in E(Hc). This in turn is equivalent to xy ∈ E(H). Every
such box representation induces interval representations of cointerval graphs that cover Hc

such that for every vertex the number of its intervals that do not equal R is equivalent to
the number of cointerval graphs in which it is non-isolated.

There is a corresponding interpretation for the union boxicity: For a union boxicity of
d of a graph H we may again use boxes of arbitrary dimension, but we have to choose
a partition of the dimensions into d sets D1, . . . , Dd such that every box equals R in all
dimensions except of at most one in each set Di (1 ≤ i ≤ d) completely:

The sets D1, . . . , Dd correspond to the d guests G1, . . . , Gd in a d-global Ic-cover of Hc.
Let Ci,1, . . . , Ci,mi be the components of Gi for every 1 ≤ i ≤ d.

We can associate each guest component C with an interval representation of its complement
and thereby with another dimension. This representation contains an interval for every
vertex v in that component. While each guest can have arbitrarily many components, every
vertex is covered by at most one component of each guest and has therefore at most one
interval I(v)

i,jv,i
in a representation of a component Ci,jv,i of Gi (1 ≤ i ≤ d). By associating it

with interval I(v)
i,k := R in the representations of each other component Ci,k of Gi, we do not
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Figure 7.3: Top: Graph H and a representation for boxl(H) ≤ 2. Center: Graph H and
a representation for box(H) ≤ 2. Bottom: Graph H and a representation for
box(H) ≤ 2. In all three cases the dashed edges belong to the complement
Hc of H and are covered by cointerval graphs and unions of cointerval graphs,
respectively. Note that in the top case every vertex has at most 2 intervals
unequal R, in the center case every vertex has at most one such interval in every
dimension set D1 and D2 and in the bottom case we use only two dimensions
at all. In the first and second case H is an intersection graph of 4-dimensional
boxes that are not presented directly, but are for every vertex the Cartesian
product of its intervals.

change the realization of edges in Hc. But we can now associate every vertex v with box
(I(v)

1,1 × · · · × I
(v)
1,jv,1

× · · · × I(v)
1,m1)× · · · × (I(v)

d,1 × · · · × I
(v)
d,jv,d

× · · · × I(v)
d,md

). The intersection
graph of those boxes is H, since in every dimension one guest component is realized.
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7.3. Separation of Local and Union, and Classical Boxicity

The classical boxicity allows only one component per guest and therefore only one dimension
in every set Di (1 ≤ i ≤ d). And this is its known interpretation.

7.3 Separation of Local and Union, and Classical Boxicity

By Proposition 3.3 (i) and (v) we know for any graph G that cIc

l (Gc) ≤ cIc

g (Gc) ≤ cIc

g (Gc),
since Ic is union-closed and superclass of Ic. Therefore we have

boxl(G) ≤ box(G) ≤ box(G).

It is now interesting by how much these numbers may differ. Actually, it is quite easy to
find graphs where union boxicity and classical boxicity differ arbitrarily, as we can see in
the next theorem.

Theorem 7.6
Let n ∈ N0 and Mn be the matching consisting of n edges. Then box(M c

n) = 1, whereas
box(M c

n) = n.

Proof. By Lemma 7.3 (i) we know every cointerval graph has at most one component
containing an edge. Hence, a global Ic-cover of Mn contains at least n guests to cover
all n components. Since K2 is a cointerval graph, there actually is a n-global Ic-cover
of Mn. Thus, we have box(M c

n) = cI
c

g (Mn) = n. On the other hand, the class Ic is
union-closed and, since K2 is a cointerval graph, it contains all matchings. Therefore we
have box(M c

n) = 1.

Note that the complements of matchings where already used by Roberts to show that the
boxicity is unbounded [Rob69].
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8. Conclusion

In this thesis, we investigated the global, the local and the folded covering number of host
graphs (and classes) with regards to different guest classes. Specifically, we investigated
the linear arboricity and boxicity in their global, local and folded variants. Further, we
compared the different kinds of covering numbers for same pairs of host and guest classes
in terms of separation and computational complexity. Several interesting questions remain
open, which we summarize below.

8.1 Separation of Folded, Local and Global Covering Number

We have presented the bipartite graphs as union-closed hereditary guest class with regards
to which all folded covering numbers are bounded by a constant k (which in this case equals
2), whereas the corresponding local covering numbers get arbitrarily large. On the other
hand, we have proven that this is not possible for topological-minor closed union-closed
guest classes on any host class, i.e., with regards to such guest classes a host class with
bounded folded covering number has also a bounded global covering number.

However, Knauer and Ueckerdt showed that there are host graphs where the global covering
number is asymptotically twice the local covering number for increasing local covering
numbers with regards to certain minor-closed union-closed guest glasses, i.e., star forests
and caterpillar forests [KU12]. But we do not know whether the global covering number
can be larger than twice the corresponding local covering number. If there is a bound on
this factor, it may be useful for bounding global covering numbers.

Question 8.1
Is there for every r > 0 a minor-closed union-closed guest class G and a host graph H such
that cGg (H) ≥ r · cGl (H)?

Further, we know that folded and local covering number with regards to linear forests, a
minor-closed union-closed guest class, may differ by 1, but we do not know whether we
have larger differences for such guest classes. The original question stays in this case open.

Question 8.2
Let G be a minor-closed union-closed guest class and H be a host graph. By how much can
cGf (H) and cGl (H) differ?
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8. Conclusion

As part of our results, we proved that with regards to the guest class of bipartite graphs
the folded covering number is bounded on all graphs. Further, there are several pairs of
host classes and guest classes such that global, local or folded covering number are bounded
(e.g., the guest class of star forests with every kind of forest we mentioned in this thesis
as host class, see Lemma 5.8). One may therefore ask for which guest classes the local or
global covering number of all graphs is absolutely bounded. By Theorem 5.11 we know
such a guest class must contain all complete graphs and coincides therefore with the class
of all graphs if it is hereditary.

Question 8.3
Let i = g, l. Is there an induced-hereditary guest class G that is not the class of all graphs
and a number d ∈ N0 such that for every graph H we have cGi (H) ≤ d?

In the end we are still interested in restrictions that strongly bound the difference between
global and local covering number or make them even coincide, as it is the case for global,
local and folded arboricity.

8.2 Computational Complexity
We have presented a union-closed host class for which determining the folded and local
covering number with regards to interval graphs is NP-complete, whereas the corresponding
global covering number is computable in polynomial time, since it is constant. Since the
host class is artificial, it is interesting whether this is also possible for a more natural host
class. Especially an induced-hereditary host class H is interesting, since it does not allow
to add a component to every host graph H to achieve a constant global covering number,
since the graph without that component is also contained in H.

Question 8.4
Is there a union-closed guest class G and an induced-hereditary host class H such that
determining the local or folded covering number for host graphs in H is NP-complete,
whereas the global covering number can be computed in polynomial time?

We are especially interested in such results for the host class of all graphs, as these would
be more general.

Question 8.5
Is there a union-closed guest class G such that determining the local or folded covering
number for any given graph is NP-complete, whereas the global covering number can be
computed in polynomial time?

In the end we are interested in general properties for guest and host class such that it is
not possible. This would strengthen the approach of considering folded and local covering
number, as it would allow proving NP-hardness of determining the global covering number
by proving it for the folded or local covering number.

Further, we have reduced the problem of determining the track number to the problem of
determining the local track number. One may ask for general properties of host and guest
class such that NP-hardness of determination of the global covering number induces that
it is also NP-hard to determine the local or folded covering number. This would allow
proving that the global covering number is computable in polynomial time by proving so
for the folded or local covering number. Since this appears to be usually not true for “small”
guest classes like the classes of matchings and the class of star forests [KU12], considering
hereditary or minor-closed guest classes does not seem to be helpful.
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8.3. Folded, Local and Global Linear Arboricity

Question 8.6
Which properties of a guest class G enforce that if determining cGg (H) for any graph H is
NP-complete, then determining cGl (H) for any graph H is also NP-complete?

In Theorem 5.2 we showed that the folded covering number of any graph H with regards
to the class B of bipartite graphs is at most 2. Since bipartite graphs can be recognized in
polynomial time, we can decide whether cBf (H) = 1 in polynomial time. Therefore, we can
determine cBf (H) in polynomial time.

On the other hand, it is open whether the problems of determining the corresponding local
covering number are NP-complete, which is probably the case. Note that the problem of
determining the corresponding global covering number is known to be NP-complete by a
result of Orlin [Orl77].

We already know cases in which determining the global, the local and the folded covering
number are three NP-complete problems, and cases in which determining folded and local
covering number is possible in polynomial time, whereas determining the global covering
number is NP-complete [KU12]. If determining the local covering number with regards
to bipartite graphs is NP-complete, this yields an example where determining the folded
covering number is possible in polynomial time, whereas determining the local covering
number is NP-complete. The linear arboricity is another guest class with this property, as
discussed in Section 6.3.

Question 8.7
Is the problem of determining cBl (H) for a given graph H NP-complete?

8.3 Folded, Local and Global Linear Arboricity
We have proven the Local Linear Arboricity Conjecture (LLAC) stated by Knauer and
Ueckerdt [KU12] as a weakening of the Linear Arboricity Conjecture (LAC). However,
following the approach of considering folded and local covering number to attack a problem
for the global covering number is not straightforward.

While global, local and folded arboricity coincide, we could present examples where folded
and local linear arboricity differ and examples where local and global linear arboricity
differ. As a byproduct we could show that deciding whether the linear arboricity of a
given graph is at most k is NP-complete for a fixed k ≥ 2, which is a new result for k ≥ 3 .

The LAC remains open and some weaker conjectures, as stated by Knauer and Ueck-
erdt [KU12], remain open, too. Our proof of LLAC is another indicator of its trueness and
possibly it can be used to attack LAC further. The resulting algorithm to compute an
optimal local cover has a runtime in O(|V |+ |E|2) and one may ask for a faster algorithm.

Question 8.8
Is there an algorithm that computes for a given graph H = (V,E) an optimal local P-cover
with a time complexity less than O(|V |+ |E|2)?

8.4 Boxicity
Finally, We have considered the boxicity of a graph H as cIc

g (Hc), the global covering
number of its complement Hc with regards to Ic, the class of all complements of interval
graphs. We have introduced the corresponding union boxicity as the covering number
cI

c

g (Hc) with the union-closed guest class variant and the local boxicity, which is the
corresponding local covering number cIc

l (Hc), and coincides with the folded one. We have
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8. Conclusion

found geometric interpretations for both parameters. A graph H with boxl(H) = d is the
intersection graph of boxes that equal R in all but d dimensions, and a graph H with
box(H) = d is the intersection graph of boxes with d sets of dimensions such that every
box equals R in every but at most one dimension of every set. Finally, we gave an example
of graphs with local and union boxicity 1 but arbitrarily large classical boxicity.

One may ask several general questions in terms of covering numbers on union boxicity and
local boxicity. The classical boxicity is an upper bound on both these parameters, but
there are probably better upper bounds. We are generally interested in sharp lower and
upper bounds of the local and the union boxicity. There may also be properties of host
classes such that union boxicity and classical boxicity coincide or such that their difference
is bounded.

Question 8.9
What are tight bounds for union or local boxicity?

Further, we know that computing the classical boxicity is NP-hard by a result of
Cozzens [Coz81]. Perhaps their proof can be modified to show that computing the union
boxicity is NP-hard, too. A corresponding result for the local boxicity would be also
interesting.

Question 8.10
Is the problem of determining boxl(H) or box(H) for any graph H NP-complete?

While intersection graphs of boxes induce interval graphs in each dimension, other intersec-
tion graphs lack a corresponding property. But maybe some of them can still be treated in
a similar way.

Question 8.11
Are there other kinds of intersection graphs that can be considered in terms of covering
numbers?
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