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Abstract

An F -free graph does not contain an induced subgraph from a set of forbidden
subgraphs F . Edges in a graph can be edited, i.e. removed or inserted, to
reach a graph which is F -free. Finding a minimal set of such edits is the goal of
F-free Edge Editing. In this thesis, we cover a generalization, Weighted
F-free Edge Editing, which allows non-unit costs for each editing operation.

We focus on a fixed-parameter tractable (FPT) search tree algorithm with
the editing cost as the parameter and adapt existing speed-up techniques
for unweighted editing to the weighted case. For instance, we investigate
algorithms for calculating lower bounds and subgraph selection strategies for
branching. Also, we discuss the problem of finding the optimal editing cost for
the search tree algorithm and propose two novel search strategies. Additionally,
we cover an integer linear program (ILP) algorithm and methods for restricting
constraint generation.

Moreover, we evaluate the FPT and ILP algorithms and their speed-up tech-
niques on protein-protein interaction networks for F = {C4, P4}. The FPT
algorithm benefits the most from the greedy lower bound and the “most ad-
jacent” subgraph selection rule for branching. Also, we notice that the local
search algorithm suffers from local maxima in the weighted case. Furthermore,
we find that the restrictions on the generation of constraints lead to significant
running time improvements for the ILP algorithm. Finally, we compare both
solving algorithms and find that the ILP algorithm consistently manages to
outperform the FPT approach.

Deutsche Zusammenfassung

Ein F-freier Graph besitzt keinen induzierten Teilgraphen aus einer Menge
von verbotenen Teilgraphen F . Man kann Kanten in einem Graphen editieren
(einfügen oder entfernen) um einen Graphen zu erreichen, der F-frei ist. Das
Ziel von F-free Edge Editing ist es, eine minimale Menge an Editierungsop-
eration zu finden, die zu einem F -freien Graphen führen. Wir betrachten eine
Generalisierung, Weighted F-free Edge Editing, die beliebige Kosten für
die Editierungsoperationen erlaubt.

In dieser Arbeit fokussieren wir uns auf einen parametrisierten Suchbaumal-
gorithmus (FPT) mit den Editierungskosten als Parameter. Wir adaptieren
bereits existierende Beschleunigungstechniken für das ungewichteten Editieren
für den gewichteten Fall. Unter anderem betrachten wir Algorithmen zum
Berechnen von unteren Schranken und Strategien für die Auswahl von Teil-
graphen zum Verzweigen. Außerdem diskutieren wir das Problem, die optimalen
Editierungskosten für den Suchbaumalgorithmus zu finden und präsentieren
dafür zwei neue Suchstrategien. Zusätzlich behandeln wir einen Algorithmus
basierend auf ganzahliger linearer Optimierung (ILP) und Methoden, die die
Anzahl der generierten Bedingungen beschränken.

Des Weiteren evaluieren wir die FPT und ILP Algorithmen und ihre Beschleu-
nigungstechniken auf Protein-Protein Interaktionsgraphen für F = {C4, P4}.
Wir stellen fest, dass der FPT Algorithmus am meisten von dem Greedy-
Algorithmus für untere Schranken und der Auswahlstrategie “most adjacent”
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profitiert. Letztere präferiert Teilgraphen, die zu vielen anderen verbotenen
Teilgraphen adjazent sind. Auch fanden wir heraus, dass der Algorithmus
für die untere Schranken, der auf lokaler Suche basiert, im gewichteten Fall
größere Probleme mit lokalen Maxima hat. Weiterhin bemerken wir, dass das
Beschränken der Anzahl der generierten Bedingungen den ILP Algorithmus
signifikant schneller werden lässt. Schlussendlich haben wir beide Lösungsal-
gorithmen verglichen und kamen zum Schluss, dass der ILP Algorithmus
konsistent besser ist als der FPT Algorithmus.
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1. Introduction

Graph modification problems cover a wide variety of classical problems in computer science.
The task for edge modification problems is to transform a graph G by inserting and deleting
edges into a graph G′ ∈ G, for some graph class G. Each modification has an associated cost
and the challenge is to find a set of edits such that G′ ∈ G and the total cost is minimal.
Some graph classes can be characterized by forbidden subgraphs [dRo18].1 For example,
forests are exactly the graphs which do not have a cycle as an induced subgraph, and
chordal graphs are the graphs which do not have cycles with 4 or more vertices as induced
subgraphs. A graph is called F -free if no induced subgraph is isomorphic to a graph from
a (potentially infinite) set of forbidden subgraphs F . In this thesis, we only consider finite
sets of forbidden subgraphs.

F-free Edge Editing can be used for graph clustering. Graph clustering, or community
detection, is the task of finding a community structure in the data, where objects in the
same group are similar, or the objects within the group interact with each other more
often than compared to the remaining objects. Vertices in a graph can be grouped into
clusters, with a high edge density within a cluster and a low edge density between clusters.
The F-free Edge Editing approach for clustering defines the clusters by the connected
components of “nearest” F-free graph. One notion for a “good” clustering can be cluster
graphs, which are a disjoint union of cliques. Vertices within a clique are all adjacent to
each other and no edges between cliques exist. Cluster graphs can be characterized by a
forbidden induced subgraph, the path of length three. They are also called P3-free graphs.
Figure 1.1a depicts a P3. Furthermore, Figure 1.2 is an example of a graph that can be
edited into a cluster graph with two edits. Cluster Editing is one of the most studied
special cases of F-free edge editing and early on has been used for clustering of animals,
workers and companies [GW89].

Another perspective on this problem is to assume that a graph conforms to a given model
defined by its forbidden subgraphs but noise has corrupted the data. The task is to remove
the noise from the input data, such that the editing cost is minimal. This has been used
for biological data sets, such as protein-protein interaction networks. Proteins that take
part in the same processes often do interact with each other. The functions of a given
unknown protein can then be predicted by observing its interaction with another protein
with known functions [LCH+07]. Cluster Editing has been used for protein-protein

1A list of graph classes characterized by forbidden subgraphs: http://graphclasses.org/classes.cgi?
search=-free
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1. Introduction

(a) P3 (b) P4 (c) C4

Figure 1.1: Forbidden subgraphs for Cluster Editing (P3) and Quasi-Threshold
Editing (P4 and C4).
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(a) The graph G. Vertices b, e are explicitly
marked as non-adjacent. Green edges will
be inserted in the graph. The edge bg is
in multiple forbidden subgraphs. The
induced path (b, g, e) is highlighted.
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g

(b) The graph G′ obtained by editing
{bg, de}, i.e. G′ = G4{de, bg}. G′ con-
sists of two disjunct cliques.

Figure 1.2: Example for Cluster Editing. Graph G is not a cluster graph. The vertices
b, e and g induce a P3. By deleting bg and inserting de, G can be transformed
into the cluster graph G′.

interaction networks, but other models are also possible. The core-periphery model assumes
that some proteins form a dense core and other proteins only interact with the core.
Split-cluster graphs have been used to model such a structure and also can be characterized
by forbidden subgraphs [BHK15]. Figure 1.3 depicts a connected component of a protein-
protein interaction network and a closest {C4, P4}-free graph, meaning it has the minimum
editing cost of all {C4, P4}-free graphs. C4 and P4 are the cycle and path of size four
respectively.

Another application is the clustering of social networks. Familial groups are defined to
be the connected components of a {C4, P4}-free graph with minimum edit distance to
the original graph. They have been introduced as a method for community detection
[NG13]. {C4, P4}-free graphs are also called Quasi-Threshold graphs or trivially perfect
graphs. These graphs are useful for social networks, because they encode a hierarchy
structure. The graphs are the transitive closure of rooted forests [Wol65]. Other models like
{C5, P5}-free graphs [Sch15] and P5-free graphs [Boh15] have also been used for clustering.

F -free graphs have been used for several applications, but often only unweighted instances
are considered. For some applications, we can define a function that assigns a similarity
score s(uv) to vertices u and v. A positive value represents similarity and a negative value
dissimilarity. The magnitude of the (dis-)similarity represents how strong that relationship
is. For unweighted instances, all similarity scores are either 1 or −1 and the cost of
editing is equal to the number of edits. When considering Weighted Edge Editing, not
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(a) Graph G from instance no. 1010 from the bio dataset.

(b) A {C4, P4}-free graph with minimum editing cost to G.

Figure 1.3: A graph before and after editing. Editing costs are visualized by edge width and
brightness. Non-edges and their costs are not considered in this visualization.
Edge insertions/deletions are marked as green/red.

the number of edits, but the total cost of edits is minimized. For example, Weighted
Cluster Editing, also called Correlation Clustering, is the weighted variant of
P3-free Edge Editing. In this thesis we discuss the Weighted F-free Edge Editing
Problem, generalizing both editing costs and the set of forbidden subgraphs, for finite
sets F .

Unfortunately, F-free Edge Editing is NP-hard for many useful forbidden subgraphs
[KM86, ASS16, Boh15]. For finite F , the problem is fixed-parameter tractable in the
editing cost k [Cai96]. The problem can be solved by a search tree algorithm in O(p2k · np)
time, where k is the maximum editing cost, n is the number of vertices, p is the size of
the largest graph in F and the editing costs are at least one for each vertex pair. Another
method for solving the problem in practice is an integer linear program formulation (ILP)
for Weighted F-free Edge Editing [GW89].

The goal of this thesis is to adapt an existing search tree algorithm, originally developed for
F-free Edge Editing, to allow for weighted input instances [Zü17, GHS+20]. We use
lower bounds and selection rules as speed-up techniques and compare it against the ILP
formulation on protein-protein interaction networks. A detailed overview of this bachelor
thesis is given in Section 1.2.

3



1. Introduction

1.1 Related Work
Whether the F-free Edge Editing Problem is NP-hard, depends on the set of
forbidden subgraphs F . For example, P2-free Edge Editing can trivially be done in
linear time by deleting all edges. Furthermore, even more “complex” classes like split graphs
({2K2, C4, C5}-free graphs) have a linear time editing algorithm.

In the case that F contains only a single graph H, the complexity has been completely
determined for all graphs H: H-free Edge Editing is NP-complete if and only if H is a
graph with at least three vertices [ASS16]. For a single path and cycles of smaller sizes of
at least 4, the following has been proven: {Pl, Cl1 , ...Cli}-free Edge Editing is NP-hard
for l ≥ 4, i ∈ N0 and 4 ≤ l1 < ... < li ≤ l [Sch15].

The most important result used by this thesis is the fixed-parameter tractability of F-free
Edge Editing for finite sets F [Cai96]. A problem is fixed-parameter tractable if there
exists an algorithm with time complexity O(f(k) · |I|c) where f(k) is a computable function,
k is a parameter of the problem instance, |I| is the size of the instance and c is some fixed
number. For Weighted F-free Edge Editing, the parameter k is the editing cost.
The result in [Cai96] is based on a search tree with bounded branching factor and height.
Each edit is symbolized by an edge in the search tree and the length of a path in the tree
corresponds to the number of edits on the path. The branching factor is bounded by

(p
2
)
,

where p is the size of the largest forbidden subgraph. This stems from the observation that
each forbidden subgraph needs at least one edit to be destroyed. Thus, it suffices to branch
on the possible edits of a single forbidden subgraph. The size of the search tree is thus
bounded by

(p
2
)k, where k is the maximum number of edits allowed. An FPT algorithm

traverses this search tree. For a run time discussion of the weighted case see Section 3.1.2.

The special case of P3-free Edge Editing is called Cluster Editing. The unweighted
Cluster Editing Problem was proven to be NP-complete multiple times [KM86]. Also,
the problem can be formulated as an integer linear problem and was used to solve several
real-world clustering tasks [GW89]. Search tree algorithms based on [Cai96] have been
extensively used to solve the problem. Most theoretical advances of the running time came
from elaborate branching rules. An automated search led to an algorithm with running
time O(1.92k + n3) and 137 initial cases [GGHN04]. The asymptotic running time of the
best theoretical algorithm continued to improve. In [Bö12] it was proven that Cluster
Editing can be solved in O(1.62k + m + n). A linear problem kernel with at most 4k
vertices has been developed for the unweighted case [Guo09]. Later 2k problem kernels
for unweighted Cluster Editing [CM12] and integer-weighted Cluster Editing
[CC12] have been found.

Quasi-Threshold Editing or {C4, P4}-free Edge Editing is another NP-hard un-
weighted editing problem [NG13]. Several heuristic solutions have been introduced in
[NG13]. The authors of [BHSW15] introduced the Quasi-Threshold Mover as a scalable
Quasi-Threshold Editing heuristic. In [Zü17] and [GHS+20] an exact FPT algorithm
was engineered for unweighted F-free Edge Editing, and evaluated for F = {C4, P4}.
A polynomial kernel of size O(k7) was presented in [DP18].

Several methods have been used for speeding up search tree based FPT algorithms for
F-free Edge Editing. Vertex disjoint packing, vertex pair disjoint packing, and a hitting
set approximation have been investigated for calculating lower bounds [Boh15]. Another
way to calculate lower bounds is to build and an instance of the Hitting Set Problem
and use an approximation algorithm to calculate lower bounds [Boh15]. The authors of
[HH15] combine several approaches for Cluster Editing. They use upper and lower
bounds and extensive data reduction rules. A relaxation of the ILP formulation of the
problem has been used as one of the lower bounds. Also, a “small-degree heuristic” for
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1.2. Overview and Contributions

computing maximum-size independent set on a derived conflict graph has been used for
lower bound computation. Vertex pair disjoint sets of forbidden subgraphs have been used
multiple times to compute lower bounds for Cluster Editing [BBK11]. The authors
of [GHS+20] use an local search based lower bound algorithm, adapting a Maximum
Independent Set heuristic [ARW12] for unweighted F -free Edge Editing.

1.2 Overview and Contributions
In this thesis, we discuss an FPT algorithm and an ILP formulation for exactly solving the
Weighted F-free Edge Editing Problem, present speed-up techniques and evaluate
them for F = {C4, P4} on data from protein-protein interaction networks.

In Chapter 2 we start by presenting algorithms for listing forbidden induced subgraphs,
concentrating on cycles and paths. We cover these algorithms because they are a core
component for the editing algorithms in Chapter 3. The listing algorithms are based on
different approaches. Later, in Chapter 4, we evaluate and compare the different algorithms
with our benchmark dataset. Additionally, we describe symmetry breaking rules that
guarantee that each induced subgraph is listed exactly once.

The algorithms for exactly solving the Weighted F-free Edge Editing Problem
are covered in Chapter 3. The FPT algorithm that we adapt from [Zü17] is the main
focus of this thesis. We present the algorithm and motivate the speed-up methods in
Section 3.1. We give a short proof of its theoretical running time and justify that every
inclusion-minimal solution with editing cost less than k is listed exactly once. Also, we
explain the rules for marking vertex pairs introduced by [Zü17] in Section 3.1.1.

Then we describe lower bound algorithms based on vertex pair disjoint subgraph packings
in Section 3.2. We give a proof that they can be used for calculating lower bounds for
Weighted F-free Edge Editing and demonstrate a correspondence of the lower bound
calculation with solving the Maximum Weight Independent Set Problem (MWIS).
The lower bound algorithms are adapted heuristics for MWIS. We first introduce an
algorithm used in [Zü17]. Then we adapt it to a greedy algorithm that considers editing
costs. Furthermore, we adapt a local search algorithm for improving packings, that was
used in [GHS+20] for the unweighted case. The local search algorithm improves packings
by removing and inserting subgraphs. We present two methods for such improvements
and describe an efficient implementation. Next, we shortly describe subgraph selection
strategies for branching used in [Zü17] and [GHS+20] in Section 3.3.

A problem that can easily be solved for unweighted F-free Edge Editing, but is non-
trivial for the weighted case, is the search for the optimal editing cost. In Section 3.4,
search strategies are covered. We present two possible adaptions of the unweighted case.
Furthermore, we introduce two new search strategies and motivate them.

After we covered the FPT algorithm, we finally introduce an algorithm based on integer
linear programming (ILP) in Section 3.5. We adapt an ILP formulation Cluster Editing
from [GW89] for general sets of forbidden subgraphs. As the full set of constraints is too
large, constraints are iteratively added to the linear program. One speed-up technique for
ILP algorithms is restricting the number of constraints that are being added at once. We
present two such methods for Weighted F Edge Editing.

Additionally, we evaluate all algorithms and speed-up techniques in Chapter 4. We start
by describing the experimental setup and the protein-protein interaction dataset used in
our evaluation. We compare the listing algorithms in Section 4.2. Next, we analyze the
effects of the lower bound algorithms on the running time in Section 4.3. Also, we inspect
the ability of the lower bounds to prune the search tree. Furthermore, we determine why

5



1. Introduction

the unweighted local search algorithm seems to be more successful for the unweighted case
than for Weighted F-free Edge Editing. In Section 4.4 we compare the effect of
the subgraph selection strategies on the running and examine the effect of the strategies
in combination with different lower bounds. Next, we analyze the search strategies and
their behavior in respect to the search steps in Section 4.5. Finally, we evaluate the ILP
algorithm and its variants with the FPT algorithm.

1.3 Preliminaries and Definitions
We use

(A
2
)

:= {{a, b} | a, b ∈ A ∧ a 6= b} to denote the two element subsets of the set A.

A graph G = (V,E) is a set of vertices V (G) := V and a set of edges E(G) := E, E ⊆
(V

2
)
.

An edge e = {u, v} is a pair of vertices u, v ∈ V . We use N(u) := {v ∈ V | {u, v} ∈ E}
to denote the neighbors and N(u) := {v ∈ V | u 6= v, {u, v} /∈ E} to denote the set of
non-neighbors of a vertex u ∈ V . d(u) := |N(u)| is the degree of vertex u. We use 4 to
denote the maximum degree in the graph. If an edge is explicitly not in the graph, we call
it a non-edge. We use the shorthand uv for the undirected pair of vertices {u, v}, u 6= v.
In this thesis we consider simple undirected graphs.

A graph H = (VH , EH) is called a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E. A
subgraph H = (VH , EH) is called an induced subgraph if H contains all possible edges, i.e.
all pairs of vertices of VH that are edges in G. An induced subgraph can be identified by
its vertex set S. We use G[S] := (S,

(S
2
)
∩ E) to denote the induced subgraph with vertex

set S. In this thesis we only consider induced subgraphs.

We use Pl to denote the graph with l vertices consisting of a simple path, Pl = ({v1, . . . , vl},
{vivi+1 | i = 1 . . . l−1}). Likewise, Cl is used to denote the graph with l vertices consisting
of a single cycle, Cl = ({v1, . . . , vl}, {vivi+1 | i = 1 . . . l−1} ∪ {vlv1}). Sometimes, a list of
vertices (v1, . . . , vl) ∈ V l is used to denote an induced subgraph G[S] which is isomorphic
to a Pl or Cl. The vertices are ordered, such that two vertices are only adjacent if they are
next to each other in the list. We define the concatenation a · b := (a1, . . . , al1 , b1, . . . , bl2)
of two paths a = (a1, . . . , al1), b = (b1, . . . , bl2), l1, l2 ∈ N if the result a · b is either a path
or a cycle.

An edit on a graph G is either the insertion or deletion of an edge. We use A4B :=
(A\B)∪(B\A) to denote the symmetric difference of sets A and B. For a graph G = (V,E)
and a set of vertex pairs L we use the notation G4L := (V,E4L) for the graph we get by
editing the vertex pairs from L. We say that an edit uv destroys a forbidden subgraph G[S]
if both vertices are in the subgraph. For the FPT algorithm, we use the concept of marked
vertex pairs. For a graph G = (V,E) and a set of marked vertex pairsM ⊆

(V
2
)
, we say that

two induced subgraphs, G[S1] and G[S2], are adjacent if they share an unmarked vertex
pair, i.e. adjM (S1, S2) := ∃uv ∈

(V
2
)

: u, v ∈ S1 ∧ u, v ∈ S2 ∧ uv /∈ M . We consider the
editing cost function c :

(V
2
)
→ R≥0. For a set of vertex pairs L we define c(L) :=

∑
e∈L c(e)

to be the total editing cost of the set L.

Two graphs are isomorphic if one can be obtained from the other by renaming the vertices.
A graph G is called H-free for a graph H if no induced subgraph exists which is isomorphic
to H. A graph G is called F-free for a set of graphs F if G is H-free for all H ∈ F .
We use CH(G) ⊆ 2V to denote all vertex sets S ⊆ V such that G[S] is isomorphic to H.
CF (G) :=

⋃
H∈F CH(G) is used for multiple forbidden subgraphs. CF (G) is the conflict set

of G. As the set F is considered to be constant throughout this thesis, we do not denote
the set of forbidden subgraphs explicitly and use C(G) := CF (G). The functions pl(G) and
cl(G) denote the number of paths and cycles with size l in the graph G respectively.

We now formally define the central problem of this thesis.

6



1.3. Preliminaries and Definitions

Weighted F-free Edge Editing (Search) Problem
Input: A graph G = (V,E), a set of graphs F and a cost function c :

(V
2
)
→ R≥0.

Question: Find a set of edits L ⊆
(V

2
)
such that G4L is F-free and

∑
e∈L c(e) is

globally minimal.

We call a set of vertex pairs L ⊆
(V

2
)
a solution for the graph G if G4L is F-free. A

solution L∗ is optimal if its cost c(L∗) is globally minimal. A solution is inclusion-minimal
if no proper subset is a solution.
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2. Listing Forbidden Subgraphs

In this chapter, we present different algorithms for listing forbidden subgraphs. A naive
listing algorithm is not good enough, because it scales with the size of the graph and not
with the number of forbidden induced subgraphs. An ideal algorithm has a running time
only proportional to the size of its output. We present algorithms that aim to do the
least amount of extra work. Listing algorithms are an important procedure for solving the
Weighted F-free Edge Editing Problem. The algorithms for solving the problem
use these listing algorithms for finding subgraphs for branching, calculating lower bounds,
or to generate constraints.

In this work, we focus on listing the subgraphs for Cluster- and Quasi-Threshold
Editing, and cycles and paths. For specific F , algorithms exist that can show that a
graph is F -free, or otherwise provide a counterexample in linear time. For example, there
exists an algorithm to determine whether a graph is a split-cluster graph and if that is
not the case, produce a forbidden subgraph in O(n+m) time [BHK15]. We only consider
listing all forbidden subgraphs, because this is predominantly needed for lower bounds in
Section 3.2, subgraph selection in Section 3.3 and constraint generation in Section 3.5.

In this chapter, we use n and m to denote the number of vertices and edges respectively.
Recall that 4 denotes the maximum degree in the graph. Furthermore, recall that pl(G)
and cl(G) are the numbers of induced subgraphs of G isomorphic to Pl and Cl respectively.

For this chapter, we assume that the graph is represented with adjacency lists. The vertices
in an adjacency list are sorted. The operations N(u) ∩N(v) and N(u) \N(v) are possible
in O(4) time. Some algorithms also need to check whether two vertices are adjacent. For
that, we additionally assume an adjacency matrix. In our implementation, we use an
adjacency matrix to represent graphs.

2.1 Listing P3

Even for listing relatively simple subgraphs such as P3s, several strategies exist. Apart
from the naive approach, we investigate two algorithms.

Algorithm 2.1: Edge expanding. Listing P3s.
1 foreach u ∈ V, v ∈ N(u) do
2 foreach w ∈ N(v) \N(u), w 6= u do
3 output (u, v, w)

9



2. Listing Forbidden Subgraphs

Algorithm 2.1 iterates over all adjacent vertices u and v and expands them with an extra
vertex w. The running time of the algorithm is clearly in O(m · 4). Moreover, this is
algorithms is a starting point for the algorithms discussed in the next sections.

Algorithm 2.2: Listing P3s from outer vertices [HKSS13]
1 remove isolated vertices from G
2 foreach u ∈ V,w ∈ N(x) do
3 foreach v ∈ N(u) ∩N(w) do
4 output (u, v, w)

Algorithm 2.2 takes another approach and start with the non-adjacent outer most vertices.
Consequently, every iteration of the inner loop produces one P3. It has a running time of
O(n+m+ p3(G) + co−p3(G)) [HKSS13].

2.2 Listing C4s and P4s
Before we talk about listing cycles and paths of any length, we present an algorithm
for listing cycles and paths of length 4. These are the forbidden subgraphs for Quasi-
Threshold Editing. The edge expansion strategy of Algorithm 2.1 can be adapted by
also expanding with an edge in the other direction. This results in Algorithm 2.3. A very
similar algorithm has been presented for listing P4s [HKSS13].

Algorithm 2.3: Listing {C4, P4}
1 foreach u ∈ V, v ∈ N(u) do
2 A← N(u) \N(v)
3 B ← N(v) \N(u)
4 foreach (a, b) ∈ A×B do
5 if ab ∈ E then
6 output (a, u, v, b) // C4

7 else
8 output (a, u, v, b) // P4

The algorithm is efficient in the sense that every iteration of the inner loop outputs either
a C4 or a P4. Calculating the sets A and B can be done in O(4) time. This results in a
total run time of O(m · 4+ p4(G) + c4(G)).

2.3 Listing Cycles and Paths
Destroying cycles and paths is a prominent special case for F -free editing. Cluster graphs
and quasi-threshold graphs do have P3 and {C4, P4} as forbidden subgraphs respectively.
Editing to P5-free and {C5, P5}-free graphs has been investigated as a method for graph
clustering and community detection [Boh15, Sch15]. Algorithms for efficiently listing cycles
and paths are needed for these problems.

The naive approach would be to enumerate all l-element subsets of vertices
(V

l

)
and check

for each if it induces a path or cycle of length l. This takes O(l2 · nl) time and is unfeasible
for larger graphs. We instead try to avoid unnecessary work and only calculate intermediate
results if they may lead to a cycle or path of the desired length. The two algorithms we
are going to present recursively expand smaller paths.

10
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u

Figure 2.1: Endpoint search expanding a P4. Candidate vertices v must have the pictured
adjacency relations. Green relations must be an edge, red must be a non-edge
and for dotted both are admissible. Whether the dotted vertex pair is an edge
determines if the induced subgraph is a path or a cycle.

2.3.1 Endpoint Search

The endpoint search algorithm tries to expand an existing path of length l − 1 by adding
one vertex. In [Boh15] an endpoint algorithm for listing P5s has been used. We present a
generalization for cycles and paths of arbitrary size and give a theoretical running time
analysis. Algorithm 2.4 iterates over all potential new endpoints u ∈ V , vertices which are
adjacent to the current endpoint pl−1 and non-adjacent to all inner vertices of the path.
The resulting subgraph P · (u) is either a cycle or a path. The algorithm recursively calls a
variant of itself for l − 1, that does not output cycles, and uses paths of size one, i.e. (u)
for all u ∈ V , as its base case for l = 1.

Figure 2.1 depicts the expansion of a P4 to a P5 or C5 with the new vertex u. The
restrictions on the adjacency between u and the other vertices are depicted with colored
edges. If the dotted relation between the first vertex of the path and the vertex u is an
edge, the resulting induced subgraph is a cycle, otherwise, it is a path.

Algorithm 2.4: Endpoint search. Listing all {Cl, Pl}.
Input: List of paths L ⊆ V l−1.
Output: Paths and cycles and of size l.

1 foreach P := (p1, p2, . . . , pl−1) ∈ L do
2 U ← N(pl−1)
3 foreach p ∈ {p2, . . . , pl−2} do
4 U ← U \N(p)
5 foreach u ∈ U do
6 if p1u ∈ E then
7 output P · (u) // Cl

8 else
9 output P · (u) // Pl

Theorem 2.1. Algorithm 2.4 finds all Cl and Pl in O(n · 4l−1 · l!) time.

Proof. This can be proven by induction over l. Let t(l) be the time that the algorithm
takes to list all cycles and paths of length l. For the base case l = 2 the algorithm iterates
over {(a, b) | a ∈ V, b ∈ N(a)}, therefore t(2) ∈ O(n · 4). Listing all paths of length l − 1
costs t(l− 1) and t(l− 1) is also an upper bound for the number of Pl−1s. In the loop body
O(4 · l) additional work is performed. The recurrence relation t(l) = t(l − 1) · 4 · l results
in t(l) ∈ O(n · 4l−1 · l!).
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2. Listing Forbidden Subgraphs

u v

Figure 2.2: Midpoint search expanding a P3. Candidate vertices for u and v must have the
pictured adjacency relations. Green relations must be an edge, red must be a
non-edge, and for the dotted relation both are admissible. Whether the dotted
vertex pair is an edge determines if the induced subgraph is a path or a cycle.

2.3.2 Midpoint Search

Instead of expanding the path in only one direction, we can also start from the middle
and expand the path simultaneously in both directions. The algorithm is discussed in
[HKSS13]. Also, in [Boh15] a midpoint based algorithm has been used for listing all P5s of
a graph and finding a single P5. In contrast to the authors of [HKSS13], they first expand
one half the path in one direction from the middle vertex and then expand the rest of the
path in the other direction.

Similar to Algorithm 2.4, the midpoint search algorithm is defined recursively. Algorithm 2.5
expands paths of length l− 2 for l ≥ 4 and Algorithm 2.6 expands paths of length l− 4 for
l ≥ 6. The algorithm calls a variant of itself for l− 2 or l− 4 that only outputs paths. The
base cases are paths of length 2 and 3. After an initial evaluation of P3 listing algorithms
as seen in Section 4.2, we chose Algorithm 2.2 as the P3 base case.

An example for Algorithm 2.5 is given in Figure 2.2. A P3 is expanded in both directions.
If uv is a non-edge, the subgraph is an induced path, otherwise, it is an induced cycle.

Algorithm 2.5: Midpoint search. Listing all {Cl, Pl}. Recursion on Pl−2.
[HKSS13]

Input: List of paths L ⊆ V l−2, l ≥ 4.
Output: Paths and cycles and of size l.

1 foreach P = (p1, p2, . . . , pl−2) ∈ L do
2 A← N(p1) \

⋃
p∈P\{p1}N(p)

3 B ← N(pl−2) \
⋃

p∈P\{pl−2}N(p)
4 foreach (a, b) ∈ A×B do
5 if ab ∈ E then
6 output (a) · P · (b) // Cl

7 else
8 output (a) · P · (b) // Pl

The sets of candidates A and B are chosen such that each iteration of the loop in Line 4
outputs either a path or a cycle. Only using Algorithm 2.5 in the recursion, the whole
algorithm has a running time of O(lnl−1 + pl(G) + l · cl(G)) (l ≥ 4) [HKSS13]. This can be
improved by starting with paths of size l− 4 in Algorithm 2.6. This removes the factor of l
and the algorithm has a total running time of O(nl−1 +pl(G)+ l · cl(G)) (l ≥ 4) (Theorem 9
in [HKSS13]).
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Algorithm 2.6: Midpoint search. Listing all {Cl, Pl}. Recursion on Pl−4.
[HKSS13]

Input: List of paths L ⊆ V l−4, l ≥ 6.
Output: Paths and cycles of size l.

1 foreach P = (p1, p2, . . . , pl−4) ∈ L do
2 A← N(p1) \

⋃
p∈P\{p1}N(p)

3 B ← N(pl−4) \
⋃

p∈P\{pl−4}N(p)
4 C ← V \

⋃
p∈P N(p) // vertices non-adjacent to P

5 foreach (a, b) ∈ A×B do
6 if ab /∈ E then
7 A′ ← C ∩N(a) \N(b)
8 B′ ← C ∩N(b) \N(a)
9 foreach (u, v) ∈ A′ ×B′ do

10 if uv ∈ E then
11 output (u, a) · P · (b, v) // Cl

12 else
13 output (u, a) · P · (b, v) // Pl

u

v

w u

v

w

(1, 2, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1), (1, 3, 2), (2, 1, 3)

Figure 2.3: Symmetries for three ordered elements. Cyclic symmetry (horizontal) and
mirror symmetry (vertical). For example, the path (u, v, w) can either be the
list (1, 2, 3) or (3, 2, 1)).

2.4 Symmetry Breaking
The listing algorithms produce the same induced subgraph multiple times. A path is listed
twice and a cycle of size l is listed 2l times. A path (p1, . . . , pl) is also listed in reverse
order (pl, . . . , p1). A cycle (c1, . . . , cl) is also listed in reverse order (cl, . . . , c1) and with
each vertex ci as “first” vertex (c1, . . . ), . . . , (cl, . . . ). For the editing algorithm we want to
list each path and cycle exactly once.

We assume some arbitrary order on the vertices, e.g. v1 < v2 < · · · < vn. The cyclic
symmetry of cycles can be broken by only listing cycles C = (c1, c2, . . . , cl), where c1 is
the smallest vertex in C. The mirror symmetry is broken by additionally ensuring that
c2 < cl [HKSS13]. Algorithms for listing cycles can use this rules for only constructing
representative cycles. For example, an algorithm for listing all Cls in a graph in O(nl−1 +
pl(G) + cl(G)) time is presented in [HKSS13]. The mirror symmetry of paths can be broken
by only listing paths P = (p1, p2, . . . , pl) for which p1 < pl.

Figure 2.3 depicts both cyclic and mirror symmetries of (1, 2, 3). Note that for a path
(u, v, w) uw is a non-edge and uv and vw are edges. For a cycle (u, v, w) all uv, vw,wu are
edges. Using the described rules, representative paths are (1, 2, 3), (1, 3, 2) and (2, 1, 3).
The representative cycle is (1, 2, 3).
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3. Algorithms

In this section, we present exact algorithms for the Weighted F-free Edge Editing
Problem. First, we describe a generic version of the FPT algorithm and introducing
marked vertex pairs in Section 3.1. Next, we describe specific algorithms for calculating
lower bounds in Section 3.2. We list different methods for selecting a subgraph for branching
Section 3.3 and for strategies for finding the optimal editing cost in Section 3.4. Finally,
we present an integer linear program (ILP) algorithm for solving the Weighted F-free
Edge Editing Problem in Section 3.5.

Throughout this work, we consider the set of forbidden subgraphs F and the edit cost
function c :

(V
2
)
→ R≥0 to be fixed.

3.1 FPT Algorithm
The FPT algorithm is a search tree algorithm based on [Cai96]. The parameter for
Weighted F-free Edge Editing is the maximum allowed editing cost k. The algorithm
only searches for solutions with editing costs at most k. The central idea of the algorithm
given in [Cai96] is that, if the graph G has a forbidden induced subgraph G[S], at least one
edit e ∈

(S
2
)
is needed to destroy it. If a forbidden induced subgraph exists, the algorithm

branches for each possible edit. For each vertex pair uv the algorithm recursively solves
the instance (G4{uv}, k − c(uv)). If the remaining editing cost is negative, the instance is
not solvable. When the graph is F-free, a solution has been found.

This basic version of the algorithm has a running time in O(
(p
2
)k ·poly(n)) = O(p2k ·poly(n)).

This uses the assumption that the minimum editing cost is at least one. The running
time can be analyzed by looking at the branching factor and the maximum depth of the
search tree. Each call to the algorithm is a node in the search tree. The initial instance
(G, k) corresponds to the root of the search tree. For each call, either the algorithm finds
a solution or it branches on the possible edits of a forbidden induced subgraph. Such a
subgraph can be found in O(npp2) time. Because a subgraph with p vertices has

(p
2
)
vertex

pairs, the search tree has a branching factor of
(p
2
)
. The depth of the search tree is bounded

by bkc+ 1 if the minimum editing cost is at least 1.

The focus of this thesis is an improved FPT algorithm proposed in [Zü17] for unweighted
F-free Edge Editing. We adapt it for the weighted case. It is based on the same idea
as the basic FPT algorithm but uses marked vertex pairs, lower bounds, and subgraph
selection strategies. In the following, we will introduce these concepts and describe the
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improved FPT algorithm (Algorithm 3.1). For a correctness proof of Algorithm 3.1 we
refer to [Zü17] where a proof for the unweighted case is given. This proof can be easily
adapted to allow for weighted edits.

Algorithm 3.1: FPT Algorithm (adapted from [Zü17])
Input: A graph G = (V,E), a maximum editing cost k ∈ R, the set of marked

vertex pairs M ⊆
(V

2
)
, and the set of currently edited vertex pairs L.

Output: Solutions to the Weighted F-free Edge Editing Problem with
total editing costs of at most k.

1 if k < LowerBound(G, k,M) then return
2 S ← FindSubgraph(G,M)
3 if S = ∅ then
4 output L // G is F-free
5 return
6 m← ∅ // locally marked vertex pairs
7 forall e ∈

(S
2
)
do

8 if e /∈M then
9 M ←M ∪ {e}, m← m ∪ {e}, L← L ∪ {e}

10 G← G4{e}
11 Edit(G, k − c(e),M,L) // recursive call
12 G← G4{e}
13 L← L \ {e}

14 M ←M \m // unmark vertex pairs

One problem of the basic algorithm is that it branches for every possible edit. As a result,
a vertex pair can be edited twice or solutions are explored multiple times. In [Zü17] the
authors introduce a rule for marking vertex pairs for some branches in the search tree.
Algorithm 3.1 keeps a set of marked vertex pairs M and only edits unmarked vertex pairs.
This rule is constructed in such a way that every set of edits is explored at most once and
every inclusion-minimal solution output by the basic FPT algorithm is explored at least
once. We describe the rules for marking vertex pairs in more detail in Section 3.1.1.

The basic FPT algorithm recursively calls itself until either a solution has been found or
the remaining editing cost is negative. This can be improved by using lower bounds for
the editing cost. If the remaining editing cost is smaller than the lower bound, we can
guarantee that the problem is not solvable for the given instance and prune this branch,
instead of fully exploring it. Good lower bounds can keep the size of the search tree small.
In Section 3.2 we present algorithms for calculating lower bounds.

Another way to improve the basic algorithm is not using any forbidden induced subgraph
for branching, but choosing one which most likely leads to a solution, keeps the search
tree small or improves the calculation of lower bounds. We present strategies for selecting
subgraphs for branching in Section 3.3.

Algorithm 3.1 does not search for an optimal solution to the Weighted F-free Edge
Editing Problem directly, but requires a maximum editing cost k as a parameter. To
find an optimal solution, the algorithm has to be called for increasing values of k. This
is non-trivial for the weighted case and we present different strategies for searching for
the optimal editing cost in Section 3.4. Algorithm 3.1 also does not output all solutions
with editing costs ≤ k. For example, the algorithm does not add any additional edits to
an already found solution. Inclusion-minimal solutions are guaranteed to be found, i.e.
solutions for which no subset of edits is a solution. Nevertheless, non-inclusion-minimal
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b c a

b c
a

b c a

b c

Figure 3.1: Visualization of Rule 1. The base is a three-ary tree with all tuples with up to
three elements as nodes. Not all nodes are shown. Marked nodes are colored.
Every tuple of distinct elements corresponds to one unmarked node.

solutions may also be output. We use a post-processing step on the set of solutions output
by Algorithm 3.1 to ensure that only inclusion-minimal solutions remain.

We try to establish an intuition that all inclusion-minimal solutions with editing cost less
than k are listed, but do not give a formal proof. When the algorithm explores a solution it
does not recurse further, therefore not all non-inclusion-minimal solutions are guaranteed
to be found. The basic algorithm recurses until either the current k is too small, or a
solution is found. Inclusion-minimal solutions are only not outputted if their editing cost
is larger than k. Now we argue that marking vertex pairs does not affect inclusion-minimal
solutions by noting the following: a non-inclusion-minimal solution L can not block an
inclusion-minimal solution L′, with L′ ( L, by marking a vertex pair. The marking rules,
further described in Section 3.1.1, only affect child and sibling nodes in the search tree.
The paths of the two solutions in the search tree only diverge at an edit which is not an
element of the inclusion-minimal solution. Therefore the inclusion-minimal solution cannot
be blocked by a non-inclusion-minimal solution.

Before we take a short look at the theoretical running time of Algorithm 3.1 in Section 3.1.2,
we discuss marking vertex pairs.

3.1.1 Marking Vertex Pairs

To enumerate all solutions without visiting a solution twice, vertex pairs can be marked
to be excluded from being edited further in the search tree [RWB+07, Dam10, Zü17]. In
[Dam10] marked vertex pairs have been used to enumerate all inclusion-minimal solutions
for Cluster Editing. Marked vertex pairs can also be used to improve lower bound
calculations (see Section 3.2). In this section, we describe the methods used in [Zü17] for
F-free Edge Editing. See Theorem 2.6 in [Zü17] for their proof of correctness. If a
vertex pair is marked, it is not edited by Algorithm 3.1.

We observe that undoing an edit is useless because it is equivalent to not doing the edit at
all. This results in the following rule, which ensures that an edit appears at most once in
each path of the search tree.

Rule 1 (No Undo). For branching options e1 < · · · < el, l ∈ N, and the current search
tree path P , for each edit ei mark it for path P · (ei).

Rule 1 can be made stronger by using the fact that the order of edits in a solution does
not matter. For a set of edits {a, b, c}, both paths (a, b, c) and (a, c, b) lead to the same
set, {a, b, c}. All solutions with the edits {a, b} can be reached from the path (a, b, . . . ),
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a

b c

b c a c a b

c b c a b a
Figure 3.2: Visualization of Rule 2 adapted from [GHS+20]. The base is a tree conforming

to Rule 1. Marked nodes are colored. Every subset of {a, b, c} corresponds to
one unmarked node.

therefore b can be marked for all paths (a, x, . . . ), x ≥ b and some fixed total ordering on
the edits, e.g. a < b < c.

Rule 2 (No Redundancy). For branching options e1 < · · · < el, l ∈ N, and the current
search tree path P , for each edit ei mark it for paths P · (ej), j ≥ i.

Figure 3.2 visualizes the rule for three elements, a, b and c. Each subset of {a, b, c} is
represented by exactly one unmarked node in the tree. The empty set ∅ is represented by
the root. A search tree with nn nodes is reduced by applying Rule 2 to a tree with 2n

nodes.

3.1.2 Running Time

The asymptotic running time of Algorithm 3.1 is still O(
(p
2
)k ·poly(n)) = O(p2k ·poly(n)) for

minimum cost of at least 1 and where p is the size of the largest forbidden subgraph. But
with Rule 2 we establish another upper bound on the running time. As previously discussed,
the search tree with marking vertex pairs with Rule 2 has at most 2(n

2) nodes. Therefore
the running time is bounded by O(2(n

2) · poly(n, p)), independently of the parameter k and
only with a polynomial factor of p.

This running time analysis does not cover vertex pairs with zero editing costs. Whenever
a zero cost pair is edited, the maximum allowed editing cost does not decrease. The
algorithm still returns the correct result, but its running time is no longer fixed-parameter
tractable in the parameter k. Let n0 be the number of zero-cost edits in the instance. For
any set of edits, there are at most 2n0 additional potential solutions with the same set
of non-zero-cost edits and every combination of edge/non-edge zero-cost edits Thanks to
marking vertex pairs, the algorithm only outputs each of these solutions at most once.
Therefore, Algorithm 3.1 is fixed-parameter tractable in the parameters editing costs k and
number of zero-cost edits n0.

3.2 Lower Bounds
In this section, we discuss algorithms for calculating lower bounds for the Weighted
F-free Edge Editing Problem. A lower bound is a real number klb ≥ 0 which bounds
the actual optimal editing cost from below, i.e. klb ≤ k∗ for optimal editing cost k∗.

There are several approaches for calculating lower bounds. Algorithms that use subgraph
packings try to find a set of forbidden induced subgraphs, for which destroying one subgraph
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1

2 3

4

5

0

(a) The empty subgraph packing ∅.

1

2 3

4

5

0

(b) A subgraph packing
{{0, 1, 2}, {1, 3, 4}}. Both sub-
graphs do share a vertex but not a
vertex pair.

1

2 3

4

5

0

(c) A subgraph packing
{{0, 1, 2}, {0, 1, 3}, {3, 4, 5}}, using
marked vertex pairs from Defini-
tion 3.1, allowing two subgraphs to
share the marked edge {0, 1}.

Figure 3.3: Three subgraph packings for the graph G, forbidden subgraph P3 and marked
vertex pairs M = {{0, 1}}. Edges are solid lines and explicit non-edges are
dashed lines. The marked edge is colored blue. The induced subgraphs in a
subgraph packing are depicted with black vertex pairs. Editing costs are not
considered.

in the packing does not affect any other subgraph in the packing. At least every forbidden
induced subgraphs in such a set needs to be destroyed. The sum of the minimum editing
cost needed for each one is a lower bound on the actual editing cost needed. In this thesis,
we only use vertex pair disjoint packings. We adapt algorithms from [Zü17] and [GHS+20]
and generalize them to the weighted case. We now define the vertex pair disjoint packing
formally. We additionally use the set of marked vertex pairs because they cannot be edited
by Algorithm 3.1. Recall that C(G) is the set of forbidden induced subgraphs in G.
Definition 3.1. A vertex pair disjoint packing of forbidden subgraphs of a graph G and
a set of marked vertex pairs M is a set of forbidden subgraphs B = {S1, S2, · · · } ⊆ C(G),
such that no two S1, S2 ∈ B share an unmarked vertex pair.

The subgraph packing can be used to calculate lower bounds because two forbidden
subgraphs that do not share an editable vertex pair do need at least two edits to be
destroyed. A marked vertex pair can not be edited again and therefore not destroy incident
subgraphs. Figure 3.3 depicts an example of a valid subgraph packing. We formally prove
the lower bound with the following theorem.
Theorem 3.2. For an instance of Weighted F-free Edge Editing (G, c), a subgraph
packing B ⊆ C(G) and a set of marked vertex pairs M ⊆

(V
2
)
, a lower bound for the optimal

editing cost k∗ for solutions with no edits in M is

c(B) =
∑
S∈B

cmin(S,M), (3.1)

where

cmin(S,M) =
{

min{c(e) | e ∈
(S

2
)
\M} if

(S
2
)
\M 6= ∅

∞ otherwise
(3.2)
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is the minimal editing cost of the unmarked vertex pairs of the induced subgraph G[S].

Proof. An optimal solution L∗ must destroy each forbidden subgraph G[S] ∈ C(G) in G.
A single edit e ∈ L∗ can destroy multiple subgraphs but at most one subgraph in B. To
destroy a subgraph G[S] at least one vertex pair needs to be edited. The cost to destroy a
subgraph G[S] is at least the cost it takes to edit the “cheapest” editable (unmarked) pair
of vertices mine∈(S

2)\M c(e). Algorithm 3.1 does not edit marked vertex pairs. If all vertex
pairs are marked, the instance is not solvable.

A simple sanity check verifies that the trivial subgraph packing B = ∅ induces the
lower bound c(B) = 0. This is a baseline for our evaluation of the other lower bound
algorithms in Section 4.3. We now motivate the use of heuristics for the Maximum Weight
Independent Set Problem (MWIS) as algorithms for calculating good lower bounds.
The MWIS Problem is defined as follows.

Maximum Weight Independent Set Problem (MWIS)
Input: A graph G = (V,E) and a weight function w : V → R≥0.
Question: Find a set of vertices I ⊆ V which maximizes w(I) :=

∑
v∈I w(v) and

uv /∈ E holds for all u, v ∈ I.

Given this definition, we now give a correspondence between finding a subgraph packing
and calculating an independent set.

Theorem 3.3. Searching for a subgraph packing B ⊆ C(G) with maximum cost c(B) =∑
S∈B cmin(S,M), given some set of marked vertex pairs M , is equivalent to searching a

maximum weighted independent set for some MWIS instance.

Proof. Given the set of forbidden subgraphs C(G) and a set of marked vertex pairs M , we
construct an instance of the Maximum Weight Independent Set Problem (V ′, E′, w).
G′ = (V ′, E′) is a graph and w : V ′ → R≥0 is a weight function. We call two forbidden
induced subgraphs adjacent if they share an unmarked vertex pair and use adjM (S1, S2) to
denote that. The instance (V ′, E′, w) is defined as

V ′ := C(G) (3.3)
E′ := {{S1, S2} | S1, S2 ∈ V ′, adjM (S1, S2)} (3.4)

w(S) := cmin(S,M). (3.5)

We show that an independent set for the graph G′ is a subgraph packing for the graph G.
Let I be an independent set for G′. It holds that forbidden induced subgraphs in I are not
adjacent, meaning that they do not share an unmarked vertex pair. This conforms to the
definition of a subgraph packing. Therefore is I a subgraph packing.

From the definitions of w and c we can conclude that

w(I) =
∑
S∈I

w(S) =
∑
S∈I

cmin(S,M) = c(I).

Therefore an independent set I ⊆ V ′ is a subgraph packing for the graph G and its weight
w(I) and its cost c(I) are the same.

Given this correspondence, we now describe the lower bound algorithms used in this thesis.
The algorithms can be viewed as heuristics for MWIS which are adapted for subgraph
packing.
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Simple Packing

A straight forward algorithm for calculating a valid subgraph packing is the following.
The algorithm iterates over all forbidden subgraphs C(G) and inserts a subgraph into the
subgraph packing if possible. This results in a valid subgraph packing by definition.

Algorithm 3.2: Simple packing lower bound
Input: A graph G = (V,E), a cost function c :

(V
2
)
→ R≥0, and a set of marked

vertex pairs M ⊆
(V

2
)
.

Output: A lower bound on the parameter k.
1 B ← ∅ // subgraph packing
2 foreach S ∈ C(G) do
3 if ∀S′ ∈ B : ¬ adjM (S, S′) then

// S shares no vertex pair with any subgraph in B
4 B ← B ∪ {S}

5 return
∑

S∈B cmin(S,M)

This is a good algorithm for (unweighted) F-free Edge Editing [Zü17]. For F-free
Edge Editing, we can incorporate the minimum editing costs of the forbidden induced
subgraphs. This gives rise to the following algorithm.

Greedy Packing

For the previous lower bound, the editing costs of the forbidden subgraphs are completely
ignored. For finding a Maximum Weight Independent Set one variant is to always
choose the vertex with maximum weight, which is not adjacent to a vertex already in the
independent set. Algorithm 3.3 uses this approach. For unweighted editing, Algorithm 3.2
and Algorithm 3.3 are equivalent.

Although both algorithms are very similar, they differ in their time and space complexity.
The greedy lower bound needs additional space and time for storing all forbidden subgraphs
and then sorting them by their editing cost.

Algorithm 3.3: Greedy packing lower bound
Input: A graph G = (V,E), a cost function c :

(V
2
)
→ R≥0, and a set of marked

vertex pairs M ⊆
(V

2
)
.

Output: A lower bound on the parameter k.
1 B ← ∅ // subgraph packing
2 foreach S ∈ C(G) in descending order of cmin(S,M) do
3 if ∀S′ ∈ B : ¬ adjM (S, S′) then

// S shares no vertex pair with a subgraph in B
4 B ← B ∪ {S}

5 return
∑

S∈B cmin(S,M)

Local Search

In [GHS+20], a local search algorithm based on the (unweighted) Maximum Independent
Set heuristic introduced in [ARW12] has been used for (unweighted) F-free Edge
Editing. The heuristic from [ARW12] has been adapted in [NPS18] for the Maximum
Weight Independent Set Problem. We introduce a local search algorithm that

21



3. Algorithms

adapts the algorithm from [NPS18] for Weighted F-free Edge Editing. Algorithm 3.4
improves an existing subgraph packing B through local changes.

The algorithm uses a variable neighborhood descent method [NPS18]. We explore neighbor-
hoods of the subgraph packing B by performing (i, j)-swaps, where i subgraphs are removed
and j subgraphs are inserted into the packing. We switch between either performing (1, 1)-
and (1, 2)-swaps or (ω, 1)-swaps, described in Algorithm 3.5 and Algorithm 3.6 respectively.
ω ∈ N stands for an arbitrary number. We are now going to describe both algorithms
further.

Algorithm 3.4: Local Search
Input: A graph G, a cost function c :

(V
2
)
→ R≥0, a set of marked vertex pairs M ,

a subgraph packing B ⊆ C(G), and the maximum number of rounds with
no improvements N .

Output: A subgraph packing B′ ⊆ C(G) with c(B′) ≥ c(B).
1 n← 0 // number of rounds with no improvements
2 repeat
3 Bprev ← B
4 foreach S ∈ B do
5 B ← FindOneTwoImprovement(G, c,M,B, S) // Algorithm 3.5

6 if c(B) = c(Bprev) then
7 B ← FindOmegaImprovement(G, c,M,B) // Algorithm 3.6

8 if c(B) = c(Bprev) then n← n+ 1
9 else n← 0

10 until B = Bprev or n > N
11 return B

The local search procedure executes multiple rounds of the optimization procedures and
only resorts to Algorithm 3.6 if Algorithm 3.5 does not improve the lower bound. The
algorithm terminates if the lower bound did not improve for more than N rounds or the
subgraph packing did not change at all.

Algorithm 3.5 searches for (1, 1)- and (1, 2)-swaps, that improve the lower bound induced
by the packing. It is called for each subgraph in the packing and checks whether the
subgraph can be replaced. The set of candidates is the set of forbidden induced subgraphs,
which are adjacent to the removed subgraph, but to no other subgraph in the packing.
The algorithm finds the single subgraph or the pair of subgraphs which maximizes the
minimum editing cost. It is not guaranteed that a subgraph with higher editing cost can
be found. In that case, no improvement was made.

The major complexity of the algorithm is the iteration over adjacent subgraphs which are
not adjacent to one already in the packing NB̄(S) := {S′ ∈ C(G) | adjM (S, S′) ∧ ∀S′′ ∈ B :
¬ adjM (S′, S′′)}. To accomplish this efficiently, we modify the algorithms from Chapter 2.
The algorithm only outputs forbidden subgraphs that are adjacent to G[S] and not to a
subgraph already in the packing. To check whether a vertex pair is in an induced subgraph
in the packing, we update a set of vertex pairs for each change of the packing. This speeds
up the local listing, as it can stop earlier.

Algorithm 3.6 iterates over all forbidden induced subgraphs, regardless if it is adjacent
to some other forbidden induced subgraph, or not. The algorithm tries to improve the
lower bound by inserting a single subgraph into the packing and removing the adjacent
subgraphs already in the packing. This is a (ω, 1)-swap, as potentially multiple subgraphs
are removed and one is inserted. The swap improves the lower bound if the combined

22



3.2. Lower Bounds

Algorithm 3.5: Find (1, 2) or (1, 1) improvement
Input: A graph G = (V,E), a cost function c :

(V
2
)
→ R≥0, a set of marked vertex

pairs M , a subgraph packing B ⊆ C(G) and an induced subgraph S ∈ B.
Output: A subgraph packing B′ ⊆ C(G) with c(B′) ≥ c(B).

1 B ← B \ {S}
2 NB̄(S)← {S′ ∈ C(G) | adjM (S, S′) ∧ ∀S′′ ∈ B : ¬ adjM (S′, S′′)}
3 Nmax ← {S}, cmax ← cmin(S,M)
4 foreach S1 ∈ NB̄(S) do
5 c1 ← cmin(S1,M)
6 if c1 > cmax then // inserting S1 improves the bound
7 Nmax ← {S1}, cmax ← c1

8 foreach S2 ∈ NB̄(S) do
9 c2 ← cmin(S2,M)

10 if not adjM (S1, S2) then
11 if c1 + c2 > cmax then // inserting S1 and S2 improves the

bound
12 Nmax ← {S1, S2}, cmax ← c1 + c2

13 B ← B ∪Nmax

14 return B

Algorithm 3.6: Find (ω, 1) improvements
Input: A graph G, a cost function c :

(V
2
)
→ R≥0, a set of marked vertex pairs M ,

and a subgraph packing B ⊆ C(G).
Output: A subgraph packing B′ ⊆ C(G) with c(B′) ≥ c(B).

1 foreach S ∈ C(G) do
2 NB(S)← {S′ ∈ B | adjM (S, S′)} // |NB(S)| ≤

(|S|
2
)

3 if cmin(S,M) >
∑

S′∈NB(S) cmin(S′,M) then
4 B ← B \NB(S)
5 B ← B ∪ {S}

6 return B
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minimum editing costs of the neighbors in the packing is less than the editing cost of the
single subgraph. The algorithm iterates over all forbidden induced subgraphs once and
performs a (ω, 1)-swap whenever it improves the lower bound.

To accelerate the calculation of NB(S) := {S′ ∈ B | adjM (S, S′)}, we keep track whether
an unmarked vertex pair is in a subgraph of the packing and, if that is the case, which
subgraph it belongs to. This is possible because each vertex pair can only be in at most one
induced subgraph from the packing. We calculate that index at the start of Algorithm 3.6
and keep it updated whenever the packing changes.

In addition to calling Algorithm 3.4 while calculating a lower bound, the base subgraph
packing is updated every time the graph is edited and/or a vertex pair is being marked. An
edit may invalidate previously found forbidden induced subgraphs in the subgraph packing
B or create new forbidden subgraphs, which potentially could be inserted.

3.3 Subgraph Selection for Branching
In this section we introduce methods for selecting forbidden subgraphs, i.e. variants of
FindSubgraph called on Line 2 of Algorithm 3.1. The choice of subgraph and the order,
in which Algorithm 3.1 iterates over the vertex pairs in Line 7, influences the performance
of the algorithm. The running time is reduced when fewer branches are explored.

First
The simplest method for choosing a forbidden subgraph is taking the first one that is
being found. We use the algorithms discussed in Chapter 2 and stop searching for other
subgraphs after the first subgraph was found.

This method is highly dependent on the ordering of the vertices in the input instance. The
algorithms we presented iterate over vertices, edges, and neighbors in a fixed order. A
forbidden subgraph that contains a vertex from the beginning of the ordering is more likely
to be the first one found.

Most Marked
Forbidden subgraphs where some vertex pairs are already marked result in fewer branches.
Therefore, we search for forbidden subgraphs G[S] with the most edited vertex pairs. This
selection rule is used by [Zü17]. The vertex pairs are ordered by the number of incident
forbidden subgraphs in decreasing order.

Most Adjacent Subgraphs
An edit that destroys many forbidden subgraphs is more likely to be in a solution. This
also has the potential to improve lower bounds. This heuristic has already been proven to
be successful for unweighted F-free Edge Editing by the authors of [GHS+20].

Calculating the number of adjacent subgraphs |N(S)| := |{S′ ∈ C(G) | adjM (S, S′)} \ {S}|
for each forbidden subgraph S ∈ C(G) is expensive. Instead of calculating |N(S)| exactly,
we use an upper bound to estimate it. An exact count on the number of forbidden subgraphs
at a given vertex pair |N(uv)| := |{S′ ∈ C(G) | u, v ∈ S′} \ {S}| can easily be updated with
each edit operation. We use

∑
uv∈(S

2)\M (|N(uv)|−1) as the estimate for |N(S)|. Subgraphs
which share multiple unmarked vertex pairs with S will be counted more than once.

For each subgraph, we associate the vector of subgraph counts |N(uv)| for each vertex pair
uv in decreasing order. We want to find the subgraph with the lexicographically largest
vector, i.e. the largest subgraph count matters, ties are broken by the second largest and
so on. As the largest subgraph count matters the most, we only need to check subgraphs
which are incident to vertex pairs for which |N(uv)| is maximal.
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3.4. Search Strategies

3.4 Search Strategies

One major challenge for FPT algorithms for Weighted F-free Edge Editing is the
choice of the parameter k. For (unweighted) F-free Edge Editing, the parameter value
is incremented by one, i.e. exploring one more edit operation for each new search step.
The corresponding search tree grows with the branching factor

(p
2
)
, where p is the size of

the largest forbidden subgraph. This has the nice property that the total runtime of the
algorithm is dominated by the last step. For the weighted case, it is not obvious how much
larger the search tree is for a new value k′ > k. Incrementing by 1 in the unweighted case
can be generalized in several different ways. In the following, we present several of them.

All search strategies have the problem, that a found solution is not guaranteed to have the
optimal editing cost. As we normally want to find solutions with optimal editing cost, we
need to keep searching until all branches are either explored or pruned. After we found
the first solution, we can prune branches that exceed the currently optimal editing cost
i.e. the value is an upper bound of the initial problem. This improves the search but is
significantly slower than stopping after the first solution has been found.

Increment by Minimum Cost

As previously discussed, the proof of the theoretical running time of the FPT algorithm
uses the assumption that the editing costs are at least one. With this assumption, the depth
of the search tree is bounded by bkc+ 1. This leads to a search strategy that increases the
parameter k by the minimum editing cost for each search step. For each search step, the
size of the longest path in the search tree can increase by at most one. We only consider
the smallest non-zero cost of the instance.

We formulate the search strategies as rules for the next parameter value k′. When we
increment by the minimum editing cost, the next value for the parameter k is

k′ := k + min{c(e) | e ∈
(
V

2

)
∧ c(e) > 0}.

Unfortunately, the running time with this strategy depends on the smallest editing cost in
the input instance. Small absolute changes of the minimum editing cost can result in large
relative changes of the step size.

Increment by 1

Another simple search strategy is directly adapting the strategy from unweighted F-free
Edge Editing [RWB+07]. The editing cost k is incremented by one until a solution is
found.

k′ := k + 1

This strategy is also dependent on the range of the cost function of the input instance.
The costs cannot be scaled without affecting the effective step size. For example, consider
the case where the editing costs sum to less than one. For each k ≥ 1, the search tree will
not be pruned.
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Preventing Pruning

A method for making sure that every new call to the FPT algorithm results in progress, is
to make sure that a significant amount of the branches will not be pruned again in the next
step. Every time a branch is pruned in Line 1 of Algorithm 3.1 by a lower bound, we keep
track of the difference l − k between the lower bound l and the current editing cost k. We
use D to denote the complete set of all such values. If the editing cost would be increased
enough such that k is at least as large as l, the branch would have not been pruned. If the
initial value of k is increased by the minimum value in D, then at least one branch would
not have been pruned. Choosing the q% smallest values from D would prevent q% of the
prunes. The next parameter value is

k′ := k + quantileq(D)

where quantileq(·) returns the q-quantile.

In our implementation, we use the median value. The conclusion that the value k′ prevents
the pruning q% of all previously pruned branches is based on the assumption that the
lower bound is calculated independently of current editing cost. This is not the case in
our implementation, because we stop improving the lower bound as soon as it is larger
than the remaining editing cost. Therefore it is not guaranteed to prevent the pruning of a
branch. We try to compensate that with the chosen value for q.

Exponential Growth Estimation

We can observe, that the number of recursive calls is approximately an exponential function
of the initial parameter k. The exact relation is dependent on the input instance and
configuration. Figure 3.4 depicts number of calls for different values of k and different
configurations of the FPT algorithm. Note that the trend is nearly linear in the log-domain
with varying slopes. An example where this assumption does not hold is given with
Figure 4.12 in Section 4.5.

We try to estimate this relationship for each instance and configuration of the FPT algorithm
by a log-linear model. It assumes that the number of calls c grows exponentially in the
parameter. This can be represented in the model

log(c) ∼ α+ βk.

For each execution of the algorithm we keep track of the parameter ki and the number of
recursive calls the algorithm makes ci, i = 1 . . . t. The model parameters are estimated with
simple linear regression as seen in [Gol64], resulting in the estimated values α̂ and β̂. Instead
of using all data points, only the last few data points are used. In our implementation, we
use the last three data points. The next value for k is then calculated by

k′ := log(r · ct)− α̂
β̂

, (3.6)

where r is the desired growth rate, i.e. we want the next execution to have r · ct recursive
calls, where ct is the last number of calls. In our implementation, we use r = 2.

26



3.5. ILP Formulation

0 20 40 60 80
Editing cost k

100

101

102

103

104

105

Nu
m

be
r o

f c
al

ls

No lower bound
Simple packing
Local search
Greedy lower bound

Figure 3.4: Example of a relationship between editing cost k and the number of calls from
eight permutations of instance no. 1027 from the bio dataset for F = {C4, P4}.
The evaluation points are spaced with distance one after the initial lower bound.
The relationship between editing cost k and the number of calls is approximately
exponential for a given configuration of the algorithm. The approximation
becomes better with a rising number of calls.

Unfortunately, using only the estimate from the log-linear model suffers from over- and
underestimating the step size, especially for the first few data points. For example, if the
first few executions of the algorithm result in the same number of calls, the search strategy
fails. To mitigate this risk, we bound the estimate from above and below. For a lower
bound on the new value, we use the previously discussed search strategy for preventing
pruning of branches. We use 4 · (k − kinit) + kinit as an upper bound for k′, where k was
the previous and kinit the first editing cost.

3.5 ILP Formulation
Grötschel and Wakabayashi formulated Cluster Editing as an integer linear program
(ILP) and applied it successfully to real-world clustering tasks [GW89]. We use a similar
formulation, generalized for any set of forbidden subgraphs F . We use a binary vector
x ∈ B(V

2) to decode whether a vertex pair uv is edited, i.e.

xuv = 1 ⇐⇒ uv ∈ L

The ILP formulation of the Weighted F-free Edge Editing Problem is the following:

minimize
∑

u,v∈V

c(uv) · xuv (3.7)

subject to
∑

uv∈L6=(G,F )
(1− xuv) +

∑
uv∈L=(G,F )

xuv ≥ 1 ∀F ∈ F(V ) (3.8)

xuv ∈ {0, 1} ∀uv ∈
(
V

2

)
(3.9)

We use L6=(G,F ) (L=(G,F )) to denote the vertex pairs in F which are edited (not edited)
in respect to G. F(V ) is the set of all graphs with vertices from V which are isomorphic
to a graph in F .
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The constraints of Equation 3.8 range over all possible forbidden subgraphs on V . There are(|V |
p

)
sets of p vertices and p! permutations of these sets. Note that some of the forbidden

subgraphs might be the same graph with differently ordered vertices. For example two P3
on the set of vertices {a, b, c}. The paths (a, b, c) and (c, b, a) result in isomorphic subgraphs.
For F = {P3} there are 3!

2 ·
(|V |

3
)
constraints.

Even for the small forbidden subgraphs, the explicit generation of all constraints is not
feasible. We instead resort to row generation.

3.5.1 Algorithm

Algorithm 3.7 calls the method minimize of an ILP solver. The solver minimizes the
function defined in Equation 3.7. As already covered, constructing all constraints from
Equation 3.8 is not feasible. The ILP solver calls Algorithm 3.8 as a callback for some
heuristic solution x ∈ B(V

2). Constraints that are violated by x are inserted into the set
of all constraints. We find violated constraints by constructing the graph corresponding
to the edited vertex pairs {uv ∈

(V
2
)
| xuv = 1}. If G4x is not F-free, for each forbidden

induced subgraph at least one additional edit must be made or an already applied edit
must be undone. This is done until the solver found an optimal solution.

Algorithm 3.7: ILP Algorithm
Input: A graph G = (V,E) and a editing cost function c :

(V
2
)
→ R.

Output: A set of vertex pairs L ⊆
(V

2
)
, for which G4L is F-free and the costs

are minimal.
1 obj(x)←

∑
uv∈(V

2) c(uv) · xuv // objective function to minimize

2 constraints = ∅ // initial constraints
3 x← minimize(obj, constraints, callback) // the solver calls

Algorithm 3.8 for each intermediate solution
4 return {uv ∈

(V
2
)
| xuv = 1}

Algorithm 3.8: ILP Callback

Input: A graph G = (V,E) and a heuristic solution x : B(V
2).

Output: Constraints that are violated by x.
1 G′ ← G4x
2 foreach S ∈ C(G′) do

// at least one vertex pair needs to be edited from G′ to
destroy G′[S]

3 L6=(S)← {uv ∈
(S

2
)
| uv ∈ E(G) 6= uv ∈ E(G′)}

4 L=(S)← {uv ∈
(S

2
)
| uv ∈ E(G) = uv ∈ E(G′)}

5 constraints← constraints ∪ {(
∑

uv∈L6=(S)(1− xuv) +
∑

uv∈L=(S) xuv ≥ 1)}

6 return constraints

3.5.2 Restricting Constraint Generation

A significant problem for ILP-solvers is the large number of constraints in the ILP formula-
tion. The authors of [GW89] restrict the number of constraints added in each solving step
by a fixed amount. They generate a multiple of the desired number of constraints and add
the ones, that are the most violated. We use the following two methods for restricting the
number of constraints added in each solving step.
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Sparse Constraints

For keeping constraints sparse, we keep track which vertex pairs are already part of a
constraint that was inserted in the current iteration. If all vertex pairs of a forbidden
subgraph are already inserted in this step, we skip it. This bounds the number of constraints
inserted in each step by

(n
2
)
.

Single Constraints

A stricter approach is only allowing one additional constraint in each step.
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In this chapter, we evaluate the algorithms described in Chapter 2 and in Chapter 3 on
protein-protein interaction data. First, we describe the setup for our experiments and
the dataset in Section 4.1. We evaluate the forbidden subgraph listing algorithms in
Section 4.2. Next, we describe the effects of the lower bounds algorithms and subgraph
selection strategies on the running time of the FPT algorithm in Section 4.3 and Section 4.4
respectively. The search strategies for the optimal editing costs are analyzed in Section 4.5.
Finally, we evaluate the ILP algorithm and compare it to the FPT algorithm in Section 4.6.

4.1 Experimental Setup
In this section, we give a short overview of the hard- and software used for our experiments
and describe some implementation details. We also define the instances we use for our
experiments.
All experiments were executed on a single core of an Intel Xeon Gold 6144 dual CPU
system clocked at 3.50 GHz. 16 experiments were executed simultaneously. A total of
192 GiB RAM is available. The server runs openSUSE Leap 15.1.
The algorithms have been implemented in C++14 and compiled with GCC version 8.2.1
and compiler flags -O3 -march=native -DNDEBUG. As most input instances are rather
small, graphs are represented with adjacency matrices. We use the Boost dynamic_bitset
library1 [SAP+] for the rows of the adjacency matrix. Operations on vertex sets are
implemented as bit operation, i.e. N(u) \N(v) is performed by adj[u] - adj[v] on the
bit-vectors adj[u] and adj[v]. For the implementation of the ILP-algorithm, we use the
Gurobi Solver version 8.1.1 [Gur]. For calculating graph properties and visualization, we
used Python 3 and the Networkx package [HSS08].
To avoid floating-point errors, we internally transform the editing costs to integers in the
implementation. We use a factor m and transform the costs by multiplying and rounding
up. For the results, the costs are transformed back. While describing the algorithms and
in the analysis, we talk about the unscaled costs. For a set of edits L, the absolute error
introduced by the discretization can be bounded with 0 ≤ c′(L) − c(L) ≤ |L|

m . After a
preliminary study, we chose to use m = 100 for all experiments, resulting in a precision of
0.01.
The implementation can be found online2.

1http://boost.org/libs/dynamic_bitset
2https://github.com/jonasspinner/weighted-f-free-edge-editing, November 28: fa537279
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10 1 101

Figure 4.1: The first 30 instances of the bio dataset with less than 15 vertices. Higher
editing costs are indicated by a darker color. Non-edges are ignored in this
visualization.

4.1.1 Instances
The evaluation focuses on the bio dataset3 from [RWB+07, BBBT07]. The instances are
protein-protein interaction networks derived from 66 organisms of the COG dataset4.

The dataset was created for evaluating Cluster Editing algorithms [RWB+07, BBBT07].
The initial data is a large matrix describing the similarity between proteins. Non-negative
similarities are considered as edges. The graph consists of 50600 connected components,
of which 42563 have one or two vertices and 4073 are already cliques. The remaining
3964 connected components are the instances of the bio dataset. We further reduce it by
only considering graphs with less than 1000 vertices, ending with 3955 instances. Each
instance is a matrix with similarity scores. Let s(uv) be the score of proteins u and v. The
instance (G, c) is a graph G = (V,E) and a cost function c. An edge uv ∈ E only exists if
the interaction is non-negative. The editing cost c(uv) of a vertex pair uv is the absolute
magnitude of the similarity score, c(uv) := |s(uv)|.

3https://bio.informatik.uni-jena.de/data/#cluster_editing_data
4http://www.ncbi.nlm.nih.gov/COG/
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Figure 4.2: Solutions for bio instances for F = {C4, P4}. The data is generated by the
FPT algorithm with greedy lower bound, “most adjacent” subgraph selection
and known optimal editing cost. and a time limit of 100 seconds. The instances
with editing cost k = 0 do not necessarily have zero edits, as zero-cost vertex
pairs are allowed. 1682 instances are solved with k = 0, 1916 with k > 0 and
357 remain unsolved.

The bio dataset has been used for evaluation of algorithms for unweighted F-free Editing
[GHS+20] and Weighted Cluster Editing [RWB+07, BBBT07]. In Figure 4.1 30
smaller instances with less than 15 vertices are shown. It visualizes several properties of
the bio dataset. The instances often consist of one or more groups which are nearly cliques.
Sometimes smaller structures like single vertices, edges or triangles connect to the core.
Not all edges in a cluster are equal. For example, the core of instance in the lower right
corner has a visible subcluster with larger editing cost, as seen by the dark edges. Several
instances in the middle of the figure have long induced paths of length up to 8. These
paths can be destroyed by removing edges from the path.

Figure 4.2 depicts the number of edits in an optimal solution for each instance for F =
{C4, P4}. Larger instances do allow for “harder” instances with more edits. But even
instances with a large number of vertices may have a solution with only a few edits. The
lower figure visualizes the fact that many instances with 10 or fewer vertices can be solved
with an editing cost parameter of zero. Most of the unsolved instances have between 40
and 300 vertices.

4.1.2 Hard Instances

Many of the bio instances can be solved with no or only a few edits. As we are mainly
interested in the cases where constant startup costs cease to matter and scaling effects start
to dominate, we mostly do not use the whole bio dataset for evaluation. We want only the
“hard” instances and assume that the number of edits significantly influences the running
time of the algorithms for finding solutions. We define the “hard” instances to be the
ones, which need at least 10 edits for an optimal solution to the Weighted {C4, P4}-free
Editing Problem. This subset has 1058 instances. Figure 4.3 shows the running time of
all instances of the bio dataset in regards to the editing cost of the optimal solution for
variants of the FPT and the ILP algorithm. The instances that need at least 10 edits are
colored orange. The variant of the ILP algorithm has a significant start-up overhead. Even
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Figure 4.3: Running times for all instances of the bio dataset for {C4, P4}-free Editing
for the FPT algorithm (left) and the ILP algorithm (right). The FPT algorithm
was executed with known optimal cost, greedy lower bound calculation and
branching on subgraphs with most adjacent subgraphs. The ILP algorithm
used sparse constraints. For the FPT and ILP algorithm, 382 and 135 instances
remained unsolved respectively. “Hard” instances that were solvable within the
timelimit are colored orange. Note that both axes are scaled logarithmic.

the instances that need less than 10 edits need about 10−3 seconds. The FPT algorithm
manages to solve them up to one order of magnitude faster. When we only consider the
hard instances, the start-up costs are no longer the factor that dominates the instances
in the dataset. This suggests that the chosen threshold of minimum 10 edits is a valid
choice. The instances still have a wide range of running times, from 10−3 seconds up to the
time limit of 102 seconds. All experiments use the hard instances and solve {C4, P4}-free
Editing unless otherwise noted.

4.2 Listing Forbidden Subgraphs
In this section we evaluate the algorithms for listing forbidden subgraphs from Chapter 2.
We evaluate algorithms for listing P3s, {C4, P4}s, and {C5, P5}s.

The experiments are performed on all 3955 instances of the bio dataset. The algorithms
iterate over all forbidden subgraphs, incrementing a counter and discarding the actual
subgraph data. This ensures that the effects of copying subgraphs do not influence the
benchmarks, as some graphs have up to 108 forbidden subgraphs. The experiment was
executed 10 times for each instance and 2 permutations of its vertex pairs. The running
time only differed slightly between runs, so we only visualize the mean running time. For
each instance, three permutations of the vertices are evaluated, resulting in 11865 total
instances.

Listing P3s

P3 is the smallest forbidden subgraph we consider. We compare three different algorithms.
The naive algorithm enumerates all three-tuples of vertices (a, b, c), checking if they form a
P3 and conform to the symmetry-breaking restrictions discussed in Section 2.4. The other
two algorithms are described in Section 2.1. Algorithm 2.1 iterates over all edges and tries
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4.2. Listing Forbidden Subgraphs

Figure 4.4: The average running time of P3-listing algorithms plotted against the number
of vertices (left) and the number of forbidden subgraphs (right). Dashed lines
are the functions a · n3 (left) and a · p3(G) (right) fitted with the least-squares
method. The instances are from the complete bio dataset. The lower row is a
zoomed-in version of the upper row.

to expand them into a P3. Algorithm 2.2 completes the path by starting from the outer
vertices.

The result of the experiments on the bio dataset can be seen in Figure 4.4. All figures are
based on the same data. The left column visualizes the scaling behavior for the number
of vertices in the graph and the right column the dependency of the running time with
the number of forbidden subgraphs. The naive algorithm scales approximately with O(n3).
In contrast, the running time of the other algorithms mainly scales with the number of
forbidden subgraphs. All algorithms have nearly the same running time for graphs with less
than 50 vertices. Although both non-naive algorithms have similar asymptotic behavior,
filling from outer vertices has a consistently better running time.

Listing C4s and P4s

For listing C4s and P4s, we compare the naive algorithm, the endpoint algorithm (Algo-
rithm 2.4) and the midpoint algorithm (Algorithm 2.6). Unsurprisingly the naive algorithm
is not feasible for larger graphs because of the O(n4) running time. Both the end- and
midpoint-based algorithms are more efficient and again have a linear running time in
the number of forbidden subgraphs. The midpoint algorithm is consistently the fastest
algorithm for listing {C4, P4}. Comparing the linear fits for a · (p4(G) + c4(G)) suggests
that the midpoint algorithm is about 1.75 times faster. Unlike the endpoint algorithm, the
midpoint algorithm does not iterate over P3s that are not part of a P4 or C4.

Listing C5s and P5s

Cycles and paths of length 5 are the largest forbidden subgraphs we consider in this
evaluation. Again we compare the naive algorithm, the endpoint algorithm (Algorithm 2.4)
and the midpoint algorithm (Algorithm 2.6).
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Figure 4.5: The average running time of {C4, P4}-listing algorithms plotted against the
number of vertices (left) and the number of forbidden subgraphs (right). Dashed
lines are the functions a ·n4 (left) and a · (p4(G) + c4(G)) (right) fitted with the
least-squares method. The instances are from the complete bio dataset. The
lower row is a zoomed-in version of the upper row. Note the different limits
of the vertical scale in the lower row. Some instances did not finish in the 10
seconds time limit: 75, 3 and 3 for naive, midpoint and endpoint algorithms
respectively.
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4.3. Lower Bounds

Figure 4.6: The average running time of {C5, P5}-listing algorithms plotted against the
number of vertices (left) and the number of forbidden subgraphs (right). Dashed
lines are the functions a · n5 (left) and a · (p5(G) + c5(G)) (right) fitted with
the least-squares method. The instances are from the complete bio dataset.
The lower row is a zoomed-in version of the upper row. Some instances did
not finish in the 10 seconds time limit: 1511, 9 and 18 for naive, midpoint and
endpoint algorithms respectively.

The drawbacks of the naive algorithm become even more extreme for larger forbidden
subgraphs. Both the midpoint and endpoint algorithms do scale linearly in the number of
forbidden subgraphs. Comparing the linear fits for a · (p5(G) + c5(G)) suggests that the
midpoint algorithm is about 1.87 times faster

4.3 Lower Bounds
In this section, we compare the impact of the lower bound algorithms discussed in Section 3.2
on the FPT algorithm. Utilizing lower bounds is one of the most import factors for the
running time of the FPT algorithm because the recursion can be terminated earlier,
resulting in a smaller search tree. We compare the running times for having no lower
bound, i.e. a lower bound of 0, the simple packing algorithm, the greedy algorithm, and
the local-search-based algorithm.

Figure 4.7 depicts the running time of all bio instances for no lower bound, the greedy
lower bound and the local search lower bound. The blue curve is the average running time
for instances binned by their number of vertices and the band around it is the standard
deviation. Some instances with less than 40 vertices are not solvable within the 100 seconds
time limit when no lower bound is used. The variants that use a lower bound algorithm,
solve all bio instances with up to about 40 vertices but are unable to solve some instances
with more than 40 vertices. More than 50 % of the instances have at most 10 vertices and
can be solved within 10−2 seconds.

In Figure 4.8a the lower bounds are compared by their ability to speed up the FPT
algorithm. The instances are sorted by their running time and the figure shows how many
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Figure 4.7: Running time of the FPT algorithm for three lower bounds. Instances are from
the bio dataset and F = {C4, P4} is the set of forbidden subgraphs. The top
row is a histogram of instances that did not finish within the 100 seconds time
limit. The optimal editing cost was known beforehand and the “most adjacent”
subgraph selection strategy was used for branching. The average running time
of the solved instances, binned by their number of vertices, is shown as the blue
line. The band is the size of one standard deviation.

instances were solved within a given running time. Less than 200 instances can be solved
when no lower bound algorithm is used. The greedy lower bound is consistently the best
algorithm for all running times. The local search lower bound starts worse than the simple
packing approach but can solve more instances if the maximum running time is more than
5 seconds.

Additionally, to analyzing the running time of the algorithms, we can also take a look at
the number of total recursive calls of Algorithm 3.1. Every time the algorithm is called,
either initially or in a recursion, the number of calls is incremented. In Figure 4.8b we
sort the instances by the number of calls they needed and we can see how many instances
are solvable with a given number of calls. We use this visualization to analyze the quality
of the lower bounds, i.e. how accurate the lower bounds estimate the actual editing cost.
If a lower bound is larger, more of the search tree is pruned and this results in fewer
calls. Given a maximum number of calls, the local search lower bound now consistently
outperforms the simple packing lower bound. However, it is still beaten by the greedy
lower bound. The lower bounds of the local search algorithm are worse than the ones from
the greedy algorithm. Recall that the local search algorithm updates the packing after
each edit and the greedy algorithm builds the packing from scratch every time it is called.
We suspect that updating the packing locally is not good enough to compensate for the
cost of constructing a packing globally.

Furthermore, the local search algorithm seems to be keep getting stuck in a local maximum.
If it did escape, the calculated lower bounds would be better or at least as good as the
ones from the greedy lower bound. For unweighted F-free Edge Editing, the local
search approach proved to be successful [GHS+20]. The unweighted local search relies
more heavily on plateau search. This seems not to be possible for the weighted case. It
is more likely that the editing costs of two packings differ with at least some amount.
This is a chance for improvement for future work. Strategies, like accepting slightly worse
packings or forcing forbidden induced subgraphs into the packing, could help to escape
local maxima.
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(a) Number of solved instances for a certain running time.
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(b) Number of solved instances for a certain number of calls.

Figure 4.8: Number of solved instances comparing different lower bound algorithms. For
subgraph selection the most adjacent subgraphs are chosen. The exponential
growth search strategy is used. The size of the dataset is marked with a
horizontal line.
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Figure 4.9: Number of solved instances for a certain running time comparing different
subgraph selection strategies. The FPT algorithm uses the greedy lower bound
and is executed with the known optimal cost.

First found Most marked Most adjacent
No lower bound 331 482 337

Greedy 564 648 677
Local search 534 623 658

Table 4.1: Number of solved instances for a specific lower bound and selection strategy.
The FPT algorithm is executed with known optimal editing cost and with a time
limit of 100 seconds. The numbers can only be interpreted relatively because
the “hardness” of instances does not scale uniformly. The maximum number of
solvable instance is 1058. The best values for each lower bound is marked bold.

The effect of the lower bound is not independent of the other methods, like the subgraph
selection strategies. In the next section, we cover subgraphs selection strategies and also
the interaction with the lower bound algorithms.

4.4 Subgraph Selection

Selecting forbidden subgraphs for branching decides which subproblem is being solved first.
Figure 4.9 depicts the influence of the subgraph selection strategies on the running time
of the FPT algorithm. Selecting the most adjacent subgraphs results in a speedup of up
to one order of magnitude for harder instances in comparison to just choosing the first
forbidden induced subgraph that is found. Although the selection strategies manage to
speed up the algorithm, the running time benefit is weaker than that of the lower bounds.

We already noted that the effect of the subgraph selection strategies and lower bound
algorithms on the FPT algorithm are not independent. In Table 4.1 the number of solved
instances for a specific lower bound and selection strategy is denoted. When no lower bound
algorithm is used, the strategy of selecting the subgraph with most marked vertex pairs is
significantly outperforming the others. We have to be careful with the interpretation of
the absolute numbers. The absolute differences are not meaningful because we can make
no statement about the “hardness” of each additionally solved instance. Nevertheless, we
can compare their relative order. For the greedy and local search lower bounds, choosing
the subgraph with the most adjacent other subgraphs is effective. In the following, we give
a possible explanation.
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Recall that we defined two forbidden induced subgraphs to be adjacent if they share an
unmarked vertex pair. Consider a single vertex pair, that is shared by multiple subgraphs.
If it is the only vertex pair shared by the subgraphs, marking it corresponds to making
them no longer adjacent in the corresponding MWIS instance. This allows inserting more
subgraphs into the packing and results in a better lower bound and therefore in a better
running time. Although this observation is true for all marked vertex pairs, choosing the
ones to edit (and mark), which have the most incident subgraphs, maximizes the number
of adjacencies that are removed.

The “most marked” strategy helps to keep the search tree small. If more vertex pairs are
marked in a forbidden subgraph, then the number of branches is reduced. This improvement
can be seen when no lower bound is being used. Even with lower bounds, the algorithm is
significantly more performant than just choosing any forbidden subgraph. Nevertheless,
it fails to improve the subgraphs packing as much as the “most adjacent” strategy. The
ability to improving the packings seems to be the dominating factor for the running time
of the FPT algorithm.

4.5 Search Strategies
In this section, we evaluate the search strategies discussed in Section 3.4. First, we take a
look at the running time of the FPT algorithm. Next, we investigate the growth rate of
the search strategies.

One major challenge for Weighted F-free Edge Editing is “proving” that a given
solution is optimal. For unweighted F-free Edge Editing, the algorithm is executed for
increasing editing costs k = 0, 1, etc. If a solution with editing cost k has been found and
no solutions for k−1 have been found, we can deduce that the solution must be optimal and
stop the search. This especially useful for subgraph selection strategies for branching which
aim to prioritize branching options that most likely lead to a solution. When a solution for
Weighted F-free Edge Editing has been found, we can only use its editing cost as an
upper bound. With this upper bound the search tree can be further pruned but the FPT
algorithm still has to either prune or explore each branch in the search tree to make sure
that no solution with lesser editing cost exists. Additionally to the search strategies for
the editing cost from Section 3.4, we present a variant of the FPT algorithm that already
knows the optimal editing cost k∗. Algorithm 3.1 is only executed once for (G, k∗) and
stops as soon as one solution has been found. In Section 5 we describe possible variants
of Weighted F-free Edge Editing that produce a solution that solves the problem
approximately or enumerate all inclusion-minimal solutions up to a given editing cost.

Knowing the optimal editing cost before the execution of the algorithm does not apply to
actual data. We use it in our evaluation because it is better than any search strategy. It
only executes the FPT algorithm once with the optimal editing cost and the first found
solution is guaranteed to be optimal. Figure 4.10a depicts the influence of different search
strategies on the running time of the FPT algorithm. Estimating the number of calls by
an exponential model, preventing the pruning of branches and incrementing by 1 have
nearly the same running time. Incrementing by the smallest editing cost is the worst
strategy and fitting an exponential growth model is only slightly better than the other
two strategies. Both “incrementing by the smallest editing cost” and “incrementing by 1”
depend on the scaling of the cost function. A single (non-)edge with a very small editing
cost or multiplying all costs by a large number could severely affect the running time of
the algorithm. Most editing costs of instances from the bio dataset are between 0 and 10.
The “natural” scale of one seems to be not a bad choice.

Ideally, the last search step dominates the total running time. We take a look at the
running time of the last search step of each instance for the different search strategies.
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(a) Number of solved instances for a certain total running time of all search steps.
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(b) Number of solved instances for a certain running time of the last search step.

Figure 4.10: Number of solved instances for a certain running time comparing different
search strategies. The FPT algorithm uses the greedy lower bound and
subgraphs with most adjacent subgraphs are selected.
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Figure 4.10b shows the number of solved instances with the running time of the last search
step. When the optimal editing cost is known beforehand, the curve is the same as in
Figure 4.10a because the algorithm is only executed once. The strategy of incrementing by
the minimum editing cost solves the most instances for a given maximum running time
of the last search step. This is probably the effect that small search steps lead to a final
editing cost which is only slightly larger than the optimal editing cost. Furthermore, the
“exponential” strategy is now performing slightly worse than the rest. This implies that the
search strategy overestimates the optimal editing cost for the last search step. When we
compare Figure 4.10a and Figure 4.10b, we see that the curve for the exponential strategy
is not significantly different. This suggests that this search strategy is successful with
having the last search step dominate the total running time. Nevertheless, when the FPT
algorithm is executed with the optimal editing cost k∗, the algorithm is much faster. As
previously discussed, the algorithm for known k∗ can terminate after the first solution has
been found. This explains the gap to the other algorithms.

Although the total running time of the FPT algorithm only differs slightly for the different
search strategies, we want to take a closer look at their behavior. An ideal algorithm would
guess the optimal editing cost exactly and the FPT algorithm would be only called once
with that parameter. As we cannot expect search strategies to succeed on the first try, we
analyze the behavior of multiple search steps. The algorithm starts with an initial lower
bound and solves the problem for increasing values of the parameter k. The size of the
search tree grows with the parameter and with each editing step. We can compare the size
of the search tree, i.e. the number of recursive calls, between editing steps by taking a
look at the ratio of calls between the search steps. A good search strategy would make
significant progress with each search step, but not “overshoot” the optimal editing cost
too much. Another desired property is that the search strategy minimizes the number
of “costly” search steps, near the optimal editing cost. As a result, the running time
is dominated by only one (the last) search step. This can be achieved by for example
doubling the number of calls for each search step, i.e. having a local growth behavior like
the function 2i for search step i.

The ratios for all instances of the bio dataset and all search strategies are visualized in
Figure 4.11. The ratios are plotted against the search steps taken by each strategy. The
data is summarized by their quantiles. The first thing to note is that the number of search
steps needed differs widely. About 1% of the instances needed more than 1014 steps when
the strategy is incrementing by the minimum editing cost. Meanwhile, about 90% of the
instances need less than 16 steps when using the exponential search strategy. The strategies
other than incrementing by the minimum cost, consistently make some progress for most
of the instances, i.e. the median growth ratio is larger than 1. The exponential growth
estimation strategy is configured to target a growth ratio of two and the quantiles do
converge to a ratio of two after only a few steps. This is a trade-off between making enough
progress, but not too much to overshoot the optimal editing cost.

Unfortunately the exponential growth search strategy “overshoots” for some search steps.
There are even search steps with ratios larger than 100. This indicates that the maximum
step size is not bounded strongly enough or the assumption of exponential growth does
not hold locally. Figure 4.12 shows the relationship of the allowed editing cost k with the
number of calls for eight permutations of one instance. We see a horizontal segment where
the number of calls does not increase with k. This contradicts the exponential growth
assumption. The assumption only starts to hold after the initial horizontal section. The
update rule from Equation 3.6 cannot be applied when no slope is present. The strategy
must resort to the upper bound constraint. The knowledge of such plateaus could be used
to further improve the search strategy.
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(a) Incrementing by minimum editing cost. At most 3536 steps were needed. More than
99% of the instances needed less than 1014 steps. The average growth rate is 1.
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(b) Incrementing by 1. At most 720 steps were needed. More than 99% of the instances
needed less than 64 steps. The average growth rate is 1.14.

Figure 4.11: Quantiles of the ratios between the number of calls for consecutive search
steps. A desirable growth of 2x is plotted as a horizontal line. Some graphs
only need a few search steps. The percentage of graphs that needed up to a
given search step, is visualized in the bottom figures. The x-axis is restricted
such that the search steps that were being done by less than 1% are cut off.
Data from bio instances, the “most adjacent” subgraph selection strategy and
the greedy lower bound is used.
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(c) “Exponential” search strategy with target growth of 2x. At most 17 steps were needed.
More than 99% of the instances needed less than 16 steps. The growth rate approaches
the target after a few steps.
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(d) “Prune prevention” search strategy that chooses the median. At most 94 steps were
needed. More than 99% of the instances needed less than 57 steps. The average
growth rate is 1.21.

Figure 4.11: The ratio between the number of calls for consecutive search steps (continued).
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Figure 4.12: Example of a relationship between editing cost k and the number of calls from
eight permutations of instance no. 161 from the bio dataset for F = {C4, P4}.
The evaluation points are evenly spaced with distance one after the initial
lower bound. The greedy and local-search-based lower bounds have nearly the
same number of calls. The horizontal segments up to the bends at k = 30 and
43 do not follow the exponential growth assumption.
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Figure 4.13: The number of solved instances for a certain total running time, comparing
the constraint restrictions.

4.6 The ILP Algorithm and Comparison to the FPT Algo-
rithm

First, we take a look at the ILP algorithm. Then we finally compare the two basic
algorithms for Weighted F-free Edge Editing discussed in this thesis: the search-tree
based FPT algorithm and the ILP algorithm based on the formulation of the problem as
a linear program. Looking back at Figure 4.3, we can see that the ILP solver has some
significant start-up cost. The FPT algorithm is faster for easy instances, but this effect
ceases to matter for harder instances.

First, we take a look at variants of the ILP algorithm. We restricted the number of
constraints generated in each callback with the methods discussed in Section 3.5.2. The
comparison is shown in Figure 4.13. The basic ILP algorithm does not restrict any constraint
generation, the “single” variant only generates a single constraint and the “sparse” variant
generates at most

(n
2
)
constraints. Using either restriction method results in more instances

that are solvable within a given time limit. The “sparse” variant can solve 935 of the
1058 instances within a 100 seconds time limit. Consequently, the sparse row generation
restriction is the best performing variant of the ILP algorithm.

Not restricting constraint generation at all, seems to generate too many constraints. Only
generating one constraint improves on that and restricting the generation with the “sparse”
method and potentially adding multiple constraints is even better. However, we do not know
whether the “sparse” variant with at most

(n
2
)
constraints is too restrictive or generates too

many constraints. In one of the earliest publications, the generated constrains are restricted
by a constant amount: either 400 or 500 constraints were added [GW89]. Other methods
for restricting constraint generation are also possible and an opportunity for future work.

In Figure 4.14 variants of the FPT and ILP algorithms are compared. In contrast to
Figure 4.3, only the hard instances are used for comparison. In the figure, the ILP algorithm
is considered without restrictions and with sparse constraints. The FPT algorithm is
considered once with the “base” variant (no lower bound, selecting the first subgraph that
is found and incrementing by one) and twice with the “best” configuration (greedy lower
bound, “most adjacent” subgraph selection). One of the “best” FPT variants is executed
with the known optimal editing cost and one used the “exponential” search strategy.
Although the FPT algorithm benefits significantly from the speed-up techniques, the ILP
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Figure 4.14: The number of solved instances for a certain total running time, comparing
the ILP and FPT algorithm. The basic FPT algorithm uses no lower bound,
branches on the first subgraph found and increments the editing cost by one in
each search step. The other two FPT algorithms use the greedy lower bound
and the “most adjacent” subgraph selection strategy.

algorithm is still better. Only for small time limits of up to 10−2, the FPT algorithm with
known optimal editing cost manages to solve the most instances.

We conclude, that the ILP algorithm outperforms the FPT algorithm in our evaluation.

Furthermore, we investigate whether both the ILP and FPT algorithms struggle with
the same instances. Figure 4.15 compares the running times of two versions of the ILP
algorithm against one version of the FPT algorithm by plotting the total time they took
for each instance. Points above the line are solved faster by the ILP algorithm than the
FPT algorithm. The “best” FPT algorithm without known optimal editing cost (greedy
lower bound, “most adjacent” subgraph selection, “exponential” search strategy) is used
and the ILP algorithm without restricted constraint generation is used in Figure 4.15a and
the ILP algorithm with sparse constraints is used in Figure 4.15b. In Figure 4.15a, we can
see in that some instances are solved by the FPT algorithm, but not by the ILP algorithm.
There exist a few instances which are solved within one second by the FPT algorithm, but
fail to finish within the time limit of 100 seconds with the ILP algorithm. Nevertheless,
most instances are solved faster by the basic ILP algorithm. Looking at Figure 4.15b,
this small advantage of the FPT algorithm for some instances ceases to exist when the
improved ILP algorithm with sparse constraints is used. All instances are either solved
by both algorithms, by the ILP algorithm or not solved at all. While they achieve similar
running times for easy instances which are solved within 10−2 seconds, the ILP is up to 3
orders of magnitude faster for harder instances.
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(a) The basic ILP vs. the FPT algorithm.
Some instances are only solved by the the
FPT algorithm.
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(b) The ILP algorithm with sparse con-
straints vs. the FPT algorithm.

Figure 4.15: Running times per instance for ILP and FPT algorithm. The FPT algorithm
uses the greedy lower bound, the “most adjacent” selection strategy and the
“exponential” search strategy. Instances which did not finish within 100 seconds
are displayed at 300 seconds.
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5. Conclusion

We investigated algorithms for Weighted F-free Edge Editing, generalizing previous
work for unweighted F-free Edge Editing with methods applicable to any finite set of
forbidden subgraphs F . All algorithms were evaluated on the protein-protein interaction
data from [RWB+07, BBBT07]. Also, we present and evaluate algorithms for listing
forbidden induced subgraphs for cycles and paths.

We adapted lower bound methods based on vertex pair disjoint packings and find that
a weight-aware adaption of a greedy packing lower bound algorithm results in the best
running times. Although a local-search-based lower bound has been successfully used for
unweighted F-free Edge Editing by the authors of [GHS+20], it did not outperform
the greedy algorithm. We assume that is a problem with local maxima. Also performing
plateau search seems to more efficient for unweighted editing. Letting the FPT algorithm
branch on forbidden induced subgraphs with the most other adjacent subgraphs, improved
the lower bounds.

Finding the optimal editing cost for the FPT algorithm is non-trivial for Weighted
F-free Edge Editing. We discussed two previously used methods and introduced two
new methods. We evaluated these search strategies and analyze the behavior of their search
steps. The “exponential” search strategy proved to be marginally better than the other
strategies and is independent of the scaling of the cost function.

Also, we investigated an ILP algorithm and methods to restrict the generation of constraints.
Our evaluation shows that the restriction methods significantly speed up the ILP algorithm
and the sparse restriction work the best. In a comparison of the solving algorithms, the
ILP algorithm manages to outperform the variants of the FPT algorithm.

Future Work
Other lower bound methods adapted from algorithms for the Maximum Weighted
Independent Set Problem are also possible. Some MWIS heuristics do not only
consider the weight, but also the degree of vertices. These could be adapted for packing-
based lower bound algorithms.

The ILP algorithm can probably be further improved by adding constraints for fractional
solutions. Another technique for keeping the linear program small enough to be solved
efficiently by an ILP solver is row elimination, where constraints that are no longer active
are removed from the model.
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5. Conclusion

Instead of further investigating algorithms for Weighted F-free Edge Editing, one
could also investigate different variants of the problem itself. The FPT algorithm can
enumerate all inclusion-minimal solutions, which is not easily possible with the ILP
algorithm. This gives rise to several variants of Weighted F-free Edge Editing, like
finding all near optimal inclusion-minimal solutions, i.e. such that k ≤ (1 + ε) · k∗, for the
optimal editing cost k∗ and some ε > 0. The FPT algorithm can also be used to search for
a single solution that is at most some given amount worse than the optimal solution.
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