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Abstract

In this thesis we consider the problems threshold deletion and threshold editing
on quasi-threshold graphs. Both problems ask to transform an input graph into a
threshold graph using a minimal number of edge operations. In threshold deletion
these are restricted to the deletion of edges only, whereas in threshold editing both
the deletion and the insertion of edges are permitted. Threshold graphs are graphs
that do not contain a P4, C4 or 2K2 as a vertex-induced subgraph. Both problems
are NP-complete on general graphs.

We focus on quasi-threshold graphs as input graphs, i.e. graphs that do not contain a
P4 or C4 as a vertex-induced subgraph. For the problem of threshold deletion we will
give an algorithm that needs O(|V |+ |E|) time, where Q = (V, E) is the input graph.
In the case of threshold editing we present an algorithm that needs exponential time
in the size of the vertex set of the input graph. However, our evaluation shows that
the running time of this algorithm is feasible for a set of randomly generated input
graphs consisting of up to 300 vertices. Furthermore, we give a heuristic for this
problem with a quadratic running time.

Deutsche Zusammenfassung

In dieser Arbeit werden die Probleme Threshold Deletion und Threshold Editing auf
Quasi-Threshold-Graphen untersucht. Das Problem Threshold Deletion besteht darin,
eine minimale Anzahl von Kanten des Eingabegraphen zu löschen, um diesen in einen
Threshold-Graphen umzuwandeln. Für Threshold Editing dürfen nicht nur Kanten
gelöscht, sondern auch Kanten hinzugefügt werden, um den Eingabegraphen in einen
Threshold-Graphen zu überführen. Threshold-Graphen können durch verbotene
Subgraphen charakterisiert werden. Es sind genau die Graphen, welche keinen P4,
C4 oder 2K2 als knoteninduzierten Subgraphen enthalten. Auf allgemeinen Graphen
sind beide Probleme NP-vollständig.

Als Eingabegraphen werden in dieser Arbeit nur Quasi-Threshold-Graphen betrach-
tet. Diese sind Graphen, die keinen P4 oder C4 als knoteninduzierten Subgraphen
enthalten. Für Threshold Deletion wird ein Algorithmus vorgestellt, der das Problem
in O(|V | + |E|) löst, wobei Q = (V, E) der Eingabegraph ist. Ebenso wird ein
Algorithmus für das Problem Threshold Editing gegeben, dieser hat eine exponen-
tielle Laufzeit in der Knotenanzahl des Eingabegraphen. Jedoch erweist sich der
Algorithmus auf den zur Evaluation verwendeten zufällig generierten Graphen mit
bis zu 300 Knoten als praktikabel. Weiterhin wird eine Heuristik für dieses Problem
vorgestellt, deren Laufzeit quadratisch ist.

v





Contents

1 Introduction 1

2 Editing to Threshold Graphs 5
2.1 Quasi-Threshold Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Threshold Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Quasi-Threshold to Threshold Deletion . . . . . . . . . . . . . . . . . . . . . 7
2.4 Quasi-Threshold to Threshold Editing . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Properties of Nearest Threshold Graphs . . . . . . . . . . . . . . . . 11
2.4.2 Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2.1 Enumerating-Algorithm . . . . . . . . . . . . . . . . . . . . 22
2.4.2.2 Leaf-Positioning-Algorithm . . . . . . . . . . . . . . . . . . 26
2.4.2.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Experimental Evaluation 35
3.1 Number of Edits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Other Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Conclusion 41

Bibliography 43

vii





1. Introduction

The main topics of this thesis are the graph modification problems threshold editing and
threshold deletion. In general, a graph modification problem asks to transform an input
graph G into a graph G′ with certain properties using a number of operations such as the
insertion or deletion of vertices or edges. We denote by threshold editing the modification
problem that only allows the insertion/deletion of edges in order to obtain a threshold
graph from an input graph G. A threshold graph is a graph that does not contain P4, C4
or 2K2 as vertex-induced subgraphs (see Section 2.2 for further details and Figure 1.1 for
an illustration). In the following, we define the problem more precisely:

Threshold Editing

Input: A graph G = (V, E) and k ∈ N.

Problem: Is there a set F ⊆ V × V of size at most k such that G′ = (V, E∆F )
is a threshold graph?

If the only modification allowed is the deletion of edges, the corresponding problem is called
threshold deletion.

Threshold Deletion

Input: A graph G = (V, E) and k ∈ N.

Problem: Is there a set F ⊆ E of size at most k such that G′ = (V, E\F ) is a
threshold graph?

The NP-completeness of threshold deletion is shown in [Mar94]. In [DDLS15], Drange et
al. show that the same holds for threshold editing, even on split graphs. Those are graphs
whose vertex sets can be partioned into a clique and an independent set [BLS99]. These
graphs can also be characterized as the graph class that does not contain C4, C5 or 2K2 as
vertex-induced subgraphs. Furthermore, they give algorithms solving threshold editing and
threshold deletion for an input graph G = (V, E) in 2O(

√
k log k)+ poly(|V |) time, where k is

the parameter from the problem definitions. This shows in particular that threshold editing
and threshold deletion are fixed-parameter tractable, i.e. their complexity can be described
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1. Introduction

(a) (b) (c)

(d)

Figure 1.1: P4 (a), C4 (b), C5 (c) and 2K2 (d).

by f(k) · |P |c, where P is a problem instance, f : N→ N, c ∈ N and k is a parameter of P .
This result can be genearalized. In [Cai96], Cai shows that all graph modification problems
are fixed-parameter tractable if the target graph class can be characterized by a finite set
of forbidden subgraphs.

In this thesis we will focus on threshold editing and threshold deletion with quasi-threshold
graphs as our problem input, i.e. graphs that do not contain P4 or C4 as vertex-induced
subgraphs. As threshold editing is NP-complete on split graphs, the question arises
whether the same holds true for quasi-threshold graphs, whose set of forbidden subgraphs
is related. Quasi-threshold graphs can be recognized in linear time [JHJJC96].

One of the applications of quasi-threshold graphs is in graph clustering. In [NG13] Nastos
et al. present the following idea in order to find clusters in social networks: a graph G
representing a social network is transformed into a nearest quasi-threshold graph Q, i.e.
the editing distance from G to Q is minimal. The connected components of Q are viewed
as clusters of G. In the field of bioinformatics, the approach of transforming an input graph
to a set of disjoint cliques and interpreting these cliques as clusters is called cluster editing
and widely discussed (see for instance [BB13]). One could adapt this concept for threshold
graphs. Hence, theoretical considerations in this area might be of interest.

Our contribution. In the case of threshold deletion, we give an algorithm that computes
for any quasi-threshold graph Q = (V, E) a nearest threshold graph G′ = (V, E\F ), i.e.
the set F has minimal size among all threshold graphs with vertex set V . The algorithm
has O(|V | + |E|) complexity, whereas the problem is NP-complete on general graphs.
Similarly for threshold editing we present an algorithm that computes a nearest threshold
graph G′ = (V, E∆F ), i.e. F has minimal size among all threshold graphs with vertex set
V . This algorithm needs O(2n(log n+1)+log n + |V | + |E|) time, where n is the number of
vertices that are not leaves in a skeleton of the input graph (see Section 2.1 for details
about the skeleton representation of quasi-threshold graphs). Our evaluation shows that
its running time is feasible for a set of randomly generated graphs consisting of up to 300
vertices. This suggests that our algorithm can solve threshold editing for quasi-threshold
graphs for which the use of the algorithm given in [DDLS15] would not be practical as
the quasi-threshold graphs of this size that we examined in our evaluation required about
800 edits. The question whether threshold editing is NP-complete on quasi-threshold
graphs remains open. Furthermore we give a heuristic for threshold editing. It is based
on the Quasi-Threshold Mover given in [BHSW15], a heuristic for quasi-threshold editing.
Additionally, we compare the exact algorithms for threshold deletion, threshold editing
and the heuristic for threshold editing with respect to running time and to differences in
the number of calculated edits.

Preliminaries. Let G be a graph. We define VG as its vertex set and EG as its edge set. For
a vertex v ∈ VG, by NG(v) we denote the neighbourhood of v, i.e. N(v) = {u | {u, v} ∈ EG}.
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Further we define N̄G(v) := NG(v) ∪ {v}. For a vertex v ∈ VG, the graph G − v is the
subgraph of G induced by VG\{v}. The graph G + v, where v /∈ VG, has the same edge set
as G and the vertex set VG∪{v}. For a directed tree T and v ∈ VT , DepthT (v) denotes the
depth of v in T . With LeavesT as the set of all leaves in T we define InnerT := VT \LeavesT

as the set of all ‘inner’ vertices, i.e. the vertices that are not leaves. For a vertex v,
AncestorsT (v) shall be the set of all ancestors of v in T , i.e. all vertices on the path from
the root of T to v but not the vertex v itself. Let the set ChildrenT (v) consist of all children
of v in T and let the graph SubtreeT (v) be the subtree of v in T including v.

Let G be a graph and F a set with F ⊆ VQ×VQ. Let T be a threshold graph with VT = VG

and ET = EG∆F . The edit distance from G to T is the size of F . For a set F ⊆ EG and a
threshold graph T with VT = VG and ET = EG\F , the size of F is called deletion distance
from G to T . When there is no ‘target’ threshold graph mentioned, the terms edit or
deletion distance of Q mean the edit or deletion distance to a nearest threshold graph of G.
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2. Editing to Threshold Graphs

2.1 Quasi-Threshold Graphs
First we define the class of quasi-threshold graphs.

Definition 2.1. A quasi-threshold graph (QTG) is a graph that does not contain a P4 or
C4 as a vertex-induced subgraph.

The following is an equivalent inductive characterization [JHJJC96]:

1. A single vertex is a QTG.

2. Adding a universal vertex to a QTG results in a QTG. A universal vertex is a
vertex that is adjacent to all other vertices of a graph.

3. The disjoint union of two QTGs is a QTG.

In [JHJJC96], it is shown as well that every quasi-threshold graph is induced by a directed
forest. A directed forest F = (V ′, E′) is a set of directed trees. A quasi-threshold graph Q
is induced in the following way: The vertex set of F is taken as that of Q and {u, v} ∈ EQ

if and only if there is a path from v to u or a path from u to v in F . A directed forest
which induces a quasi-threshold graph is called a skeleton representation of this graph (see
Figure 2.1). It also holds that every directed forest induces a quasi-threshold graph.
In [JHJJC96] and [BHSW15] linear time recognition algorithms are given that yield a
skeleton representation if the input graph is a quasi-threshold graph.

In the following we prove some structural properties of skeleton representations.

Lemma 2.2. Let S(Q) be a skeleton of a connected QTG Q, then the following holds:

1. If DepthS(Q)(v) < DepthS(Q)(w) and {v, w} ∈ EQ then N̄Q(w) ⊆ N̄Q(v).

2. If DepthS(Q)(v) = DepthS(Q)(w) then {v, w} /∈ EQ.

Proof. 1. If {v, w} ∈ EQ, then there must be a path from v to w in S(Q) or vice versa.
As DepthS(Q)(v) < DepthS(Q)(w), the path goes from v to w. But then there is a
path from v to every vertex x that can be reached from vertex w in S(Q). Also, every
vertex x, that can reach v, has a path to w. Therefore we have N̄Q(w) ⊆ N̄Q(v).
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2. Editing to Threshold Graphs

Figure 2.1: Skeleton of a QTG with implicit edges.

2. As two vertices v, w that have the same level in a directed tree cannot reach each
other, it follows from the defintion of a skeleton that {v, w} /∈ EQ.

Lemma 2.3. Iff a QTG Q contains a universal vertex u, then a skeleton representation
S(Q) of Q is a tree.

Proof. If S(Q) is a tree, then there is a path from its root u to every vertex v ∈ VQ\{u} in
S(Q). This implies that there is an edge {u, v} in Q. Hence, u is a universal vertex of Q.
If u is a universal vertex in Q then it has an edge to every v ∈ VQ\{u}. Thus, there is a
path from u to v. It follows that the representing forest must be connected.

Lemma 2.4. Let Q be a quasi-threshold graph with at least one universal vertex. Any
skeleton representation S(Q) of Q is a tree with root r and r is a universal vertex of Q.

Proof. We know from Lemma 2.3 that any skeleton representation of a quasi-threshold graph
that has a universal vertex is a tree. Further Lemma 2.2 (1) shows that DepthS(Q)(u) ≤
DepthS(Q)(v) for all universal vertices u and non-universal vertices v. Since the root of a
tree is the only vertex with a depth of zero, it follows that r must be a universal vertex of
Q.

2.2 Threshold Graphs
Similar to quasi-threshold graphs, threshold graphs can be defined by forbidden subgraphs.

Definition 2.5. A threshold graph (TG) is a graph that does not contain a P4, C4 or 2K2
as a vertex-induced subgraph.

The following inductive characterization is equivalent [CH73].

1. A single vertex is a TG.

2. Adding an isolated vertex results in a TG.

3. Adding a universal vertex results in a TG.

Since every threshold graph is also a quasi-threshold graph, it has a skeleton representation.
But a skeleton of a threshold graph can be characterized more restrictively. A directed
forest that induces a threshold graph cannot have multiple connected components with
more than two vertices as this would imply that the corresponding threshold graph would
contain 2K2 as an induced subgraph. The connected component that consists of more than
one vertex is a directed tree in which all vertices are either on the central path or leaves
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2.3. Quasi-Threshold to Threshold Deletion

of vertices on the central path. Otherwise the induced graph would contain 2K2 as an
induced subgrah.

It follows that a threshold skeleton consists of a directed caterpillar and possibly some
additional isolated vertices (Figure 2.2). Furthermore, an algorithm for the recognition of
threshold graphs can be obtained from an algorithm recognazing quasi-threshold graphs to
which we add the test whether the generated skeleton has the strucutre of a caterpillar
(plus possibly additional isolated vertices). This can be achieved in linear time.

2.3 Quasi-Threshold to Threshold Deletion
In this section we treat the problem threshold deletion on quasi-threshold graphs. We
will give a linear time algorithm that computes a nearest threshold graph for a given
quasi-threshold input graph. Recall that the problem of threshold deletion is NP-complete
on general graphs.

As isolated vertices form a threshold graph we could delete all edges in Q to obtain a
threshold graph from Q. But this is certainly not an optimal solution. Before giving the
algorithm we prove two lemmas. They are both not restricted to threshold deletion but
also work for the more general case of threshold editing.

Lemma 2.6. Let Q be a quasi-threshold graph and u a universal vertex in Q. Then u is
also a universal vertex in all nearest threshold graphs of Q.

Proof. Let T be a nearest threshold graph of Q that can be reached by adding or deleting
edges of Q. Assume that u is not a universal vertex of T (from which follows that e edges
incident to u have been deleted). As threshold graphs are defined by forbidden subgraphs,
T ′ = T − u is also threshold. If we add u as a universal graph to T ′, the resulting graph
T ′′ is still a threshold graph. The edit distance from Q to T ′′ is smaller than the distance
to T as we do not have to delete e edges. This contradicts the minimality of T . Thus, u
has to be a universal vertex in T .

Lemma 2.7. Let Q be a quasi-threshold graph. We can add a universal vertex u obtaining
a connected quasi-threshold graph Q′ that has the same edit distance as Q.

Proof. As Q is quasi-threshold, it follows from the inductive characterization that Q′ is
also quasi-threshold. The graph Q′ is connected because u is a universal vertex. Let T ′ be
a nearest threshold graph of Q′. It follows from Lemma 2.6 that u is a universal vertex in
T ′. Removing u results in a threshold graph T with the vertex set of Q. Thus, the edit
distance of Q′ is an upper bound for that of Q. As adding a universal vertex u to any
nearest threshold graph T of Q results in a threshold graph with the vertex set of Q′ it
follows that the edit distance of Q is also an upper bound for that of Q′.
Hence, the edit distances of Q and Q′ are equal.

Figure 2.2: Skeleton of a threshold graph with implicit edges. The two vertices on the left
are isolated vertices.
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2. Editing to Threshold Graphs

In the following we restrict ourselves again to the problem of threshold deletion.

Definition 2.8. Let S(Q) be a skeleton of a connected quasi-threshold graph, i.e. S(Q) is
a tree. We define the following measures for all vertices v of S(Q).

1. Number of edges #Edges(v)
The measure #Edges(v) denotes the number of edges in the subgraph of Q induced by
the vertices in SubtreeS(Q)(v).

2. Deletion distance Dist(v)
This measure is the deletion distance of the quasi-threshold graph induced by the
subgraph of v in S(Q), i.e. the minimal number of deletions that have to be performed
to obtain a threshold graph.

In the following paragraph we set C(v) := ChildrenS(Q)(v). The definition of the skeleton
representation directly yields that

#Edges(v) =
∑

c∈C(v)
#Edges(c) + | SubtreeS(Q)(c)|

for every v ∈ S(Q).

Lemma 2.9. Let Q be a connected QTG with a skeleton S(Q). For all v ∈ VQ the following
holds:

Dist(v) =


min

c∈C(v)

(( ∑
d∈C(v)

#Edges(d)
)
−#Edges(c) + Dist(c)

)
if C(v) 6= ∅

0 if C(v) = ∅

Proof. We prove this lemma by induction on the number of vertices in Q:

Base case n = 1:
As C(v) is empty and a graph with a single vertex is already threshold, it follows that
Dist(v) = 0.

Induction hypothesis:
The claim holds for a connected QTG Q with at most n ≥ 1 vertices.

Inductive step:
Let Q′ be a connected QTG with n + 1 vertices and S(Q′) a skeleton of Q′. The root u of
S(Q′) is a universal vertex of Q′ (see Lemma 2.4).

We have to consider the following two cases:

1. u has one child c.
Let Q be the quasi-threshold graph induced by S(Q) := SubtreeS(Q′)(c). The formula
for the deletion distance holds for all v ∈ VQ′\{u} by the induction hypothesis as

SubtreeS(Q′)(v) = SubtreeS(Q′)−u(v) = SubtreeS(Q)(v)

and |VQ| ≤ n. Thus, we only have to show the formula’s correctnes for u. From
Lemma 2.7 we know that Q′ has the same deletion distance as Q. Therefore

Dist(u) = Dist(c)
= #Edges(c)−#Edges(c) + Dist(c)

= min
c∈C(u)

 ∑
d∈C(u)

#Edges(d)

−#Edges(c) + Dist(c)



8



2.3. Quasi-Threshold to Threshold Deletion

holds. Furthermore, we can calculate a nearest threshold graph of Q′ by adding u as
a universal vertex to the nearest threshold graph of Q. A skeleton of this graph can
be obtained by adding u as a root to a skeleton of a nearest threshold graph of Q.

2. u has the children ci, where i ∈ {1, . . . , n} and n ≥ 2.

Let Qi be the quasi-threshold graph induced by SubtreeS(Q′)(ci). For all Qi we find
|Qi| < n. Hence, it follows with

SubtreeS(Q′)(v) = SubtreeS(Qi)(v)

for all v ∈ VQi , where i ∈ {1, . . . , n}, that the formula holds for all v ∈ VQ′\{u}. Now
we show the formula for u.

If all Qi are single vertices, Q′ is already threshold and we have

D(u) = 0 = min
c∈C(v)

 ∑
d∈C(v)

0

− 0 + 0


= min

c∈C(v)

 ∑
d∈C(v)

#Edges(d)

−#Edges(c) + Dist(c)

 .

Otherwise, there is at least one Qi that is not a single vertex. Consider a nearest
threshold graph of the quasi-threshold graph U :=

⋃
i

Qi. A skeleton of a threshold
graph consists of a caterpillar and isolated vertices. In a skeleton of a nearest threshold
graph of U the vertices in the caterpillar all belong to one Qi as we are only allowed
to delete edges and no vertex v ∈ VQi is adjacent to a vertex w ∈ VQj for i 6= j.
Hence, we have to choose as our ’caterpillar graph’ the Qi which causes the lowest
costs. The costs are composed of the deletion distance of Qi and the costs of isolating
all other Qj , i.e. deleting all their edges. Thus, the nearest threshold graph of U has
the deletion distance

d = min
r∈R

∑
r′∈R

#Edges(r′)

−#Edges(r) + Dist(r)

 ,

where R is the set that contains all roots of the SubtreeS(Q′)(ci). Since R = C(u) and
Q′ has the same deletion distance as Q, it follows that the claim holds in this case as
well. Furthermore, a nearest threshold graph of Q′ can be obtained by adding u as a
universal vertex to the nearest threshold graph of the lowest-cost Qi and isolating
the vertices of all the other Qj with i 6= j. A skeleton of this tree can be obtained by
adding u as a root to the skeleton of the lowest-cost threshold graph and attaching
the vertices from the other subgraphs as leaves to u.

Note that in all cases a skeleton of a nearest threshold graph of Q′ can be obtained by
adding u as a root to the skeleton of the lowest-cost child and making all vertices in the
other subgraphs (if there are any) leaves of u.

The proof does not only show the correctness of the formula, but it delivers an algorithm to
compute a nearest threshold graph T of a quasi-threshold graph Q. For a given skeleton of
a connected QTG we can perform a DFS on this tree. In this DFS we recursively calculate
the measures #Edges(c), Dist(c) and the size of Subtree(c) for all children c of a vertex
v. Using these measures we then calculate the measures for v. For each vertex v we store
its lowest-cost child. In order to obtain the implicitly computed skeleton we traverse the

9



2. Editing to Threshold Graphs

quasi-threshold skeleton following the path that is given by the stored lowest-cost children,
starting from the root. All children and (their descendants in the quasi-threshold skeleton)
of a visited vertex v are made leaves of v except for its lowest-cost child. The following
pseudo code 2.1 describes this algorithm in detail.

Algorithm 2.1: Threshold Deletion
Input: Array children containing all children of a vertex in the skeleton of a

connected quasi-threshold graph Q with root r.
Output: Array parent containing each vertex’s parent in a skeleton of a nearest

threshold graph of Q. Dist(r) contains the deletion distance of Q.
// Initialization

1 forall v ∈ VQ do
2 #Edges(v)← 0
3 Dist(v)← 0
4 sizeSubtree(v)← 1
5 parent(v)← −1
6 bestChild(v)← ⊥

7 calculate(vertex v)
8 s, i, p, sum← 0
9 forall u ∈ children(v) do

10 calculate(u)
11 s← s + sizeSubtree(u)
12 i← i + #Edges(u)
13 sum ← sum + #Edges(u)
14 #Edges(v)← i + s
15 sizeSubtree(v)← 1 + s
16 j ←∞
17 forall u ∈ children(v) do
18 if sum−#Edges(u) + Dist(u) < j then
19 j ← sum−#Edges(u) + Dist(u)
20 Dist(v)← j
21 bestChild(v)← u

22 calculate(r) // calculate measures
// create skeleton

23 cur ← r
24 while cur 6= ⊥ do
25 forall v ∈ children(cur) and v 6= bestChild(cur) do
26 forall x ∈ subtree(v) do
27 parent(x)← cur

28 parent(bestChild(cur))← cur
29 cur ← bestChild(cur)

As we only traverse the skeleton two times, the complexity of this algorithm is linear in
the number of vertices of Q. Note that this algorithm can even be sublinear in the number
of deletions. The algorithm expects a skeleton of the input graph Q. It follows that the
overall complexity is in O(|VQ|+ |EQ|) as we have to compute a skeleton of Q first.

10



2.4. Quasi-Threshold to Threshold Editing

2.4 Quasi-Threshold to Threshold Editing
In this section we address the problem of threshold editing. First we will give an example
of a quasi-threshold graph Q whose edit distance is smaller than its deletion distance.

The QTG Q consists of two connected components: a clique of size n and a star graph
of size 2n with inner vertex c (see Figure 2.3). Its edit distance is n as we can insert an
edge from c to each vertex in the clique obtaining a treshold graph T . In the context of
threshold deletion we have to isolate one of the two connected componets in order to obtain
a threshold graph. Since the clique has n(n− 1)/2 and the star graph has 2n edges, the
deletion distance of Q is 2n if n ≥ 5. The difference between edit and deletion distance of
graphs with this structure is n. Hence, there are graphs for which the deletion distance is
twice as large as the edit distance.

Before giving an algorithm for this problem we prove some properties of nearest threshold
graphs in the context of threshold editing.

2.4.1 Properties of Nearest Threshold Graphs

We will show that for every QTG Q with a skeleton S(Q) there is a nearest threshold
graph T and a skeleton S(T ) of T such that the quadruple (Q, S(Q), T, S(T )) has certain
properties. Furthermore, we only consider connected QTGs as we can add a universal
vertex to a QTG that is not connected preserving the edit distance (Lemma 2.7). The
central result of this section is Theorem 2.10.

Theorem 2.10. Let Q be a connected QTG and S(Q) be a skeleton of Q. There is a
nearest threshold graph T (and a skeleton S(T ) of this graph) such that the following holds:

1. A leaf in S(Q) remains a leaf in S(T ).

2. If w is an inner vertex in S(T ), then all ancestors v of w in S(Q) are also inner
vertices in S(T ).

3. For two inner vertices v, w of S(Q) and S(T ) if v is an ancestor of w in S(Q), then
the same holds for S(T ).

c

Figure 2.3: Skeleton of a graph Q whose edit distance (5) is smaller than its deletion
distance (10).
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2. Editing to Threshold Graphs

Before proving this theorem, we want to il-
lustrate it. Figure 2.4 shows a segment of a
skeleton of a quasi-threshold graph Q. The
leaves of the skeleton are coloured in blue.
Let T be a nearest threshold graph of Q with
skeleton S(T ) such that propositions (1) - (3)
from Theorem 2.10 hold.
Part (1) states that none of the blue coloured
vertices can be an inner vertex of S(T ). Part
(2) says that if w is an inner vertex of S(T ),
then for the vertices 6, 5, v, 0 the same holds
true. The third part of this theorem is that if
v and w are inner vertices of S(T ), the vertex
w is situated below v in the skeleton S(T ). We
will show Theorem 2.10 by using Lemma 2.11,
2.12, 2.13, 2.14 and 2.15, which we prove first.
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Figure 2.4: Segment of a skeleton of a QTG

Lemma 2.11. Let Q be a quasi-threshold graph, T a threshold graph of Q with skeleton
S(T ) and v, w ∈ VQ vertices with NQ(w) ⊆ N̄Q(v) and NT (v) ⊆ N̄T (w).
We denote the skeleton generated by a swap in the positions of v and w in S(T ) by S(T ′).
It holds that the edit distance from Q to the threshold graph T ′ induced by S(T ′) is at most
as great as that to T .

Proof. We define the set X as X :=
(

NT (w)\NT (v)
)
\{v, w}. The set X contains all

vertices that are adjacent to w but not to v in T .

The graphs T and T ′ only differ in edges {v, x} or {w, x}, where x ∈ X. All other edges
are identical in both graphs. Now we compare the edit distance from Q to T ′ to that from
Q to T . For the reasons mentionend above we only have to consider the edges {v, x} and
{w, x}, where x ∈ X.

By definition of X, for all x ∈ X the edge {v, x} is contained in T ′ but not in T and the
edge {w, x} is contained in T but not in T ′. We are now accounting for the edits in which
T and T ′ differ:

1. To get from Q to T we have to insert the edges from w to all vertices in X\NQ(w)
and we have to delete all edges from v to all vertices in X ∩NQ(v). Let t denote the
number of these edits.

2. To get from Q to T ′ we have to insert the edges from v to all vertices in X\NQ(v)
and we have to delete all edges from w to vertices in X ∩ N(w). Let t′ denote the
number of these edits.

As NQ(w) ⊆ N̄Q(v) and v is not an element of X, it follows that |X\NQ(v)| ≤ |X\NQ(w)|
and |X ∩NQ(w)| ≤ |X ∩NQ(v)|. Therefore, we have

t− t′ =
(
|X\NQ(w)|+ |X ∩NQ(v)|

)
−
(
|X\NQ(v)|+ |X ∩N(w)|

)
=
(
|X\NQ(w)| − |X\NQ(v)|

)
︸ ︷︷ ︸

≥0

+
(
|X ∩NQ(v)| − |X ∩NQ(w)|

)
︸ ︷︷ ︸

≥0

≥ 0.

This shows that the edit distance from Q to T ′ is smaller than that from Q to T or has at
most the same value.

12
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Lemma 2.12. Let Q be a QTG, T a nearest threshold graph of Q and S(T ) a skeleton
representation of T . All leaves of v ∈ InnerS(T ) are elements of NQ(v).

Proof. Assume that v ∈ Q is a vertex in S(T ) that has a leaf u and u /∈ NQ(v). Thus,
{v, u} must have been added in order to obtain T . By omitting this edge we obtain a
threshold graph T ′ whose distance to the input is smaller than the one of T . The graph T ′

is threshold because T has this property and omitting the edge {u, v} either isolates u or u
becomes a leaf of the parent p of v in S(T ). Therefore, v cannot have any leaf that is not
in NG(v).

Lemma 2.13. Let Q be a connected QTG and S(Q) a skeleton representation of this graph.
There is a nearest threshold graph T and a skeleton S(T ) such that any leaf in S(Q) remains
a leaf in S(T ).

Proof. Let v be a leaf of S(Q). Assume that v is an inner vertex in S(T ). Let B be the
subtree of v in S(T ) without its leaves. Note that B can be empty. We have to consider
the following cases:

1. v has a leaf uj

The vertex v can only have leaves uj with uj ∈ NQ(v) (see Lemma 2.12). Choose
any one of these leaves – we choose u1 – and interchange the position of v and u1 in
S(T ), thereby generating a skeleton S(T ′) for a threshold graph T ′. The edit distance
of T ′ is at most as great as that of T (see Lemma 2.11). Note that u1 cannot be a
leaf in S(Q).

2. v has no leaves

a) B = ∅
This is not possible as v would be a leaf in S(T ) in this situation.

b) v has no Q-neighbour in B
We delete all edges to the vertices in B. This way v becomes a leaf in S(T ′) or
an isolated vertex if v is already the root of S(T ). This saves |B| edits.

c) All Q-neighbours of v are part of the central path in S(T )
We insert v as a leaf under the lowest of its neighbours in the path in S(T ),
saving as many edits as there are non-Q neighbour leaves in B.

d) At least one Q-neighbour u is a leaf in B
As u is a Q-neighbour of v and v a leaf in S(Q), u is an inner vertex in Q and
situated above v. Therefore we have NQ(v) ⊆ N̄Q(u). Since v is situated on the
path from w to the root in S(T ), it follows that NT (u) ⊆ N̄T (v). Thus, we can
interchange u and v in S(T ) with at most zero costs.

Either we have saved edits in this process or the edit distance of the generated tree T ′

is at most as great as that of T . In the former case T is not a nearest threshold graph
to Q contradicting the assumption that T is such a graph, whereas in the latter case we
have obtained a new nearest threshold graph T ′ and a skeleton S(T ′) where the number of
violations of the claimed property is reduced by one compared to T and S(T ). Thus, we
can reapply the procedure until all violations have been removed.

The following lemma will help to prove Theorem 2.10 (2). Figure 2.5 illustrates the situation
in this lemma.

13
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Figure 2.5: Skeleton of a QTG without leaves and corresponding skeleton of a threshold
graph T without leaves except for v. Only red labelled vertices are inner vertices
in both skeletons. The dashed arrow depicts the interchange that can occur in
the proof of Lemma 2.14

Lemma 2.14. Let Q be a QTG and S(Q) a skeleton of Q. There is nearest threshold
graph T and a skeleton S(T ) such that the following holds:

1. (T, S(T )) fulfils Theorem 2.10 (1).

2. For two vertices v, w ∈ VG with v, w ∈ InnerS(Q) and w ∈ SubtreeS(Q)(v) it holds that
w ∈ InnerS(T ) implies v ∈ InnerS(T ).

Proof. From Lemma 2.13 we know that there is a nearest (T, S(T )) such that Theorem 2.10
(1) holds. We define the following set

AT :=
{

v | v ∈
(

InnerS(Q) \ InnerS(T )
)
∧ ∃w ∈

(
SubtreeS(Q)(v) ∩ InnerS(T )

)}
.

It contains all vertices v that are inner vertices in S(Q) but not in S(T ) and for which
exists a ‘violation-partner’ w such that the pair (v, w) contradicts claim (2).

BT (v) :=
{

w | w ∈
(

InnerS(Q) ∩ InnerS(T )
)
∧ w ∈ SubtreeS(Q)(v)

}
.

The set BT (v) contains all ‘violation-partners’ w of v.
Assume that AT is not empty, let v be the vertex with minimal DepthS(Q) in AT and w
the vertex with maximal DepthS(Q) in BT (v) (see Figure 2.5).
With v being an ancestor of w in S(Q), we have that NS(Q)(w) ⊆ N̄S(Q)(v) and NS(T )(v) ⊆
N̄S(T )(w) because v is a leaf in S(T ) whereas w is an inner vertex. Interchanging v and w
in S(T ) generates a skeleton S(T ′). We denote the threshold graph induced by S(T ′) by
T ′. We know from Lemma 2.11 that the edit distance from Q to T ′ is at most as great as
that to T . Furthermore, it holds that (T ′, S(T ′)) fulfils Theorem 2.10 (1) as we did not
make any leaf in S(Q) to an inner vertex in S(T ′). The case that the edit distance to T ′ is
smaller than that to T cannot occur, as T is a nearest threshold graph of Q.

What we have shown so far is that we can interchange the vertices v and w while preserving
the threshold property, equal editing distance and property (1). Now we prove that
AT ′ ⊆ AT \{v}. In order to do so we show that AT ′\AT is empty.

AT ′\AT is empty.

Assume that there is a v′ ∈ AT ′\AT . Then there must be a w′ such that (v′, w′) violates
the claim. Hence, w′ has to be a descendant of v′ in S(Q) and an inner vertex in S(Q) and
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Figure 2.6: Skeleton of a QTG without leaves and corresponding skeleton of a threshold
graph T without leaves. The dashed arrow depicts an interchange that can
occur in the proof of Lemma 2.15.

S(T ′), whereas v′ must be an inner vertex in S(Q) and a leaf in S(T ′). As we do not touch
S(Q), either v′ must have been an inner vertex in S(T ) and is now a leaf (1) or w′ must
have been a leaf in S(T ) and is now an inner vertex in S(T ′) (2).

1. Situation (1) cannot occur.
The only vertex that has become a leaf is w. This implies v′ = w. It follows that
there has to be a w′ in the subtree of w in S(Q) that is an inner vertex in S(T ′).
But all wi ∈ SubtreeS(Q)(w) are leaves in S(T ) (and so in S(T ′)). Otherwise, wi ∈
BT (v) would hold but this would contradict the maximal DepthS(Q) of w in BT (v).
Hence, a pair (w, wi) that does not fullfil the claim cannot exists in T ′.

2. Situation (2) cannot occur.
The only vertex that was a leaf in S(T ) and is an inner vertex in S(T ′) is v. Assume
that v = w′. Then v′ has to be an ancestor of v in S(Q). But all v′′ ∈ AncestorsS(Q)(v)
have to be inner vertices in S(T ) and so in S(T ′). Otherwise, (v′′, w) would have also
been a violation of the claim in T what contradicts the minimal DepthS(Q) of v in
AT .

We have proved that neither (1) nor (2) can occur. Therefore, we can conclude that there
is no pair (v′, w′) and AT ′\AT is empty.

As v is an inner vertex in S(T ′), it cannot be part of AT ′ . It follows that AT ′ ⊆ AT \{v}.

Hence, we can reduce the set of violations successively and obtain a final threshold graph
that has the claimed property.

Note that the lemma above shows that there is always a nearest threshold T with a skeleton
S(T ) such that Theorem 2.10 (1) and (2) hold.

Lemma 2.15. Let Q be a quasi-threshold graph and S(Q) a skeleton of Q. There is a
nearest threshold graph T and a skeleton S(T ) such that the following holds:

1. (T, S(T )) fulfils Theorem 2.10 (1) and (2).

2. Let v, w ∈ VQ be inner vertices in S(Q) and S(T ). If v is an ancestor of w in S(Q),
the vertex v is also an ancestor of w in S(T ).

Proof. The general idea of this proof is – as in the previous proof – that we can remove all
possible violations by iteratively interchanging two vertices in the threshold skeleton. We

15
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know from Lemma 2.14 that there is a nearest (T, S(T )) such that Theorem 2.10 (1) and
(2) hold. We define I := InnerS(Q) ∩ InnerS(T ), which contains all vertices that are inner
vertices in both S(Q) and S(T ). Furthermore, we define

AT :=
{

v | v ∈ I ∧
(
∃w ∈ I : v ∈ AncestorsS(Q)(w) ∧ w ∈ AncestorsS(T )(v)

)}
.

This set contains all vertices v for which a w exists such that the pair (v, w) does not fulfil
the claimed property (2). For a vertex v ∈ AT we define

BT (v) :=
{

w | w ∈ I ∧ v ∈ AncestorsS(Q)(w) ∧ w ∈ AncestorsS(T )
}

.

The set consists of all w such that (v, w) contradicts the claim. Note that all w are situated
above v in S(T ).

Assume that AT is not empty. Then we choose v ∈ AT with minimal DepthS(Q) and
w ∈ BT (v) with minimal DepthS(T )(w). It follows from Lemma 2.2 that NQ(w) ⊆ N̄Q(v)
and NT (v) ⊆ N̄T (w). With Lemma 2.11 we can interchange v and w in S(T ) generating a
threshold graph T ′ with an edit distance from Q that is at most as great as those of T .
Since T is a nearest threshold graph of Q, we have that the edit distances to T and T ′

are equal. There is a skeleton S(T ′) of T ′ that is equal to S(T ) except for the interchange
of v and w. As we do not make a leaf in S(Q) an inner vertex in S(T ′) and both v and
w remain inner vertices in S(T ′), Theorem 2.10 (1) and (2) also holds for (T ′, S(T ′)) (see
Figure 2.6).

We show that for all x ∈ AT ′\AT it holds that DepthS(Q)(x) > DepthS(Q)(v) and v /∈ AT ′ .

1. v is not in AT ′.
As w has minimal depth in BT (v), all vertices w′ above w in S(T ) cannot be
descendants of v in S(Q). We only interchange the positions of v and w, so this also
holds for S(T ′). Since the position of v in S(T ′) is the old one of w, it follows that
v /∈ AT ′ .

2. For all x ∈ AT ′\AT it holds that DepthS(Q)(x) > DepthS(Q)(v).
Assume that there is an x ∈ AT ′\AT with DepthS(Q)(x) ≤ DepthS(Q)(v). There must
be a y such that (x, y) is a violation of the claim. As we do not touch S(Q) but
x /∈ AT , there are only two possibilities.
(1) The vertices x or y are leaves in S(T ) and inner vertices in S(T ′). This is not
possible, however, as we only interchange two inner vertices and do not touch other
vertices.
(2) The relative positions of x or y have changed; more formally DepthS(T )(x) <
DepthS(T ′)(x) or DepthS(T )(y) > DepthS(T ′)(y). The vertex w is the only vertex
whose depth has increased. But from DepthS(Q))(x) ≤ DepthS(Q)(v) < DepthS(Q)(w)
it follows that x 6= w.
Thus, DepthS(T )(y) > DepthS(T ′)(y) must be true. The only vertex that has decreased
its depth is v. It follows that (x, v) is the only possible pair for a violation. But then
(x, w) must have been a violation in S(T ) as well, as x has not changed its position
and v is now at the position of w. This contradicts the assumption that x /∈ AT .

It follows that we can delete v from the set AT and only add vertices with greater depth in
S(Q). This implies that the depth in AT ′ increases and thus reapplying this procedure will
terminate as the maximal depth in S(Q) is finite.

With Lemma 2.15 we have shown that for every (Q, S(Q)) there is always a nearest threshold
graph T with skeleton S(T ) that fulfils Theorem 2.10 (1) - (3), which completes the proof
of Theorem 2.10.

16



2.4. Quasi-Threshold to Threshold Editing

(a)

0

6

14

15

1816

17

7

12

13

8

119

10

1

4

5

32

(b)

0

1

4

6

7

12

8

9

10

(c)

6

7

128

9

10

Figure 2.7: A skeleton S(Q) of a QTG Q without leaves and a skeleton S(T ) of a nearest
threshold graph T also without leaves. The red labelled vertices in (a) form
ReducedS(Q),S(T ). Tree (c) is the subtree of vertex 6 in ReducedS(Q),S(T ).

Let (Q, S(Q)) be a QTG with skeleton and (T, S(T )) a nearest threshold graph such that
Theorem 2.10 (1) - (3) are fulfilled. We define Inner := InnerS(Q) ∩ InnerS(T ), i.e. Inner
contains exactly these vertices that are inner vertices in S(Q) and S(T ). From property (2)
it follows that the subgraph of S(Q) induced by Inner is a tree (see Figure 2.7). We call
this tree the reduced tree of S(Q) and S(T ), in short ReducedS(Q),S(T ).

Now we will show a last property of nearest threshold graphs (T, S(T )) of (Q, S(Q)) that
fulfil Theorem 2.10 (1) - (3) before introducing an algorithm that computes them.

In the following we only consider S(T ) without leaves, i.e. the central path of the caterpillar.
Note that S(T ) cannot have isolated vertices as Q is connected. We can divide the central
path into intervals. Consider a vertex v and its child w in S(T ). Both belong to the same
interval if and only if w is a child of v in S(Q), too. Otherwise, w is the starting vertex of
a new interval. In order to illustrate this term we consider the central path in Figure 2.7.
There are three intervals: I1 = (0, 1, 4), I2 = (6, 7, 12) and I3 = (8, 9, 10).

The minimal length of these intervals is determined by the vertices above them in the
central path. In order to specify this proposition we introduce for two inner vertices v, w
of S(T ), i.e. vertices on the central path of S(T ), with w ∈ AncestorsS(T )(v) the measures
Score(v, w), Scoremax(v) and Scoremaxholder(v). The following definition is more general
as it defines these measures for any directed path that consists of inner vertices of S(Q).

Definition 2.16. Let (Q, S(Q)) be a connected QTG and P a directed path with VP ⊆
Inner(S(Q)).

1. Score(v, w)
Let v, w be two vertices of P with w ∈ AncestorsP (v), i.e. w is situated above
v in the path. Let pw,parent(v) be the path from w to the parent of v in P , i.e.
pw,parent(v) = (w, . . . , parent(v)). The following illustrates the situation:

P = (· · · , parent(w), w, · · · , parent(v)︸ ︷︷ ︸
pw,parent(v)

, v, · · · )

Then we define Score(v, w) as the number of vertices that are not Q-neighbours of v
in pw,parent(v) minus the number of v’s Q-neighbours in pw,parent(v).
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Score(v, w) ‘10’ ‘9’ ‘8’ ‘12’ ‘7’ ‘6’ ‘4’ ‘1’ ‘0’ Scoremax Scoremaxholder
‘8’ - - - 1 0 -1 0 1 0 1 ‘12’
‘6’ - - - - - - 1 2 1 2 ‘1’
‘0’ - - - - - - - - - 0 ‘0’

Table 2.1: Values of Score and Scoremax for some vertices in Figure 2.7 (b).

2. Scoremax(v)
Let v be a vertex in P . The set A consists of all vertices w that are situated above v
in P . We define

Scoremax(v) :=

max
w∈A

(
Score(v, w)

)
if A 6= ∅

0 if A = ∅

3. Scoremaxholder(v)
Scoremaxholder(v) is the first vertex w above v such that Scoremax(v) := Score(v, w).
If there is no such w above v then we set Scoremaxholder(v) := v.

The idea behind these measures is that a vertex v with Scoremax(v) > 1 cannot have a
leaf in the skeleton of a nearest threshold graph (see Lemma 2.18). Scoremaxholder(v) is
important because its parent can be chosen as parent of vertices that are leaves of v in
S(Q) in this case (see Section 2.4.2).

To give an example, we calculate these measures for the starting vertices of the three
intervals from Figure 2.7 (b). The results can be found in Table 2.1. Note that the vertex
w with Score(v, w) = Scoremax(v) cannot be an ancestor of v in S(Q).
The proposition that we want to show is that the length of an interval with starting vertex v
has to be greater than Scoremax(v). The central path in Figure 2.7 (b) has this property as
|I1| = 3 > 0 = Scoremax(‘0’), |I2| = 3 > 2 = Scoremax(‘6’) and |I3| = 3 > 1 = Scoremax(‘8’).

Theorem 2.17. Let Q be a connected QTG with a skeleton S(Q) and T a nearest threshold
graph with skeleton S(T ) such that Theorem 2.10 (1) - (3) holds. Let I be an interval with
starting vertex v in S(T ). It holds that |I| > Scoremax(v).

In order to prove this theorem we use the following Lemma 2.18 (see Figure 2.8 for an
illustration).

Lemma 2.18. In the situation of Theorem 2.17 a vertex v′ with Scoremax(v′) > 1 cannot
have a leaf in S(T ).

Proof. Let v′ be a vertex with Scoremax(v′) > 1. By definition of this measure we know that
there is a vertex w above v′ in the central path of S(T ) with Score(v, w) = Scoremax(v′).
This vertex w is not a S(Q)-ancestor of v′ and the parent of w in S(T ) is a S(Q)-ancestor
of v′; otherwise Score(v, w) would not be a maximal value. Note that there must be a
parent(w) in S(T ) as Q is connected and thus the root of S(T ) is a universal vertex.

Assume that v′ has a leaf l in S(T ). We know from Lemma 2.12 that l must be in the
neighbourhood of v′ in Q. Hence, it is also a Q-neighbour of all x ∈ AncestorsS(Q)(v′). All
these x are part of the central path of S(T ) and situated above v′ as a consequence of
Theorem 2.10 (2) and (3). Since l is a Q-neighbour of v′ and all ancestors of v′ in S(Q)
are situated above v′ in S(T ), l has to be a descendant of v′ in S(Q). Therefore, we have
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. . . p(w) w 2 3 4 5 6 v′ . . .

l

Figure 2.8: The vertices ‘4’,‘5’ and p(w) are S(Q)-ancestors of v. Suppose that all vertices on
the left of w are S(Q)-ancestors of v. As Scoremax(v′) = 2 and Score(v′, w) = 2,
vertex l becomes a leaf of p(wY ).

NQ(l) ⊆ N̄Q(v′).
Let pw,v′ be the path from w to v′ in S(T ), i.e. pw,v′ = (w, . . . , v′). If we want to make
l a leaf of parent(w) in S(T ), we have to delete all edges to Q-neighbours of l in pw,v′

and do not have to insert edges to the vertices that are not Q-neighbours in pw,v′ . As all
Q-neighbours of l in pw,v′ − v′ are S(Q)-ancestors of v′ and all non-Q-neighbours of l in
pv′,w − v′ are not S(Q)-ancestors of v′ and Scoremax(v′) > 1, we know that the number of
non-S(Q)-neighbours of l in pv′,w − v′ minus the number of S(Q)-neighbours in this path
is at least two. Since we also have to delete the edge {l, v}, we can save at least one edit
if we make l a leaf of parent(w). But this contradicts the assumption that T is a nearest
threshold graph of Q.

Recall the definition of the reduced tree ReducedS(Q),S(T ). It contains all vertices that are
inner vertices in S(Q) and S(T ). Now we consider the subtree of v in ReducedS(Q),S(T ).
Figure 2.7 (c) is an example of such a subtree.
Let w be a vertex with depth k < Scoremax(v) − 1 in this subtree. Therefore, there are
k vertices above w in the subtree. As S(T ) has the properties Theorem 2.10 (2) and (3),
it follows that the only Q-neighbours of w on the path from v to parent(w) in S(T ) are
exactly those k vertices. Therefore, Scoremax(w) is reduced at most by k. Hence, we have

Scoremax(w) ≥ Scoremax(v)− k > Scoremax(v)− (Scoremax(v)− 1) = 1.

This implies that such a vertex w cannot have a leaf in S(T ). Now we can show Theorem 2.17.

Proof. Assume that there is an interval I with starting vertex v and |I| ≤ Scoremax(v).
We define R := ReducedS(Q),S(T ). We consider SubtreeR(v) (see Figure 2.9 (a)). It
follows from Lemma 2.18 that no vertex with a depth smaller than Scoremax(v) − 1 in
this subtree can have a leaf in S(T ). If a vertex with depth Scoremax(v)− 1 has a leaf in
S(T ), we can make this leaf a leaf of the parent of w, where w is chosen to be a vertex
with Score(v, w) = Scoremax(v). This can be achieved using the same procedure as in
Lemma 2.18 with zero cost. Thus, let us assume that no vertex with a depth of at most
Scoremax(v) − 1 in this subtree has a leaf in S(T ). Note that this assumption does not
change the set InnerS(T ) and therefore does not change ReducedS(Q),S(T ) . If there was a
vertex of depth Scoremax(v)− 1 that would become a leaf by moving its leaves up, then we
could make this vertex itself a leaf of the parent of w saving an edit. But in this case T
could not be a nearest threshold graph.

We have to consider the following two cases.

1. A vertex v′ ∈ SubtreeR(v) with a depth of Scoremax(v) or greater has a leaf
in S(T ).

Let v′ be the vertex with minimal depth in S(T ) among all such vertices.

Claim: All vertices on the path pv,parent(v′) = (v, . . . , parent(v′)) in S(T ) are ancestors
of v′ in S(Q).
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Figure 2.9: Illustration of the first case in the proof of Theorem 2.17. The subtree of v in
ReducedS(Q),S(T ) is shown in (a). In (b) and (c) w is not an ancestor of v′ in
S(Q). Note that in this example Scoremax(v) must be at least two.

Assume that there is a w ∈ pv,parent(v′) that is not an ancestor of v′. We have to
differentiate two cases, w does or does not have a leaf.

a) The vertex w has a leaf in S(T ). In this case it cannot be part of SubtreeR(v)
as this would contradict the minimality of v′. But then we can transfer all
x ∈ SubtreeR(v) that are situated above w in S(T ) to positions below this vertex
as no vertex x has leaves in S(T ) (see Figure 2.9 (b)). This saves the insertion of
the edges from the vertices x to the leaf of w. It follows that T is not a nearest
threshold graph. Hence, such a vertex w cannot have a leaf in S(T ).

b) Vertex w does not have a leaf in S(T ). If there are multiple vertices w that are
not Q-ancestors of v′ in pv,parent(v′), let w′ be the vertex with a greatest depth in
S(T ) among them. We can transfer w′ to the position below v′ (we have shown
above that w′ cannot have a leaf in S(T )) saving the insertion of the edges from
w′ to the leaves of v′ (see Figure 2.9 (c)). This again contradicts the minimality
of T .

As both cases lead to contradiction, the assumption that there is a vertex w that is
not a S(Q)-ancestor of v′ cannot be true.

From this observation follows that pv,parent(v′) ∪ {v′} forms an interval and therefore
I contains at least |pv,parent(v′)|+ 1 ≥ Scoremax(v) + 1 vertices, which contradicts the
assumption that |I| ≤ Scoremax(v).

2. No v′ ∈ SubtreeR(v) has a leaf in S(T ).
Let v′ ∈ SubtreeR(v) be the vertex with maximal DepthS(T ) among all vertices in
SubtreeR(v). It follows that there are no vertices x ∈ NQ(v′) below v′ in S(T ). Yet
there must be another inner vertex y of S(T ) below v′ in S(T ), or otherwise v′ would
be a leaf in S(T ) and thus v′ /∈ SubtreeR(v). Then we make v′ a leaf of the next
vertex v′′ above v′ in S(T ), where v′′ is an ancestor of v′ in S(Q). This saves the
insertion of the edge to y and its descendants in S(T ). But this contradicts the
minimality of T . So this case cannot occur.

It follows that |I| ≤ Scoremax(v) cannot be true. Note that the proof even shows that in
an interval at least one vertex must have a leaf.
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2.4.2 Exact Algorithm

Now we want to outline an algorithm that computes for every QTG Q a nearest threshold
graph T . More precisely: we take a skeleton S(Q) of Q as input and compute a skeleton
S(T ) of T . First of all we know from Lemma 2.7 that we can add a universal vertex to a
QTG without changing its editing distance. Therefore, we will only consider connected
QTGs. This implies that the skeleton of the nearest threshold graph of the input is a
caterpillar (it cannot have isolated vertices as the input graph is connected). A caterpillar
is a sequence S of vertices and a set of vertices that are leaves in the sequence S.

Consider the following problem: We are given a sequence S of vertices that form the central
path of a caterpillar. Now we shall compute the positions of all leaves l ∈ VQ\S within
the sequence so that the threshold graph induced by this caterpillar has minimal editing
distance from Q among all threshold graphs that are induced by a caterpillar with exactly
this sequence as central path. We will show later that under certain conditions this problem
can be solved in linear time in the size of the sequence.

The idea of the algorithm is to enumerate all possible sequences S, to calculate the best
positions of the remaining vertices as leaves and to keep a skeleton whose induced threshold
graph has minimal editing distance to Q. A sequence S can consist of up to n := |VQ|
vertices. There are

(n
i

)
possibilities to choose a subset of i vertices out of a set of n vertices

and we can order these i vertices in i! different ways. It follows that the number of all
possible sequences is

n∑
i=1

(
n

i

)
· i!, n = |VQ|.

This is far too big for any reasonable computation. But we can restrict the number of
possible sequences. We have shown that for every (Q, S(Q)) there is a nearest threshold
graph T with a skeleton S(T ) so that Theorem 2.10 (1) - (3) holds. We try to find such
a threshold graph or, more precisely, its skeleton S(T ). The central path of this skeleton
cannot contain leaves of S(Q) (Theorem 2.10 (1)). Therefore, we only have to consider the
subgraph of S(Q) that is induced by its inner vertices. Furthermore, the vertices in the
central path of S(T ) have to fulfil the properties Theorem 2.10 (2) and (3), from which
follows that the sequence of these vertices must consist of intervals of coherent vertices in
S(Q). This allows us to perform a kind of DFS to find all such sequences. The following
lemma summarizes the properties that a possible sequence for the central path of S(T )
must have.

Corollary 2.19. Let (Q, S(Q)) be a connected QTG and (T, S(T )) a nearest threshold
graph of Q such that Theorem 2.10 (1) - (3) holds. A possible sequence seq of vertices for
the central path of S(T ) must have the following properties:

1. It does not contain any leaves of S(Q).

2. If w is an element of seq, then all ancestors v of w in S(Q) are also in seq.

3. Let v, w be elements of seq. If v is an ancestor of w in S(Q), the same holds in seq.

4. Let I be an interval of seq with starting vertex v. It holds that |I| > Scoremax(v).

We call a sequence that has all these properties valid.

Proof. This corollary follows directly from Theorem 2.10 and Theorem 2.17.
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2.4.2.1 Enumerating-Algorithm

Here we present and prove the correctness of Algorithm 2.2 that enumerates all valid
sequences. Since we do not have to consider the leaves of S(Q) in order to find the correct
sequence, the algorithm operates on the subtree of S(Q) induced by its inner vertices. We
denote this subtree by S(Q)inner. The algorithm works recursively. Each function call has
three arguments: v, seq and super. The list seq contains the current sequence, super all
vertices in S(Q)inner that are adjacent to a vertex in the current sequence in S(Q)inner but
not contained in the latter and v is the vertex that is added to the sequence seq during the
current function call. In order to keep super correct, we delete v from this list and insert
all children of v into it. If the new sequence is valid, the algorithm prints the sequence. If
super is not empty, we call the function successively on all vertices in super. In the case
that the sequence is not valid, i.e. the last interval in it is too short, we call the function
only on children of v rather than on all vertices in super. In each function call first we test
whether the longest path in SubtreeS(Q)inner(v) is greater than Scoremax(v). Otherwise we
return (see Corollary 2.19 (4)).

After all subsequent calls have returned, seq and super are restored to the state they had
before entering the current function call. Then the function returns. The initial function
call is made with the root of S(Q) as its first argument and two empty lists for seq and
super.

In order to prove the correctness of Algorithm 2.2 we use the following Lemma 2.20.

Lemma 2.20. Let calculate(v, seq, super) be a subsequent function call of calculate
(r,⊥,⊥). Then the following holds: When the call has executed line 30

1. scoreMax(v) and scoreMaxHolder(v) are correct for all v ∈ seq, i.e. they equal
Scoremax(v) and Scoremaxholder(v), respectively.

2. position contains the correct index (starting at zero) for each vertex v in seq.

3. super contains exactly those vertices that are adjacent to a vertex in seq but that are
not contained in the sequence.

4. The sequence in seq fulfils the properties of Corollary 2.19 (1) - (3).

Proof. We prove this by a structural induction on the depth of a call on the stack. Before
beginning, we want to point out an important detail. During the execution of the algorithm
the parameters seq and super are used in subcalls of calculate (lines 33 and 37). These
two lists have the same value after returning from the subcall as before its execution. This
holds because every subcall that modifies the lists undoes its changes of the two lists in lines
38 - 41. Also, the entries in the arrays scoreMax, scoreMaxHolder and position belonging
to vertices in the current sequence do not change as the algorithm does not touch entries
pertaining to vertices that are in seq and the sequence only grows in subsequent calls.

1. Base case n = 1
In this case calculate(v, seq, super) is directly called by calculate(r,⊥,⊥) in line 37.
Therefore, super contains all children of r in S(Q)inner and seq only contains r. As
v 6= r, f is set to zero (position(r) = 0). Thus, we get scoreMax(v) = scoreMax(r)−
1 = −1 and Scoremaxholder(v) = parent(v) = r. The algorithm proceeds to line 26,
inserts all children of v in super and deletes v from super. Hence, super now contains
all vertices adjacent to r−v in S(Q)inner and none of the vertices in seq. Furthermore,
position(v) is set to 1 and seq contains r and v. Consequently, all claims of the
lemma are fulfilled.
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Algorithm 2.2: Enumeration Of All Valid Sequences
Input: Array children containing all children of a vertex in a skeleton S(Q) of a

QTG Q with root vertex r.
Output: All sequences that have to be considered

1 forall v ∈ S(Q)inner do
2 position(v)← −1
3 scoreMax(v)← 0
4 scoreMaxHolder(v)← r
5 inner(v)← inner_vertices(v, children) // returns the children of v

that are inner vertices
6 longestPath(v)← calc_longest_path(v, inner) // returns the length

of the longest path in the subgraph of S(Q)inner with v as root

7 calculate(r,⊥,⊥)
// definition of the function calculate

8 calculate(vertex v, list seq, list super)
9 if v 6= r then

10 f ← (seq.size− 1)− position(parent(v))
11 if f = 0 then
12 scoreMax(v)←max(scoreMax(parent(v))− 1,−1)
13 if scoreMax(v) = −1 then
14 scoreMaxHolder(v)← parent(v)
15 else
16 scoreMaxHolder(v)← scoreMaxHolder(parent(v))
17 else
18 if scoreMax(parent(v))− 1 > 0 then
19 scoreMax(v)← scoreMax(parent(v))− 1 + f
20 scoreMaxHolder(v)← scoreMaxHolder(parent(v))
21 else
22 scoreMax(v)← f
23 scoreMaxHolder(v)← seq(position(parent(v) + 1 ))

24 if longestPath(v) ≤ scoreMax(v) then
25 return

26 forall u ∈ inner(v) do
27 super.insert(u) // insert u directly behind v

28 super.delete(v)
29 position(v)← seq.size()
30 seq.insert(v)
31 if scoreMax(v) > 0 then
32 forall c ∈ inner(v) do
33 calculate (c, seq, super)
34 else
35 print (seq) // print current sequence
36 forall n ∈ super do
37 calculate (n, seq, super)

38 seq.delete(v)
39 super.insert(v) // insert v after its former predecessor in super
40 forall u ∈ inner(v) do
41 super.delete(u)
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2. Editing to Threshold Graphs

2. Induction hypothesis
The claim holds for all calls with a depth on the stack of at most n.

3. Inductive step
Let c be a subsequent function call of c′ that has a depth of n. Furthermore, let
seq′ and super′ be the states of seq and super directly after line 30 in call c′. As
v 6= r, scoreMax(v) and scoreMaxHolder(v) are computed in lines 9 - 23. The list
seq′ fulfils the claimed properties as the corresponding function call c′ has depth n.
From property (4) it follows that the subgraph of S(Q)inner induced by the vertices in
seq′ is a tree. In combination with (3) this implies that the parent of v in S(Q)inner
must be part of seq′. Otherwise, v could not be part of super′.
As seq′ fulfils Corollary 2.19 (2), the number of elements between parent(v) and v in
seq′+v that are not ancestors of v in S(Q)inner is

(seq′ .size()− 1)− position(parent(v)).

If f = 0, i.e. v will be added directly after its parent in the sequence, then we have
Scoremax(v) = max(Scoremax(parent(v))−1,−1), as either we have to consider not-Q-
neighbours before parent(v) or not. If Scoremax(v) = −1, clearly, Scoremaxholder(v) =
parent(v) holds. Otherwise we have Scoremaxholder(v) = Scoremaxholder(parent(v)).

If f > 0 we have to differentiate two cases:

a) Scoremax(parent(v))− 1 > 0
In this case Scoremax(v) = Scoremax(parent(v))−1 + f holds, as we have to take
into account the vertices that are not Q-neighbours of parent(v) (and therefore
not Q-neighbours of v) before parent(v) in the sequence. This also implies that
Scoremaxholder(v) = Scoremaxholder(parent(v)).

b) Scoremax(parent(v))− 1 ≤ 0
In this case the highest value of Score(v, ·) is obtained if we only consider the f
not-Q-neighbours of v that are situated after parent(v) in the sequence. Thus,
we get Scoremax(v) = f and Scoremaxholder(v) is the first one of these vertices
in the sequence.

It follows that the computation of scoreMax(v) and scoreMaxHolder(v) is correct,
i.e. scoreMax(v) = Scoremax(v) and scoreMaxHolder(v) = Scoremaxholder(v).

If longestPath(v) ≤ scoreMax(v) the call returns. In this case the claim trivially
holds as we do not reach line 30. Otherwise, we insert all children of v into super
and delete v. Thus, (3) is true for seq′+v. As position(v) is set before inserting v in
seq′, this value is also correct. Hence, the claimed properties (1) - (3) hold for c. We
have added v to seq′ and, as stated above, the parent of v in S(Q)inner is part of seq′.
Thus, seq′+v also fulfils Corollary 2.19 (1) - (3) and therefore property (4).

This shows that the claimed properties also hold for a call of depth n + 1.

Using Lemma 2.20 we will show that Algorithm 2.2 enumerates all valid sequences.

Theorem 2.21. Algorithm 2.2 enumerates all valid sequences, i.e. sequences that fulfil
the properties Corollary 2.19 (1) - (4).

Proof. We prove this theorem by induction on the length of a valid sequence.

24



2.4. Quasi-Threshold to Threshold Editing

• Base case n = 1
The only valid sequence that has length one is the root itself. Consider the function
call calculate(r,⊥,⊥). As scoreMax(r) is zero but longestPath(r) is at least one,
we proceed to line 34 and print this sequence.

• Induction hypothesis
The algorithm enumerates all valid sequences of length at most n.

• Inductive step
Let S be a valid sequence with a length of n + 1. At first, we consider the case that
the sequence S′ consisting of the first n vertices of S is a valid sequence. Let v be
the last vertex in S, i.e. the vertex that is not contained in S′.

Let c′ be the function call of calculate that prints S′. With seq′ and super′ we
denote the state of seq and super after processing line 30 in c′. As S is a valid
sequence, v cannot be the starting vertex of a new interval. Therefore, its parent in S
is also its parent in S(Q)inner and v is part of super′ (Lemma 2.20 (3)). Thus, there
is a call c of calculate in line 37 with v as its first argument. From Lemma 2.20
we know that scoreMax(v) is correct for seq′+v = S + v and because S is a valid
sequence scoreMax(v) < 0 must hold. Note that otherwise the last interval in S
would be too short. Therefore, we proceed to line 34 in call c and print seq′+v = S.

Now we consider the case that S− v is not a valid sequence, where v is the last vertex
in S. We have (u1, u2, . . . , un, v) = S. There must be an i > 0 such that (u1, . . . , ui)
is a valid sequence. Let S′ be (u1, . . . , ui) with maximal i such that S′ is valid. Then
ui+1 is the starting vertex of the interval in sequence S that contains v. Let c′ be
the function call that prints S′ and seq′ and super′ be the states of seq and super
directly after line 30 in c′. The sequence S′ is valid, so the subgraph of S(Q)inner
induced by the vertices in the sequence must be a tree t. Sequence S is also valid and
the tree induced by its vertices contains t. As the vertices (ui+1, . . . , un, v) form an
interval in S, they have to be a path in S(Q)inner. Therefore, ui+1 must be adjacent
(in S(Q)inner) to one of the vertices in t. It follows that ui+1 is contained in super′
and that there is a call c of calculate with ui+1 as its first argument in line 37.
The values of Scoremax(uj), where i < j ≤ n, are all positive as it holds that
Scoremax(uj) = Scoremax(v) + n − j + 1 and Scoremax(v) = 0. Since S is a valid
sequence, longestPath(v) ≥ 1 and Scoremax(v) = 0, we have that longestPath(ui+1) >
Scoremax(uj) . Therefore, we pass the test in line 25 and proceed to line 33 (recall
that Scoremax(·) = scoreMax(·) as stated in Lemma 2.20). Here calculate with ui+2
as its first argument is called. This process continues until the function call with un

as its first argument calls calculate(v, . . . ). The value of Scoremax(v) in S is zero,
therefore the same holds for scoreMax(v). Thus, we proceed to line 34 in which S is
printed.

We have shown that Algorithm 2.2 enumerates all valid sequences. Moreover, it enumerates
only valid sequences. We want to justify why this is true.
An illegal sequence fails to fulfil either Corollary 2.19 (1) - (3) or (4). As the algorithm
only works on inner vertices of S(Q) and as super only contains vertices whose parents
are in seq, the propositions (1) - (3) are fulfilled. In each step the last interval in the
current sequence is extended and not printed if Scoremax(w) > 0 (w is the last vertex in
the current sequence). Hence, for a sequence that is printed in line 35 an ending vertex w
of an interval I has a Scoremax of at most zero. This implies that |I| ≥ Scoremax(v) for the
starting vertex v of an interval I.
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The following Lemma 2.22 helps to determine an upper bound for the number of calls of
function calculate during the execution of Algorithm 2.2.

Lemma 2.22. During the execution of the algorithm for any two function calls
calculate(v, seq, super) and calculate(v′, seq′, super′), it holds that either v 6= v′ or
seq 6= seq′.

Proof. Assume that there are two function calls cn and c′n′ of calculate with v = v′

and seq = seq′ during the execution of the algorithm. By ci−1 we denote the function
call that has invoked call ci. We find n = n′ as the depth of a call equals the size of its
second argument and we have seq = seq′. It follows directly that the first and the second
argument of the calls cn−1 and c′n−1 are equal as the second argument is modified only in
line 30 before invoking a subsequent call. Inductively, it follows that this must be true for
every pair (ci, c′i), where i ∈ {0, · · · , n− 1}. Note that c0 = calculate(r,⊥,⊥). Since in
calculate only one subsequent call is invoked per vertex v as first argument, it holds that
ci = c′i for every i ∈ {0, · · ·n}. This contradicts the assumption cn 6= c′n = c′n′ .

There are
( n

i+1
)
· (i + 1)! different ways to choose a sequence of length i and a single vertex

from a set of n vertices. In combination with Lemma 2.22 follows that there can be at most
n∑

i=1

(
n

i

)
· i!

different function calls of calculate during the execution of the algorithm, where n is the
number of inner leaves of the input skeleton. Note that this number is not a sharp upper
bound.

2.4.2.2 Leaf-Positioning-Algorithm

As mentioned in the introduction of this subsection, we need to calculate the best position
of the leaves for a given sequence S. The leaves are all vertices of Q that are not in S.
Algorithm 2.3 solves this task for a valid sequence S. The idea of this algorithm is the
following: it iterates over the sequence beginning at its end. For each vertex v the algorithm
calculates its potential leaves in the skeleton induced by S. These are all leaves of v in
S(Q) and vertices in the subtrees of children of v that are not part of the sequence. Then,
based on the measure Scoremax(v), the algorithm decides whether these vertices should be
made leaves of v or of the parent of Scoremaxholder(v) in S.

The algorithms’s complexity is in O(|S| + |VQ\S|) = O(|VQ|). The summand |VQ\S| is
due to the fact that the algorithm calculates a best position for every v ∈ VQ\S. Thus,
we have to touch every vertex in VQ\S. If we are only interested in the editing costs of a
nearest threshold graph T with sequence S as its central path, there is no need to know
the position of each leaf in S(T ). In this case we can replace leavesSeq by an array that
only contains the number of leaves for each vertex in S. This avoids the costly operations
in lines 10 and 15. Instead of copying all leaves we only have to add their number. This
can be performed in O(1). Thus, the running time of this version is in O(|S|).

Theorem 2.23. Given a valid sequence S, Algorithm 2.3 computes a skeleton S(T ) of a
threshold graph that fulfils Theorem 2.10 (1) - (3) and that has a minimal editing distance
among all threshold graphs induced by skeletons whose central path is S.

Let S be a valid sequence and S(T ) the skeleton of a nearest S-induced threshold graph of
Q, i.e. a threshold graph induced by a skeleton with S as central path that has a minimal
edit distance from Q among all threshold graphs induced by skeletons with S as a central
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Algorithm 2.3: Leaf-Positioning
Input:
Array seq, containing a valid sequence of vertices.
Array children, containing all children of a vertex in the skeleton S(Q) of a QTG Q.
Array depth, containing the depth of a vertex in S(Q).
Array #edges, containing the costs for isolating the subtree of a vertex in S(Q).
Array subtree, containing the vertices in the vertex’s subtree in S(Q).
Arrays scoreMax and scoreMaxHolder containing Scoremax and Scoremaxholder for
all vertices in seq.
Output: Leaves of each vertex in sequence seq. Editing costs in del + adds

1 del ← 0 // number of deleted edges
2 adds ← 0 // number of inserted edges
3 for v ∈ seq do
4 leavesSeq(v)← ∅
5 for n← seq.size()− 1 to 0 do
6 v ← seq(n)
7 for c ∈ children(v) do
8 if c /∈ seq then
9 del ← del+#edges(c) // add isolation costs for this subtree

10 leavesSeq(v)← leavesSeq(v) ∪ subtree(v) // add vertices in this
subtree

11 if scoreMax(v) > 1 then
12 pos ← position(scoreMaxHolder(v))− 1 // position of future parent
13 p← seq(pos)
14 nbAncestor ← depth(v)− depth(p)
15 leavesSeq(p)← leavesSeq(p) ∪ leavesSeq(v)
16 del ← del + nbAncestor ·|leavesSeq(v)|
17 leavesSeq(v)← ∅
18 adds ← adds + (n− depth(v)) · (|leavesSeq(v)|+ 1)

path. Let l be a leaf in S(T ), i.e. l is part of the set VQ\S. In the following we analyse
the set of edges that have to be deleted or inserted in order to obtain T . All edges {v, w}
in Q that are not incident to a vertex in S must be deleted. Otherwise, v would be an
ancestor of w in S(T ) or vice versa, but this is not possible as v, w /∈ S and leaves cannot
be ancestors of other vertices. Edges that are inserted also have to be incident to a vertex
in S for the same reason. But this implies that positioning a leaf within the sequence is
completely independent from the positioning of any other leaves.

Hence, iterating over all l ∈ VQ\S and assigning them to a parent such that the number of
edits incident to l is minimal yields a skeleton of a nearest S-induced threshold graph. In
order to find an optimal position for a leaf l, we define the following measure:

Definition 2.24. Let S be a valid sequence of S(Q) and l ∈ VQ\S. We denote the first
vertex in S by r and its last vertex by w. For every v in S we define the two sets p1(v),
which contains v, and all ancestors of v in S and p2(v), which contains all descendants of
v in S.

S = (r, . . . , pred(v), v︸ ︷︷ ︸
p1(v)

, succ(v), . . . , w︸ ︷︷ ︸
p2(v)

)

27



2. Editing to Threshold Graphs

Note that p2(v) is empty if v is the last vertex in S.
Let cost(v, l) be the number of vertices in p1(v) that are not Q-neighbours of l plus the
number of Q-neighbours in p2(v).

It is clear that cost(v, l) is the number of edits that have to be performed in order to insert
l as a leaf of v in the sequence (ignoring the deletions incident to l that have been necessary
for isolating l from the other leaves, but these cannot be omitted). Thus, inserting every
l ∈ VQ\S as a leaf of a vertex v with a minimal value of cost(v, l) among all vertices in S
results in a skeleton of a nearest S-induced threshold graph of Q.

As we only consider valid sequences S, for every leaf l ∈ VQ\S there is a S(Q)-ancestor
of l in S. The vertex with maximal depth in S among all these ancestors of v plays an
important role in the positioning process of l.

Lemma 2.25. Let S be a valid sequence of S(Q) and l be an element of VQ\S. Let v be the
S(Q)-ancestor of l with maximal depth in S. It holds that cost(v, l)−cost(v′, l) = Score(v, v′)
for every S(Q)-ancestor v′ of v in S.

Proof. First we introduce #NP (x) as the number of vertices in a set of vertices P that are
Q-neighbours of x and #FP (x) as the number of vertices in P that are not Q-neighbours
of x. Note that |P\{x}| = #NP (x) + #FP (v).

We have
S = (r, . . . , pred(v′)︸ ︷︷ ︸

p1

, v′, succ(v′), . . . , pred(v)︸ ︷︷ ︸
p2

, v, succ(v) . . . , w︸ ︷︷ ︸
p3

).

From the definition of cost(·, l) follows:

cost(v′, l) = #Fp1+v′(l) + #Np2+v+p3(l) (1)= #Fp1(l) + #Np2+v

(2)= #Fp1 + #Np2 +1.

The notation pi + x is an abbreviation for pi ∪ {x}. Step (1) is valid as v′ is a Q-neighbour
of l and p3 does not contain Q-neighbours of l; (2) follows as v is a Q-neighbour of l. Now
we analyse cost(v, l).

cost(v, l) = #Fp1+v′+p2(l) + #Np3(l) (3)= #Fp1+v′+p2(l)
(4)= #Fp1(l) + #Fp2(l).

Step (3) is valid as p3 does not contain a Q-neighbour of l and (4) follows from v′ being a
Q-neighbour of l. But then we have for cost(v, l)− cost(v′, l):

cost(v, l)− cost(v′, l) = #Fp1(l) + #Fp2(l)− (#Fp1(l) + #Np2(l) + 1)
= #Fp2(l)− (#Np2(l) + 1)
(5)= #Fp2+v′(l)− (#Np2+v′(l))
(6)= Score(v, v′)

Step (5) is valid as v′ is a Q-neighbour of l; (6) is justified as a vertex in S is an Q-neighour
of l iff it is a Q-neighbour of v.

Lemma 2.25 implies the following:
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1. Scoremax(v) < 1
For all vertices w above v in the sequence we have Score(v, w) at most zero. But all
vertices that maximise Score(v, ·) cannot be Q-neighbours of v and therefore they
are not Q-neighbours of l either. Consequentely, they cannot be parents of l. But
then the value of Score(v′, v) of a potential parent v′ is negative, so inserting l as a
leaf of v′ is more costly than inserting it as a leaf of v. We do not have to consider
vertices below v in the sequence as they are not Q-neighbours of l.

2. Scoremax(v) = 1
Here the same argument as in the first case applies with the only difference that
there is a potential parent v′ such that inserting l under v′ is as costly as inserting l
under v. But as both costs are equal we can insert l as a leaf of v.

3. Scoremax(v) > 1
There is a vertex w with Score(v, w) = Scoremax(v) ≥ 2. Its predecessor v′ in S must
be a Q-neighbour of v; otherwise, Score(v, w) would not be maximal. Note that such
a parent always exists as we only regard connected QTGs. Therefore, the root of S
is a Q-neighbour of all vertices.
In this case we have Score(v, v′) ≥ 1 and v′ has a maximal score among all Q-
neighbours of v. Hence, inserting l as a leaf of v′ is a best choice for l as a position
within S.

Now we can prove some propositions about Algorithm 2.3. The term best parent of an
l ∈ VQ\S means that inserting l as a leaf of this vertex causes a least number of edits
incident to l.

Lemma 2.26. Let vi be the vertex in seq with index i. After iteration i of the loop in
line 5 the following holds:

1. All vertices of VQ\S that are in leavesSeq(vj) for a vj with j ≥ i are placed with a
minimal number of edits.

2. For a vertex that is not in leavesSeq(vj), where j ≥ i, vj cannot be a better parent
than its current parent.

3. All vertices in VQ\S for which vi is the Q-neighbour with greatest depth in S but not
a best parent are transfered into leavesSeq(p), and p is a best parent of them.

4. del + adds equals the number of the following edits:

• All edits incident to vj and vertices in leavesSeq(vj), where j ≥ i.

• All deletions incident to vertices in leavesSeq(vk), where k > i. (These are the
vertices that have been moved above.)

Proof. We show this by induction on the loop counter i:

• The claim holds for the first iteration i := seq .size()− 1.

1. All possible leaves of vi have to be neighbours of this vertex in Q. Therefore,
iterating over all children (lines 7 - 10) of vi and adding all vertices in the subtrees
of those children that are not in S inserts all possible leaves of vi into leavesSeq(vi)
as S is a valid sequence. If Scoremax(vi) ≤ 1, vi is a best parent for all these
vertices. If Scoremax(vi) > 1, the predecessor p of w := Scoremaxholder(v) in S is
a best parent (see Lemma 2.25). Thus, transferring all vertices in leavesSeq(vi)
to p (line 15) makes them leaves of a best parent. As Scoremax(p) ≤ 1 (otherwise
w would not have a maximal Score(v, w)), the vertices will remain there.
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2. Editing to Threshold Graphs

2. We have shown in (1.) that all possible leaves are added initially to leavesSeq(vi)
and only if vi is not a best parent for them, they are transferred to a best parent
above vi.

3. If Scoremax(v) > 1 all vertices in leavesSeq(vi) are transferred to the predecessor
of Scoremaxholder(vi) and this p is a best parent for them.

4. After line 10 the variable del contains the number of deletions of all edges of
a possible leaf to vertices that are not in S. If these vertices remain leaves of
vi, no more deletions incident to them will occur. If they do not, we have to
delete all edges to any of their Q-neighbours in the path from vi to their best
parent p. This number is equal to level(vi)− level(p) as S is a valid sequence.
In this case these edits are added to del (line 16). After line 17 leavesSeq(vi)
only contains vertices for which vi is a best parent. Therefore, no additional
deletions incident to them are necessary. What remains is to count the edges
that have to be inserted incident to these vertices and to vi itself in order to
get the threshold structure. These are the edges from vertices situated above v
in the sequence that are not Q-neighbours of vi in S. As S is a valid sequence,
this number is equal to i− level(vi).

• Induction hypothesis
The claim holds for all vj with j ≥ i and i < seq .size()− 1.

• Inductive step
As we do not change leavesSeq(vj) for any vj , where j > i− 1 in iteration i− 1, the
claim holds for all these vertices due to the induction hypothesis.

1. If leavesSeq(vi−1) already contains leaves before the execution of line 7, we know
that vi−1 is a best parent for them. In this case Scoremax(vi−1) ≤ 1 and vi−1
will keep them. Independent of this, all vertices of VQ\S for which vi−1 is the
Q-neighbour with greatest depth in S are added to leavesSeq(vi−1) and kept
as leaves iff Scoremax(vi−1) ≤ 1. Hence, for all vertices in leavesSeq vi−1 vertex
vi−1 is a best parent.

2. This is true for all vertices in VQ\S for which a vj is the Q-neighbour with
greatest depth and j > i − 1 because of part (2) of the induction hypothesis.
The same holds for all vertices for which vi−1 is the Q-neighbour with greatest
depth in S as they are inserted to leavesSeq(vi−1) in line 10 and kept as leaves
iff Scoremax(vi−1) ≤ 1. All vertices that will be initially inserted to a vertex
above vi−1 in S are descendants of this vertex in S(Q). Thus, vi−1 cannot be a
Q-neighbour of them as S is a valid sequence, and so it cannot be a best parent
either.

3. If Scoremax(vi−1) > 1, vi−1 is not a best parent for the vertices in leavesSeq(vi−1)
and they are transfered to a best parent above vi−1 in line 15. This vertex p
must have a Scoremax(p) ≤ 1 so they will remain there.

4. Before the execution of line 7 we know by the induction hypothesis that all edits
incident to vj and vertices in leavesSeq(vj), where j > i− 1, have already been
taken into account. Similarly all deletions for vertices in leavesSeq(vi−1) have
already been counted. The deletions for isolating vertices for which vi−1 is the Q-
neighbour in S with greatest depth are counted in line 9. If Scoremax(vi−1) > 1,
the additional deletions for changing the leaves in leavesSeq(vi−1) into leaves of
a best parent are counted in line 16. Finally, all edges that have to be inserted
for vi−1 and all leaves for which it is a best parent are counted in line 18.
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2.4. Quasi-Threshold to Threshold Editing

Hence, the claim is also true for iteration i− 1. This shows that the lemma holds for
all iterations of the main loop.

Lemma 2.26 shows that the vertices in leavesSeq(vi) for vi ∈ S are placed in such a way that
the resulting threshold graph is a nearest S-induced threshold graph of the input graph Q.
Hence, it shows the correctness of Theorem 2.23. Also, the complexity of O(|S|+ |VQ\S|)
is correct as every l ∈ VQ\S is moved up at least once (if its initial position is not correct,
it is moved directly to a best parent and will remain there).

If we insert this algorithm (or rather its (|S|)-version) into Algorithm 2.2 in line 35 instead
of printing the current sequence, we obtain the edit distance of a nearest threshold graph
induced by the current sequence. In doing so, we can identify the sequence S that induces
a threshold graph that has minimal edit distance among all valid sequences S′. In a last
step we execute the O(|S|+ |VQ\S|)-version of Algorithm 2.3 on sequence S in order to
obtain a skeleton of this nearest threshold graph of Q.

2.4.2.3 Running Time

Given a skeleton S(Q) of a quasi threshold graph Q, where n is the number of inner vertices
of S(Q), we know from Lemma 2.22 that

n∑
i=1

(
n

i

)
· i! < n! ·

n∑
i=1

(
n

i

)
< 2n(log n+1)

is an upper bound for the number of calls of the function calculate in Algorithm 2.2. As
in each call of calculate at most once Algorithm 2.3 is executed, we obtain a complexity
of O(n · 2n·(log n+1)) = O(2n·(log n+1)+log n). If we take into account that the algorithms
requires a skeleton of the input graph that has to be calculated and that we must executed
the O(|VQ|)-version of Algorith 2.3 one time in order to obtain a nearest threshold graph,
the overall complexity is in O(2n·(log n+1)+log n + |VQ|+ |EQ|). Note that this is not a sharp
upper bound for the complexity of the algorithm.

2.4.3 Heuristic

After introducing an algorithm that solves the threshold editing problem for quasi-threshold
graphs exactly, we will present a heuristic for this problem. It is based on the Quasi-
Threshold Mover presented in [BHSW15], but instead of editing to quasi-threshold graphs
we edit to threshold graphs. Let Q be a quasi-threshold graph and S(Q) a skeleton of Q.
The algorithm works in rounds. We start with an initial threshold graph skeleton of Q.
This initial threshold skeleton can be obtained by arranging the vertices of Q to form an
arbitrary caterpillar or by using a more advanced technique. In each round the algorithm
iterates over the vertices v of Q in a random order. For each vertex v a position that causes
the least editing costs within the current skeleton is found and v is moved to this position.
One round of the algorithm presented in the paper needs O(|VQ|+ |EQ| log ∆) time, where
∆ is the maximum degree. We will present a simple version that has a quadratic running
time per round as this running time is sufficient in order to compare the heuristic to the
exact algorithm. The description in Algorithm 2.4 shows one round of this algorithm.

The main calculation is performed in the functions CostsInsertAsLeafOf() (line 11) and
CostsAdoptChildrenOf() (line 12). We will briefly explain how these functions work.
Suppose that the central path of curSkel has the following structure:

(r, . . . , pred(p)︸ ︷︷ ︸
p1

, p, succ(p), . . . , w︸ ︷︷ ︸
p2

).
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2. Editing to Threshold Graphs

Algorithm 2.4: One-Round-Threshold-Moving
Input: Quasi-threshold-graph Q.
Initial threshold skeleton Inital of Q, i.e. a skeleton of a threshold graph that has
the same vertex set as Q.
Output: Skeleton of a threshold graph of Q.

1 permutation ← randomPermutation(VQ)
2 curSkel← Inital
3 centralPath← CalcCentralPath(curSkel)
4 for vm ∈ permutation do
5 curSkel.remove(vm)
6 posopt ← −1
7 scoreopt ←∞
8 leaf ← true
9 for i← 1 to centralPath.size() do

10 p← centralPath(i)
11 editsleaf ← CostsInsertAsLeafOf(p)
12 editsadopt ← CostsAdoptChildrenOf(p) // If a child of p is

adopted, centralPath(i+1 ) must be adopted, too
13
14 if min(editsleaf , editsadopt) < scoreopt then
15 scoreopt ← min(editsleaf , editsadopt)
16 posopt ← p
17 if editsleaf ≤ editsadopt then
18 leaf ← true
19 else
20 leaf ←false

21 curSkel.insert(vm, posopt, leaf)

1. CostsInsertAsLeafOf(p)

This function calculates the costs for inserting vm as a leaf of p. In order to do this
we have to

a) insert edges from all vertices in p1 + p that are not Q-neighbours of vm.

b) delete edges from all Q-neighbours of vm that are not on the path p1 + p.

2. CostsAdoptChildrenOf(p)

The function calculates the cost if we want to adopt a child of p. Note that we have
to adopt at least succ(p) (if p 6= w). Adopting another child of p but not succ(p)
would destroy the caterpillar structure of the skeleton. Therefore we must adopt
succ(p) and all other leaves of p that are Q-neighbour of vm. The edge operations
are as follows

a) inserting edges from all vertices in p1 + p that are not Q-neighbours of vm.

b) deleting the edges from all Q-neighbours of vm that are not on the path p1 + p
or that are not in the adopted subtrees.

c) inserting edges to all vertices that are not Q-neighbours of vm and that are
situated in one of the adopted subtrees.
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2.4. Quasi-Threshold to Threshold Editing

For the computation of the requested values both functions need information on the
number of Q-neighbours and vertices in the path above p, the total number of Q-neighbours
and vertices above p that are not in the central path, as well as the number of Q-
neighbours/vertices below p. All these values can be kept up-to-date while iterating over
the central path of curSkel. Additionally, we need a test in O(1) as to whether a vertex w
is adjacent to vm in Q. This can be realized using a n × 1 boolean array indicating the
neighbourhood of vm. This array can be updated in every iteration of the outer loop in
O(degree(vm)), where degree(vm) is the degree of vm in Q.

In our implementation we do not have a fixed upper bound for the number of rounds.
Instead, the algorithm terminates when it cannot improve the current threshold graph in
three consecutive rounds.
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3. Experimental Evaluation

In this chapter we will experimentally evaluate the proposed algorithms. We will discuss
differences between the exact algorithm for threshold editing (algorithm E), the exact
algorithm for threshold deletion (algorithm D) and the heuristic for threshold editing
(algorithm H). In particular we will consider the following two aspects:

• differences in the number of edits that are calculated by the algorithms E, D and H
for an input G.

• differences in the running time of the three algorithms for an input G.

Note that the first aspect is rather a comparison between the problems threshold editing
and threshold deletion than a comparison between algorithms E and D as both calculate
the minimal number of edits that are necessary in order to make a quasi-threshold graph G
a threshold graph in the context of threshold editing and threshold deletion, respectively.
For the heuristic H we use a tree in which all vertices are children of the root as the initial
skeleton.

For the evaluation we use generated quasi-threshold graphs. In doing so we can easily
obtain input graphs of different size. An important question is how we generate these
quasi-threshold graphs. We have decided to use the following procedure in order to obtain
a tree of size n. This tree induces a connected quasi-threshold graph of the same size.

Algorithm 3.1: Random Trees
Input: n, size of the arbitrarily generated tree.
Output: Array parent containing each vertex’s parent.

1 parent(1 )← −1 // vertex 1 is the root of the skeleton
2 forall i = 2 to n do
3 parent(i)← random number between 1 and i− 1

The algorithm can generate every connected quasi-threshold graph of size n. However, we
should keep in mind that the generated graphs are not uniformly distributed. We have
implemented the algorithms in C++11. All experiments are executed on an Intel Core
i5-4690 CPU with 8GB RAM.
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3. Experimental Evaluation

data set deviations in the number of edits
E vs. D E vs. H E vs. H∗

id n #dev. max. diff. #dev. max. diff. #dev. max. diff.
D1 100 30 24 53 32 18 21
D2 200 50 55 68 92 24 43
D3 300 51 67 80 187 26 45

Table 3.1: Number of graphs in each data set in which the results of D, H and H∗ differ
from the optimal solution calculated by E and the maximal difference among
these deviations.

3.1 Number of Edits
In this section we compare the number of edits that are calculated by the algorithms E, D
and H for input graphs G. We evaluate the algorithms on three data sets: D1, D2 and D3.
Each data set consists of 100 quasi-threshold graphs that have 100, 200 and 300 vertices
respectively. These input graphs have been generated by Algorithm 3.1.

Figures 3.1, 3.2 and 3.3 show the results of D1, D2 and D3. Each number between 1 and
100 on the x-axis represents a quasi-threshold graph G of the considered data set. In this
experiment we calculate the ratios

rE = #edits by E

#edits by E
= 1, rD = #edits by D

#edits by E
, rH = #edits by H

#edits by E

for each input graph G. The ratios rD (blue) and rH (black) are the factors by which the
results of algorithms D and H differ from the optimal solution calculated by E. The green
bars represent the running time of algorithm E on input graph G. The graphs are ordered
increasingly by the number of edits calculated by E.

In all three Figures there is no identifiable link between the number of edits calculated by
E and the running time of this algorithm. Furthermore, the results imply that rD and rE

are independent of E’s running time.

In the data sets D1 and D2, rD is always smaller than 1.15 and in D3 it is even smaller than
1.1. At least for these randomly generated graphs there is only a small mean difference
between the edit and deletion distances. In our sample, rH tends to be greater than rD. In
order to improve the heuristic one could use the result of D as H’s initial skeleton. Since
D is a linear-time algorithm, this does not interfere with H’s complexity. We denote this
version of the heuristic by H∗. In the Tables 3.1 and 3.2, H∗ is compared to the other
algorithms. To contrast the ratios rE , rD and rH , Figure 3.4 shows the absolute numbers
of edits of the three algorithms on data set D3. The graphs showing the absolute number
of edits in D1 and D2 are of similar shape.

Table 3.1 shows the number of graphs in which the result of D, H and H∗ differs from the
optimal solution calculated by E for all three data sets. Additionally, the highest difference
in each data set is given. We can see that algorithm H∗ can reduce the number of graphs
in which the calculated solution is not equal to the result of algorithm E significantly
compared to the algorithms D and H. Also, the maximum difference is reduced.

Table 3.2 shows the average number of edits for all algorithms on the data sets and its
standard deviation. The latter is large, therefore the average is only of limited significance.
But in combination with the results displayed in Table 3.1 we can conclude that H∗

computes significantly better results than H. In our sample, it can reduce the average
difference between the results calculated by E and those calculated by D by about 50%.
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Figure 3.1: Relative number of edits in data set D1: 100 graphs of size 100.
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Figure 3.2: Relative number of edits in data set D2: 100 graphs of size 200.

3.2 Running Time
Figure 3.5 gives an overview of the running time of all three algorithms on input graphs of
different sizes (x-axis). For each considered input size n, we let the algorithm run on 50
random quasi-threshold graphs of size n. The plot shows the average running time of the
algorithms on these sets. Note that the y-axis is logarithmically scaled. We can see that
the running time of algorithm E grows exponentially. However, the plot is not monotone;
this – like Figures 3.1, 3.2 and 3.3 – shows again that the running time of E has a large
variance and depends strongly on the structure of the input graph.

data set number of edits
E D H H∗

id n mean std. mean std. mean std. mean std.
D1 100 167.71 27.16 169.36 27.78 172.88 29.20 168.62 27.83
D2 200 451.24 48.02 456.83 50.34 464.29 55.21 453.86 48.73
D3 300 790.67 74.06 798.53 77.78 816.52 89.29 794.23 76.03

Table 3.2: Mean edit distance of the algorithms E,D,H and H∗ on the three data sets.
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Figure 3.3: Relative number of edits in data set D3: 100 graphs of size 300.
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Figure 3.4: Absolute number of edits in data set D3: 100 graphs of size 300.
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Figure 3.5: Running time on graphs of different size.

3.3 Other Graphs
We want to complete the picture by giving some examples in which our above findings do
not hold. In the case of the differences in the number of edits between threshold editing and
threshold deletion we have seen that the average difference (on the selected data sets) was
small compared to the total number of edits necessary for a given input graph. However,
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for every n ∈ N one can generate a quasi-threhold graph Q such that its edit distance is n
while its deletion distance equals 2n resulting in rD = 2 (see Section 2.4).

Concerning running time, the results show that algorithm E runs in feasible time on the
graphs in our sample with a size of up to 300 vertices. However, there are special graphs
on which algorithm E does not perform as well as on the graphs in the data sets analyzed
so far. One of these ‘critical’ graph classes are quasi-threshold graphs which are induced by
a skeleton that consists of one universal vertex u and two paths of size n (or of size n and
n−1 if the number of vertices of the graph is even) that are subtrees of u. Figure 3.6 shows
the running time of the algorithms on these graphs. The running time of algorithm E is
significantly greater than its running time on random graphs generated by Algorithm 3.1.
However, the edit and deletion distance are equal on these graphs (namely n(n − 1)/2).
This is large value compared to the edit distance of the randomly generated graphs in
our samples. This suggests, that also the ftp-based algorithm from [DDLS15] would have
difficulties in handling this kind of graphs.
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Figure 3.6: Running time of a QTG induced by a skeleton with a universal u and two paths
as subtrees of u.

It seems that the mean difference between the edit and deletion distances of randomly
generated graphs is not very large although the size of this difference is not bounded.
Furthermore, algorithm E seems to perform better on randomly generated graphs than on
the graphs introduced in this section.
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4. Conclusion

In the first part of this thesis, we have given a linear time algorithm solving the problem
of threshold deletion on quasi-threshold graphs, which is NP-complete on general graphs.
The algorithm takes a skeleton of its input graph and calculates a skeleton of a nearest
threshold graph of the input.

In the second part we have presented an algorithm for the problem of threshold editing on
quasi-threshold graphs, which is also NP-complete on general graphs (and even on split
graphs). The algorithm is based on the following observation: given a skeleton S(Q) of
a quasi-threshold graph Q, there is a skeleton S(T ) of a nearest threshold graph T of Q
such that all leaves in S(Q) are also leaves in S(T ). Furthermore, among all skeletons S(T )
with this property we can find a skeleton S(T ′) such that a certain ‘structure’ of S(Q) is
maintained in S(T ′). We could show that given a sequence of vertices, we can calculate
in linear time a threshold graph with minimal edit distance from the input among all
threshold graphs that have this sequence as their central path and the same vertex set
as the input. Therefore, the main problem is to find the right sequence of inner vertices.
From the observation described above it follows that we can ignore all leaves in a skeleton
of Q. This and the maintained ‘structure’ of the input skeleton reduces the number of
sequences that we have to test significantly. But it is still exponential in the number of
inner vertices of the input skeleton.
Further, we have adapted an existing heuristic for the problem of quasi-threshold editing
to work for the problem of threshold editing.

In a last step we have evaluated all three algorithms. On our randomly generated input
graphs with a size of up to 300 the exact algorithm for threshold editing works in feasible
time. The generated quasi-threshold graphs of this size (in our sample) have a mean edit
distance of about 800. There are fpt-based approaches for the threshold editing problem
with a complexity in 2O(

√
k log k)+ poly(n), where k is the edit distance and n the number of

vertices of the input graph. Our results suggest that our algorithm can handle input graphs
for which the running time of the fpt-based algorithm would not be feasible. Another
result of our evaluation is that the mean difference between the edit and deletion distance
of quasi-threshold graphs seems to be relatively small. This suggests that calculating (in
linear time) a threshold graph with minimal deletion distance from an input graph might
be a good alternative to the potentially time-consuming calculation of a threshold graph
with minimal edit distance.
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4. Conclusion

Future work. The NP-completeness of threshold editing on quasi-threshold graphs
remains an open problem.

One might try to improve the running time of our exact algorithm for threshold editing by
identifying further rules that help to reduce the number of possible sequences that have to
be tested. We noticed that quasi-threshold graphs with a small number of leaves in their
skeletons are likely to have identical edit and deletion distances. We think that this could
lead to a rule excluding many sequences that cannot be part of an optimal solution.

Further, one might implement a linear time version of the heuristic using the ideas in
[BHSW15].

42



Bibliography

[BB13] Sebastian Böcker and Jan Baumbach. Cluster Editing, pages 33–44. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[BHSW15] Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast
Quasi-Threshold Editing, pages 251–262. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a
survey, volume 3. Siam, 1999.

[Cai96] Leizhen Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171 – 176, 1996.

[CH73] Vašek Chvátal and Peter Hammer. Set packing and threshold graphs. Univ.
Waterloo Res. Report, pages 73–21, 1973.

[DDLS15] Pål Grønås Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D
Sullivan. On the threshold of intractability. In Algorithms-ESA 2015, pages
411–423. Springer, 2015.

[JHJJC96] Yan Jing-Ho, Chen Jer-Jeong, and Gerard J. Chang. Quasi-threshold graphs.
Discrete Applied Mathematics, 69(3):247 – 255, 1996.

[Mar94] François Margot. Some complexity results about threshold graphs. Discrete
Applied Mathematics, 49(1):299 – 308, 1994.

[NG13] James Nastos and Yong Gao. Familial groups in social networks. Social
Networks, 35(3):439 – 450, 2013.

43


	Contents
	1 Introduction
	2 Editing to Threshold Graphs
	2.1 Quasi-Threshold Graphs
	2.2 Threshold Graphs
	2.3 Quasi-Threshold to Threshold Deletion
	2.4 Quasi-Threshold to Threshold Editing
	2.4.1 Properties of Nearest Threshold Graphs
	2.4.2 Exact Algorithm
	2.4.2.1 Enumerating-Algorithm
	2.4.2.2 Leaf-Positioning-Algorithm
	2.4.2.3 Running Time

	2.4.3 Heuristic


	3 Experimental Evaluation
	3.1 Number of Edits
	3.2 Running Time
	3.3 Other Graphs

	4 Conclusion
	Bibliography

