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Abstract

The sensitivity of a boolean function is defined as the maximum number of indices of
any input vector x ∈ {0, 1}n such that flipping the input vector at the index changes
the value of f(x). The Sensitivity Conjecture states that for every boolean function
f : {0, 1}n → {0, 1} the sensitivity is at most polynomially smaller than another com-
plexity measure of f , the so-called block sensitivity. Although appearing trivial at first
sight, this conjecture has stood as one of the most frustrating open problems in all
of combinatorics and theoretical computer science since it was proposed by Nisan and
Szegedy in 1989. Recently, Hao Huang, a mathematician at Emory University, has
posted a 6-page preprint that finally proves the Sensitivity Conjecture. In this thesis we
will explore the proof and make use of the techniques used by Hao Huang in order to
gain further structural insights on the relationship between a special group of matrices
and its corresponding induced graphs. Moreover, we will gain additional insight in the
structure of induced subgraphs of the n-dimensional hypercube.

Zusammenfassung

Die Sensitivity Conjecture besagt, dass für eine bool’sche Funktion f : {0, 1}n → {0, 1}
die so genannte sensitivity, also maximale Anzahl der indizes für die sich bei einem be-
liebigen, festen Argument Vektor der Funktionswert f(x) ändert, wenn der sich einzelne
index ändert, höchstens polynomiell geringer als ein anderes Komplexitätsmaß, na-
mentlich die so genannte Block Sensitivity ist. Obwohl diese Vermutung auf den er-
sten Blick trivial erscheinen mag hat sich sich als eines der frustrierensten ungelösten
Probleme im Themengebiet der Kombinatorik und Graphentheorie erwiesen seitdem sie
1989 von Nisan und Szegedy aufgestellt wurde. Vor kurzem hat Hao Huang, ein Math-
ematiker der Emory University einen Sechsseitigen Beweiß der Sensitivity Conjecture
veröffentlicht. In dieser Arbeit untersuchen wir die Herangehensweise und Techniken
dieses Beweises und nutzen letztere um weitere strukturelle Einsichten bezüglich des
Verhältnisses zwischen einer Matrizenklasse und den von ihr induzierten Graphen zu
gewinnen. Außerdem werden wir weitere strukturelle Erkenntnis über den n-Hyperwürfel
gewinnen.
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1 Introduction and Motivation

A function f : {0, 1}n −→ {0, 1} is called a boolean function. Boolean functions first
occurred in the mathematical formulation of logical problems, and were named after
G. Boole, who laid the foundation for the applications of mathematics in logic in the
19th century. Boolean functions play a fundamental role in the design of digital circuits
and chips used for computers where they are used to model the behaviour of a circuit
system. The properties of boolean functions are critical in cryptography, particularly in
the design of symmetric key algorithms.

Figure 1: An abstract representation of digital circuit functions via a boolean function.

Figure 2: A binary decision tree and its corresponding boolean function

In 1989, mathematicians Noam Nisan and Mario Szegedy proposed the Sensitivity
Conjecture [10]. It proposes a polynomial lower bound between two different measures
of complexity of a boolean function. Ever since then the Sensitivity Conjecture had
remained to be an apparently trivial yet unproven problem within all of combinatorics
and theoretical computer science. Other seemingly similar conjectures were proven with

4



relative ease whilst a number of very reputable people within the field tried unsuccess-
fully to prove the Sensitivity Conjecture. In August 2019, a mathematician from Emory
University by the name of Hao Huang published a 6-page paper that proves the Sensi-
tivity Conjecture by utilizing methods from both spectral graph theory and eigenvalues
of matrices in a manner not discerned beforehand [8]. In this thesis we inspect Huangs
methodology and try to infer further use for both the tools of spectral graph theory he
employed as well as the main theorem of his paper.
In the subsequent section, we will explore the concepts of boolean functions, eigenvalues
of matrices and spectral graph theory, as well as theorems from the respective fields,
that Huang draws from for his proof.
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2 Preliminary Definitions and Theorems

2.1 Introduction to boolean functions

A function f : {0, 1}n −→ {0, 1} is called a boolean function. It is common practice
to interpret the value 0 as false and the value 1 as true. Examples of frequently used
functions are the logical AND function fAND in n variables. f(x1, ..., xn) = 1 if and
only if x1 = ... = xn = 1 it can be interpreted as the logical conjunction of x1, ..., xn.
Boolean functions realizing the logical OR fOR are constructed according to the same
principle, so for instance fOR(x1, ..., xn) = 0 if and only if x1 = ... = xn = 0. These
basic boolean functions may be utilized as building blocks for modeling more complex
behaviour. Among the most prominent instances of example are disjunctive and con-
junctive normal forms respectively.
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logi-
cal formula consisting of a disjunction of conjunctional clauses. A conjunctional clause
of boolean variables x1, ..., xn, i.e. variables whose value is either true or false or in
our case, 0 or 1, can be thought of as fAND(x1, .., xn). In other words, a DNF can be
viewed as an fOR function where its argument vector consists of a set of fAND func-
tions both of which we have just introduced. More formally, let x1 ∧ ... ∧ xn denote
fAND(x1, ..., xn), then a disjunctive normal form may be (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5) =
fOR(fAND(x1, x2, x3), fAND(x4, x5)). Analogously, a conjunctive normal form (KNF) is
a conjunction of one or more disjunctional clauses. As a canonical normal form, it is
useful in automated theorem proving and circuit theory and arguably of even greater
importance than DNF’s since KNF’s are of central interest to the boolean satisfiability
problem.
In logic and computer science, the Boolean satisfiability problem (sometimes abbreviated
SATISFIABILITY or SAT) is the problem of determining if there exists an interpreta-
tion that satisfies a given KNF boolean formula. In other words, it asks whether the
variables of a given boolean formula can be consistently replaced by the values TRUE
or FALSE in such a way that the formula evaluates to TRUE. SAT is the first problem
that was proven to be NP-complete [4]. This means that all problems in the complexity
class NP, which includes a wide range of natural decision and optimization problems,
are at most as difficult to solve as SAT and more importantly can be transformed into
a KNF that, if solveable, yields a solution to the problem originally at hand.
When studying boolean functions, it is of interest to examine the behaviour of a given
boolean function f when its argument vector x ∈ {0, 1}n changes. One approach to-
wards measurement of the changing behaviour of a boolean function f with respect to its
argument x = (x1, ..., xn) is its so-called sensitivity. In order to introduce the concept of
sensitivity, we must first make a number of definitions imperative to its introduction. Let
S ⊂ {1, ..., n} be a subset. In the following, the elements of S will be interpreted as index
of the argument vectors x ∈ {0, 1}n of a given boolean function f : {0, 1}n → {0, 1}.
Given an argument vector x of a boolean function f : {0, 1}n → {0, 1} and an index
i ∈ {1, ..., n}, then we define xi = (x1, ..., (1 − xi), ..., xn)} in other words, xi denotes
the boolean vector arising from the original vector x by only flipping index i. The
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local sensitivity of f with regard to x, written as s(f, x) denotes the number k of in-
dices {i1, ..., ik} so that f(xim) 6= f(x) for m ∈ {1, ..., k}. For the sake of clarification,
this number must obviously be uniquely determined. The sensitivity of f is defined
as s(f) := max{s(f, x) | x ∈ {0, 1}n}. If s(f, x) = 5 for a boolean function f , then
there exists an argument vector x and a set S = {i1, ..., i5}, such that f(x) 6= f(xik) for
k ∈ {1, ..., 5}.
A measure of complexity closely related to sensitivity is the so-called of block sensitiv-
ity. In order to define block sensitivity, we need to introduce another concept. Given
S ⊂ {1, ..., n}, xS denotes the argument vector that is obtained by flipping all indices
{i1, ..., ik} = S in x. As an example, suppose x = (0, 1, 0, 1, 0) and S = {2, 5} then
xS = (0, 0, 0, 1, 1). Now, consider a set S̃ = {S1, ..., Sk} containing subsets of indices
as described before. The subsets are pairwise disjoint which means Si ∩ Sj = ∅ if
i 6= j for any i, j ∈ {1, ..., k}. The block sensitivity of f with regard to x, bs(f, x) is
the maximum number k of pairwise disjoint subsets of indices S1, ..., Sk ⊂ {0, 1}n such
that f(xSj 6= f(x) for Sj ∈ {S1, ..., Sk}. The block sensitivity of f , bs(f) is defined
analogously as sensitivity, bs(f) := max{bsx(f) | x ∈ {0, 1}n}. We can think of block
sensitivity as an analogue to sensitivity. While the latter concept is concerned with the
sole index of an input vector, in block sensitivity the analogue is a set of indices rather
than just one index. Keeping this in mind and by considering the partition where every
Bi is a singleton (i.e. every Bi contains exactly one element), we see that block sensi-
tivity is at least as large as sensitivity, so s(f) ≤ bs(f).
For some classes of boolean functions, s(f) = bs(f) holds. In order to see this, we
introduce the concepts of monotonic boolean functions and certificate complexity. Let
a, b ∈ {0, 1}n. A monotonic function is one such that for all ai and bi, if a1 ≤ b1, a2 ≤ b2

, ..., an ≤ bn, then f(a1, ..., an) ≤ f(b1, ..., bn). In other words, a Boolean function is
monotonic if and only if, for every combination of inputs, switching one of the inputs
from false to true can only cause the output to switch from false to true and not from
true to false. A third measurement of complexity of a boolean function f is the so called
certificate complexity C(f). A 1-certificate (or 0-certificate) for f is an assignment to a
subset of the variables so that the output of f is forced to 1 (or 0) in other words, any
change in a variable that is not included in the subset may change whilst the output
value will not change. For any input x, Cx(f) denotes the size of the smallest certifi-
cate, so that the value of f with this certificate is equal to that of f(x). The certificate
complexity C(f) is the maximum of Cx(f) for all x ∈ {0, 1}n. In more prosaic terms,
the certificate complexity of a function describes how many input bits must be revealed
in order to determine the output value of that function on every input. Now, clearly
bs(f) ≤ C(f) for any boolean function f because in every for bs(f, x) and any Bi, there
is as least one index that must belong to the certificate of f . Otherwise, f(xBi) = f(x).
As mentioned before, s(f) = bs(f) for a class of boolean functions, namely all mono-
tonic boolean functions. In order to understand this, we simply prove C(f) ≤ s(f).
Let’s consider any monotonic function f . Let x be the input string with Cx(f) = C(f).
Without loss of generality, we assume f(x) = 1. Every index of x that counts towards
the certificate must change the value of f(x) if it is flipped. Because f is monotonic,
any change of a variable from 1 to 0 can only result in an output change from 1 to
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0, but f(x) = 1. Therefore, every variable in the certificate must have value 1. Now
C(f) ≤ s(f) so s(f) ≤ bs(f) ≤ C(f) ≤ s(f) yields our desired claim, s(f) = bs(f).
The sensitivity conjecture postulates the question, whether the lower bound for s(f) ≤
bs(f) is polynomial in s(f). Two measures of complexity, in our case s(f) and bs(f),
are said to be polynomially related if there exist polynomials p1(x) and p2(x) such that
for every boolean function f s(f) ≤ p2(bs(f)) and bs(f) ≤ p1(s(f)) holds. Boolean
functions may be represented as a real polynomial, too. Let v ∈ {0, 1}n be a boolean
vector, we define the multilinear polynomial Pv(x) : Rn → R as follows. Pv(x) :=∏

i∈B xi ·
∏

j∈B(1− xj) where i ∈ B ↔ xi = 1 and j ∈ B ↔ xj = 0. The polynomial has
the property that it Pv(x) = 0 if x 6= v and Pv(v) = 1. This polynomial has degree n
where the coefficient of the term v1 · v2 · ... · vn is either +1 or 1 depending on the parity
of v. A polynomial p : Rn → R represents a boolean function f if for all x ∈ {0, 1}n
p(x) = f(x). Every boolean function can be represented as sum of polynomial functions
as follows: Pf =

∑
v:f(v)=1 Pv.

This connection is used in Huang’s proof. For a boolean function f , deg(f) denotes
the maximum degree of the real polynomial that represents f . Now, since we have in-
troduced the concepts necessary for grasp of the postulated Sensitivity Conjecture, we
will finally explore its sentiment.

Theorem 1. There exists an absolute constant C > 0, such that for every boolean
function f we have bs(f) ≤ s(f)C.

Boolean functions may be represented by polynomials. For a boolean function f we let
deg(f) denote the degree, in other words the exponent of highest order, of the polynomial
representing f . The following theorem was established by Tal [3].

Theorem 2 (Tal). For any boolean function f , bs(f) ≤ deg(f)2.

2.2 Modular arithmetic and groups

We need to introduce modular arithmetic because it will be used in a number of proofs.
For a, b,m ∈ Z, a ≡ b mod m ↔ m | (a − b) ↔ ∃k ∈ Z : k ·m = (a − b) Obviously, if
a ≡ b mod m, then m | (a− b) = (a+ r)− (b+ r), so a+ r ≡ b+ r mod m. Group
theory will be of importance when we will examine related works that build upon the
main theorem of Hao Huang. A group G is a non-empty set with a binary operation
· : G × G → G, ·(g1, g2) 7→ g1 · g2 that satisfies the following three group axioms. For
a, b, c ∈ G, (a · b) · c = a · (b · c). There exists an element eG ∈ G so that for a ∈ G
a · eG = eG · a = a. For each a ∈ G there exists a−1 ∈ G so that a · a−1 = a−1 · a = eG.
A subgroup H ⊂ G is a subset that is also a group so in other words, it fulfills the three
group axioms. A subgroup N is said to be a normal subgroup if it is invariant under
conjugation. That is, for all g ∈ G g · N · g−1 ⊂ N . This is important because normal
subgroups are used to define quotient groups which in turn are needed to establish
a theorem on the relation of special mappings between groups. Let N be a normal
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subgroup of G, define GN := {g · N | g ∈ G} and g1N · g2N := (g1 · g2)N . Because
N is a normal subgroup this binary operation is well defined and allows to define the
quotient group GN . It is left to the diligent reader to reassure himself or herself, that
the quotient group also fulfills all three group axioms and is in fact a group. A group
homomorphism is a mapping Φ : G → H between two groups (G, ·) and (H, ?) so that
Φ(g1 · g2) = Φ(g1) ? Φ(g2) for all g1, g2 ∈ G. The kernel of a group homomorphism is
defined as follows, ker(Φ) := {g ∈ G | Φ(g) = eH}. Every kernel of a homomorphism
Φ is a normal subgroup, Φ(g) ? Φ(k) ? Φ(g−1) = Φ(g) ? eH ? Φ(g−1) = Φ(eG) ∈ ker(Φ)
for all g ∈ G, k ∈ ker(Φ). This allows us to define Gker(Φ) and Φ̃ : Gker(Φ) → image(Φ),
Φ̃(gN) := Φ(g) which is a bijection. This result is also called the fundamental theorem
on homomorphisms, in other words Gker(Φ)

∼= image(Φ) and |G|
|ker(Φ)| =| image(Φ) | if G

is finite. We will make use of this equation in Chapter 4.

2.3 Introduction to graph theory

Drawing away from boolean functions, we will now occupy ourselves with some basic
structures and notions of graph theory, the second field of mathematics that is being
touched upon by Huangs proof.
In the field of graph theory, a bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U and V such that every edge connects a vertex in
U to one in V . The graph Km,n denotes the complete bipartite graph where U consists
of m nodes and V consists of n nodes and every vertex in U is connected by an edge to
each vertex in V . So in K1,n for instance, there exists one node in U which is connected
to every node in V whilst no two nodes within V are connected. For further use in
our proofs, we introduce some concepts drawn from modular arithmetic and prove the
following lemma

Lemma 2.1. A graph G = (V,E) is bipartite if and only if it has no odd cycle (a cycle
is odd if it contains an even number of vertices).

Proof. ”→ ” We assume our given graph G = (V,E) is bipartite and we have partitioned
the node set V into two disjoint partition classes U,W . Suppose there exists an odd
cycle C in G. Starting at an arbitrary node v1 on C, any two adjacent nodes must lie
within different bipartition classes. We label the nodes alternatingly 1 if they lie within
U and 2 if they lie in W , without loss of generality we assume v1 lies within U . But
since C is odd, there is an even number of nodes so at the end of one iteration over all
nodes the starting node is labeled 2. This contradicts our premise.
” ← ” We assume there does not exist an odd cycle in G. As we shall find out, this
is already sufficient to construct a bipartite partition on the node set of G. In order
to stay consistent with our prior notation, let the two disjoint sets of partition classes
be denoted by U and V . We pick an arbitrary starting node v1 in G and without loss
of generality whilst adhering to our technique of labeling, we label v1 with 1 denoting
that v1 lies within partition U . Now, clearly all of v1’s neighbour nodes v2, ..., vk must
lie within V which which forces us to assign them with label 2. Now, we inductively
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continue the labeling of neighbour nodes process on each of v2, ..., vk. There may exist
cycles within the graph. Without loss of generality let c1, ..., ck denote the sequence of
adjacent nodes on the cycle. Since we assume that there do not exist odd cycles in G
and every even cycle consists of an uneven number of nodes, k ≡ 0 mod 2. This means,
that it is possible to assign an alternating labeling on c1, ..., ck. Since any path in G can
obviously be labeled alternatingly and any cycle can be labeled alternatingly as well as
we just argued, the labeling induces a bipartite partitioning where every node labeled
with 1 is assigned to the partition class U and every node labeled with 2 therefore must
be assigned to partition class V .

For his proof of the Sensitivity Conjecture, Huang links the concept of (block)-sensitivity
of a boolean function to the n-hypercube, a well known structure in graph theory that
we will familiarize ourselves with in the following.
For n ∈ N, the n-hypercube Qn is defined as the set V of 2n nodes represented by co-
ordinate vectors V := {0, 1}n. Two nodes are adjacent if and only if their coordinate
vectors differ in exactly one coordinate. Inductively, the (n + 1)-hypercube can be ob-
tained algebraically from an n-hypercube by increasing the dimension of the node set
from 2n to 2n+1. Since this induces a new edge for every set of two nodes that differ
only in coordinate n + 1, we can imagine this procedure geometrically as "cloning" the
n-hypercube and connecting the cloned nodes within the two hypercubes by an edge.
The figure below serves as illustration. This frame of thought about the inductive con-
struction makes for an accessible intuition about objects in spaces of dimensions larger
than 3.
The hypercube graph Qn may be constructed from the family of subsets of a set with
n elements, by making a vertex for each possible subset and joining two vertices by an
edge whenever the corresponding subsets differ in a single element. Equivalently, it may
be constructed using 2n vertices labeled with n-bit binary numbers and connecting two
vertices by an edge whenever the Hamming distance of their labels is one. The Hamming
distance between two strings of equal length is the number of positions at which the cor-
responding symbols are different. In other words, it measures the minimum number of
substitutions required to change one string into the other. These two constructions are
closely related: a binary number may be interpreted as a set (the set of positions where
it has a 1 digit), and two such sets differ in a single element whenever the corresponding
two binary numbers have Hamming distance one.
Additionally, every hypercube Qn with n > 1 has a Hamiltonian cycle, a cycle that
visits each vertex exactly once. We can inductively construct such a cycle by us-
ing the algebraic notion of Qn. Given a Hamiltonian Cycle for the n − 1-hypercube
(0, ..., 0), (0, ..., 0, 1)...(1, 0, ..., 0), (0, ..., 0) we construct a Hamiltonian cycle for the n-
hypercube as follows. (0, ..., 0, 1), (0, ..., 0, 1, 1)...(1, 0, ..., 0, 1), (1, 0, ..., 0)...(0, ..., 0, 1, 0),
(0, ..., 0), (0, ..., 0, 1).

Now, we will collect a number of properties of Qn that we will utilize throughout this
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Figure 3: Geometric expansion of Q2 to Q3.

thesis as tools for further proofs. Since every node is connected to exactly n other nodes
we can determine the number of edges within Qn by counting the number of edges for
every node and dividing by two since we counted every edge twice. Overall there exist
n·2n

2
= n · 2n−1 edges in Qn.

Another important concept within graph theory is that of an independent set. It de-
notes a set of vertices in a graph, no two of which are adjacent. In other words, a set
S of vertices such that for every two vertices in S, there is no edge connecting the two.
Equivalently, each edge in the graph has at most one endpoint in S. The size of an
independent set is the number of vertices it contains. A maximum independent set is
an independent set of largest possible size for a given graph G. This size is called the
independence number of G, and denoted α(G). The problem of finding such a set is
called the maximum independent set problem and is an NP-hard optimization problem.
For now, we will claim that the size of a maximum independent set in Qn is 2n−1. As
we shall find out, a tool which Huang uses for his proof also yields a simple argument
as to why our claim must be true.

Lemma 2.2. Qn is bipartite for n ∈ N.

Proof. Suppose for the sake of contradiction that C is an odd cycle in Qn. We pick
an arbitrary vertex v1 as start-vertex and without loss of generality assume v1, ..., vk
to denote the sequence of nodes on C, meaning that v1 is adjacent to v2 and vk. We
define d(u, v) to be the number of indices that differ in the algebraic notation of any
two vertices from Qn. In Q4 for instance d((0, 1, 1, 0), (1, 0, 1, 0)) = 2. Since adjacent
nodes differ in exactly one coordinate d(v1, vn+1) = d(v1, vn) + 1 and since d(v1, v2) = 1
we get d(v1, vn) ≡ n− 1 mod 2. Remember, that vk denotes the last node on C in our
labeling sequence and that v1 is adjacent to vk. Since C is an odd cycle, there is an
odd number of vertices so k ≡ 1 mod 2 and thus d(v1, vk) ≡ n− 1 mod 2 ≡ 0 mod 2.
Since v1 6= vk this would mean that both nodes differ in at least two coordinates and
cannot be adjacent. Again, this contradicts our premise.
This proves our lemma.

11



2.4 A little bit of Linear Algebra

In his proof of the Sensitivity Conjecture, Huang draws from methods of spectral graph
theory that were not utilized beforehand and were presumably overlooked but are of
central importance to the simplicity of Huangs chain of reasoning. In this section we
will briefly explore the field of linear algebra which is a necessary preparation in order
to understand the tools of spectral graph theory forming the backbone of Huangs proof.
We will touch upon spectral graph theory afterwards and arguably more importantly
even, we will make additional observations to Huangs findings yielding a greater insight
about the relationship between the maximum degree of a graph and the eigenvalues of
a matrix representing the structure of this graph.
A matrix A ∈ Rn×n is a rectangular array comprised of n rows and n columns which
have real numbers as entries.
A submatrix B of A is a matrix that is obtained by removing the same number of both
rows and columns from the original matrix A. A principal submatrix is obtained by
removing only both row and columns with the same index i ∈ {1, ..., n}. This procedure
is exemplarily illustrated below in Figure 4.1 2 3

4 5 6
7 8 9

 (
1 3
7 9

)
Figure 4: Construction of a principal submatrix.

The trace of a quadratic matrix A ∈ Rn×n is defined as the sum of its diagonal elements.
tr(A) :=

∑n
i=1 ai,i.

For any matrix A ∈ Rn×m, AT denotes the matrix arising from A by transposing rows to
columns. In other words, ai,j = aTj,i for every i ∈ {1, ..., n} and j ∈ {1, ...,m}. A matrix
A ∈ Rn×n is symmetric if AT = A. The figure below illustrates the transposition of a
non-symmetric matrix.1 2 3

4 5 6
7 8 9


(a) Exemplary matrix A

1 4 7
2 5 8
3 6 9


(b) AT arising from A

Let A ∈ Rn×m denote an n ×m matrix with entries in R. An eigenvector of A is a
vector 0 6= v ∈ Rn, such that there exists λ ∈ R with A · v = λ · v = (λ · v1, ..., λ · vn)T
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where λ ∈ R is called eigenvalue of A to the eigenvector v.

−2 −4 2
−2 1 2
4 2 5

 ·
 2
−3
−1

 =

 6
−9
−3

 = 3 ·

 2
−3
−1


A set of vectors {v1, ..., vn | vi ∈ Rn} is said to be linearly independent, if the following

statement holds,
∑n

i=1 λi ·vi = 0→ λi = 0 ∀i ∈ {1, ..., n}. A set of vectors {b1, ..., bn} ⊂
V is said to span a vectorspace V if any vector v ∈ V can be written as

∑n
i=1 λi · bi for

some λi ∈ R.
For any given matrix A ∈ Rn×m, there may exist a set of linearly independent vectors
{v1, ..., vk} ∈ Rn, u 6= v to the same eigenvalue. The matrix2 0 0

0 2 0
0 0 1



has eigenvectors {(1, 0, 0)T , (0, 1, 0)T} for the eigenvalue λ = 2. The geometric multi-
plicity of an eigenvalue λ with respect to a matrix A is defined as the maximum number
of linearly independent vectors that span Eλ := {v ∈ Rn | (A − λIn) · v = 0} where
In denotes the identity matrix with n rows and columns. We can convert the equation
{v ∈ R | (A− λIn) · v = 0} = {v ∈ R | A · v = (λ · In) · v}. Now it should be apparent,
that this denotes the set of all eigenvectors to the eigenvalue λ.
In the proof of the Sensitivity Conjecture, the subsequent theorems about matrices and
their respective eigenvalues are used.

Theorem 3. Let A ∈ Rn×n be symmetric. Then A has exactly n linearly independent
eigenvectors {v1, ..., vn}.

There do not necessarily exist n distinct eigenvalues, the following matrix has eigen-
vectors only to the same eigenvalues. 2 0 0

0 2 0
0 0 2


Theorem 4 (Cauchys Interlace Theorem). Let A be a symmetric n × n matrix and B
be a m × m principal submatrix of A, for some m < n. If the eigenvalues of A are
λ1 ≥ ... ≥ λn and the eigenvalues of B are µ1 ≥ ... ≥ µm ∈ R, then for all 1 ≤ i ≤ m,
λi ≥ µi ≥ λn−m+i.
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2.5 Spectral graph theory

Now that we have introduced the heralded mandatory concepts of linear algebra, we will
briefly dive into a bit of spectral graph theory.
Spectral graph theory is concerned with the study of the properties of a graph in re-
lationship with the eigenvalues and eigenvectors of matrices associated with this graph
such as its adjacency matrix. In graph theory and computer science, an adjacency ma-
trix is a square matrix used to represent a finite graph. The elements of the matrix
indicate whether pairs of vertices are adjacent or not in the graph. In the special case
of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diag-
onal. If the graph is undirected, the adjacency matrix is symmetric. Let G = (V,E)
be an undirected graph. We will construct a symmetric adjacency matrix representing
the structure of G. First, we label every node in G from 1 to n. Then, we construct
a symmetric matrix A ∈ {0, 1}n×n where |V | = n. Each row i and column i within A
represents the node numbered i from G. Entries of A represent the edges within G. We
set ai,j = 1 if and only if the nodes i and j are adjacent in G.
For instance, there is an eigenvalue bound for independent sets in regular graphs, orig-
inally due to Alan J. Hoffman and Philippe Delsarte [7]. A k-regular graph is a graph
where every node has exactly k neighbours. The bound is postulated as follows,

Theorem 5. Suppose G is a k-regular graph on n vertices with its lowest eigenvalue
λmin, then

α(G) ≤ n

1− k
λmin

.

Coincidentally, Qn is an n-regular graph. In his paper, Hao Huang utilized methods
from spectral graph theory to prove the Sensitivity Conjecture which had been over-
looked beforehand.

As pointed out beforehand, Huang draws from a tool of spectral graph theory. Even
more so, his line of argument may be seen as building a bridge between boolean functions,
Qn and spectral graph theory. The following theorem is arguably of central importance
to and perhaps main reason of his linking of these two fields. Therefore, we will explore
the nature of reasoning behind the equivalence of the seemingly unrelated statements
below. For the line of argument to function, we will use Cn = {−1, 1}n as the algebraic
notation for nodes in Qn and any boolean functions are consequently defined on Cn,
f : {−1, 1}n → {−1, 1}.

Theorem 6 (Gotsman and Linial [6]). The following are equivalent for a monotonic
increasing function h : N −→ R.

1. For any induced subgraph H of Qn with |V (H)| 6= 2n−1, we have

max{V (H), Qn \ V (H)} ≥ h(n).
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2. For any boolean function f, we have

s(f) ≥ h(deg(f))

Proof. First, we will transform statements 1 and 2 into equivalent ones 1′ and 2′ and
then show the equivalence of 1′ and 2′. Throughout this proof, we make use of the unique
representation of f as a real polynomial over the cube, f(x) =

∑
I⊂{1,...,n}(αI ·

∏
i∈I xi),

for all I ⊂ {1, ..., n}, −1 ≤ αI ≤ 1 holds. We define f̃(I) := αI and let deg(f) denote
the degree of the polynomial representing f, so in other words
deg(f) := max{| I | : αI 6= 0, I ⊂ {1, ..., n}}.
Now, onto the transformation of statements 1 and 2. Let G = (V (G), E(G)) be an
arbitrary vertex induced subgraph of Cn and g : {−1, 1}n → {−1, 1} a boolean function
such that g(x) = 1 if and only if x ∈ V (G). Then clearly, for the degree of any node
x ∈ V (G), degG(x) = n− s(g, x) and the same holds in Cn −G for any node y /∈ V (G).
Now we define E(g) to be the average value of g on Cn. We postulate

1’ : For any boolean function g, E(g) 6= 0 → ∃x : s(g, x) ≤ n− h(n).
2’ : For any boolean function f , s(f) < h(n)→ deg(f) < n.

We show 1⇒ 1′: assume 1 and assume that E(g) 6= 0, this is equivalent to
| V (G) |6= 2n−1 and because of our assumption 1 now max{V (G), Cn \ V (G)} ≥ h(n)
holds, which means that there exists a node x within G or Cn \G with degG(x) ≥ h(n).
We have argued that degG(x) = n− s(g, x) so we conclude, that s(g, x) ≤ n− h(n).
Now onto 1′ ⇒ 1: we assume for g, E(g) 6= 0 → ∃x : s(g, x) ≤ n− h(n) and | V (G) |6=
2n−1. The former is equivalent to E(g) 6= 0 so ∃x : s(g, x) ≤ n−h(n)↔ h(n) ≤ n−s(g, x)
holds and because degG(x) = n− s(g, x) we conclude that max{V (G), Cn \V (G)}. Now
onto the proof of 2 → 2′: we assume 2 and s(f) < h(n) so h(deg(f) < h(n) since
h is monotonic increasing, deg(g) < n. Assuming 2′, if s(f) ≥ h(deg(f)) then since
deg(f) ≤ n s(f) = h(n) so 2′ will always hold true.
Now to show 1′ ⇔ 2′: we define g(x) := f(x) · p(x) where p(x) =

∏n
i=1 xi is the parity

function, so p(x) = 1 if there is an even number of indices such that xi = −1 in x. Then
we observe, that for all x ∈ Cn s(g, x) + s(f, x) = n ↔ s(g, x) = n − s(f, x) so for any
I ⊂ {1, ..., n}, g̃(I) = f̃({1, ..., n} \ I), and since according to our definition, E(g) =
g̃(∅) = f̃({1, ..., n} \ ∅), E(g) is the highest coefficient of the polynomial representing f .
We assume 1′ and deg(f) = n. Since this means E(g) = f̃({1, ..., n}) 6= 0 so because of
1′, there exists an x with s(g, x) ≤ n − h(n) and substituting s(g, x) = n − s(f, x) we
get s(f, x) ≥ h(n), which contradicts our premise.
We assume 2′ and that s(g, x) > n − h(n) holds for all x. According to our preceding
argumentation, this implies s(f, x) < h(n) so because of 2′, deg(f) < n which means
that f̃({1, ..., n}) = g̃(∅) =E(g) = 0, which contradicts our premise. This concludes our
proof.
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3 Main Theorem

Theorem 7. For n ∈ N let H be an arbitrary 2n−1 + 1 vertex-induced subgraph of Qn,
then 4(H) ≥

√
n. Moreover, this inequality is tight if n is a perfect square.

Proof. The authors of [2] have shown that if n is a perfect square, there exists an induced
subgraph H of Qn such that 4(H) <

√
n + 1. It follows, that the inequality is tight if√

n ∈ N.
We define An ∈ {−1, 0, 1}2n×2n as follows:

A1 :=

(
0 1
1 0

)
An :=

(
An−1 In−1

In−1 −An−1

)
Since An is symmetric there exist exactly 2n eigenvalues λ1 ≥ λ2 ≥ ... ≥ λ2n . By

induction it is easy to see, that

A2
1 = I2 A2

n =

(
A2
n−1 + In−1 0n−1

0n−1 A2
n−1 + In−1

)
= n · In

Let vi ∈ Rn be an eigenvector of An with eigenvalue λi. Because n · vi = A2
n · vi =

An · An · vi = λ2
i · vi we get λi = ±

√
n. Since

∑n
i=1 λi = tr(An) = 0 each eigenvalue

λi ∈ {±
√
n} has geometric multiplicity 2n−1.

Lemma 7.1. Let H be an undirected graph with m vertices and A ∈ {−1, 0, 1}m×m its
adjacency matrix where ai,j = 0 if and only if the nodes i and j are non-adjacent in H,
then 4(H) ≥| λ1 |:=| λ1(A) |. If n is a perfect square, the inequality is tight.

Proof. Let v be an eigenvector corresponding to the largest eigenvalue λ1, then A · v =
λ1 · v. Without loss of generality, let v1 be the index of v with largest absolute value.
Then | λ1 ·v1 |=| (A·v)1 |=|

∑m
j=1 a1,j ·v |≤

∑m
j=1 |a1,j|·|v1| ≤ 4(H)· | v1 |. Conclusively,

| λ1 · v1 |=| λ1 | · | v1 |≤ 4(H)· | vi |.

Let An ∈ {−1, 0, 1}2n×2n be as defined above. An corresponds to the adjacency matrix
of Qn if we flip all entries ai,j = −1 to ai,j = 1 for i, j ∈ {1, ..., 2n−1}. A vertex-induced
subgraph H of Qn is obtained by considering a subset H ⊂ V (Qn) = {1, ..., 2n} of nodes
of Qn. This procedure is equivalent to removing row i and column i corresponding to
every node that is not within U from the adjacency matrix An. Hence, each vertex-
induced subgraph H of Qn induces its corresponding adjacency matrix AH of An which
is a principal submatrix by construction. Therefore, H and AH satisfy the conditions of
Lemma 6.1. This gives us 4(H) ≥ λ1(AH).
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It is interesting to note the implications that Lemma 6.1 gives. For instance, given
any k-vertex induced subgraph H of Qn. The adjacency matrix AH to H as constructed
in our proof is symmetric as we have argued before. So there exist exactly k linearly
independent eigenvectors {v1, ..., vk} to eigenvalues {λ1, ..., λk}. Then our lemma forces
that 4(H) ≥| λ1 |. We can further build upon Lemma 6.1.

Lemma 7.2. Let H be an undirected graph with m vertices and A ∈ {−1, 0, 1}m×m its
adjacency matrix where ai,j = 0 if and only if the nodes i and j are non-adjacent in H,
then 4(H) ≥| λm |:=| λm(A) |.

Proof. We argue analogously, let v be an eigenvector corresponding to the lowest eigen-
value λm, then A · v = λm · v. Without loss of generality, let v1 be the index of v with
largest absolute value. Then |λm · v1| = |(A · v)1| = |

∑m
j=1 a1,j · v| ≤

∑m
j=1 |a1,j| · |v1| ≤

4(H) · |v1|.

Combining these two lemmas, we can postulate the following corollary.

Corollary 7.1. Let G = (V,E) be an undirected graph with m vertices and AG ∈
{−1, 0, 1}m×m its adjacency matrix where ai,j = 0 if and only if the nodes i and j are
non-adjacent in G = (V,E). Since G is undirected, AG is symmetric and therefore
there exist exactly m eigenvalues λ1 ≥ ... ≥ λm, the eigenvalues of AG. The following
relationship holds, 4(H) ≥| λi | for i ∈ {1, ...,m}.

This forces for instance, that the adjacency matrix of the 2n−1 vertex induced subgraph
consisting of all nodes that have an even number of 1 entries in their algebraic notation,
is the zero matrix because every node has degree zero and4(H) ≥| λi | for i ∈ {1, ...,m}.
Moreover, since the adjacency matrix AG is symmetric, Cauchys Interlace Theorem [5]
holds, so for any principal submatrix B of AG with k rows and columns and eigenvalues
µ1 ≥ ... ≥ µk, λi ≥ µi ≥ λm−k+i for 1 ≤ i ≤ k. As any vertex-induced subgraph
of G corresponds to a principal submatrix of AG, we can also formulate the following
relationship.

Corollary 7.2. For all vertex-induced subgraphs H = (V (H), E(H)) of G = (V,E) with
| V (H) |= k and 1 ≤ i ≤ k we have 4(H) ≥| µi |≥| λm−k+i |.

If we consider any vertex-induced subgraph H of Qn with | V (H) |> 2n−1, then
according to our Corollary 6.2, deg(H) = 4(H) ≥

√
n. In other words, maximum

degree of a node in H is greater or equal to
√
n. We will use this observation later on.
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3.1 Alternative approaches to derive the main theorem

Recently, [9] showed an alternative approach to prove the main theorem of Hao Huang’s
proof. The alternative approach does not make use of matrices, it solely relies on the
construction of a vector space and an edge signing of Qn. Given a hypercube Qn, let σ
be an edge signing of +1 or −1 to the edges of Qn such that each 4-cycle has an odd
number of negative edges. As we shall see, this is the only property that is needed to
derive the degree lower bound as Huang did. We extend σ by setting it to 0 for all
non-adjacent pairs of vertices in the hypercube. For all vertices x ∈ Qn, we define the
vectors x+ ∈ R2n and x− ∈ R2n as follows: for all y ∈ Qn

x+
(y) =

{√
n, y = x

σ(x, y)
x−(y) =

{
−
√
n, y = x

σ(x, y)

Each of the vectors x+
(y) or x

−
(y) entries is non-zero if and only if y and x are adjacent in

Qn or if x = y. We use V + and V − to denote the vector subspaces V + = 〈x+
1 , ..., x

+
2n〉

and V − = 〈x−1 , ..., x−2n〉. Now, we show the following Lemma.

Lemma 7.3. If {x+
1 , x

+
2 , ..., x

+
k } have a linear dependency, then the subgraph induced on

the corresponding vertices {x1, x2, ..., xk} of Qn has a vertex of degree at least
√
n.

Let
∑
ai ·x+

i = 0 and ai 6= 0 for at least one i ∈ {1, ..., k}. Let | aj | be the largest out
of all ai. The vector x+

j corresponding to aj has an entry with value
√
n. Since every

other vector can contribute at most | aj | to this entry there must be at least
√
n other

vectors with value 1 in {x+
1 , x

+
2 , ..., x

+
k }. Because of the construction of x+

i , these vectors
are adjacent to a+

j . So there exist at least
√
n neighbours of x+

j .
We will now show that the dimension of V + and V − respectively is 2n−1. Given any
independent set I = {x1, ..., xk} of Qn, the vectors {x+

x1
, ..., x+

xk
} are linearly independent.

Given any x+
xj
, since I is an independent set, no two vectors are adjacent. This means

that x+
xj

is the only vector that is non-zero at index xj. This means that the dimension
of V + and V − is at least 2n−1.

Lemma 7.4. The vector spaces V + and V − are orthogonal to each other.

Proof. Let x, y ∈ Qn be arbitrary vectors. Consider x+ and y−, we show that 〈x+, y−〉 =
0. If x = y then 〈x+, y−〉 = −

√
n ·
√
n +

∑
x:x∼y(σ(x, y))2 = −n + n = 0 If x and y are

adjacent they do not share any common neighbour since that would imply an odd cycle
of length three. But we have shown that Qn only has even cycles. The fact that x and y
do not share a common neighbour implies that 〈x+, y−〉 = 0. If x and y differ in exactly
two coordinates, this means that they share exactly two common neighbours u and v.
The vertices x, y, u, v form a 4−cycle and because our edge signing guarantees that the
number of negative edges in any 4−cycle is odd, the equation
σ(x, v) · σ(v, y) = −σ(x, u) · σ(y, u) holds. Therefore 〈x+, y−〉 = σ(x, v) · σ(v, y) +
(x, u) · σ(y, u) = 0. If x and y differ in three or more coordinates there are no common
neighbours and 〈x+, y−〉 = 0. In total, V + and V − are orthogonal to one another. They
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are also both vector subspaces of a vector space of dimension 2n. We have already
shown that the subspaces V + and V − are each of dimension 2n−1 or more. Now assume
v ∈ V + ∩ V −, 〈v, v〉 = 0 because V + and V − are orthogonal and 〈v, v〉 = 0⇔ v = 0 so
v = 0. This means that V + ∩ V − ⊂ {0} so each vectorspace V + and V − is of dimension
2n−1. Now, consider any set of vertices S = {x1, ..., xk} with | S |≥ 2n−1 + 1. The
corresponding vectors x+

x1
, ..., x+

xk
or x−x1 , ..., x

−
xk

are linearly dependent and because of
our Lemma 7.1, at least one of the vertices has at least

√
n neighbours.

On another note, the main theorem has implications for the Turán density of the
hypercube Qn. The Turán density is defined as follows: Let H ⊂ Qn be a subgraph or
F be a family of such subgraphs. In other words a set of graphs that all share a certain
property. A vertex-induced graph G ∈ Qn is said to be free of H if H is not found
to be a subgraph within G. G is said to be F -free if no graph H ∈ F is found to be
a subgraph of G. The Turán density on Qn is now defined as follows. Given a graph
H ⊂ Qn or a family F of graphs on Qn, what is the maximum number of edges a vertex
induced subgraph G ⊂ Qn can have, such that G is free of H or F . If we choose F to be
the family of graphs that have maximum degree of at least

√
n then the main theorem

states that the Turán density is exactly 2n−1.
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4 Proof of the Sensitivity Conjecture

Proof. Let Hn = (V,E) denote a subgraph of Qn with | V |= 2n−1 + 1, we remember
the Theorem of [6].

Theorem (Gotsman and Linial). The following are equivalent for a monotone function
h : N −→ R:
(a) For any induced subgraph H of Qn with |V (H)| 6= 2n−1, we have max{V (H), Qn \
V (H)} ≥ h(n).
(b) For any boolean function f, we have s(f) ≥ h(deg(f)).

Given the Main Theorem we just proved, we know 4(H) ≥
√
n. This satisfies condi-

tion (a) of Gotsman and Linial as
√
· : N → R, n 7→

√
n is a monotone function. Now

statement (b) holds, so √
deg(f) = h(deg(f)) ≤ s(f) (4.1)

Moreover,
bs(f) ≤ deg(f)2 (4.2)

according to [3]. Substituting [
√
deg(f) ≤ s(f)]4 into 4.2 gives

s(f)4 ≥ deg(f)2 ≥ bs(f) (4.3)

As mentioned in the preliminary introduction of Qn and some of its properties im-
portant for this thesis, we can use the above theorem as a tool in order to prove, that
the maximum independent set of Qn is 2n−1. Clearly, the set of vertices that have by
algebraic notion an even number of 1, is a set of 2n−1 vertices and no two vertices are
adjacent as they each differ in at least two coordinates. If we however add one more
vertex and inspect the hereby vertex-induced subgraph of Qn, the structure of this graph
is also represented by a principal submatrix B ∈ R2n−2+1×2n−1+1 of An, as we just ar-
gued in the proof of the Sensitivity Conjecture. Now, B is symmteric so it has exactly
2n−1 + 1 eigenvalues µ1, ..., µ2n−1+1 ∈ R and since Cauchys Interlace Theorem holds,
for all 1 ≤ i ≤ 2n−1 + 1, λi ≥ µi ≥ λ2n−2n−1+1+i where λi denotes the eigenvalues of
An. Then it must hold that −

√
n = λ2n−1+1 ≤ µ2n−1+1 ≤ λ2n−1+2 = −

√
n and since

4(B) ≥| µ1 |=
√
n the subgraph corresponding to B cannot possibly be an independent

set. By means of the same line of argument there cannot exist a vertex-induced subgraph
with more than 2n−1 + 1 vertices where no two nodes are connected, since any 2n−1 + 1
vertex-induced subgraph would already have a node with degree greater or equal to

√
n.

Conclusively, we prove the claim that the size of a maximum independent set of Qn is
2n−1.
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4.1 Further thoughts

By virtue of Huang’s proof, the bound for block sensitivity is quartic, bs(f) ≤ s(f)4, but
the existing exemplary boolean functions yield at most a quadratic separation between
sensitivity and block sensitivity. One example is the following function f composed of a
logical disjunction of boolean functions g. It is borrowed from [12]. For n ∈ N consider
g : {0, 1}2n → {0, 1} g(x) = 1 if and only if x has value 1 on exactly two succeeding
variables where the first one has an odd index. For instance, g((1, 1, 0, ..., 0)) = 1 whereas
g((0, 1, 1, 0, ..., 0)) = 0. In any other case g(x) = 0. Considering x = (1, 1, 0, ..., 0), a flip
of any index i will force g(x) 6= g(xi), so s(g) = 2n. We define f : {0, 1}4n2 → {0, 1},
f(x1,1, x1,2, ..., x2n,2n) =

∨2n
i=1 g(xi,1, ..., xi,2n). The sensitivity of f is equal to that of

g, s(f) = 2n. For the block sensitivity of f , we get bs(f) = 2n2 when we choose
v = (0, ..., 0) = (x1,1, ..., x2n,2n as input vector since flipping two succeeding indices
starting at index 1 changes the value of the respective function g(xi,1, ..., xi,2n from 0
to 1. This can be done for exactly n distinct pairs of indices j, j + 1 for an uneven
integer j. Since there are 2n distinct functions g this gives a total of 2n · n pairwise
disjoint indices which when flipped change the output value of f from 0 to 1. This
means bs(f) ≥ 1

2
s(f)2. There are functions building upon this construction with greater

gap between bs(f) and s(f) [13]. Nonetheless, all known constructions have an at most
quadratic separation. There exist further measurements of complexity that we may try
to use in order to narrow down the true polynomial bound between bs(f) and s(f). A
promising measurement is the so called certificate complexity. The certificate complexity
describes how many bits of the input must be revealed to you (by someone who knows
all the input bits) in order to convince you of the value of the function. In less prosaic
terms, a 1-certificate (0- certificate) for a boolean function f is an assignment to some
subset of the variables that forces the value of f to 1(0). The certificate complexity of
f on an input x , Cx(f), is the size of the smallest certificate that agrees with x. The
certificate complexity of f , C(f), is the maximum over all x of Cx(f). For certificate
complexity and block sensitivity, we can establish the following relationships.

Lemma 7.5. s(f) ≤ bs(f) ≤ C(f) and bs(f) ≥
√
C(f)

Proof. The inequality bs(f) ≤ C(f) follows from the fact that for any input x, any cer-
tificate for x must include at least one variable from each set f is sensitive to on x. As
for bs(f) ≥

√
C(f), let x be an input that achieves certificate complexity on f , in other

words C(f, x) = C(f). We pick a minimal subset S1 of indices such that f(xS1) 6= f(x),
then another minimal set S2 disjoint from S1 with f(xS2) 6= f(x). This procedure ob-
viously terminates, so we continue this process until we do not find any more minimal
subsets. Now, all subsets {S1, ..., Sj} are mutually disjoint and

⋃j
i=1 Si is a certificate

of x on f , otherwise we would find another minimal set disjoint to the other sets that
changes the value of f(x) when its indices are flipped in x.

∑j
i=1 | Si |≥ C(f, x) = C(f).

The two inequalities hold,

bs(f, x) ≥ j (4.4)
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because f is sensitive to each block Si on x. Also,

bs(f, xSi) ≥| Si | i ∈ {1, ..., j} (4.5)

because every Si is minimal. So f must be sensitive on xSi on any index from Si. Now,
if j ≥

√
C(f) then with (4.4) we get bs(f) ≥

√
C(f). Otherwise, if j <

√
C(f) at least

one Si has to have a larger size than C(f) so with (4.5) we get bs(f, xSi) ≥| Si |>
√
C(f).

The inequality bs(f) < C(f) is strict if we consider the function f(x) = 1 if and only
if x has 1 at exactly n

2
indices, for the sake of simplicity we assume that 4 | n. Then

bs(f) = 3n
4

and C(f) = n.
Another way of looking at the relationship between sensitivity and block sensitivity

is the following. Given a boolean function f : {0, 1}n → {0, 1}, we construct a two-
colouring in Qn. Without loss of generality, every node x with f(x) = 1 is coloured red,
if f(x) = 0 it is coloured green. Now, for any input x, s(f, x) is the number of adjacent
nodes in opposite colour. Analogously, bs(f, x) is the maximum number of node disjoint
paths from x to a set of nodes all of which are of opposite colour and more importantly,
each direction can be chosen at most once. A path is to be understood as a sequence
of edges from Gn. We denote a direction as v ∈ {0, 1}n with exactly one variable set
to 1 and the others set to 0. Given this approach, the block sensitivity is bounded by
bs(f) ≤ s(f) + bn−s(f)

2
c.

Certificate complexity on our two-coloured Qn model is the minimal number of nodes v
that suffice to cover exactly either the red or green nodes. Two vectors (0, ..., 0), (1, 0, ..., 0)
can be condensed to (_, 0, ..., 0) as we have done before. Then, certificate complexity
is n minus the dimension of the largest monochromatic hypercube in Qn. Yet another
perspective onto sensitivity, block sensitivity and certificate complexity is that of Quine
McCluskey tables. A Quine McCluskey table is a graphic representation of a boolean
function and its values, as can be seen in the figure below for a boolean function with
four-dimensional input.

Here, the index in the bottom left of each square corresponds to the binary input
vector that evaluates to the index. The index of the top lefthand square is 0 for instance
which means f(0, 0, 0, 0) = 1. The index of the bottom-right square is 12 which means
f(1, 1, 0, 0) = 1. Now, the sensitivity of f on an input x is the number of squares of
opposite value that can be reached by moving along one direction on the McCluskey
table. The block sensitivity of f on x is the number of paths to squares of opposing
value where each direction can only be taken at most once. The certificate complexity of
f on an input x is nminus the highest dimensional subcube that encompasses x as can be
seen in the figure above. A subcube of dimension two is created by merging two adjacent
fields which differ in exactly one coordinate value. This can also be denoted algebraically
by combining two vectors for instance (0, 0, 0, 1) and (1, 0, 0, 1) into (_, 0, 0, 1) where the
underscore denotes an arbitrary value. Each subcube has a dimension of a power of
two. Thus, a subcube of dimension four is created as can be seen in the figure by
combining two subcubes of dimension two which differ in exactly one coordinate. The
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Figure 6: A McCluskey table

cubes (_, 0, 0, 1) and (_, 0, 0, 0) for instance are merged into the cube (_, 0, 0,_). On
a side note, this procedure can be linked to the inductive algebraic construction of the
hypercube Qn which we will use in chapter five.
The main theorem has implications in group theory. With its help, the following

theorem [1] was proven. To understand it, we introduce the concept of Cayley graphs
and generating sets of a group.
Let G be a group, a generating set S ⊂ G with regard to G is a set of elements such

that every g ∈ G can be written as a combination (under the group operation) of finitely
many elements s1, ..., sn ∈ S of the subset S and their inverses. The identity element eG
is not part of S. A Cayley graph Γ(G,S) is a colored, directed graph, constructed from
a group G and a generating set S ⊂ G as follows:
Every g ∈ G represents a vertex in Γ(G,S). Any s ∈ S that is assigned a color cs. For

any g ∈ G and s ∈ S the vertices corresponding to the elements g and gs are joined by a
directed edge of colour cs. Thus the edge set E(Γ) consists of pairs of the form (g, g · s)
with s ∈ S providing the color. The figure below exemplarily depicts a Cayley graph.
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Figure 7: A Cayley graph

Cayley graphs are always vertex-transitive and regular. A graph G is vertex-transitive,
if for every v1, v2 ∈ G there exists an automorphism f : V (G)→ V (G) with f(v1) = v2.
For any g ∈ G Φg : G→ G is an automorphism. This is because if Φg(s1) = Φg(s2) then
g · s1 = g · s2 then g−1 · g · s1 = g−1 · g · s2 so s1 = s2 and thus Φg is an injective mapping.
Since any injective endomorphism must also be surjective, Φg is an automorphism. Now
suppose v1, v2 ∈ G. We pick g = v2 · v−1

1 then Φg(v1) = v2 · v−1
1 · v1 which completes

the proof of vertex-transitivity. This also means that the automorphism group operates
transitively on G. The automorphism group of G is the set of all automorphisms Φ :
G → G with the function composition as inner binary operation. It is said to act from
the left on G if the following two statements hold eAut(G) ◦ g = g for all g ∈ G and
Φ1(Φ2 · g) = (Φ1 ◦ Φ2) · g for all Φ1,Φ2 ∈ Aut(G) and g ∈ G. To see this, assume G is
a vertex-transitive graph. It is said to act transitively from the left if for a fixed g ∈ G
then for any h ∈ G there exists Φ ∈ Aut(G) such that Φ(g) = h. This is a weakened
demand of vertex-transitivity.

Cayley graphs are also regular since every vertex-transitive graph G is regular. Be-
cause for arbitrary v1, v2 ∈ G we find a graph automorphism Φ : G→ G with Φ(v1) = v2.
Because u, v ∈ G are adjacent if and only if Φ(u),Φ(v) are adjacent, any automorphism
maps the neighbours of v1 bijectively onto the neighbours of v2. Since this holds for any
v1, v2, every node must have the same number of adjacent nodes which is the definition
of regularity. The hypercube Qn can be interpreted as the Cayley graph of the group
G = Zn2 where the generating set is the set of all g ∈ G that have exactly one coordinate
with value 1 and the rest of which have value 0. Since G is an abelian group, for every
(g, s ·g) we have (s ·g, s−1 ·s ·g) = (g ·s, g) so Γ(G,S) can be interpreted as an undirected
graph as was done so in the following theorem.

Theorem 8. For any Cayley graph G = (Zn2 , S) of Zn2 with respect to any generating
set S, and for any subset U ⊂ Zn2 of cardinality | U |> 2n−1, the maximum degree of the
induced subgraph H of G on U satisfies 4(H) ≥

√
| S |.
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Proof. The theorem was discovered by the authors of [1]. Let G = (Zn2 , S) be a Cayley
graph with respect to a generating set S = {s1, ..., sd}. That is every g ∈ G can be
written as a finite composition of elements of S. In other words si1 · ... · sik = g} for
i1, ..., ik ∈ {1, ..., d}. Additionally, we assume S = S−1. First, it is easy to see that for
simplicity’s sake, G can be viewed to be an undirected graph because if (g, g · s) ∈ E(G)
then (gs, gs · s−1) ∈ E(G), so (gs, g) ∈ E(G). Without loss of generality we assume
that G is connected. Otherwise, G consists of isomorphic connected components on the
cosets of 〈S〉. Suppose there exist two or more disconnected components in G. This
means there must be g1, g2 ∈ G that are not connected. We define an isomorphism
Φ : G→ G by Φ(g1) = g2, Φ(g2) = g1 and Φ(h) = h if h /∈ {g1, g2}. If {g, g · si} ∈ E(G),
then {Φ(g),Φ(g · si} = {g2, g2 · si}. The reverse is also true, which leaves us with
{g1, g1 · si} ∈ E(G) ↔ {g2, g2 · si} ∈ E(G) which proves isomorphic connectedness.
Indeed, if G is not connected, any set U ⊂ Zn2 with | U |> G

2
has more than half

the vertices of at least one of the isomorphic connected components. Thus one can
deduce the result from the connected case. Let Qd denote the d-dimensional hypercube,
which can be interpreted as the Cayley graph of Zd2 with respect to the generating set
S = {e1, ..., ed}. Let Φ : Zd2 → Zn2 be a linear transformation with Φ(ei) = si. Then Φ is
onto since the si span Zn2 . Let U ⊂ Zn2 be a set with more than half the vertices of Zn2 .
Then V := Φ−1(U) ⊂ Zd2 contains more than half the vertices of Zd2. According to the
main theorem, there exists a vertex v ∈ Zd2 with distinct adjacent vertices {v1, ..., vk}
where k ≥

√
d. Therefore, the vertex Φ(v) ∈ U is adjacent to the distinct vertices

{Φ(v1), ...,Φ(vk)}. To see this, we first note that if {vi, vj} are adjacent in Zd2 then
vi − vj = vi + vj ∈ {e1, ..., ed}. Then, Φ(vi − vj) = Φ(vi + vj) ∈ {s1, ..., sd} which means
that Φ(vi) 6= Φ(vj).

In fact there was a recent advancement by the authors of [11] who generalized the
preceding conjecture.

Theorem 9. For any Cayley graph G such that G is abelian and any U ⊂ G of size

| U |≥ |G|
2

the induced subgraph HU of G on U has maximum degree at least
√

(|S|+t)
2

where t is the number of elements in S of order 2.

Proof. First, we use the main theorem to establish a corollary:

Corollary 9.1. Let G = Zm1 × ... × Zmd
, S = {±e1, ...,±ed} and X = Γ(G,S) the

Cayley graph of G with respect to S. For any U ⊂ G satisfying | U |> |G|
2

there exists an
element u ∈ U and k ≥

√
d distinct indices i1, ..., ik ∈ {1, ..., d} such that for j ∈ {1, .., k}

u+ eij ∈ U or e− eij ∈ U .

To see this, we define Ur := {r +
∑

i∈T ei : T ⊂ {1, ..., d}} and observe that
Er(| Ur ∩ U |) > 2n−1. In other words, the expected value over a uniform random
distribution of r is more than 2n−1. There must exist g ∈ G with | Ug ∩ U |> 2n−1. The
induced subgraph of Ug, namely X(Ug) is isomorphic to Qd and because | Ug∩U |> 2n−1
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deg(X(Ug ∩ U)) ≥
√
d holds. This proves the corollary.

Now onto the proof of Theorem 8, let G = Zm1 × ...× Zmk
,

S = {s1, ..., st, st+1, ..., sd,−st+1, ...,−sd} and m be the least common multiple of
{m1, ...,mk}. In other words m := lcm(m1, ...,mk). Let X ′ = Γ(Zdm, T ) be the Cayley
graph of Zdm with respect to the generating set T := {±e1, ...,±ed}. Just as with the
proof of Theorem 7, we define Φ : Zdm → G to be a linear map defined by Φ(ei) = si.
Since S is a generating set, the linear map Φ is onto. The inverse image of each g ∈ G,
namely Φ−1(g) contains | ker(Φ) | elements and with the fundamental homomorphism
theorem |H|

|ker(Φ)|
∼=| image(Φ) | for any group homomorphism Φ : H → G we can

postulate the equation |H|
|G| =| ker(Φ) |. It follows that | Φ−1(g) |= md

|G| so Φ−1(U) =
md

|G| · | U |>
md

|G| ·
|G|
2
. Due to our Corollary 8.1 there is a vertex h ∈ Φ−1(U) and k ≥

√
d

distinct indices i1, ..., ik ∈ {1, ..., d} such that for all j ∈ {1, .., k} either h+ eij ∈ Φ−1(U)
or h− eij ∈ Φ−1(U). Now we consider hj ∈ {h± eij} such that hj ∈ U and see that for
j′ 6= j ∈ {1, ..., k} Φ(hj′) − Φ(hj) = Φ(h) ± Φ(eij′ ) − Φ(h) ∓ Φ(eij) = ±sij′ ,∓eij 6= 0.
The argument is analogous to the one from Theorem 7, all Φ(h1), ...,Φ(hk) are distinct,
lie within U and are adjacent to Φ(h) ∈ U in X(U) with X = Γ(G,S). Because
| S |= t+ 2 · (d− t), d = |S|+t

2
as we claimed.
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5 Further structural restrictions

5.1 K1,a subgraphs

In graph theory, a k-colouring of a graph G = (V,E) is a special case of graph labeling; it
is an assignment from a set of k distinct labels, traditionally called "colors", to elements
of a graph subject to certain constraints. In its simplest form, it is a way of coloring
the vertices of a graph such that no two adjacent vertices are of the same color; this
is called a proper vertex coloring. A non-balanced two colouring of a graph is a proper
two-colouring where the number of nodes assigned with one colour is different from that
of the number of nodes assigned with the other colour. In the following, we will only
use unbalanced two-colourings of the Qn. Let n ∈ N. For a non-balanced two-colouring
of Qn consider the node set of the majority colour and the subgraph of Qn that this set
induces. We will refer to the subgraph as H in the following and whenever we speak
of an induced subgraph we will implicitly assume that it is a subgraph induced by the
majority colour of an unbalanced two-colouring.
Using Corollary 6.2 and our postceding observation, we know that for any vertex induced
subgraph H with more than 2n−1 nodes 4(H) ≥

√
n holds. In other words, given any H

with more than 2n−1 nodes, the graph has at least one node with at least
√
n neighbours

in it. Adding onto Huangs findings and our previous observations it is of interest to
examine if there are further properties of the subgraph induced by the node of maximum
degree and its neighbours. Consider for instance the graph K1,a that we introduced in
the beginning of this chapter, where a ≤ n, a ∈ N. A question that springs to mind is if
this graph can be found in any or perhaps even all majority colour induced subgraphs
of Qn. Or more formally put, does there exist a non-balanced 2-colouring such that the
majority colour induces a subgraph with a K1,a structure for every

√
n ≤ a ≤ n or even

1 ≤ a ≤ n? If so, does this even hold for every majority colour induced subgraph?
It is easy to see that not every subgraph has a K1,a graph for any 1 ≤ a ≤ n. In
order to validify our claim we inspect the graph Qn itself. It is induced by the majority
colouring if every node is coloured with one colour. Recall, that we have proven that
there exists a hamiltonian cycle in Qn. Therefore there cannot exist a K1,a graph in Qn.
Now the question whether K1,a even exists in any subgraph remains to be examined.
We postulate and prove the following observation.

Theorem 10. Given Qn and n ≥ 4. For each a ∈ {1, ..., n} there exists a subgraph
Gn = (Vn, En) with | Vn |> 2n−1 , so that Gn has exactly two connected components, one
of which is K1,a and the other component is not a K1,b graph for b ∈ {1, ..., n}.

Proof. We will use a technique resembling structural induction, which I will first con-
ceptionally outline. We will define a set of subgraphs Gn in Qn alongside with a set of
three properties that will hold for all of our subgraphs. These three properties force the
subgraph Gn to satisfy the conditions from our Theorem 6. Then, given Qn+1, we reduce
it to Qn for which know because of our induction hypothesis, that it contains Gn. Then
we expand in Gn to a Gn+1 graph in Qn+1 whilst preserving all three properties which
in turn force Gn+1 to comply with all conditions from our Theorem 6. Hopefully clear
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by now, this technique yields proof of our claim. In the following, I included figures to
exemplarily depict the process of reducing Qn+1 to Qn, isolating and extending Gn to
Gn+1 in Qn+1 for a set of different K1,a graphs. Now onto the more detailed proof.
Since any node within Qn has exactly degree n, no node within a subgraph of Qn can
have a degree higher than n, so a ≤ n is our premise. In Q4 for every a ∈ {1, ..., 4} we
construct a subgraph G4 with | Vn |≥ 23 + 1 and exactly one K1,a structure. We use the
algebraic notation of Qn referenced in the introduction of the n-hypercube as node coor-
dinates within the succeeding figures. For purposes of brevity and convenience, _ is used
to symbol any possible entry for a node of Qn, hence {(_, 1, 0)} = {(0, 1, 0), (1, 1, 0)}. In
the following figures, there are nodes of red, green and no colour. Red nodes represent
the set of nodes forming a K1,a graph and the set union of red nodes and green nodes
form a Gn graph. The nodes without colour are not part of the subgraph.
The node set {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 1, 0), (1, 1, 1, 0)}∪
({(_,_,_, 1)}\{(0, 0, 0, 1), (1, 0, 0, 1)}) has a K1,1 graph formed by the nodes (0, 0, 0, 0)
and (0, 1, 0, 0) as depicted in the figure below.

(0,0,0,0) (1,0,0,0)

Figure 8: A graph with a K1,1 subgraph

The node set {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0)}∪
({(_,_,_, 1)} \ {(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1)})
has a K1,2 structure.
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(0,0,0,0)

(0,1,0,0)

(1,0,0,0)

Figure 9: A graph with a K1,2 subgraph

The node set {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0)}∪
{(_,_,_, 1)} \ {(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} has a K1,3 structure.

(0,0,0,0)

(0,1,0,0)

(1,0,0,0)

(0,0,1,0)

Figure 10: A graph with a K1,3 subgraph

Now for n ≥ 4, we proceed by induction over n. There exists a subgraph Gn ⊂ Qn so
that the following properties hold:

1. There exists an unbalanced two-colouring with one K1,a graph in Gn.

2. There exist exactly two disjoint components in Gn.

3. | Vn |> 2n.

As foretold in the beginning of our proof, given Qn+1, we will reduce it to Qn for which
we know because of our induction hypothesis, that all three properties listed above must
hold. Then, we expand the K1,a graph in Gn to either a K1,a or K1,a+1 graph in Gn+1

whilst preserving all three properties. Via structural induction this technique yields proof
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of our claim. In the following, we will assume that 1 ≤ a ≤ n− 1 because we prove our
claim for any K1,a graph but K1,n. First, we consider the set of nodes that make up Gn,
namely Vn. Since Qn+1 has one more dimension than Qn and therefore Gn, we will denote
Vn in Qn+1 algebraically as Sn+1 := {(v1, ..., vn, 0)} for all (v1, ..., vn) ∈ Vn. Without loss
of generality we denote the node w in K1,a that is connected to every other node in K1,a

as wK1,a = (0, ..., 0). More formally, wK1,a ∈ K1,a and deg(wK1,a) = a. All of its adjacent
nodes {k1, ..., ka} we will denote as ki = (0, ..., 1, 0, ..., 0) with 1 as entry at index i. Now,
we will define another set of nodes Un+1 in Qn+1 and see that the set union of these two
sets of nodes, Un+1 and Sn+1 already gives us Gn+1. Let Un+1 := {(_, ...,_, 1, 1)}. We
set Vn+1 := Sn+1 ∪ Un+1, then | Vn+1 |=| Sn+1 | + | Un+1 |≥ 2n−1 + 1 + 2n−1 = 2n + 1
because Sn+1 and Un+1 are disjoint and (3) holds for Vn+1.

(0,0,0,0,0) (1,0,0,0,0)

(1,1,0,1,0)

(1,0,0,1,0)

(0,0,0,0,1) (1,0,0,0,1)

(1,1,0,1,1)

(1,0,0,1,1)

The figure above depicts our technique. We reduced Qn+1 to Qn and extended theK1,a

graph inGn toGn+1 inQn+1. This extension works analogously for each a ∈ {1, ..., n−1}.
In Sn+1 there exists at least one node v = (v1, ..., 1, 0) that is not adjacent to K1,a. This
can be easily seen because of the algebraic construction of K1,a. Because of (2), v must
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be connected to the other component of Gn+1 that is canonically induced by the vertex
set of Gn. Because of the construction of Un+1, v is connected to at least one node in
Un+1, therefore (2) and (1) hold in Vn+1 and therefore in Gn+1.
As one will have noted, up until now since we assumed a ∈ {1, ..., n− 1}, our technique
covers neither K1,n nor K1,n+1 in Qn+1. This is adressed in the subsequent paragraph.
Consider the following subgraph G4 in Q4,
{(0, 0, 0, 0)(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 0)}∪
{(v1, v2, v3, 1) | (v1, v2, v3) /∈ K1,4}.

(0,0,0,0,0)

(0,1,0,0,0

(1,0,0,0,0)

(0,0,1,0,0)

(1,1,0,1,0)

(1,0,0,1,0)

It has a K1,4 structure and properties (1) − (3) hold. By induction we expand this
set of nodes to construct a vertex induced subgraph Gn+1 of Qn+1 that has a K1,n+1

or K1,n structure respectively whilst preserving properties (1) − (3). Again, we ex-
pand the set of nodes Vn of Gn to Sn+1 := {(v1, ..., vn, 0) | (v1, ..., vn) ∈ Vn}. Let
Ũn+1 := ({_, ...,_, 1, 1)} \ {(0, ..., 0, 1, 1)} be a set of nodes in Qn+1. Because all but the
last two indices of any node in Ũ is fixed, | Ũn+1 |= 2n+1

22
− 1 = 2n−1 − 1. By construc-

tion, the node a = (0, ..., 0, 1) is not connected to Ũn+1 but expands the K1,n structure to
K1,n+1. The nodes in Ũn+1 are connected to the nodes in the one of two components in
Gn+1 canonically induced through Gn, that does not have the K1,n structure. This must
be true according to (2). We set Un+1 = Ũn+1∪{a} and Vn+1 := Vn∪Un+1. The number
of nodes in Vn+1 is | Vn+1 |=| Vn | + | Un+1 |= (2n−1 + 2) + 2n−1 = 2n + 2 > 2n. The
resulting subgraph Gn+1 has exactly two components, one of which is the K1,n struc-
ture, the other component is not a K1,a structure as argued prior. The K1,n structure is
expanded to a K1,n+1 structure. For the new vertex set Vn+1, (1)− (3) hold.
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(0,0,0,0,0)

(0,1,0,0,0

(1,0,0,0,0)

(0,0,1,0,0)

(1,1,0,1,0)

(1,0,0,1,0)

(0,0,0,0,1) (0,1,0,0,1)

(1,1,0,1,1)

(1,0,0,1,1)

Since (2) holds in Gn, there must be at least one node a = (a1, ..., an−1, 0) ∈ Qn that
is not matched by either component of Vn. If we set Un+1 := Ũn+1 ∪ (a, 1), it is easy to
see that Un+1 is connected to the component in Gn+1 induced through Gn without the
K1,n structure so the statements (1) − (3) hold. All whilst the K1,n structure remains
unaltered.
Conclusively, for 1 ≤ a ≤ n and n ≥ 4 we can construct a non-balanced two-colouring of
Qn whose majority colour induces a subgraph with exactly two components and exactly
one K1,a structure.
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6 Conclusions

In this thesis we explored the techniques that Hao Huang used to prove the Sensitivity
Conjecture as well as the proof itself. We used these techniques to establish further
insight into the relationship between a special category of matrices and the corresponding
undirected graphs they induce. Given a matrix with entries in {−1, 0, 1} and 0 as entry
if and only if there exists no edge between the nodes i and j in the corresponing induced
graph, the degree of the graph is at least high as the highest absolute value of any
eigenvalue of the matrix. Since these matrices are symmetric they are diagonizeable and
have as many eigenvalues as dimensions. We have seen that the same holds for every
vertex induced subgraph of the matrix.

We became acquainted with structural features of the n-hypercube which are respon-
sible for yielding a proof of the main theorem that does not make use of the matrix that
Huang employed but relies on a special edge signing. Moreover we have looked at an
application of Huangs main theorem applied to proofs targeting Cayley graphs of Zn2
and more generally abelian Cayley graphs.

The best separation between sensitivity and block sensitivity is bs(f) = 2
3
s(f)− 1

3
s(f)

whilst Huang has shown a quartic upper bound. It remains to be seen whether the
quartic upper bound is tight or whether it can be lowered.
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