
The Compexity
of the Oriented Cycle Game

Bachelor Thesis of

Shabi Shabani

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
T.T.-Prof. Dr. Thomas Bläsius

Advisor: PD Dr. Torsten Ueckerdt

Time Period: 24th November 2022 – 24th March 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, March 24, 2023

iii

Abstract

The oriented cycle game, which was introduced by Bollobás and Szabó, is a strategy
game played on undirected graphs in which both players, A(voider) and C(reator),
assign orientations to undirected edges alternately until there are no more undirected
edges. Unlike the original game, where player C tries to create a directed cycle and
player A tries to prevent him, we introduce two new variations. First, we introduce
the avoid oriented cycle game, where both players try to prevent a directed cycle. The
first player to create a directed cycle loses. Next, we introduce the seek oriented cycle
game, where both players try to create a directed cycle. The first player to create
a directed cycle wins. Following, we introduce the oriented edge groups, which is a
relation between oriented edges. Here, a player, when orienting an undirected edge,
must orient the other edges that are in relation to the undirected edge accordingly.

First, we look at the decision problem "Does the current player possess a winning
strategy?" and show that this decision problem is PSPACE-complete under certain
properties of the oriented edge groups for our newly presented game variations. After
that, we will look at certain properties of the oriented edge groups, where the decision
problem is solvable in polynomial time.

Finally, we look at some interesting graphs, such as the grid graph, and indicate
which player wins on them in the original oriented cycle game from Bollobás and
Szabó.

Deutsche Zusammenfassung

Das Oriented Cycle Game, welches von Bollobás und Szabó eingeführt wurde, ist
ein Strategiespiel auf ungerichteten Graphen, bei dem beide Spieler, A(voider) und
C(reator), ungerichtete Kanten abwechselnd Orientierungen zuweisen, bis es keine
ungerichteten Kanten mehr gibt. Im Gegensatz zum original Spiel, bei dem Spieler
C versucht einen gerichteten Zyklus zu erzeugen, und Spieler A versucht ihn daran
zu hindern, führen wir zwei neue Varianten ein. Erstens führen wir das Spiel avoid
oriented cycle game ein, bei dem beide Spieler versuchen einen gerichteten Zyklus zu
verhindern. Der Spieler, der einen gerichteten Zyklus zuerst erzeugt, verliert. Als
nächstes führen wir das seek oriented cycle game ein, bei dem beide Spieler versuchen,
einen gerichteten Zyklus zu erzeugen. Der Spieler, der einen gerichteten Zyklus zuerst
erzeugt, gewinnt. Als nächstes führen wir die oriented edge groups ein, die mehrere
Relationen zwischen orientierten Kanten darstellen. Hier muss ein Spieler, wenn
er eine ungerichtete Kante richtet, die anderen Kanten, die in einer Relation zur
gerichteten Kante steht, auch entsprechend richten.

Zunächst betrachten wir das Entscheidungsproblem "Besitzt der aktuelle Spieler eine
Gewinnstrategie?" und zeigen, dass dieses Entscheidungsproblem unter bestimmten
Eigenschaften der orientierten Kantengruppen PSPACE-vollständig ist für unsere
neu vorgestellten Spielvarianten. Danach werden wir bestimmte Eigenschaften der
oriented edge groups betrachten, bei denen das Entscheidungsproblem in polynomieller
Zeit lösbar ist.

Schließlich betrachten wir einige interessante Graphen, wie zum Beispiel den Gitter-
graphen, und geben an, welcher Spieler in dem ursprünglichen Oriented Cycle Game
von Bollobás und Szabó gewinnt.

v

Contents

1 Introduction 1
1.1 Variants of the game . 2

1.1.1 Biased game . 2
1.1.2 Avoid game & seek game . 2
1.1.3 Oriented edge groups . 2
1.1.4 Partizan game . 3

1.2 Outline and Example . 3
1.3 PSPACE . 4

2 Preliminaries 7
2.1 Assumptions and Notations . 7
2.2 Laman graphs . 7
2.3 Oriented Edge Groups . 8
2.4 Quantified SAT . 8

2.4.1 QSAT as a two-player game . 8
2.4.2 Variants of Quantified SAT . 9

2.4.2.1 Impartial . 9
2.4.2.2 Partizan . 10

2.4.3 Default game . 10
2.4.3.1 Seek game . 10
2.4.3.2 Avoid game . 11

3 Avoid Oriented Cycle Game 13
3.1 Avoid Oriented Cycle Game in PSPACE . 13
3.2 Avoid Oriented Cycle Game is PSPACE-hard 14
3.3 Avoid Oriented Cycle Game in P . 19

4 Seek Oriented Cycle Game 23
4.1 Seek Oriented Cycle Game in PSPACE . 23
4.2 Seek Oriented Cycle Game is PSPACE-hard 24
4.3 Seek Oriented Cycle Game in P . 34

5 Default Oriented Cycle Game 39
5.1 Default Oriented Cycle Game in P? . 39
5.2 Overview of some interesting Graphs . 41

6 Conclusion 47

Bibliography 49

vii

1. Introduction

The oriented cycle game, invented by Béla Bollobás and Tamás Szabó, is a maker-breaker
game that falls under the category of positional games [BS98]. Two players, A(voider) and
C(reator) participate in the orientation cycle game on an undirected graph G. Edges of G
are directed by the players alternately. Player C, who initiates the game, only directs one
edge. In response, exactly one previously undirected edge is directed by player A. Finally,
we obtain a directed graph G′ once the players have directed all of the edges of G. The
directed graph G′ must have at least one directed cycle for player C to win; otherwise,
player A wins.
Let us consider the game played on the triangle graph shown in Fig. 1.1. Player C chooses
one of the three edges and orients it. Because of the symmetry of the graph, we can assume
that player C has directed the upper edge towards the right (Fig. 1.2). In order for player
A to win and prevent the directed cycle, he can now make the node at the top right a sink.
For a node to become a sink, it must have no outgoing edges. The top right node becomes
sink by orienting the bottom right edge to the right as shown in Fig. 1.3. Now player C
has only one edge left to orient and both possibilities to orient this edge lead to no directed
cycle and therefore to a defeat for player C. This gives us a winning strategy for player A
on the triangle graph.

Figure 1.1: An undirected
triangle

Figure 1.2: A triangle with
one directed
edge

Figure 1.3: Losing con-
figuration for
player C

1

1. Introduction

1.1 Variants of the game
This section will focus on specific game variations in more detail. This involves changing
the basic rules of the game or the goals of the individual players. It is crucial to keep in
mind that these variations of the game can also be combined in a meaningful way. This
makes sense when one variant changes the basic rules of the game and the other variant
changes the objective of the game.

1.1.1 Biased game

Depending on our graph G, an unfair power distribution may take place. For instance, if
G has few edges, A might have a significant advantage over C because it is unlikely that a
directed cycle will form. If G has many edges, then there can be more opportunities to
form a cycle and C would have a tremendous amount of power. Giving the weaker party
more power is one way to maintain a healthy balance of power. As a result, Chvátal and
Erdös introduce biased maker-breaker games [CE78]. In our case, we let players direct
multiple edges at once.
Let a, b ∈ N be positive numbers that we call biases of players A and C. In the (a : b)
biased oriented cycle game, as before, we let the players take turns directing undirected
edges on the graph G, where in each round player C directs a edges and then player A
directs b edges. In the very last round, if the number of undirected edges of G is less than
the player’s bias, the player must direct all remaining edges. Note that the (1 : 1) biased
oriented cycle game is the original oriented cycle game.

1.1.2 Avoid game & seek game

We attempt to combine A and C’s interests in the avoid game and the seek game. Therefore,
for avoid and seek games, player 1 and player 2 will be used instead of players A and C. In
the avoid game, avoiding closing a cycle is the objective. The player who closes a cycle by
setting an edge loses. Therefore, the winner is the player who can force their opponent to
close a cycle. It is not decisive who has oriented the other edges in the directed cycle, but
only the player who closes the oriented cycle loses. The seek game, on the other hand, is
the complete opposite. The objective in the seek game is to finish a cycle first. As a result,
the winner is the first person to finish a cycle by orienting an edge. In this case, as well, it
is not decisive who has oriented the other edges in the directed cycle, but only the player
who closes the directed cycle wins. If no cycle forms in either of the two game scenarios, a
draw happens. We assume for the sake of simplicity that forcing a draw is not an ideal
strategy when forcing a win is also available.

1.1.3 Oriented edge groups

To make our game a little more interesting, we introduce oriented edge groups M . To do
this, we give both players a table that contains which oriented edges are in a group. An
oriented edge group is a set of oriented edges. If a player decides to orient an undirected
edge e, he must look in the table to see which oriented edges are in a group with e.
The orientation is decisive here since other-oriented edge groups are possible for both
orientations of e. Once the oriented edge group has been found, each edge that is not
oriented in this group must be oriented in the way prescribed by the group. If there are
several oriented edge groups that contain the oriented edge e, all edges from all oriented
edge groups that contain e will be oriented accordingly. If there is no oriented edge group
for this oriented edge, then this edge cannot be oriented. This also allows the player to
orient several edges simultaneously, but he is not as free to decide which edges to orient as
in the biased game. The game ends when one player has won or until there are no more
valid oriented edge groups.

2

1.2. Outline and Example

1.1.4 Partizan game

In our original game, both players were allowed to direct an edge that was not yet directed,
so they have the same moves available. In game theory, such games are called impartial
games [Dem01]. In partizan games, we do not want to have this and want to give one
player certain moves that the other player doesn’t have. An example of a partizan game is
chess. Only one player can play with the white pieces and the other player is not allowed
to move these white pieces. We can also turn our game into a partizan game by coloring
the edges of G in black and white. This is done by coloring the edges fairly so that there
are 50% white edges and 50% black edges. Thus we allow player C to play only on white
edges and player A to play only on black edges. Both players take turns again and orient
an edge of their color. Player C tries again to close a directed cycle, the directed cycle may
have any color combination. This means that player C also wins if the directed cycle has
alternating edge colors at the end of the game. And as usual, player A tries to prevent a
directed cycle, regardless of the color of the edges.

1.2 Outline and Example
After looking at definitions and some decision problems in Chapter 2, in Chapter 3 we
take a closer look at the avoid oriented cycle game with oriented edge groups and analyze
it in terms of complexity, how hard it is to find out if the current player can force a win,
depending on the oriented edge groups. Chapter 4 deals with the seek oriented cycle game,
again with oriented edge groups. There we again analyze the game in terms of complexity,
and how hard it is to find out if the current player can force a win, depending on the
oriented edge groups. Finally, in chapter 5 we look at the normal oriented cycle game
without oriented edge groups and try to gather some new insights for the game.

Let us consider the game played on the house graph shown in Fig. 1.4. Here, both players
have given the following oriented edge groups M :
M = {{(v3, v2)}, {(v2, v4), (v5, v4)}, {(v2, v1), (v1, v3)}, {(v5, v3), (v4, v2)}{(v5, v4), (v3, v5)}}.
In this case, we look at the avoid version, that is, the player who creates a directed cycle
loses. In the oriented edge groups, oriented edges are given as a group.
For example, suppose player 1 starts the game and orients the edge from node v2 to node v1.
Now we look into the oriented edge groups to find groups. Only the group {(v2, v1), (v1, v3)}
is found that has exactly this edge with the orientation. Since the oriented edge (v1, v3)
is in this group, it must also be oriented as the group specifies. This means that when
orienting the edge from v2 to v1, the edge from v1 to v3 is oriented at the same time as
shown in Fig. 1.5.
Now it is player 2’s turn and he would like to orient the edge from v2 to v3. After looking
at which oriented edges are in a group with his chosen edge, he notices that this edge with
this orientation is not in any group. This means that he cannot orientate this edge in this
way and must choose another one. We assume that player 2 orients the edge from v2 to
v4. Now we look again at the oriented edge groups to find groups. The only group that
has the selected edge with matching orientation is {(v2, v4), (v5, v4)}. Thus, at the same
time as orienting the edge from v2 to v4, we also orient the edge from v5 to v4. We do not
orient the edge of v3 to v5, even if it is in a group with the edge v5 to v4, because we have
oriented the edge v2 to v4 and only orient the groups that have exactly this edge with the
matching orientation as can be seen in Fig. 1.6.
Since there is still no directed cycle in the graph, it is player 1’s turn again. We assume
that player 1 chooses to orient the edge from node v3 to v5. Looking at the oriented edge
groups containing the selected edges, we get {(v5, v4), (v3, v5)} as the only group. However,
since the other edge in the group is already oriented and there are no other edges besides
the selected one, only the edge from v3 to v5 is oriented as can be seen in Fig. 1.7.

3

1. Introduction

It is player 2’s turn again, as there is still no directed cycle. However, there is only one
edge left and, as we have already seen, this edge can not be oriented from v2 to v3. This
leaves only the orientation of this edge from v3 to v2. Since this edge with this orientation
alone represents a group, no other edge is oriented with it. However, with this move a
directed cycle v1 → v3 → v2 was created and therefore player 2 loses if the game is played
this way.

Figure 1.4: The
house
graph

Figure 1.5: The
house
graph
after the
1st move

Figure 1.6: The
house
graph
after
the 2nd
move

Figure 1.7: The
house
graph
after
the 3rd
move

1.3 PSPACE
In theoretical computer science, determining the difficulty of a given decision problem is
interesting. Different complexity classes have emerged as a result of this. It has already
been established for numerous board games that the decision problem of whether a player
has a winning strategy belongs to a specific complexity class. The decision problem is
oftentimes PSPACE-complete when we narrow our attention to two-player board games.
PSPACE is the set of problems that can be solved in polynomial space or to be more
precise PSPACE is the complexity class of decision problems L for which a Turing machine
M exists for which:

1. M holds for every input

2. M accepts an input x ∈ {0, 1}∗ if and only if x ∈ L;

3. there exists a polynomial p such that the size of the tape of M SpaceM (n) used
during calculations is limited by p.

SpaceM (n) ≤ p(n)

In order to prove that a decision problem L is PSPACE-complete we must prove that
L ∈ PSPACE and we must show that L is PSPACE-hard. We can provide an algorithm
that solves L while using only a polynomial amount of space in order to demonstrate that
L ∈ PSPACE.
To show that L is PSPACE-hard, we take another problem Π which is known to be PSPACE-
hard, and prove that Π can be reduced to L in polynomial space. This demonstrates that
problem L is at least as difficult to solve as problem Π, which is PSPACE-hard, and that
solving Π is not computationally more difficult than solving L.
A reduction from a language Π ⊆ Σ∗ to a language L ⊆ Σ∗ is a function f : Σ∗ → Σ∗ such
that:

4

1.3. PSPACE

• f is computable by a polynomial space algorithm

• w ∈ Π ⇔ f(w) ∈ L

We then say Π is reducible to L and write Π ≤p L [AB09].
For an example of a PSPACE-complete decision problem, one can take undirected edge
geography by Fraenkel, Scheinerman, and Ullman [FSU93]. In the game undirected edge
geography, two players take turns moving a token on an undirected graph from one vertex
to an adjacent vertex, erasing the edge in between. The loser is the player who cannot
make a move legally first. The associated decision problem, which is PSPACE-complete, is:
"Given a token on an undirected graph, is this position a win for the first player?"

5

2. Preliminaries

In this chapter, we establish some assumptions and notations in this thesis. We also look
at problems known in complexity theory and used in the thesis before delving into the
complexity of the oriented cycle game.

2.1 Assumptions and Notations
In this thesis, we consider mixed graphs G = (V, E, A) unless specified otherwise. The set
of nodes in G is called V , E ⊆

(V
2
)

is the set of undirected edges and A ⊆ V × V is the set
of directed edges. Consider the connected nodes u, v ∈ V . A directed edge is an edge with
an orientation and is denoted by −→uv or (u, v). In this instance, the edge points from u to
v. Undirected edges lack orientation and are identified by the symbols uv or [u, v]. For
undirected edges, [u, v] refers to the same edge as [v, u]. In addition, there are no multiple
edges between two nodes and there is no edge connecting a node to itself.

For a given mixed graph G = (V, E, A) and a node v ∈ V , we define G′ = G − v as the
resulting mixed graph by removing v from V and all edges incident to v. To be more precise,
the following applies to G′ = (V ′, E′, A′) : V ′ = V/{v}, E′ = {[x, y] ∈ E | x ̸= v, y ̸= v}
and A′ = {(x, y) ∈ A | x ̸= v, y ̸= v}.

A mixed subgraph G′ = (V ′, E′, A′) of a mixed graph G = (V, E, A) has as its nodes a
subset of the nodes of G, V ′ ⊆ V . The undirected edges E′ and the directed edges A′ are
also subsets of the undirected edges E and the directed edges A, i.e. E′ ⊆ E and A′ ⊆ A.
The mixed graph G[X] = (V ′′, E′′, A′′) induced by a set of nodes X ⊆ V is the mixed
subgraph of G = (V, E, A) with nodes X, undirected edges E′′ = {[x, y] ∈ E | x, y ∈ X}
and directed edges A′′ = {(x, y) ∈ A | x, y ∈ X}.

2.2 Laman graphs
A Laman graph G = (V, E, A) is a mixed graph such that, for all k, every mixed subgraph
G[X] with |X| = k has at most 2k − 3 edges, and such that G has exactly 2|V | − 3 edges
[Lam70]. The Laman graphs can be obtained by starting from a single undirected edge
and making a sequence of operations of the following two types:

1. Henneberg 1 step (Hen1): Add a new node to the graph, together with edges
connecting it to two previously existing nodes.

7

2. Preliminaries

2. Henneberg 2 step (Hen2): Subdivide an undirected edge of the graph, and add an
edge connecting the newly formed vertex to a third previously existing vertex.

A sequence of these operations that result in a Laman graph is called a Henneberg con-
struction [Hen11].

2.3 Oriented Edge Groups
For the oriented edge groups M we first introduce −→

E . Let E ⊆ {[u, v] | u, v ∈ V } be the set
of undirected edges, then −→

E is defined as −→
E = {(u, v) | [u, v] ∈ E} ∪ {(v, u) | [v, u] ∈ E}.

Thus in −→
E every undirected edge e ∈ E is exchanged with two directed edges in opposite

directions. Now we can define M as M ⊆ 2
−→
E with ∀m ∈ M : (a, b) ∈ m ⇒ (b, a) ̸∈ m for

(a, b) ∈
−→
E .

We say m, m′ ∈ M are in conflict if (a, b) ∈ m and (b, a) ∈ m′ for (a, b) ∈
−→
E . We also say

that M is complete, if ∀−→e ∈
−→
E ∃m ∈ M −→e ∈ m. Thus, every oriented edge −→e in −→

E is
in at least one oriented edge group m. If every directed edge −→e in −→

E is in exactly one
oriented edge group m, i.e. ∀−→e ∈

−→
E ∃!m ∈ M −→e ∈ m then we call M perfectly complete.

We call M symmetrical if ∀m ∈ M ∃m−1 ∈ M , where m−1 is the oriented edge group that
has the same edges as m but in the other orientation.
Finally, we call M unique if each directed edge −→e ∈

−→
E appears in at most one oriented

edge group m ∈ M .

2.4 Quantified SAT
As said above in section 1.3, to show that a problem is PSPACE-hard we need a PSPACE-
complete problem to reduce from. Therefore, we present here some simple problems that
are already proven to be PSPACE-complete.
First, we introduce the quantified SAT problem (QSAT or QBF), which is a generalization
of the satisfiability problem [CKS01]. The satisfiability problem, also called SAT, is the
problem where one is given a boolean formula and must determine whether there is an
interpretation that satisfies the Boolean formula. In QSAT, we are given two parts: one
that only performs the quantification for the variables in X, and the other that includes
the boolean formula expressed as Ψ. During quantification, the variable is assigned a true
or false value. The entire formula Φ can be written down as follows if there are n boolean
variables:

Φ = ∃x1∀x2∃x3 . . . Qxn : Ψ(x1, x2, x3, . . . , xn)
where Q ∈ {∃, ∀} based on whether n is even or odd, and X = {x1, x2, . . . , xn} are boolean
variables. The question for this problem would be: Given a QSAT instance Φ, is it true?
Let us consider Φy, where Φy = ∃x1∀x2 : x1 ∨ x2, as an example of an instance that is
in QSAT. Because there is an existential quantifier before the x1, we can select the truth
assignment for x1. Whenever x1 = true, regardless of x2, the formula x1 ∨ x2 is satisfied.
We can use Φn as an instance that is not in QSAT, where Φn = ∃x1∀x2 : x1 ∧ x2. The
formula must be true for every x2, but for x2 = false, the formula cannot be satisfied no
matter how we choose our x1.

2.4.1 QSAT as a two-player game
QSAT can be seen as a two-player game as well. Player 1 in this scenario is the existential
quantifier, and player 2 is the universal quantifier. In other words, player 1 selects a truth
assignment for x1, player 2 selects a truth assignment for x2, player 1 selects a truth
assignment for x3, etc. Additionally, player 1 wins if and only if Ψ is true and the question
for the two-player game would be: Can player 1 satisfy Ψ no matter what player 2 does?

8

2.4. Quantified SAT

2.4.2 Variants of Quantified SAT
There are numerous QSAT variations, just like there are with the oriented cycle game.
When we think of QSAT, we frequently imagine two players. These variants can also
be linked in a meaningful way, so impartial seek QSAT makes sense, and a completely
new game results from the existing QSAT. However, since we are looking for problems
that are PSPACE-complete, the question is: Which of these combinations are PSPACE-
complete? Thomas Schaefer has provided some evidence that proves which combination is
PSPACE-complete [Sch78]. The list is as follows:

1. impartial default game positive 11-CNF SAT
2. impartial default game positive 11-DNF SAT
3. partizan default game CNF SAT
4. impartial/partizan avoid game positive 2-DNF SAT
5. impartial/partizan seek game positive 3-DNF SAT
6. impartial/partizan seek game positive CNF SAT

The positive statement says that only positive variables may be in the boolean formula Ψ
and, in addition, the players may no longer select the truth assignment, but must alternately
select variables and set them to true.
DNF SAT is an SAT instance where the boolean formula Ψ is in disjunctive normal form,
i.e. Ψ consists of several disjunctive clauses Ψ = C1 ∨ C2 ∨ · · · ∨ Ck. The clauses C1, . . . , Ck

consist of several conjunctions of one or more variables Ci = x1 ∧ · · · ∧ xm. n-DNF SAT is
a DNF SAT instance, where each clause Ci has exactly n variables.
Accordingly, CNF SAT is an SAT instance, where the Boolean formula Ψ is in conjunctive
normal form, that is, Ψ consists of several conjunctive clauses Ψ = C1 ∧ C2 ∧ · · · ∧ Ck. The
clauses C1, . . . , Ck consist of several dis-junctions of one or more variables Ci = x1 ∨· · ·∨xm.
n-CNF SAT is a CNF SAT instance, where each clause Ci has exactly n variables.

2.4.2.1 Impartial
As mentioned in the section 1.1.4, there are games that are impartial, or in which both
players have access to the same moves. In the normal QSAT instance, there is a fixed order
as to which variable is used. It is also determined which player occupies which variable. In
impartial QSAT, there would not be a set order, and the player whose turn it is could take
over a variable that has not been claimed yet. The goal of the game, which has been set, is
not changed, only the rules of the game, which variables are selected, are changed. The
entire formula Φ would then look like this with n boolean variables:

∃m1 ∈ {1, . . . , n}∃xm1∀m2 ∈ {1, . . . , n} \ {m1}∀xm2∃m3 ∈ {1, . . . , n} \ {m1, m2}∃xm3

. . . ∃mn ∈ {1, . . . , n} \ {m1, . . . , mn−1}∃xmn : Ψ(x1, . . . , xn) (2.1)

where n is odd for simplicity. Thus, player 1 sets a truth assignment for a variable xi

selected by him, player 2 sets a truth assignment for a variable xj with xi ̸= xj selected by
him, and so on until all variables have been selected.
Let us consider Φ = x1 ∧ (x2 ∨ x3) as an impartial QSAT default game. As a reminder,
player 1 here wants to fulfill Φ and player 2 wants to prevent him from doing so. Player 1
starts the game and must specify a truth assignment for x1, x2, or x3. A winning strategy
would be for player 1 to set x1 to true. Now it is player 2’s turn and he has to give a truth
assignment for x2 or x3. However, it does not matter what player 2 decides, because after
player 2 has assigned either x2 or x3, player 1 can set the remaining variable to true and
the boolean formula is satisfied. This gives us a winning strategy for player 1.

9

2. Preliminaries

2.4.2.2 Partizan

Both players have different options for making moves in partizan games. For this purpose,
coloring is typically added. In the partizan QSAT, the set of all variables X is split into two
disjoint and equal-sized subsets X1 and X2 with X = X1

.
∪ X2 and |X1| = |X2|. The only

variables that player 1 and player 2 may then assign are those from X1 and X2, respectively.
This division into two equally sized disjoint subsets can be thought of as coloring each
variable either blue or red. The number of blue variables is equal to the number of red
variables. Now player 1 may only assign true or false values to the red variables without
any restriction of generality, while player 2 does the same with the blue ones. Additionally,
there is no requirement that the players choose the variables in a certain order in this
version. The game objective, which was previously defined, remains unaffected by this
modification, only the rules of the game, who may occupy which variable and when, have
been changed.
The formula Φ would then looks like this with X1 = {x1, . . . , xn} and X2 = {xn+1, . . . , x2n}:

∃m1 ∈ {1, . . . , n}∃xm1∀m2 ∈ {n + 1, . . . , 2n}∀xm2∃m3 ∈ {1, . . . , n} \ {m1}∃xm3

. . . ∀mn ∈ {1, . . . , n} \ {mn, . . . , m2n−1}∀xmn : Ψ(x1, . . . , xn) (2.2)

Player 1 picks a variable xi from his set X1 and then assigns this variable either true or
false, then it is player 2’s turn and picks a variable xj from his set X2 and again assigns it
to either true or false. Player 1 now chooses another variable xh from X1, where xi ̸= xh

and the game continues until all variables have been assigned.
Let us consider Φ = (x1 ∧ (x3 ∨ x4)) ∧ (x2 ∧ (x3 ∨ x4)) as a partizan QSAT default game,
where x1 ∪ x2 = X1 and x3 ∪ x4 = X2. This means that x1, x2 are colored red and x3,x4
are colored blue. Since it is the normal QSAT game, we have 2 players, player 1 tries to
fulfill Φ, and player 2 tries to prevent player 1 from doing so. Player 1 starts the game and
has to give a truth assignment for x1 or x2. We specify a winning strategy for player 1
which would be to set x1 to true. Now player 2 must specify a truth assignment for x3
or x4. However, player 2 can not set x3 to true or x4 to false, since this would satisfy the
boolean formula. However, if player 2 sets x3 to false or x4 to true, then player 1 can set
x2 to true, and thus the boolean formula is satisfied and player 1 wins the game.

2.4.3 Default game

QSAT can be thought of as a two-player game, as mentioned above. We consider player
1 to be an existential quantifier and player 2 to be a universal quantifier, meaning that
each variable player 1 assigns is one to which an existential quantifier is prefixed, while
each variable player 2 assigns is one to which a universal quantifier is prefixed. Once each
variable has been assigned, the game is over. Player 1 wins the game if and only if the
formula is satisfied (at the end).

2.4.3.1 Seek game

In the seek game we also have a QSAT instance, but we change the goal that both players
pursue. In this case, both players want to satisfy the formula, but they both want to do
it first. The first player to complete the formula wins, regardless of who has completed
the other variables that helped complete the formula. The variables that have not yet
been assigned are evaluated as false. This means that for every occurrence of a negated
unassigned variable xi, it is interpreted as true, and for every occurrence of a non-negated
unassigned variable xj , it is interpreted as false. The game is considered a draw if, after
the final variable has been assigned by a player, the boolean formula is still not fulfilled.

10

2.4. Quantified SAT

Let us consider Φ = ∃x1∀x2∃x3∀x4(x1 ∧ x3) ∨ (x2 ∧ x4) as a seek QSAT game. Player 1
starts the game and chooses a truth constraint for x1. If player 1 sets x1 to true, then
he can win the game, because player 2 cannot yet satisfy the boolean formula with his
move. That means no matter how player 2 sets x2, the boolean formula remains unsatisfied.
Player 1 can fulfill the boolean formula by setting x3 to true. Thus we have found a winning
strategy for player 1.

2.4.3.2 Avoid game

In the avoid game, it is the other way around as in the seek game, since here both players
avoid the formula from being satisfied. Thus, the player who satisfies the formula first loses.
Here again, it is unimportant how the variables were previously assigned. Only the player
who first fulfills the formula with the move he makes loses. The variables that have not yet
been assigned are evaluated as false. This means that for every occurrence of a negated
unassigned variable xi, it is interpreted as true, and for every occurrence of a non-negated
unassigned variable xj , it is interpreted as false. If after the last variable is assigned by a
player the boolean formula is still not fulfilled, then the game is considered a draw.
Let us consider Φ = ∃x1∀x2 : (x2 ∨ x2) ∧ x1 as an avoid QSAT game. Player 1 starts the
game and chooses a truth assignment for x1. If player 1 sets x1 to true, then he wins the
game. This is because no matter how player 2 assigns x2, x2 ∨ x2 evaluates to true. Thus,
we have found a winning strategy for player 1.

11

3. Avoid Oriented Cycle Game

This chapter will focus on the avoid oriented cycle game in more detail. We shall always use
oriented edge groups to look at the game as a whole. The question is whether the current
player has a winning strategy with given oriented edge groups M and a mixed graph G.
The game is won by the player who first forces the opponent to create a directed cycle or
to put it in other words, the player who first creates a directed cycle loses. Whoever orients
the other edges in this directed cycle is irrelevant. To put it another way, if player 1 simply
orients the directed cycle’s last edge, he also loses. This chapter will start by investigating
an upper bound on the true difficulty of the avoid oriented cycle game independent of
M . After that, we shall make assumptions about M and determine if the game becomes
simpler or remains unchanged under these assumptions. We are curious as to whether the
game can actually be made simpler or even trivial by the features of M .

3.1 Avoid Oriented Cycle Game in PSPACE
We take the standard avoid oriented cycle game, in which the first person to close a directed
cycle loses, and provide an algorithm that is independent of the properties of the oriented
edge groups M , in order to demonstrate that the question of whether the current player
has a winning strategy in the avoid oriented cycle game lies in PSPACE. With the help of
this proof, we can be certain that every instance of the avoid oriented cycle game can be
solved in polynomial space independently of the oriented edge groups M . Due to the fact
that we only have an upper bound, we still do not know whether the game is solvable in
polynomial time.

Theorem 3.1. Avoid oriented cycle game lies in PSPACE.

Proof. We need to find an algorithm that determines in polynomial space whether the
current player has a winning strategy on a graph G with oriented edge groups M in order
to demonstrate that the avoid oriented cycle game is in PSPACE. We define an algorithm
that does just that to accomplish this. To achieve this, we will only compute the input
graph by directing its edges. We can avoid allocating additional memory in this manner.
We must now think of every scenario in which the game might be played. We analyze the
game tree and identify a path where the moves of the opponent are irrelevant for all moves
of the opponent. To test every conceivable game variant, we systematically work our way
through the game tree. We first check an undirected edge e with its corresponding oriented

13

3. Avoid Oriented Cycle Game

Algorithm 3.1: canCurrentPlayerAvoid

Input: Mixed Graph G = (V, E, A), M ⊆ 2
−→
E

Output: Whether the current Player can avoid creating a directed cycle
1 forall e ∈ E do

// direct edge e randomly with the corresponding oriented edge
group, if there is no orientation for edge e skip iteration

2 if directEdge (e, G, M) then
3 continue with next iteration
4 if ∃ directed cycle or canCurrentPlayerAvoid (G, M) then

// direct edge e and the corresponding oriented cycle group
the other way round, if the other orientation is invalid
continue with next iteration

5 if reverseEdge (e, G, M) then
6 continue with next iteration
7 if ∃ directed cycle or canCurrentPlayerAvoid (G, M) then
8 resetEdge (e, G, M) // undirect edge e and the corresponding

oriented cycle group
9 continue with next iteration

10 resetEdge (e, G, M)
11 return true
12 return false

edge group m in the graph G, to see if it does not create a directed cycle and can force a
victory. To put it another way, we orient this undirected edge e with its corresponding
oriented edge group m and make sure we win against every edge that our opponent plays.
To achieve this, we simulate every possible move of our opponent and check again if we
have a winning strategy. It is crucial that we only work on the local graph, and if we find
a solution in a subtree, we clean up the graph and undirect the edges that were directed
during this move. We can use Algorithm 3.1 that satisfies our needs for this. This algorithm
makes the avoid oriented cycle game in PSPACE possible.

3.2 Avoid Oriented Cycle Game is PSPACE-hard

This section will focus on PSPACE-hardness proofs. We always look at the avoid oriented
cycle game together with the oriented edge groups M and give certain properties to M
to show that the avoid oriented cycle game with these properties of M is PSPACE-hard.
Finally, we will use Theorem 3.1 to show that these game variations are PSPACE-complete.

For our first PSPACE-hardness proof, we use a special version of our game. We start
with the standard avoid oriented cycle game, in which the player who closes a directed
cycle first loses, but we demand special properties from our oriented cycle groups M . For
these we demand the following properties: M is perfectly complete, symmetrical and max
M := max{|m| : m ∈ M} = 3.

Theorem 3.2. Avoid oriented cycle game is PSPACE-hard, even if M is perfectly complete,
symmetrical and max M := max{|m| : m ∈ M} = 3.

14

3.2. Avoid Oriented Cycle Game is PSPACE-hard

Proof. We provide a reduction to demonstrate that our game is PSPACE-hard:

Impartial avoid positive 2-DNF SAT ≤p avoid oriented cycle game

We are given a Φ instance of the Impartial avoid positive 2-DNF SAT. We call the set of
variables used in Φ X. The formula used in Φ is a dis-junction of clauses C1 ∨ · · · ∨ Ck,
where each clause Cj is a conjunction of two positive variables, i.e. Ck = xi ∧ xj . In
addition, each player must choose a variable that has not been chosen before and set it to
true. In the individual clauses, variables can only occur not negated. The goal of player A
and player B respectively is to avoid satisfying the formula first.
Next, we create a mixed graph G = (V, E, A) with a set of the oriented edge groups M
that has a winning strategy for player 1 for (G, M) if and only if player A has a winning
strategy for Φ. The steps for the construction of G, M are as follows:

1. Create four layers in which the nodes of G come in.

2. Make a start and end node; from the end node to the start node, there is a directed
edge. Put the start node in layer 1 and the end node in layer 4.

3. For each variable xi ∈ X we introduce five new nodes {wi, w′
i, ti, yi, y′

i}. Here, we
create three undirected edges [wi, w′

i], [wi, ti], and [yi, y′
i]. In addition, we create one

directed edge (ti, w′
i). Put the nodes {wi, w′

i, ti} in layer 2 and {yi, y′
i} in layer 3.

4. For each clause Ck with Ck = xi ∧ xj there are three directed edges. These connect
the start node to wi, w′

i to yj , and y′
j to the end node.

5. For the set of oriented edge groups M , we put the three undirected edges [wi, w′
i], [wi, ti],

and [yi, y′
i] into one symmetrical edge group. To do this, we will first define two

subsets MT and MF , with T for true, F for false and MT ∪̇ MF = M . We add
mi = {(wi, w′

i), (ti, wi), (yi, y′
i)} to MT and m′

i = {(w′
i, wi), (wi, ti), (y′

i, yi)} to MF .

The construction of a mixed graph G with the oriented edge set M can be seen in Fig. 3.1
as an example.

Since each variable and clause requires a constant number of nodes and edges, the trans-
formation takes place in polynomial space. Notice that by construction our oriented edge
group M has the desired properties. The first thing we notice is that orienting an undirected
edge is the same as selecting a particular oriented edge group because when orienting
an undirected edge, the entire group is oriented and since the oriented edge groups are
perfectly complete, this means that each oriented edge is in exactly one oriented edge
group. Now, however, we can see that if a player selects an oriented edge group m′

i ∈ MF ,
he loses directly. This is because by choosing the oriented edge group m′

i the player closes
the directed cycle ti → w′

i → wi. Since each player can always choose an oriented edge
group from MT , we say, without limiting the generality, that if the player has to choose an
oriented edge group, he will always choose one from MT .
It is still necessary to demonstrate that each instance of impartial avoid positive 2-DNF
SAT can be converted into an equivalent avoid oriented cycle game instance by constructing
the graph G and the oriented edge groups M as previously mentioned where an optimal
strategy for player A of the impartial avoid positive 2-DNF SAT game is equivalent to an
optimal strategy for player 1 of the avoid oriented cycle game, and an optimal strategy
for player B of the impartial avoid positive 2-DNF SAT game is equivalent to an optimal
strategy for player 2 of the avoid oriented cycle game. We will demonstrate this by showing:

choosing mi ∈ MT ⇔ choosing xi ∈ X

First, we demonstrate that choosing mi ∈ MT ⇐ choosing xi ∈ X. We assume that a
player has chosen the variable xi ∈ X in the SAT game. In the avoid oriented cycle game,

15

3. Avoid Oriented Cycle Game

Figure 3.1: Resulting graph G, for the transformation of an Impartial avoid positive 2-DNF
SAT instance with the boolean formula: (x1∧x2)∨(x2∧x3)∨(x2∧x4)∨(x3∧x4)

choosing the oriented edge group mi ∈ MT would be the appropriate equivalent move.
As a result of choosing mi, there are three oriented edges (wi, w′

i), (yi, y′
i), and (ti, wi).

Selecting xi results in Φ being either fulfilled or not. It is enough for us to look at what
happens when choosing xi has led to Φ being fulfilled. For Φ to be satisfied, a clause
must be fulfilled. Let Ca be this clause. Let X ′ ⊆ X also be the set of all variables that
have been selected so far. Now we have to show that there is a directed cycle in G with
the oriented edge groups M ′ corresponding to X ′. Since Φ was not fulfilled until xi was
selected, xi must be included in the clause Ca. Thus Ca has the form Ca = xi ∧ xj with
xj ∈ X ′. That is, xi and xj were selected in the course of the game. The equivalent moves
for the avoid oriented cycle game would be the moves mi and mj . By selecting the oriented
edge groups mi and mj , there are directed edges (wi, w′

i), (ti, wi), (yi, y′
i), (wj , w′

j), (tj , wj),
and (yj , y′

j) in the graph. Since Ca is a clause, the directed edges (startnode, wi), (w′
i, yj),

and (y′
j , endnode) exist in the avoid oriented cycle game. Together with the directed edge

(endnode, startnode), the previously mentioned edges form a directed cycle. The directed
cycle must therefore have the following form:

startnode → wi → w′
i → yj → y′

j → endnode

We now show choosing mi ∈ MT ⇒ choosing xi ∈ X.
We assume that a player in the avoid oriented cycle game chooses an oriented edge group
mi ∈ MT . In the SAT game, choosing xi is the appropriate equivalent move. As a result of
choosing mi, there are three oriented edges (wi, w′

i), (yi, y′
i), and (ti, wi). There are also

two possible results of selecting mi, either G has a directed cycle by the selection or not. It
is enough for us to take a look at what happens when the choice of an oriented edge group
mi has led to a directed cycle in G. To accomplish this, we will identify which directed
cycles can exist in the graph G.
Let M ′ ⊆ MT be the set of all oriented edge groups that have already been selected. Now
we have to show that Φ is fulfilled by X ′ corresponding to M ′. Notice that graph G with
the various layers has both directed and undirected edges within the layers, and that only

16

3.2. Avoid Oriented Cycle Game is PSPACE-hard

directed edges lead from a lower layer to a higher layer, with the exception of the directed
edge from the end node to the start node. There can be no directed cycle within a layer
because layers 1 and 4 have only one node and no loop, layer two only consists of several
triangles, and can only form a directed cycle if a move m′

i ∈ MF is played, and layer three
consists of nodes that have exactly one undirected edge. Thus, a directed cycle can only be
created if it has nodes from each layer, and since layers 1 and 4 only have one node, they
are included in the directed cycle. So, the directed cycle must have the following shape:

startnode → · · · → endnode

Since there can only be edges from the starting node to the nodes {w1, . . . , wn}, a wj ∈
{w1, . . . , wn} must also be contained in the directed cycle. The only way to go up another
layer is through node w′

j , as this can have the only directed edge to a higher layer. Thus
the oriented edge group mj must have been chosen and the directed edge (wj , w′

j) is in
the mixed graph G. Thus w′

j must also be contained in the directed cycle. So the directed
cycle must look like this:

startnode → wj → w′
j → · · · → endnode

There must also be a node yl ∈ {y1, . . . , yn} in the directed cycle since the node w′
i can

only have directed edges to the nodes {y1, . . . , yn}. Since yl only has one undirected edge
[yj , y′

j], the oriented edge group ml must be chosen. There is only one additional edge that
the y′

l can have, and it is a directed edge that connects the y′
l to the end node. This leaves

us with the directed cycle:

startnode → wj → w′
j → yl → y′

l → endnode

In order for this directed cycle to be created, all three directed edges (startnode, wj),
(w′

j , yl) and (y′
l, endnode) must first be present. This can only be the case if the clause

C = xj ∧ xl exists in the SAT game. At the same time, the undirected edges [wj , w′
j] and

[yl, y′
l] must have been oriented from wj and yl to w′

j and y′
l. This can only be the case if

mj , ml ∈ M ′. However, this orientation corresponds to selecting and assigning the variables
xi and xj to true.
Since the move, mi created a directed cycle, mi ∈ {mj , ml} and the other move {mj , ml}\mi

necessary for the directed cycle were made by a player before. However, since this directed
cycle was created, the equivalent move xi would satisfy clause C and therefore satisfy Φ.
Thus xi satisfies Φ if mi creates a directed cycle in G.

Now that we have seen our first PSPACE-hardness proof, we can ask ourselves if we can
lower our requirements for the oriented edge groups even further. Since our M was already
perfectly complete and symmetric, these properties were already the best possible. However,
we could still do something about the size of the respective groups. We perform another
PSPACE-hard proof, but this time we change the requirements for the oriented edge groups
so that we have the smallest possible individual groups. To do this, we again take the
standard avoid oriented cycle game and this time we demand from the oriented edge groups
M : M is unique and max M := max{|m| : m ∈ M} = 2. So with the following proof we
manage to lower the respective oriented edge group size to 2, but we lose the properties
that M is symmetric and perfectly complete.

Theorem 3.3. Avoid oriented cycle game is PSPACE-hard, even if M is unique and max
M := max{|m| : m ∈ M} = 2.

17

3. Avoid Oriented Cycle Game

Proof. We provide a reduction to demonstrate that the avoid oriented cycle game with
these special properties is PSPACE-hard:

Impartial avoid positive 2-DNF SAT ≤p avoid oriented cycle game

We are given a Φ instance of the Impartial avoid positive 2-DNF SAT. We define X as the
set of variables used in Φ. The formula used in Φ is a dis-junction of clauses C1 ∨ · · · ∨ Ck,
where each clause Cj is a conjunction of two positive variables, i.e. Ck = xi ∧ xj . In
addition, each player must choose a variable that has not been chosen before and set it to
true. In the individual clauses, variables can only occur not negated. The goal of player A
and player B respectively is to avoid satisfying the formula first.
In the following step, we construct a mixed graph G = (V, E, A) with a set of oriented edge
groups M that has a winning strategy for player 1 for (G, M) if and only if player A has a
winning strategy for. Here we will construct the set of oriented edge groups M such that
M is unique and max M = 2. The steps for the construction of G, M are as follows:

1. Create four layers in which the nodes of G come in.

2. Make a start and end node; from the end node to the start node, there is a directed
edge. Put the start node in layer 1 and the end node in layer 4.

3. For each variable xi ∈ X we introduce four new nodes {wi, w′
i, yi, y′

i}. Here, we create
two undirected edges [wi, w′

i], and [yi, y′
i]. Put the nodes {wi, w′

i} in layer 2 and
{yi, y′

i} in layer 3.

4. For each clause Ck with Ck = xi ∧ xj there are three directed edges. These connect
the start node to wi, w′

i to yj , and y′
j to the end node.

5. For the set of oriented edge groups M , we put the two undirected edges [wi, w′
i] and

[yi, y′
i] into an edge group. We must put only one orientation into oriented edge

groups, namely, we add mi = {(wi, w′
i), (yi, y′

i)} into the oriented edge groups M .
Thus we have prevented an orientation and the undirected edges can only be oriented
from wi, yi to w′

i, yi’.

The construction of a mixed graph G with the oriented edge set M can be seen in Fig. 3.2
as an example.

Since each variable and clause requires a constant number of nodes and edges, the trans-
formation takes place in polynomial space. Notice that by construction our oriented edge
group M has the desired properties. The first thing we notice is that orienting an undirected
edge is the same as selecting a particular oriented edge group because when orienting an
undirected edge, the entire group is oriented and since the oriented edge groups are unique,
this means that each oriented edge is in one or non-oriented edge group. To complete the
reduction, we need to show that any instance of impartial avoid positive 2-DNF SAT can
be converted to an equivalent avoid oriented cycle game instance by building the mixed
graph G and the oriented edge groups M as mentioned. The optimal strategy for player A
on Φ of the impartial avoid positive 2-DNF SAT must be equivalent to an optimal strategy
for player 1 on (G, M) of the avoid oriented cycle game. The first thing we notice is that
M and the MT from Theorem 3.2 are almost equal to each other. The only difference is
that MT contains one edge (ti, wi) more in each oriented edge group. However, in the proof
that mi ∈ MT ⇔ xi ∈ X, this edge (ti, wi) was never discussed and is therefore irrelevant.
Since this one more edge was never used and otherwise M = MT is true, the proof that
mi ∈ M ⇔ xi ∈ X is the same as in Theorem 3.2.

With this proof, we have seen that the avoid oriented cycle game is also PSPACE-hard
for smaller groups. We have now seen two versions of our oriented edge groups that are

18

3.3. Avoid Oriented Cycle Game in P

Figure 3.2: Resulting graph G, for the transformation of an Impartial avoid positive 2-DNF
SAT instance with the boolean formula: (x1∧x2)∨(x3∧x1)∨(x2∧x4)∨(x4∧x3)

PSPACE-hard together with the avoid oriented cycle game, one when M is symmetric and
perfectly complete, but the individual groups each have cardinality 3, and the other when
M is unique, but the individual groups each have cardinality 2. As already described in the
introduction 1.3, we can use the two proofs of PSPACE-hardness 3.3 and 3.2 and the proof
that the avoid oriented cycle game lies in PSPACE 3.1 to show that the avoid oriented
cycle game with the oriented edge groups is PSPACE-complete.

Theorem 3.4. Avoid oriented cycle game with oriented edge groups is PSPACE-complete.

Proof. The avoid oriented cycle game is in PSPACE, as we have demonstrated in Theorem
3.1. The oriented cycle groups M did not have any restrictions placed on them in the proof
so the properties of M are insignificant for the proof and M can be arbitrary. Our avoid
oriented cycle game is PSPACE-hard for specific requirements on M , as demonstrated
in Theorem 3.3 or in Theorem 3.2. A problem is considered to be PSPACE-hard if it
is at least as challenging to solve as all other problems in the class. For this, it must
be true that it lies in PSPACE and it must also be PSPACE-hard. The avoid oriented
cycle game is PSPACE-complete, even if M is perfectly complete, symmetrical and max
M := max{|m| : m ∈ M} = 3 or M is unique and max M := max{|m| : m ∈ M} = 2 as
shown by the theorems taken together. This makes it one of the most difficult problems of
the class PSPACE.

3.3 Avoid Oriented Cycle Game in P
Now that we have spent a lot of time finding out when the avoid oriented cycle game is
particularly difficult to solve, we will attempt to find out when the avoid oriented cycle
game is easy to solve. In this case, we look at the normal avoid oriented cycle game without
oriented edge groups and ask ourselves how difficult it is to solve. That is, we look at
the case where the two players take turns orienting exactly one undirected edge, and the

19

3. Avoid Oriented Cycle Game

player who first creates a directed cycle loses. With Theorem 3.5, we will show that if both
players play optimally, it will always end in a draw and that it is possible to find the best
possible move for the current player in polynomial time.

Theorem 3.5. Avoid oriented cycle game ∈ P .

Proof. We prove that the avoid orient cycle game lies in P by specifying an algorithm
that terminates in polynomial time. For the algorithm, we first have to prove that there
cannot be a mixed graph G where a player is forced to make a move that directly closes an
orientated cycle and thus loses the game. We assume that player 1 is forced to orient an
undirected edge in the mixed graph G, which directly closes a directed cycle. Thus, the
mixed graph G on which the players orient the undirected edges must consist of directed
cycles, all of which have exactly one undirected edge, so that player 1 orients this undirected
edge and completes the directed cycle. Let e be the undirected edge that player 1 orients
(from b1 to a1) to complete the directed cycle C1 as shown in Fig. 3.3.

Figure 3.3: One directed cycles with 1 undirected edge each

Now the question arises here, why did player 1 not orient the edge e the other way around
(from a1 to b1)? This orientation would prevent the directed cycle C1. Since our assumption
is that player 1 is forced to orient an undirected edge that loses, there must be another
directed cycle C2 that includes e and closes the directed cycle with the orientation of e
(from a1 to b1) as shown in Fig. 3.4.

Figure 3.4: Two directed cycles with 1 undirected edge each and a directed cycle

However, we can see that C1 together with C2 already close a directed cycle. This is against
our assumption that the game is not yet over and that player 1 is forced to make a move

20

3.3. Avoid Oriented Cycle Game in P

that directly loses.
Thus our assumption is wrong and we have seen that there can be no mixed graph G in
which a player has no possible move that does not lose directly since trying to create such
a mixed graph G leads to a graph that already has a directed cycle.
This implies that a mixed graph G in which a player loses at some point is not possible,
because if there were such a mixed graph G, the players would eventually reach a mixed
graph G′ in the game where one of them would have to lose directly. However, since we
have already shown that a G′ like this one does not exist, G also does not exist.
Since both players cannot force the other to close a directed cycle, it is sufficient to always
make a move that does not close a directed cycle. This is exactly how the algorithm works,
which is supposed to find the optimal move in polynomial time. The algorithm works as
follows:

1. Find an orientation of an undirected edge so that no directed cycle is closed in
O(|E| ∗ (|V | + |E|)).

This concludes the chapter avoid oriented cycle game, where we have learned which
variations of the game are PSPACE-complete and also looked at which variation of the
game is solvable in polynomial time.

21

4. Seek Oriented Cycle Game

The seek oriented cycle game game will be discussed in more detail in this chapter. We shall
always use oriented edge groups to look at the game as a whole. The question is whether
the current player, given oriented edge groups M and a mixed graph G, has a winning
strategy. The player who makes a directed cycle first wins the game. Whoever orients the
other edges in this directed cycle is irrelevant. To put it another way, player 1 also wins if
he simply orients the directed cycle’s final edge. This chapter will start by investigating
an upper bound on the true difficulty of the seek oriented cycle game independent of M .
Following that, we’ll make assumptions about M and see if the game gets easier or stays
the same under them. We want to know if the features of M can actually make the game
easier or even trivial.

4.1 Seek Oriented Cycle Game in PSPACE
We consider our normal seek oriented cycle game, where the first player to close a directed
cycle wins, and give an algorithm that is independent of the properties of the oriented
edges groups M so that we show that the question of whether the current player has a
winning strategy in the seek oriented cycle game lies in PSPACE. With the help of this
algorithm, we can be sure that every instance of the seek oriented cycle game is solvable
with polynomial space, also independent of the properties of our oriented edge groups
M . However, it may still be that there is a faster algorithm that may even terminate in
polynomial time. This algorithm thus acts as an upper bound and we know that polynomial
space is sufficient to solve the seek oriented cycle game.

Theorem 4.1. Seek oriented cycle game lies in PSPACE.

Proof. To show that the avoid oriented cycle game is in PSPACE, we need to find an
algorithm that determines in polynomial space whether the current player has a winning
strategy on a graph G with oriented edge groups M . To achieve this, we define an algorithm
that does just that. We will only compute the input graph by directing its edges in order to
accomplish this. In this way, we can avoid allocating more memory. Now we must consider
every scenario that could occur during the game. We analyze the game tree and locate
a path where no opponent move is relevant for any opponent move. We systematically
traverse the game tree, testing every conceivable game variant. We first determine whether
an undirected edge e with its corresponding oriented cycle groups m in the graph G

23

4. Seek Oriented Cycle Game

Algorithm 4.1: canCurrentPlayerSeek

Input: Mixed Graph G = (V, E, A), M ⊆ 2
−→
E

Output: Whether the current Player can create a directed cycle first
1 forall e ∈ E do

// direct edge e randomly with the corresponding oriented edge
group, if there is no orientation for edge e skip iteration

2 if directEdge (e, G, M) then
3 continue with next iteration
4 if ∃ directed cycle then

// undirect edge e and the corresponding oriented cycle group
5 resetEdge (e, G, M)
6 return true
7 if canCurrentPlayerSeek (G, M) then

// direct edge e and the corresponding oriented cycle group
the other way round, if the other orientation is invalid
continue with next iteration

8 if reverseEdge (e, G, M) then
9 continue with next iteration

10 if canCurrentPlayerSeek (G, M) then
11 resetEdge (e, G, M)
12 continue with next iteration

13 resetEdge (e, G, M)
14 return true
15 return false

can force a victory. To put it another way, we orient this undirected edge e with its
corresponding oriented edge group m and make sure we win against every edge that our
opponent plays. To do this, we simulate every move that could be made by our opponent
and then check again whether we have a winning plan. It is crucial that we only focus on
the local graph. If we discover a solution in a sub-tree, we should clean up the graph and
undirect any edges that were directed as a result of this move. We can use Algorithm 4.1
that satisfies our needs for this. This algorithm makes the avoid oriented cycle game in
PSPACE possible.

4.2 Seek Oriented Cycle Game is PSPACE-hard
This section will focus on PSPACE-hardness proofs for the seek oriented cycle game with
oriented edge groups. That is, in this section we always assume that we have the normal
seek oriented cycle game but we give special properties to the oriented edge groups M and
show that despite these special properties of M , the game is PSPACE-hard. Finally, we will
show with the help of Theorem 4.1 that these game variations are also PSPACE-complete.

For our first PSPACE-hardness proof, we take a special version of our game. We start
with the standard seek oriented cycle game, where the player who closes a directed cycle
first wins, but we expect special properties from the oriented edge groups M . For the
oriented edge groups M we demand, that M is perfectly complete and we define max
M := max{|m| : m ∈ M}.

For a 3-DNF SAT formula Φ with the clauses {C1, . . . , Cn} we define t(Φ), where t(Φ) ∈ N
is the number of times a variable can be at most in the middle of the clauses {C1, . . . , Cn}.

24

4.2. Seek Oriented Cycle Game is PSPACE-hard

Since the clauses are conjunctions of three literals, the order of the literals can be reversed
within the clauses. We look at the permutation where t(Φ) is minimal.

Theorem 4.2. Seek oriented cycle game is PSPACE-hard even if M is perfectly complete.
Moreover, if impartial seek positive 3-DNF SAT is PSPACE-hard with t(Φ) = t∗, t∗ ∈ N,
then seek oriented cycle game is PSPACE-hard for max M ≤ t∗ + 3

Proof. To prove that the game is PSPACE-hard, we provide a reduction:

Impartial seek positive 3-DNF SAT ≤p seek oriented cycle game.

We are given an instance Φ of the Impartial seek positive 3-DNF SAT. We call the set of
variables used in Φ X. The formula used in Φ is a dis-junction of clauses C1 ∨ · · · ∨ Cn,
where each clause is a conjunction of three positive literals, i.e. Ck = xi ∧ xj ∧ xl. The
number t(Φ) ∈ N is the number of times a variable can be at most in the middle of the
clauses {C1, . . . , Ck}. In addition, no clause has a negated literal and both players take
turns choosing a literal and setting it to true. The aim of both players A and B is to be
the first to fulfill the boolean formula.
Next, we create the mixed graph G together with the oriented edge groups M depending
on Φ, where player 1 wins the seek oriented cycle game on (G, M) if and only if player A of
the impartial seek positive 3-DNF SAT wins on Φ. The steps to create G, M are as follows:

1. Create six layers in which the nodes of G come in.

2. Make a start and end node; from the end node to the start node, there is a directed
edge. Put the start node in layer 1 and the end node in layer 5.

3. For each variable xi ∈ X we introduce seven new nodes {wi, w′
i, zi, z′

i, ti, t′
i, t′′

i }. Here,
we create six undirected edges [wi, w′

i], [zi, z′
i], [ti, t′

i], [ti, t′′
i], and [t′

i, t′′
i]. Put the

nodes {wi, w′
i} in layer 2, {zi, z′

i} in layer 4 and {ti, t′
i, t′′

i } in layer 6.

4. For each clause Ck with Ck = xi ∧ xj ∧ xl there are two nodes {yk
j , yk

j
′} in layer 3.

There are also four directed edges. We add (start, wi), (w′
i, yk

j), (yk
j

′
, zl), and (z′

l, end).
We also add [yk

j , yk
j

′] to G.

5. For the set of oriented edge groups M , we will first define two subsets MT and MF ,
with T for true, F for false and MT ∪̇ MF = M .
We add m1

i = {(wi, w′
i)} ∪ {(yk

j , yk
j

′)|xi middle variable of clause Ck} ∪ {(zi, z′
i)}

to MT and we add m2
i ={(w′

i, wi)} ∪ {(yk
j

′
, yk

j)|xi middle variable of clause Ck} ∪
{(z′

i, zi), (t′
i, ti)}, m3

i = {(ti, t′′
i), (t′′

i , t′
i)}, m4

i = {(ti, t′
i)} , and m5

i = {(t′
i, t′′

i), (t′′
i , ti)}

to MF .

The construction of a mixed graph G with the oriented edge set M can be seen in Fig. 4.1
as an example.

Since each variable and clause requires a constant number of nodes and edges, the transfor-
mation takes place in polynomial space.
Notice that by construction our oriented edge group M has the desired properties because
each oriented edge is in exactly one oriented edge group and because m2

i contains the most
oriented edges and has three oriented edges from layers 2,4, and 6 and also one oriented
edge for each occurrence in the middle of the clause. This makes it t(Φ) + 3 edges.
The first thing we notice is that orienting an undirected edge is the same as selecting a
particular oriented edge group because when orienting an undirected edge, the entire group
is oriented and since the oriented edge groups are perfectly complete, this means that each
oriented edge is in exactly one oriented edge group. Now, however, we can see that if a

25

4. Seek Oriented Cycle Game

Figure 4.1: The resulting graph, where the boolean formula used in Φ is (x1 ∧ x2 ∧ x4) ∨
(x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4 ∧ x2)

player selects an oriented edge group ma
i ∈ MF , with a ∈ {2, 3, 4, 5}, he loses directly. This

is because by choosing the oriented edge group ma
i the other player can close the directed

cycle ti → t′
i → t′′

i by choosing a mb
i ∈ MF , with b ∈ {2, 3, 4, 5}. Assuming a player chooses

m2
i or m4

i , an appropriate response to create a directed cycle would be to choose m3
i or m5

i

respectively.
Since each player can always choose an oriented edge group from MT , we say, without
limiting the generality, that if the player has to choose an oriented edge group, he will
always choose one from MT .
It is still necessary to demonstrate that each instance of impartial seek positive 3-DNF
SAT can be converted into an equivalent seek oriented cycle game instance by constructing
the graph G and the oriented edge groups M as previously mentioned where an optimal
strategy for player A of the impartial seek positive 3-DNF SAT game is equivalent to an
optimal strategy for player 1 of the seek oriented cycle game, and an optimal strategy

26

4.2. Seek Oriented Cycle Game is PSPACE-hard

for player B of the impartial seek positive 2-DNF SAT game is equivalent to an optimal
strategy for player 2 of the seek oriented cycle game. We will demonstrate this by showing:

choosing m1
i ∈ MT ⇔ choosing xi ∈ X

We start with choosing m1
i ∈ MT ⇒ choosing xi ∈ X. Three oriented edges result from

choosing m1
i : (wi, w′

i), (yi, y′
i) and (zi, z′

i). Selecting m1
i could lead to one of two outcomes:

either G has a directed cycle as a result of the selection, or it does not. It is enough for
us to take a look at what happens when the choice of an oriented edge group m1

i has led
to a directed cycle in G. To do this, we must first understand which directed cycle can
appear in G. We have already created the six layers in the construction of the mixed graph
and the property that stands out is that there is no directed cycle within a layer that can
happen with a move m1

i ∈ MT . This means that a directed cycle in G must go over several
layers. The next observation is that there are only directed edges from a lower layer to a
higher layer, the directed edge from the end node to the start node being the exception.
For this, there is no incoming edge to layer 6 from another layer and also no outgoing edge
to another layer, thus layer 6 is not interesting for the directed cycle. This means that the
directed cycle must go over the first five layers. Since layers 1 and 5 each only have one
node, they must be present in the directed cycle. Thus, the directed cycle must have the
following form:

startnode → · · · → endnode

Since the start node is only connected to the nodes {w1, . . . , wa} with a directed edge, a
wj ∈ {w1, . . . , wn} must be contained in the directed cycle. The only way to go down a
layer is through the node w′

j , so a player must have chosen m1
j at some point, otherwise,

the directed edge (wj ,w′
j) would not exist. Thus the directional cycle looks as follows:

startnode → wj → w′
j → · · · → endnode

It may be that w′
j has a directed edge to yk

l ∈ {yu
o , . . . , yn

p }, where yk
l is in layer 3. From

yk
l there is only one way to get down to layer 4, and that is with yk

l
′. For this, however, a

player must have selected m1
l . Thus, the directed cycle must look like this:

startnode → wj → w′
j → yk

l → yk
l

′ → · · · → endnode

In the fourth layer, only nodes zb can occur, so they must occur in the directed cycle. The
node zb can also have only one possibility to come down to layer 5, namely with z′

b. This
means that mb must be selected by a player. From z′

b there can be the directed edge to the
end node, thus we have identified the directed cycle.

startnode → wj → w′
j → yk

l → yk
l

′ → zb → z′
b → endnode

In order for this directed cycle to be created, all four directed edges (startnode, wj),
(w′

j , yk
l), (yk

l
′
, zb) and (z′

b, endnode) must first be present. This can only be the case if a
clause Ck = xj ∧ xl ∧ xb exists in the SAT game. At the same time, the undirected edges
[wj , w′

j], [yk
l , yk

l
′] and [zb, z′

b] must have been oriented from wj , yk
l and zb to w′

j , yk
l

′ and
z′

b, respectively. This can only be the case if m1
j , m1

l , m1
k have been chosen by the players.

However, this orientation corresponds to selecting and assigning the variables xj , xl, and
xb to true.
Since the move mi created a directed cycle, mi ∈ {mj , ml, mb} and the other moves
{mj , ml, mb} \ mi necessary for the directed cycle were made by the players before it.
However, since this directed cycle was created, the equivalent move xi would satisfy clause
C and therefore satisfy Φ. Thus xi satisfies Φ if mi creates a directed cycle in G.

27

4. Seek Oriented Cycle Game

We now show choosing m1
i ∈ MT ⇐ choosing xi ∈ X.

Selecting xi can again have two results: Either Φ is fulfilled or not. It is enough for us to
look at what happens when choosing xi has led to Φ being fulfilled. For Φ to be satisfied, a
clause must be fulfilled. Let Ck = xi ∧xj ∧xl be this clause. For the clause Ck to be satisfied
by selecting xi, the variables xj and xl must have been selected beforehand. Thus, in the
seek oriented cycle game, m1

j and m1
l are already selected before m1

i is selected. Since Ck is
a clause in Φ, there are by construction of G the directed edges (start, wi), (w′

i, yk
j), (yk

j
′
, zl)

and (z′
l, end). Since the moves m1

j and m1
l were already played before m1

i was played, there
are additionally the two directed edges: (yk

j , yk
j

′) and (zl, z′
l). Due to the move m1

i there is
now at least the edge (wi, w′

i) additionally in the mixed graph G. Since there is additionally
the directed edge (end, start), we have found a directed cycle that was created because m1

i

was selected.

Overall, we have thus shown that:

choosing mi ∈ MT ⇔ choosing xi ∈ X

Since we have now seen that the seek oriented cycle game is already PSPACE-hard when
M is perfectly complete, symmetrical, unique and max M ≤ t(Φ) + 3, where t(Φ) ∈ N is
the number of times a variable can be at most in the middle of the clauses of Impartial seek
positive 3-DNF SAT Φ, we ask ourselves: can we keep the requirements on M even lower
and thus keep the game PSPACE-hard? The answer is yes, as we will see in Theorem 4.4,
but for this, we need auxiliary theorems since it is not clear how to strengthen the reduction
from seek positive 3-DNF-SAT. To do this, we introduce impartial seek positive 3-color
3-DNF SAT and prove that it is PSPACE-hard. The special thing about impartial seek
positive 3-color 3-DNF SAT is that we also have in the input a coloring for the variables,
either F, C, or B standing for Front, Center, Back. Each variable is colored with one color.
If a variable xi is colored with F, it means that there is a permutation of the variables in
the clauses so that xi never appears in front. If a variable xi has the coloring C, then this
means that there is a permutation of the variables in the clauses, so that xi never appears
in the center. And lastly, if a variable xi has coloring B, then there is a permutation of
the variables in the clauses so that xi never appears at the back. The clauses are already
exactly according to this permutation.

Theorem 4.3. Impartial seek positive 3-color 3-DNF SAT is PSPACE-hard.

Proof. For the proof, we will take Schäfer’s proof [Sch78] for the PSPACE-hardness of
impartial seek positive 3-DNF SAT as inspiration and modify it slightly so that we can
show:

Impartial avoid positive 2-DNF SAT ≤p Impartial seek positive 3-color 3-DNF SAT

We are given an instance Φ of the Impartial avoid positive 2-DNF SAT. We call the set of
variables used in Φ X. The formula used in Φ is a dis-junction of clauses C1 ∨ · · · ∨ Cn,
where each clause Ck is a conjunction of two positive variables, i.e. Ck = xi ∧ xj . In
addition, each player must choose a variable that has not been chosen before and set it to
true. In the individual clauses, variables only occur not negated. The goal of player A and
player B respectively is to avoid satisfying the formula first.
In the following step, we give a procedure that generates an impartial seek positive 3-color
3-DNF SAT instance Ψ depending on Φ, where player 1 on Ψ has a winning strategy if
and only if player A on Φ has a winning strategy. We call the set of variables used in Ψ
X ′. The steps for the construction of Ψ are as follows:

28

4.2. Seek Oriented Cycle Game is PSPACE-hard

1. Create two new variables xa, xb /∈ X in addition to all the existing variables. X ′ =
X ∪ {xa, xb}.

2. For each clause Ck in Φ with Ck = (xi ∧ xj) we introduce two new clauses for Ψ,
C ′

k = (xi ∧ xj ∧ xa) and C ′′
k = (xi ∧ xj ∧ xb). We assign the color B to xi and xj and

the color F to xa and xb for the color assignment.

3. Create a new clause Cn+1 with Cn+1 = (1 ∧ xa ∧ xb).

The first thing that stands out is the fact that our choice of clauses directly satisfies the
3-color-ability because, for each variable in Φ, the variables in Ψ appear in the front or in
the center, and they have the color B, and the extra introduced variables appear in the
center or in the back, and they have the color F.

If we construct our formula as shown above, we will be able to demonstrate how every
instance of Impartial avoid positive 2-DNF SAT can be converted into an instance of
Impartial seek positive 3-color 3-DNF SAT, where a strategy for player A is available to
avoid Φ if and only if there is a strategy for player 1 to seek Ψ. Here, the optimal strategy
is equivalent and can be immediately transferred from one problem to the other.

We first demonstrate that player 1 seeks on Ψ if player A is able to avoid fulfilling Φ. We
assume that both players play optimally in the respective games. Player 1’s approach
is as follows: Copy player A if player 2 selects a variable that already appears in Φ. If
player A wins, then player B has satisfied a clause Ck = xi ∧ xj . Now that a Φ clause
has been satisfied, player 1 can simply set xa to true, winning the game by satisfying
C ′

k = xi ∧ xj ∧ xa. If player 2 selects a newly introduced variable, then it can only be xa or
xb. As a result of the fact that Cn+1 = (1 ∧ xa ∧ xb) is a clause, player 1 can choose the
other variable in this scenario and wins without a contest.

Next, we demonstrate that if player 1 can satisfy Ψ first, player A can avoid fulfilling
Φ. First, choosing xa or xb by the players on Ψ is illogical because doing so results in
an immediate loss of the game because the other player can fulfill the clause Cn+1. But
because every clause has either xa or xb, it follows that player 1 wins the game by choosing
xa or xb in the last step. By symmetry, we may assume without limiting the generality
that player 1 wins by choosing xa and satisfied C ′

k = xi ∧ xj ∧ xa. Thus the last move of
player 2 was to select xi or xj , otherwise, player 2 would have selected xa himself and won
the game. Because Ck = xi ∧ xj is a clause in Φ, player B has satisfied Ck by choosing xi

or xj . As a result, player A has been able to avoid Φ.

Now that we have a new problem that is provably PSPACE-hard, we can perform a new
proof. Again, we take the standard seek oriented cycle game, where a player wins if he
closes a directed cycle first. This time we also set special properties for our M , but this
time more restrictive ones. We expect M to have the following properties, that M is
perfectly complete and we define max M := max{|m| : m ∈ M}.

For a 3-DNF SAT formula Φ with the clauses {C1, . . . , Cn} we define t(Φ), where t(Φ) ∈ N
is the number of times a variable can be at most in the middle of the clauses {C1, . . . , Cn}.
Since the clauses are conjunctions of three literals, the order of the literals can be reversed
within the clauses. We look at the permutation where t(Φ) is minimal.

Theorem 4.4. Seek oriented cycle game is PSPACE-hard even if M is perfectly complete.
Moreover, if impartial seek positive 3-color 3-DNF SAT is PSPACE-hard with t(Φ) = t∗,
t∗ ∈ N, then seek oriented cycle game is PSPACE-hard for max M ≤ t∗ + 2

29

4. Seek Oriented Cycle Game

Proof. To prove that our game is PSPACE-hard, we provide a reduction:

Impartial seek positive 3-color 3-DNF SAT ≤p seek oriented cycle game

We get an instance Φ of impartial seek positive 3-color 3-DNF SAT. The formula used in Φ
is a conjunction of clauses C1 ∧ · · · ∧ Cn, where each clause is a disjunction of three positive
literals, i.e. Ck = xi ∨ xj ∨ xl. The number t(Φ) ∈ N is the number of times a variable can
be at most in the middle of the clauses {C1, . . . , Ck}. In addition, no clause has a negated
literal and both players take turns choosing a literal and setting it to true. Each variable
has been assigned a color, either F, C, or B. There is a permutation of variables within the
clauses so that if a variable has the color F, C, or B, it never is in the front, center, or back
of the clauses respectively. Let the clauses C1 ∧ · · · ∧ Cn already be exactly according to
this permutation. The aim of both players A and B is to be the first to fulfill the boolean
formula.
Next, we create the mixed graph G together with the oriented edge groups M depending
on Φ, where player 1 wins the seek oriented cycle game on (G, M) if and only if player A
of the impartial seek positive 3-color 3-DNF SAT wins on Φ. The steps to create G, M are
as follows:

1. Create six layers in which the nodes of G come in.

2. Make a start and end node; from the end node to the start node, there is a directed
edge. Put the start node in layer 1 and the end node in layer 5.

3. For each variable xi ∈ X we introduce seven nodes, depending on the color of this
variable.

a) If xi has the color F, then introduce the nodes {zi, z′
i, ti, t′

i, t′′
i }. Put the nodes

n2 = {zi, z′
i} in layer 4 and the nodes n3 = {ti, t′

i, t′′
i } in layer 6. We create four

undirected edges [zi, z′
i], [ti, t′

i], [ti, t′′
i], and [t′

i, t′′
i].

b) If xi has the color C, then introduce the nodes {wi, w′
i, zi, z′

i, ti, t′
i, t′′

i }. Put the
nodes n1 = {wi, w′

i} in layer 2, the nodes n2 = {zi, z′
i} in layer 4 and the nodes

n3 = {ti, t′
i, t′′

i } in layer 6. We create five undirected edges [wi, w′
i], [zi, z′

i], [ti, t′
i],

[ti, t′′
i], and [t′

i, t′′
i].

c) If xi has the color B, then introduce the nodes {wi, w′
i, ti, t′

i, t′′
i }. Put the nodes

n1 = {wi, w′
i} in layer 2 and the nodes n3 = {ti, t′

i, t′′
i } in layer 6. Here, we

create four undirected edges [wi, w′
i], [ti, t′

i], [ti, t′′
i], and [t′

i, t′′
i].

4. For each clause Ck with Ck = xi ∧ xj ∧ xl there are two nodes {yk
j , yk

j
′} in layer 3.

There are also four directed edges. We add (start, wi), (w′
i, yk

j), (yk
j

′
, zl), and (z′

l, end).
We also add [yk

j , yk
j

′] to G.

5. For the set of oriented edge groups M , we will first define two subsets MT , MF , with
MT ∪̇ MF = M .

a) If xi has the color F, add m1
i = {(yk

j , yk
j

′)|ximiddle variable of clauseCk} ∪
{(zi, z′

i)} to MT and m2
i ={(yk

j
′
, yk

j)|ximiddle variable of clauseCk}∪{(z′
i, zi), (t′

i, ti)},
m3

i = {(ti, t′′
i), (t′′

i , t′
i)}, m4

i = {(ti, t′
i)} , and m5

i = {(t′
i, t′′

i), (t′′
i , ti)} to MF .

b) If xi has the color C, add m1
i = {(wi, w′

i), (zi, z′
i)} to MT and m2

i = {(w′
i, wi), (z′

i, zi), (t′
i, ti)},

m3
i = {(ti, t′′

i), (t′′
i , t′

i)}, m4
i = {(ti, t′

i)} , and m5
i = {(t′

i, t′′
i), (t′′

i , ti)} to MF .

c) If xi has the color B, add m1
i = {(wi, w′

i)}∪{(yk
j , yk

j
′)|ximiddle variable of clauseCk}

to MT and m2
i ={(w′

i, wi)}∪{(yk
j

′
, yk

j)|ximiddle variable of clauseCk}∪{(t′
i, ti)},

m3
i = {(ti, t′′

i), (t′′
i , t′

i)}, m4
i = {(ti, t′

i)} , and m5
i = {(t′

i, t′′
i), (t′′

i , ti)} to MF .

30

4.2. Seek Oriented Cycle Game is PSPACE-hard

Figure 4.2: The resulting graph, where the boolean formula used in Φ is (x1 ∧ x2 ∧ x4) ∨
(x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4) ∨ (x4 ∧ x1 ∧ x3) and the two variables x1, x2 were
colored with B, the variable x4 was colored with C and the variable x3 was
colored with F.

The construction of a mixed graph G with the oriented edge set M can be seen in Fig. 4.2
as an example.

Since each variable and clause requires a constant number of nodes and edges, the transfor-
mation takes place in polynomial space.
Notice that by construction our oriented edge group M has the desired properties because
each oriented edge is in exactly one oriented edge group and because m2

i has the most
oriented edges if it has the color F or B since it then has exactly two oriented edges through
the layers 2,6 or 3,6 and also one oriented edge for each occurrence in the middle of the
clause. This makes it t(Φ) + 2 edges.
The first thing we notice is that orienting an undirected edge is the same as selecting a
particular oriented edge group because when orienting an undirected edge, the entire group
is oriented and since the oriented edge groups are perfectly complete, this means that each
oriented edge is in exactly one oriented edge group. Now, however, we can see that if a
player selects an oriented edge group ma

i ∈ MF , with a ∈ {2, 3, 4, 5}, he loses directly. This
is because by choosing the oriented edge group ma

i the other player can close the directed
cycle ti → t′

i → t′′
i by choosing a mb

i ∈ MF , with b ∈ {2, 3, 4, 5}. Assuming a player chooses
m2

i or m4
i , an appropriate response to create a directed cycle would be to choose m3

i or m5
i

31

4. Seek Oriented Cycle Game

respectively.
Since each player can always choose an oriented edge group from MT , we say, without
limiting the generality, that if the player has to choose an oriented edge group, he will
always choose one from MT .
An observation here is that if a variable xi has the color F, then this variable has no nodes
in layer 2. If a variable xi has the color C, then this variable has no nodes in layer 3. And
lastly, if a variable xi has the color B, then this variable has no nodes in layer 4.
It is still necessary to demonstrate that each instance of impartial seek 3-color positive
3-DNF SAT can be converted into an equivalent seek oriented cycle game instance by
constructing the graph G and the oriented edge groups M as previously mentioned where
an optimal strategy for player A of the impartial seek positive 3-color 3-DNF SAT game
is equivalent to an optimal strategy for player 1 of the seek oriented cycle game, and an
optimal strategy for player B of the impartial seek 3-color positive 3-DNF SAT game
is equivalent to an optimal strategy for player 2 of the seek oriented cycle game. To
demonstrate this we can show that:

choosing m1
i ∈ MT ⇔ choosing xi ∈ X

Another observation we can make is that for each possible occurrence of a variable at a
position in a clause we need two nodes and an undirected edge for layers 2 and 4 and for
layer 3 we need two nodes and an undirected edge for each occurrence of a variable. In
Theorem 4.2 we have in principle added two nodes and an undirected edge for each variable
in layers 2 and 4 and for layer 3 we have added two nodes and an undirected edge for each
occurrence of a variable. This means that in Theorem 4.2 variables could appear anywhere
and we had to make sure that they could be set to true at any position in the clauses.
Since we could exclude in this proof that a certain variable is at a certain position, we did
not need a truth constraint for this variable and position and the corresponding layer does
not need two nodes and an undirected edge for this variable. This is the essential difference
between the construction of Theorem 4.2 and Theorem 4.4. Since the difference between
the construction is so minimal, and the proof of correctness becomes very identical, we
omit it here and refer to the proof in Theorem 4.2.

We give another proof about another version and show that it is also PSPACE-hard. We
again use the standard seek oriented cycle game, but we require different properties for the
oriented cycle groups than in Theorem 4.4. For the oriented cycle groups M we demand,
that M is perfectly complete and we define max M := max{|m| : m ∈ M}.

For a 3-DNF SAT formula Φ with the clauses {C1, . . . , Cn} we define t(Φ), where t(Φ) ∈ N
is the number of times a variable can be at most in the middle of the clauses {C1, . . . , Cn}.
Since the clauses are conjunctions of three literals, the order of the literals can be reversed
within the clauses. We look at the permutation where t(Φ) is minimal.

Theorem 4.5. Seek oriented cycle game is PSPACE-hard, even if M is unique. Moreover,
if impartial seek positive 3-color 3-DNF SAT is PSPACE-hard with t(Φ) = t∗, t∗ ∈ N, then
seek oriented cycle game is PSPACE-hard for max M ≤ t∗ + 1

Proof. To prove that our game is PSPACE-hard, we provide a reduction:

Impartial seek positive 3-color 3-DNF SAT ≤p seek oriented cycle game

We get an instance Φ of impartial seek positive 3-color 3-DNF SAT. The formula used in Φ
is a conjunction of clauses C1 ∧ · · · ∧ Cn, where each clause is a disjunction of three positive

32

4.2. Seek Oriented Cycle Game is PSPACE-hard

literals, i.e. Ck = xi ∨ xj ∨ xl. The number t(Φ) ∈ N is the number of times a variable can
be at most in the middle of the clauses {C1, . . . , Ck}. In addition, no clause has a negated
literal and both players take turns choosing a literal and setting it to true. Each variable
has been assigned a color, either F, C, or B. There is a permutation of variables within the
clauses so that if a variable has the color F, C, or B, it never is in the front, center, or back
of the clauses respectively. Let the clauses C1 ∧ · · · ∧ Cn already be exactly according to
this permutation. The aim of both players A and B is to be the first to fulfill the boolean
formula.
Next, we create the mixed graph G together with the oriented edge groups M depending
on Φ, where player 1 wins the seek oriented cycle game on (G, M) if and only if player A
of the impartial seek positive 3-color 3-DNF SAT wins on Φ. The steps to create G, M are
as follows:

1. Create five layers in which the nodes of G come in.

2. Make a start and end node; from the end node to the start node, there is a directed
edge. Put the start node in layer 1 and the end node in layer 5.

a) If xi has the color F, then introduce the nodes {zi, z′
i}. Put the nodes n2 = {zi, z′

i}
in layer 4. We create one undirected edge [zi, z′

i].

b) If xi has the color C, then introduce the nodes {wi, w′
i, zi, z′

i}. Put the nodes
n1 = {wi, w′

i} in layer 2 and the nodes n2 = {zi, z′
i} in layer 4. We create two

undirected edges [wi, w′
i] and [zi, z′

i].

c) If xi has the color B, then introduce the nodes {wi, w′
i}. Put the nodes n1 =

{wi, w′
i} in layer 2. Here, we create one undirected edge [wi, w′

i].

3. For each clause Ck with Ck = xi ∧ xj ∧ xl there are two nodes {yk
j , yk

j
′} in layer 3.

There are also four directed edges. We add (start, wi), (w′
i, yk

j), (yk
j

′
, zl), and (z′

l, end).
We also add [yk

j , yk
j

′] to G.

4. For the oriented edge groups M we proceed as follows:

a) If xi has the color F, add m1
i = {(yk

j , yk
j

′)|ximiddle variable of clauseCk} ∪
{(zi, z′

i)} to M

b) If xi has the color C, add m1
i = {(wi, w′

i), (zi, z′
i)} to M

c) If xi has the color B, add m1
i = {(wi, w′

i)}∪{(yk
j , yk

j
′)|ximiddle variable of clauseCk}

to M

The construction of a mixed graph G with the oriented edge set M can be seen in Fig. 4.3
as an example.

Since each variable and clause requires a constant number of nodes and edges, the trans-
formation takes place in polynomial time. Notice that by construction our oriented edge
group M has the desired properties because each oriented edge is in one or no oriented
edge group and because mi has the most oriented edges if it has the color F or B since it
then has exactly one oriented edges through the layers 1 or 3 and also one oriented edge
for each occurrence in the middle of the clause. This makes it t(Φ) + 1 edges.
To complete the reduction, we need to show that any instance of impartial seek 3-color
positive 3-DNF SAT can be converted to an equivalent seek oriented cycle game instance
by building the mixed graph G and the oriented edge groups M as mentioned. The optimal
strategy for player A on Φ of the impartial seek 3-color positive 3-DNF SAT must be
equivalent to an optimal strategy for player 1 on (G, M) of the avoid oriented cycle game.
To demonstrate this we can show that:

choosing mi ∈ M ⇔ choosing xi ∈ X

33

4. Seek Oriented Cycle Game

Figure 4.3: The resulting graph, where the boolean formula used in Φ is (x1 ∧ x2 ∧ x4) ∨
(x4 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4) ∨ (x4 ∧ x1 ∧ x3) and the two variables x1, x2 were
colored with B, the variable x4 was colored with C and the variable x3 was
colored with F.

The first thing we notice is that M and the oriented edge groups MT from Theorem 4.4
are equal to each other. Thus a proof would be exactly the same as in Theorem 4.4. Since
Theorem 4.4 is very identical to Theorem 4.2 and we have already not formally proved
Theorem 4.4, we will also omit this proof.

4.3 Seek Oriented Cycle Game in P
Theorem 4.6. Seek oriented cycle game ∈ P .

Proof. As in Theorem 3.5, we will again prove that there can be no mixed graph G where
a player is forced to play a move that loses. This makes it easy to find an algorithm that is
in polynomial time by calculating only for the next two moves whether it is a losing move.
That is, we look at the graph G before the last two moves were made and ask ourselves if
a player was forced to lose or if it was avoidable.
We assume that player 2 is forced to orient an undirected edge on the mixed graph G,
which allows player 1 to then directly create a directed cycle. Thus we know that the
mixed graph G consists of several directed cycles, all of which have 2 undirected edges so
that player 2 can orient one of the two edges, and player 1 can then close the directed cycle
by orienting the other of the two edges. Let e1 be the undirected edge that player 1 orients
(from b1 to a1) to create the directed cycle C1. With this, we ask ourselves, what was the
last move of player 2? If player 2 did not orient an undirected edge in the directed cycle

34

4.3. Seek Oriented Cycle Game in P

C1, player 2 could have oriented e1 himself and won the game. Thus, player 2 must have
oriented an undirected edge e2 (from a2 to b2), which is contained in C1 as shown in Fig.
4.4.

Figure 4.4: A directed cycle except for 2 undirected edges

Now the question is, why did player 2 not direct the undirected edge e2 the other way
around (i.e. from b2 to a2)? By orienting the undirected edge e2 the other way around, the
directed cycle C1 would be prevented. Thus, there must be another directed cycle C2 with
which player 1 can win directly after player 2 has oriented e2 (from b2 to a2). The directed
cycle C2 must still have an undirected edge e3 for player 1 to win. The directed cycle C2
must also contain e2, because if C2 does not contain e2, then player 2 could directly orient
e3 and win. Therefore the directed cycle C2 must both contain e2 as well as an undirected
edge e3 that allows player 1 to win as shown in Fig. 4.5.

Figure 4.5: Two directed cycles with 2 undirected edges each

However, there is still the case that e1 = e3 and thus the two directed cycles C1 and
C2 share two undirected edges instead of only e2. In this case, however, we see that the
undirected edges no longer play a role, since we have already closed a directed cycle and
C1, together with C2, form a directed cycle as shown in Fig. 4.6.

Thus we can ignore this case, as it is against our assumption that the game is not over yet.
This gives us an undirected edge e3 that player 2 could orient. Orienting e3 (from a3 to b3)
makes no sense, as now player 1 can orient e2 appropriately and create a directed cycle.
However, orienting e3 (from b3 to a3) makes sense because it prevents the directed cycle C2.
But since it is assumed that player 1 can create a directed cycle after player 2’s move and
player 1 can not create a directed cycle C1 on his move, there must be another directed
cycle C3. An undirected edge e4 must also be contained in C3 in order for player 1 to
win after player 2 orients e3 (from b3 to a3). The directed cycle C3 must also contain e3
because if C3 did not, player 2 could win by directly orienting e4. Therefore e3 as well as
an undirected edge e4 must be contained in C3 as shown in Fig. 4.5.

35

4. Seek Oriented Cycle Game

Figure 4.6: Two directed cycles with 2 undirected edges each and a directed cycle

Figure 4.7: Three directed cycles with two undirected edges each

Here it is again true that e2 ̸= e4, since C2, together with C3, close a directed cycle and
thus violates our assumption that the game is not yet over. This, however, gives us another
undirected edge e4, which player 2 can take and orient (from b3 to a3) so that the directed
cycle C3 is prevented. Now it is again true that this orientation must also lose directly
according to our assumption.
Thus in the mixed graph G there must be a directed cycle Ck each time, so that in the
directed cycle Ck−1 the undirected edge ek cannot be oriented by player 2 in such a way
that the directed cycle (from bk to ak) Ck−1 is prevented. Since the mixed graph G is
finite and thus can only have finitely many undirected edges, there must be a directed
cycle Ck−1, which does not depend on the directed cycle Ck. The undirected edge ek must
be contained in another directed cycle Cl, because if it were not, player 2 could orient
the undirected edge in such a way that the directed cycle Ck−1 would be prevented and
would thus have found a move that does not lose directly. Thus we have ek = el for some
k > l + 1 with k small as possible. For k = l + 2 we have already seen that the directed
cycles Ck−1 together with Cl close a circle, as for example in the case e1 = e3 as shown
in Fig. 4.6. We can say without limitation of generality that in every directed cycle Ci

except for Ck there is a path from ai to ai+1, where ai,ai+1 are nodes of undirected edges.
For Ck there is a path from ak−1 to al. Thus we have found a directed cycle, namely:
al → al+1 → · · · → ak−1. This is against our assumption that the game is not yet over.
Thus, there cannot be a mixed graph G where a player is forced to make a losing move.
This case, where a directed cycle Ck−1 is added and its two undirected edges are already
present in the mixed graph G, is also shown in Fig. 4.8, where we have the case that here
k = 5 and l = 1.

36

4.3. Seek Oriented Cycle Game in P

Figure 4.8: Four directed cycles with two undirected edges each and a directed cycle
a1 → a2 → a3 → a4

Thus, we have now seen that there can be no mixed graph G in which a player has no
more moves that do not directly lose since the attempt to create such a mixed graph G
always results in a directed cycle already being present in the graph.
Now we want to show that there can also be no mixed graph G where a player has no move
left that does not lose. We assume that there is such a mixed graph G, where one player
has no more move which does not lose. So in the course of the game, there must also be a
mixed graph G′, so that a player no longer has a move that directly loses. However, in
the proof above we have seen that such a G′ cannot exist, so our assumption is wrong and
there is no mixed graph G so that a player has no more moves that do not lose. Therefore,
it is sufficient to play one move each round which does not lose directly.
To specify an algorithm that finds an optimal move in polynomial time, we can take a
move that does not lose. Since we always have a move that does not lose, all we need to do
is make sure a move does not lose directly. It is also true that the opponent has a move
such a move, so a winning move can only result from an error on the part of the opponent.
The algorithm works as follows:

1. Check both orientations of each undirected edge, if there is a winning move in
O(|E| ∗ (|V | + |E|)). If there is, orient this edge accordingly.

2. Find an orientation of an undirected edge so that the opposing player cannot close a
directed cycle in the next turn in O(|E| ∗ (|V | + |E|)).

This brings the chapter on the avoid oriented cycle game to a close. Throughout the
chapter, we learned which variations of the game are PSPACE-complete and examined
which variations can be solved in polynomial time.

37

5. Default Oriented Cycle Game

This chapter is about the default oriented cycle game. That is, we look at the normal
oriented cycle game, without oriented edge groups. We will first try to find out whether
the decision problem "Given a mixed graph G, which player has a winning strategy?" is
solvable in polynomial time. Then we analyze some interesting graphs and indicate which
player wins on them.

5.1 Default Oriented Cycle Game in P?
The question of which player wins on which graph G has always been asked in the oriented
cycle game. Béla Bollobás and Tamás Szabó, who invented the oriented cycle game, proved
in their presentation of the game that player C wins if the graph G has a subgraph
with 2n − 2 or more undirected edges [BS98]. Now the question arises, is this perhaps a
unique characterization and does player A win if every subgraph of graph G has the most
2n − 3 undirected edges? By this method, we would find an algorithm that finds out in
polynomial time which player wins on the graph G because finding out whether G has at
most 2n − 3 undirected edges on each subgraph works in polynomial time. We have seen
from the example in the Introduction 1 that there is a graph G which has at most 2n − 3
undirected edges for each subgraph of G and player A wins since a triangle fulfills exactly
these conditions. We prove that there exists a graph G on which player C wins and each
subgraph of G has at most 2n − 3 undirected edges.

Theorem 5.1. Player C wins on the 3-prism graph G.

Proof. The 3-prism graph is a graph where each subgraph has at most 2n − 3 undirected
edges, as can be seen in Fig. 5.1.

To prove that player C wins on the 3-prism graph, we will show every possibility that
player A has and show that player C still manages to create a directed cycle. To do this,
we can look at Fig. 5.2, which contains all the game possibilities for player A except for
those that are equal to each other and have therefore been left out. Player C starts the
game and an arrow with a C symbolizes that player C has made a move. An arrow with an
A in Fig. 5.2 symbolizes that player A has made a move, the (forced) means that player A
was forced to make this move because if he had not made it, player C could have closed a
directed cycle in the next move.

39

5. Default Oriented Cycle Game

Figure 5.1: The 3-prism graph

Figure 5.2: The game tree of the 3-prism graph

40

5.2. Overview of some interesting Graphs

Thus we have seen that there is a graph G that for each subgraph has at most 2n − 3
undirected edges where player A wins and there is a graph G′ that for each subgraph has
at most 2n − 3 undirected edges where player C wins. Thus, by examining the subgraphs,
one cannot find out which player wins. This still leaves open the question of whether there
is an algorithm that receives a graph as input and finds out in polynomial time which
player has a winning strategy.

5.2 Overview of some interesting Graphs
This section is about interesting graphs where we try to figure out which player is winning
by giving a winning strategy for that player. We start with a proof where we show that
adding a node with 2 undirected edges to a random mixed graph G does not differentiate
the outcome of the game if G has just many undirected edges.

Theorem 5.2. Player A wins on G + Hen1, if player A wins on G and G has an even
number of undirected edges.

Proof. Let G be a mixed graph on which player A has a winning strategy and let G have
an even number of undirected edges. Now let G + Hen1 be a mixed graph resulting from
performing a Henneberg 1 step on G. That is, two different nodes xi,xj are randomly
selected in G and connected to a new node xk /∈ G with an undirected edge eik, ejk each.
A winning strategy for player A on G + Hen1, depending on a winning strategy for player
A on G works as follows:

1. If C plays in G, that is, orients an undirected edge of G, then answer in G using the
winning strategy for player A on G.

2. If C orients a new undirected edge eik or ejk, then orient the other undirected edge
accordingly so that the node xk becomes the source or sink.

Figure 5.3: Graph G′ resulting from performing a Henneberg 1 step on G

We still have to show that this is a winning strategy for G + Hen1 depending on the fact
that player A already had a winning strategy for G and that G has many undirected edges.
One observation we make here is that player A always has an answer to player C when
player C is playing in G. This is because player C starts the game and if player A can no
longer answer in G after player C has played in G, then G must have an odd number of
undirected edges.
The next observation is that the node xk cannot be included in any directed cycle, since it
is either a source or a sink, because player C is forced to orient an undirected edge eik or
ejk first and then player A orients the other undirected edge accordingly so that the node
xk becomes the source or sink. Thus, the only directed cycle that can occur in G + Hen1
is in G. However, since if player C plays on G, player A has used the winning strategy for
G, no directed cycle can occur in G either. Thus we have found a winning strategy with
which player A can prevent a directed cycle on G + Hen1

41

5. Default Oriented Cycle Game

With the help of Theorem 5.2, we can now better analyze some mixed graphs and better
understand which player is winning. We now use Theorem 5.2 to show that on the n × m
grid graph, player A wins if n + m is even.

Theorem 5.3. Player A wins on the n × m grid, if m + n is even.

Proof. We start with the graph G, which is an n × m grid, and want to show that there
is a winning strategy for player A. For this, we will use Theorem 5.2. The first thing we
notice is that the node xn,m at the bottom right has only two undirected nodes as can be
seen in Fig. 5.4.

Figure 5.4: An n × m grid graph G, with n = 5 and m = 7. Here the undirected edges of
nodes x5,7 are colored red.

Thus the node xn,m is a Henneberg 1 step which has an undirected edge to the nodes
xn−1,m and xn,m−1. By Theorem 5.2, we can find a winning strategy for G if we have
found a winning strategy for G′ = G − xn,m and if G′ has an even number of undirected
edges. If we now take a closer look at G′, we notice that the two nodes xn−1,m and xn,m−1
each have only two undirected edges as can be seen in Fig. 5.5.

Figure 5.5: The grid graph G′, with n = 5 and m = 7. Here the undirected edges of nodes
x5,6 and x4,7 are colored red.

Thus the nodes xn−1,m and xn,m−1 are also the only nodes that have passed through a
Henneberg 1 step. By Theorem 5.2 we can again find a strategy for G′ if we have found a
strategy for G′′ = G′ − xn−1,m − xn,m−1 and G′′ has an even number of undirected edges.
This process can be continued until all nodes with two undirected edges have been removed.
Finally, you get G′′′, which is a simple path of undirected edges from x1,n to xm,1 as can
be seen in Fig. 5.6.

It is important that an even number of undirected edges are dropped from the graph in
each step, thus G′′′ has an even number of undirected edges if and only if G′′, G′ or also G
have an even number of undirected edges.
Thus, if we find a winning strategy for G′′′ and G′′′ has an even number of undirected
edges, then we have found a winning strategy for G. However, since G′′′ is only a simple

42

5.2. Overview of some interesting Graphs

Figure 5.6: The graph G′′′, which is a simple path of undirected edges from x1,n to xm,1,
in this case is n = 5 and m = 7

path, there is no losing strategy for player A here and player A can play on G′′′ at will and
win. For the length of the path, exactly n − 1 undirected edges are needed from xn,1 to
x1,1 and exactly m − 1 undirected edges from x1,1 to x1,m. This means that in total G′′′

has n − 1 + m − 1 = n + m − 2 undirected edges. Since (n + m − 2) mod 2 = (n + m)
mod 2, G′′′ has even undirected edges if m + n is even.
Thus we have shown that player A has a winning strategy on the n × m grid graph G, if
m + n is even.

Theorem 5.4. The start player loses on the cube.

Proof. We consider the cube as a graph G as shown in Fig. 5.7.

Figure 5.7: The cube as a graph

Since G has 12 undirected edges, a game tree is not so easy here, since there are naive
24!! = 24 · 22 · 20 · . . . · 2 = 1, 961, 990, 553, 600 possibilities to play the game on G. Since
the graph in Theorem 5.1 had only 9 undirected edges, it was possible to specify a game
tree in this case. However, we will give pseudocode which calculates in polynomial space
whether player A or player B wins. In Algorithm 5.1, it is player C’s turn and he searches
the entire game tree looking for a strategy to force a directed cycle regardless of A’s moves.
Algorithm 5.2 does the same, but for player A. To find out that on the cube the starting
player loses, we have to run Algorithm 5.1 once and Algorithm 5.2 once with the cube as a
graph. We see that both algorithms return false.

We give another possible play in which player A loses. We do not go through every
possibility or look at equivalence classes, but take the moves for player A that are most
logical for us. Since player A loses, he must also start. As player A, we try to create as
many sources as possible and orient our edges in such a way that we have a chance to
create a source. Fig. 5.8 shows this strategy for player A, but we can see that player C has
a strategy to create a directed cycle. This is only meant as an example, as a formal proof
would be too time-consuming at this point.

43

5. Default Oriented Cycle Game

Algorithm 5.1: PlayerCMove
Input: Mixed Graph G = (V, E, A)
Output: Whether player C has a winning strategy

1 forall e ∈ E do
2 directEdge (e, G) // direct edge e randomly
3 if ∃ directed cycle then
4 resetEdge (e, G)
5 return true
6 reverseEdge (e, G)
7 if ∃ directed cycle then
8 resetEdge (e, G)
9 return true

10 if PlayerAMove (G) then
11 reverseEdge (e, G) // direct edge e the other way around
12 if PlayerAMove (G) then
13 resetEdge (e, G) // undirect edge e
14 continue with next iteration

15 resetEdge (e, G)
16 return true
17 return false

Figure 5.8: A possible way to play the cube

44

5.2. Overview of some interesting Graphs

Algorithm 5.2: PlayerAMove
Input: Mixed Graph G = (V, E, A)
Output: Whether player A has a winning strategy

1 forall e ∈ E do
2 directEdge (e, G) // direct edge e randomly
3 if ∃ directed cycle then
4 reverseEdge (e, G)
5 if ∃ directed cycle then
6 resetEdge (e, G) // undirect edge e
7 continue with next iteration

8 if PlayerCMove (G) then
9 reverseEdge (e, G) // direct edge e the other way around

10 if ∃ directed cycle then
11 resetEdge (e, G)
12 continue with next iteration
13 if PlayerCMove (G) then
14 resetEdge (e, G)
15 continue with next iteration

16 resetEdge (e, G)
17 return true
18 return false

45

6. Conclusion

In this thesis, we studied the oriented cycle game in its avoid, seek, and default version.
For the seek and avoid version, we always looked at the game together with oriented edge
groups. In Chapter 3 we found out that the following versions of the avoid oriented cycle
game are PSPACE-complete:

1. avoid oriented cycle game, even if the set M if oriented edge groups is perfectly
complete, symmetrical, and max M := max{|m| : m ∈ M} = 3

2. avoid oriented cycle game, even if the set M if oriented edge groups is unique and
max M = 2.

In Chapter 3 we also found out that the avoid oriented cycle game without the oriented edge
groups, equivalently maxM = 1 and M perfectly complete, is solvable in polynomial time.
After that, in Chapter 4, we focused on the seek oriented cycle game. Let t∗ = min t ∈ N :
impartial positive 3-DNF SAT with t(Φ) ≤ t∗ is PSPACE-hard. We also found the following
versions and proved that they are PSPACE-complete:

1. seek oriented cycle game, even if the set M of oriented edge groups is perfectly
complete. If impartial seek positive 3-DNF SAT is PSPACE-hard with t(Φ) = t∗,
then the seek oriented cycle game is even PSPACE-compelte for max M ≤ t∗ + 3

2. seek oriented cycle game, even if the set M of oriented edge groups is perfectly
complete. If impartial seek positive 3-DNF SAT is PSPACE-hard with t(Φ) = t∗,
then the seek oriented cycle game is even PSPACE-compelte for max M ≤ t∗ + 2

3. seek oriented cycle game, even if the set M of oriented edge groups is unique. If
impartial seek positive 3-DNF SAT is PSPACE-hard with t(Φ) = t∗, then the seek
oriented cycle game is even PSPACE-compelte for max M ≤ t∗ + 1

Where t(Φ) ∈ N is the number of times a variable can be at most in the middle of the
clauses of Impartial seek positive 3-color 3-DNF SAT Φ. Following this, we also proved in
Chapter 4 that the seek oriented cycle game, without the oriented edge groups, is solvable
in polynomial time. We looked at the default oriented cycle game in Chapter 5, proving
that there exists a Laman graph, such that Player C has a winning strategy and therefore
we cannot determine which player wins based on the number of undirected edges of every
subgraph. Finally, we looked at interesting graphs, such as the grid graph, in Chapter 5
and proved which player wins on them. There may be more results that can be obtained in
this field. Open questions that would be interesting to investigate in the future would be:

47

6. Conclusion

1. Does player A also win on the grid graph if m + n is even and if so, what is his
strategy?

2. Does there exist an t∗ ∈ N such that an instance Φ of impartial positive 3-DNF SAT
is PSPACE-hard with t(Φ) = t∗?

3. Is the biased oriented cycle game PSPACE-complete?

4. Is there an upper bound of undirected edges for graph G and on each subgraph of G
such that player A always wins?

5. Does a certain player always win on graph G if G is Laman and, in addition, each
node has exactly three undirected edges?

6. What is the complexity of the oriented cycle game? Is there an algorithm that finds
out in polynomial time which player wins?

48

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[BS98] Béla Bollobás and Tamás Szabó. The oriented cycle game. Discrete Mathematics,
186(1):55–67, 1998.

[CE78] V. Chvátal and P. Erdös. Biased positional games. In B. Alspach, P. Hell, and
D.J. Miller, editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of
Discrete Mathematics, pages 221–229. Elsevier, 1978.

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications
of Boolean Constraint Satisfaction Problems. Society for Industrial and Applied
Mathematics, 2001.

[Dem01] Erik D. Demaine. Playing games with algorithms: Algorithmic combinatorial
game theory. In Jiří Sgall, Aleš Pultr, and Petr Kolman, editors, Mathematical
Foundations of Computer Science 2001, pages 18–33, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[FSU93] Aviezri S Fraenkel, Edward R Scheinerman, and Daniel Ullman. Undirected edge
geography. Theoretical Computer Science, 112(2):371–381, 1993.

[Hen11] 1850-1933 (viaf)47520410 Henneberg, Lebrecht. Die graphische Statik der starren
Systeme. Leipzig, 1911.

[Lam70] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics, 4(4):331–340, Oct 1970.

[Sch78] Thomas J. Schaefer. On the complexity of some two-person perfect-information
games. Journal of Computer and System Sciences, 16(2):185–225, 1978.

49

	Contents
	1 Introduction
	1.1 Variants of the game
	1.1.1 Biased game
	1.1.2 Avoid game & seek game
	1.1.3 Oriented edge groups
	1.1.4 Partizan game

	1.2 Outline and Example
	1.3 PSPACE

	2 Preliminaries
	2.1 Assumptions and Notations
	2.2 Laman graphs
	2.3 Oriented Edge Groups
	2.4 Quantified SAT
	2.4.1 QSAT as a two-player game
	2.4.2 Variants of Quantified SAT
	2.4.2.1 Impartial
	2.4.2.2 Partizan

	2.4.3 Default game
	2.4.3.1 Seek game
	2.4.3.2 Avoid game

	3 Avoid Oriented Cycle Game
	3.1 Avoid Oriented Cycle Game in PSPACE
	3.2 Avoid Oriented Cycle Game is PSPACE-hard
	3.3 Avoid Oriented Cycle Game in P

	4 Seek Oriented Cycle Game
	4.1 Seek Oriented Cycle Game in PSPACE
	4.2 Seek Oriented Cycle Game is PSPACE-hard
	4.3 Seek Oriented Cycle Game in P

	5 Default Oriented Cycle Game
	5.1 Default Oriented Cycle Game in P?
	5.2 Overview of some interesting Graphs

	6 Conclusion
	Bibliography

