
Forest Stack Layouts

Bachelor’s Thesis of

Lena Scherzer

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Dr. Torsten Ueckerdt
T.T.-Prof. Thomas Bläsius

Advisors: Laura Merker

Time Period: 30.05.2022 – 30.09.2022

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, September 9, 2022

iii

Abstract

A stack layout of a graph consists of an ordering of the vertices σ and a partition of the
edges into stacks. Two edges on the same stack are not allowed to cross with respect
to σ, meaning that for no two edges xy and uv with σ(x) < σ(y) and σ(u) < σ(v) in
the same stack we have σ(x) < σ(u) < σ(y) < σ(v) or σ(u) < σ(x) < σ(v) < σ(y).
In a forest stack layout the subgraph on each stack is a forest. The minimum number
of stacks needed for a stack layout of a graph is called the stack number and the
minimum number of stacks needed for a forest stack layout is called the forest stack
number. We determine the forest stack number of some graphs and attack the
conjecture that the forest stack number of graphs might be at most one greater than
the stack number for every graph.

For complete graphs, complete bipartite graphs Km,n with m ≪ n, planar 3-trees
and k-trees the forest stack number or the best known bound on the forest stack
number is shown to be the same as the stack number. For outerplanar graphs, one
more stack is needed for forest stack layouts. We also show that for every k there
is a graph with stack number k that needs k + 1 stacks for a forest stack layout.
Assuming some restrictions apply, we find counterexamples to the conjecture.

Deutsche Zusammenfassung

Ein Stack Layout eines Graphen besteht aus einer Reihenfolge der Knoten σ und
einer Partition, welche die Kanten in Stacks aufteilt. Keine zwei Kanten in einem
Stack dürfen sich kreuzen mit Bezug auf σ. Das bedeutet, dass für keine zwei
Kanten uv, xy in einem Stack mit σ(u) < σ(v) und σ(x) < σ(y) gelten darf, dass
σ(x) < σ(u) < σ(y) < σ(v) oder σ(u) < σ(x) < σ(v) < σ(y). Bei Forest Stack
Layouts muss der Graph auf jedem Stack zusätzlich ein Wald sein. Die minimale
Anzahl an Stacks, welche für ein Stack Layout eines Graphen benötigt werden, nennt
sich die Stack Nummer und die minimale Anzahl an Stacks, welche für ein Forest
Stack Layout eines Graphen benötigt werden, nennt sich die Forest Stack Nummer.
Wir bestimmen die Forest Stack Nummer für einige Graphen und untersuchen die
Vermutung, dass Forest Stack Layouts immer höchstens einen Stack mehr benötigen
als Stack Layouts eines Graphen.

Für vollständige Graphen, vollständige bipartite Graphen Km,n mit m ≪ n, planare
3-Bäume und k-Bäume zeigen wir, dass die Forest Stack Nummern bzw. die besten
bekannten Schranken der Forest Stack Nummer die gleichen sind wie bei der Stack
Nummer. Für außenplanare Graphen wird ein Stack mehr für ein Forest Stack Layout
benötigt als für ein Stack Layout. Wir zeigen auch, dass für jedes k ein Graph mit
Stack Nummer k und Forest Stack Nummer k + 1 existiert. Wenn wir zusätzlich
verschiedene Einschränkungen für die Layouts annehmen, finden wir Gegenbeispiele
für die obige Vermutung.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 3
1.3 Contribution . 5
1.4 Outline . 5

2 Preliminaries 7
2.1 Different graph families . 7
2.2 Stack layouts and forest stack layouts . 8
2.3 Basic observations about stack numbers and forest stack numbers 9

3 Testing the conjecture for different graph families 11
3.1 Complete graphs . 11
3.2 Complete bipartite graphs . 13
3.3 Outerplanar graphs . 15
3.4 Planar 3-trees . 16
3.5 k-Trees . 17
3.6 Graphs with snf(G) = sn(G) + 1 . 20
3.7 Subhamiltonian Graphs . 22

4 Counterexamples 23
4.1 Counterexamples with fixed order of vertices 23
4.2 Modifications to graphs from Section 3.6 . 25
4.3 Counterexamples for directed acyclic graphs 33

5 Conclusions 37

Bibliography 41

vii

1. Introduction

A stack layout of a graph is a partition S of the edges into sets, called stacks, together
with an order σ of vertices. The idea is that the edges in each stack Si in a stack layout
can be inserted into and removed again from a stack using the given order of vertices σ.
An edge is pushed on the stack when the first vertex adjacent to it is reached in σ. The
edge is then removed when the second vertex of the edge is reached. As an example in
Figure 1.1 the four edges of the shown graph can be put in the same stack since they can
be added and removed from a stack as shown in Figure 1.1. When more than one edge is
adjacent to a vertex, the correct order to push and pop the edges from the stack has to be
chosen. A formal definition of stack layouts is given in Section 2.2.

Pushing and popping edges from a stack corresponds to the idea that on each stack no
two edges cross with regards to the order of vertices σ. A different way of visualizing stack
layouts is to search for a layout of a graph in a book. A book consists of half-planes, called
pages, that intersect at the spine of the book. The vertices are placed on the spine of the
book, creating the order of vertices σ. The edges are placed on the pages where no two
edges are allowed to cross. An example of two crossing edges is given in Figure 1.3. Thus,
stack layouts are also known as book embeddings. An example of a book embedding of a
K4 is shown in Figure 1.2.

In a stack layout each stack contains an outerplanar graph. Thus, the number of edges on
each stack is limited.

e1

e2

e3

e4

t1
t2

t3
t4

Stack after:

t1 t2 t3 t4

e1
e2

e1
e3
e4

e1
e3

Figure 1.1: An example stack layout where all edges can be put in the same stack.

1

1. Introduction

Figure 1.2: A book embed-
ding of a K4 on
two pages.

Figure 1.3: The green edge cannot be added
to the purple page since it crosses
another edge.

In this thesis, we consider a variant of stack layouts. Forest stack layouts have the additional
property that the edges in each stack do not form cycles. Each stack in a forest stack
layout thus induces a forest. This further limits the number of edges on each stack. A
formal definition of forest stack layouts is given in Section 2.2.

A graph G has many different stack and forest stack layouts. The stack number sn(G) and
forest stack number snf(G), however, is the smallest number of stacks needed to find a
corresponding layout for the graph G. The stack number is also called the page number or
book thickness of a graph.

Although stack layouts and the stack numbers of graphs have been more widely researched,
not much is known about forest stack layouts and forest stack numbers. Therefore, we
determine the forest stack number for some graphs for which the stack number is known.
Additionally, we look at more general bounds and relations between the stack number and
the forest stack number of graphs.

1.1 Motivation
The main motivation for this thesis is the following conjecture proposed by André Schulz
and Jonathan Rollin.

Let sn(G) = k for a graph G with |E(G)| = m and |V (G)| = n. That is, there exists a
stack layout Γ = (σ, S) of G with k stacks. The subgraph on each stack is an outerplanar
graph and therefore contains at most 2n − 3 edges. It follows that the total number of
edges m is at most k · (2n − 3).

The edges between two vertices that are next to each other in the order of vertices σ are
called short edges. Additionally, the edge between the first and last vertex in σ is also a
short edge. Because the up to n short edges are counted on every stack of the layout, the
bound for the number of edges can be reduced to m ≤ k(n − 3) + n.

Because n − 2k ≤ n − 1 for k ≥ 1 we can derive that

m ≤ k(n − 3) + n = k(n − 1) + n − 2k ≤ k(n − 1) + (n − 1) = (k + 1)(n − 1).

A stack in a forest stack layout can contain at most n − 1 edges. Therefore, the above
inequality suggests that the following conjecture might hold.

2

1.2. Related Work

Conjecture 1.1. For a graph G with sn(G) = k, snf(G) ≤ k + 1.

While forest stack layouts and the above conjecture might be interesting in and of them-
selves, they are also meaningful because they deepen our understanding of stack layouts.
Additionally, when looking at stack layouts that use the minimum number of stacks it can
be observed that often the stacks are already forests. If they are not already forests they
are mostly quite sparse and can be changed into forests. This poses the question if this is
only a coincidence or follows from Conjecture 1.1.

1.2 Related Work
The stack number of various graphs has been well researched. Here are some of the most
important results on the stack number of graphs.

While the idea of embedding graphs in books existed before, the stack number of graphs
was formalized by Bernhart and Kainen [3]. They also observed that graphs with stack
number 1 are exactly outerplanar graphs and graphs with stack number at most 2 are
exactly subgraphs of planar graphs with Hamiltonian cycles, so-called subhamiltonian
graphs. In the same paper, they determined the stack number of complete graphs with
more than three vertices to be sn(Km) = ⌈m/2⌉. For complete bipartite graphs Km,n, they
found the stack number to be m in the case that n is significantly larger than m.

For the stack number of complete bipartite graphs in general Muder et al.[16] proved
the current best upper bound sn(Km,n) ≤ ⌈(m + 2n)/4⌉. For the special cases Kn,n and
K⌊n2/4⌋,n Enomoto et al.[5] proved that sn(Kn,n) ≤ ⌊2n/3⌋ + 1 and sn(K⌊n2/4⌋,n) ≤ n − 1.

Others have continued their work and characterized the stack number of different graph
families. For example, Heath found an upper bound of 3 for the stack number of planar
3-trees[9].

Ganley and Heath proved that k-trees have at most stack number k + 1[13]. Then
Vandenbussche et al. showed that there are indeed k-trees that need k + 1 stacks for a
stack layout[22].

For planar graphs, Yannakakis proved that at most four stacks are needed for a stack
layout[24]. Recently it was shown by Bekos et al. and Yannakakis independently that this
boundary is tight and four stacks are necessary[2, 25].

Besides normal stack layouts, different variations of stack layouts have been defined and
researched.

Overbay[19] considered different stack layouts where for example each stack is a cylinder.
Pupyrev introduced the concept of simultaneous stack-queue layouts where for a shared
order of vertices σ the edges are partitioned into a stack and a queue[20]. Whereas in stack
layouts the edges are partitioned such that each set in the partition can be placed on a
stack according to the order of vertices σ, in queue layouts the edges can be enqueued and
dequeued with a first-in-first-out order σ.

Another example is matching stack layouts, which are stack layouts where the edges on
each stack are a matching. These matching stack layouts are also called dispersable book
embeddings and were also first introduced by Bernhart and Kainen [3]. These layouts are
of additional interest to us because a matching stack layout is also a forest stack layout.
Therefore, it can be said that forest stack layouts impose restrictions that are somewhere
in between stack layouts and matching stack layouts.

Bernhart and Kainen conjectured that any k-regular bipartite graph has a matching stack
layout using k stacks[3]. This conjecture was recently disproven by Alam et al.[1]. They

3

1. Introduction

were, however, able to prove that 3-regular bipartite planar graphs have matching stack
layouts using three stacks.

Galil et al. call graphs that have matching k-stack layouts k-pushdown graphs. They
were able to prove a minimum size for the smallest separator in large enough k-pushdown
graphs[6].

Shao et al. [21] looked at the matching stack number of the Cartesian product of complete
graphs and cycles. The Cartesian product C of two graphs G, H has as vertices the
Cartesian product of the previous vertices V (C) = V (G) × V (H). Two vertices (u, v) and
(u′, v′) are adjacent if and only if u = u′ and v was adjacent to v′ in H or v = v′ and u was
adjacent to u′ in G. They proved that for those Cartesian products the matching stack
number is the maximum degree plus one.

Forest stack layouts have also been previously defined and used by Merker and Ueckerdt[15].
They define the local stack number of a stack layout as the maximum number of stacks
adjacent to any vertex. The local stack number of a graph is the minimum local stack
number of any stack layout. They show that for k-trees the restriction to forest stacks does
not change the local stack number.

For directed acyclic graphs, stack layouts have to fulfill an additional property. The order
of vertices σ used in the layout has to be a topological ordering. Therefore, depending on
the edges the possible orders σ are very limited. It was proven by Nowakowski and Parker
and independently by Heath et al. that directed trees need only one stack for a stack
layout[18, 11]. Additionally, directed acyclic graphs, where the corresponding undirected
graph contains only one cycle, need at most two stacks[11]. For a directed acyclic graph, an
upward planar drawing is a planar embedding where all the edges are monotonic upward
curves. A directed acyclic graph that admits such a drawing is called upward planar. The
maximum number of stacks needed for upward planar graphs is unknown but the upper
bound was recently reduced to O(n2/3log2/3(n)) by Jungeblut et al. where n is the number
of vertices in the graph[12]. While Nöllenburg and Pupyrev were able to classify some
families of outerplanar directed acyclic graphs with constant stack number, in general it is
also unknown if the stack number of outerplanar directed acyclic graphs is bounded by a
constant[17].

We now look at the computational complexity of calculating the stack number of graphs.

For maximal planar graphs the stack number is at most 2 if and only if there exists a
Hamiltonian cycle. However, finding Hamiltonian cycles in maximal planar graphs is N P-
complete[23] and therefore computing the stack number of a graph is also N P-complete.

When the order of vertices is fixed, computing the stack number is still N P-complete. For
a fixed order of vertices the problem is equivalent to the circle graph coloring problem.
Circle graphs are graphs that are created by looking at a circle with chords. Each chord
corresponds to a vertex and two vertices are adjacent if and only if their chords intersect.
The circle graph coloring problem searches for a coloring of vertices of circle graphs such
that no two adjacent vertices have the same color. For the circle graph coloring problem
N P-completeness was proven by Garey et al.[7].

In general, the problem of finding the stack number for directed acyclic graphs is also N P-
complete since testing the existence of a 6-stack layout was shown to be N P-complete by
Heath and Pemmaraju[10]. However, for 1-stack layouts they gave a linear time algorithm.
Binucci et al. were able to prove that determining if a k-stack layout exists is N P-complete
for k ≥ 3[4].

4

1.3. Contribution

1.3 Contribution
In this thesis, we prove the forest stack numbers and bounds on forest stack numbers as
presented in Table 1.1.

Table 1.1: The stack number and forest stack number or tight bounds on the stack number
and forest stack number for some graphs.

Graph Stack Number Forest Stack Number
G = Kn sn(G) = ⌈n/2⌉ [3] snf(G) = ⌈n/2⌉
G = Kn,m with n ≪ m sn(G) = n [3] snf(G) = n

G outerplanar sn(G) = 1 snf(G) ≤ 2
G planar 3-tree sn(G) ≤ 3 [9] snf(G) ≤ 3
G k-tree sn(G) ≤ k + 1 [13] snf(G) ≤ k + 1

Since for all graphs, besides outerplanar graphs, the forest stack number or bound on the
forest stack number is the same as for the stack number, we provide graphs Fn,k with
snf(Fn,k) = sn(Fn,k) + 1 for every k ∈ N and n chosen large enough.

We find counterexamples for Conjecture 1.1 if we assume that the order of vertices σ
is fixed. For a fixed order of vertices σ and k ∈ N we find a graph G with sn(G) = k
and snf(G)/ sn(G) ≥ 3/2. By making alterations to the graphs Fn,k we also find a
counterexample to the conjecture if we assume for a specific path in the graph that all path
edges are in a single stack. Furthermore, for infinitely many k we find counterexamples
to the conjecture for directed acyclic graphs D with sn(D) = k. In particular, we find a
counterexample for upward planar graphs. Finally, we suggest further approaches to attack
Conjecture 1.1 and propose several open questions.

1.4 Outline
In the next chapter, some basic definitions are introduced that will be used throughout
the work. This includes the formal definitions of stack number and forest stack number.
Additionally, some basic observations are made about the relation between the stack number
and forest stack number.

In the third chapter, we prove bounds on the stack number of various graph families. We
start with complete and complete bipartite graphs. Then we consider outerplanar graphs,
planar 3-trees and k-trees. In all these cases besides outerplanar graphs the bound found
for the forest stack number is the same as that for the stack number. This poses the
question if for every stack number k there is a graph that has stack number k but forest
stack number k + 1. We find such graphs and prove that they need one more stack for
their forest stack layout.

In the fourth chapter, we give some counterexamples to Conjecture 1.1 for forest stack
layouts with a fixed vertex order. First, an example of a subhamiltonian graph that has
forest stack number 4 but stack number 2 with the given order of vertices. Then we
present a family of graphs, where for a given order of vertices the forest stack number is
at least 1.5 times the stack number. We then try different alterations to the graphs G
from the third chapter with snf(G) = sn(G) + 1. Using this method, we find graphs that
need two more stacks under different restrictions. Finally, we also consider the conjecture
of snf(G) ≤ sn(G) + 1 for directed acyclic graphs and give an upward planar graph as
counterexample.

5

2. Preliminaries

This chapter introduces the basic definitions and notations used in the thesis.

The graphs G we consider are undirected graphs with no loops or multiple edges unless
stated otherwise. The set of vertices of a graph G is referred to as V (G) and the set of
edges as E(G). Since the graphs are undirected, for an edge {u, v} ∈ E(G) we also write
uv ∈ E(G).

A subgraph Ĝ of a graph G has as its vertices a subset of the original vertices V (Ĝ) ⊆ V (G).
The edges E(Ĝ) are also a subset of the original edges E(Ĝ) ⊆ E(G). The graph G[A]
induced by a set of vertices A ⊆ V (G) is the subgraph of G with vertices A and edges
E(G[A]) = {uv ∈ E(G) | u, v ∈ A}.

The kth power of a graph G is a graph Gk with V (G) = V (Gk). In the graph Gk, all
vertices u, v ∈ V (Gk) are adjacent if and only if in G there is a path from u to v with
length at most k.

2.1 Different graph families
In this section, we introduce the graph families used throughout this thesis.

A complete graph Kn has n vertices and any two different vertices are connected by an
edge. It therefore has the maximum number of edges E(Kn) = n(n − 1)/2 that a graph
with n vertices can have. A clique is a subset of the vertices of a graph, C ⊆ V (G), such
that the subgraph induced by C is a complete graph.

For a complete bipartite graph Km,n the set of vertices can be partitioned into two sets
X, Y with V (Km,n) = X ∪ Y and X ∩ Y = ∅. One of the sets contains m vertices and the
other n vertices. Therefore |V (Km,n)| = m + n. Between two vertices u, v with u, v ∈ X or
u, v ∈ Y there is no edge. Between two vertices in different sets there is always an edge.
Hence, a complete bipartite graph has n · m edges.

Planar graphs are graphs that can be embedded in a plane without any edges crossing.
Embedding means that the vertices are assigned pairwise different positions on the plane.
Every edge uv ∈ E(G) is represented by a Jordan curve that starts at u and ends at v.
Those are the only two vertices that are allowed to be on the curve. If all vertices and
edges are embedded and no two edges cross, it is called a planar embedding of the graph.
The areas created by cutting along the curves of the edges are called faces.

7

2. Preliminaries

An outerplanar graph is a graph that is planar and has a planar embedding such that all
vertices are adjacent to one face.

Directed acyclic graphs are directed graphs that contain no directed cycles. For a directed
acyclic graph an upward planar drawing is a planar embedding of the graph in a plane.
Additionally, however, all curves representing the edges of the graph in the planar embedding
have to be monotonic upward curves. That is, in the coordinate system of the plane with
an x-axis and a y-axis the curves have to be monotonically increasing along one of the axes.

A k-tree is a graph that is created by taking a complete graph Kk+1 and repeatedly adding
new vertices v and edges connecting v to k vertices of the graph. The k vertices adjacent
to v have to be a clique in the graph.

A Hamiltonian cycle of a graph is a cycle in the graph that visits each vertex exactly
once. A Hamiltonian graph is a graph that contains a Hamiltonian cycle. Graphs that are
subgraphs of planar Hamiltonian graphs are called subhamiltonian graphs.

2.2 Stack layouts and forest stack layouts
A stack layout Γ = (σ, S) of a graph consists of an ordering σ of its vertices and a partition
S of the edges into stacks. Two edges on the same stack are not allowed to cross with
respect to σ, meaning that for no two edges xy and uv with σ(x) < σ(y) and σ(u) < σ(v)
in the same stack we have σ(x) < σ(u) < σ(y) < σ(v) or σ(u) < σ(x) < σ(v) < σ(y).
The stack number sn(G) of a graph G is the minimum number of stacks of any stack layout
of G.

In this thesis we consider a variation of stack layouts and stack numbers:

Definition 2.1. A forest stack layout Γ = (σ, S) is a stack layout where the graph on each
stack is a forest.

Definition 2.2. The forest stack number snf(G) of a graph G is the minimum number of
stacks of any forest stack layout of G.

Definition 2.3. A forest stack layout Γ = (σ, S) of an undirected acyclic graph D is a
forest stack layout where the order of vertices σ is a topological ordering of D.

Let σ = v0, . . . , vn−1 be an order of a stack layout of a graph G. There can be at most
n edges between vertices vivj with j = (i + 1) mod n and i ∈ {0, . . . , n − 1}. We call
these edges between adjacent vertices in the order σ short edges of the stack or forest stack
layout. While not as intuitive the edge vn−1v0 is also considered a short edge. In any stack
layout, short edges do not cross any edges.

The stack number and forest stack number of a graph are defined as the minimum number
of stacks needed to find a corresponding layout of that graph. With this definition any
order σ of the vertices can be chosen for the layout. We now define the stack and forest
stack number of a graph for a fixed order of vertices σ:

Definition 2.4. The stack number sn(G, σ) of a graph G for a fixed order of vertices σ
is the minimum number of stacks of any stack layout Γ = (σ, S) of G that uses the given
order of vertices σ.

Definition 2.5. The forest stack number snf(G, σ) of a graph G for a fixed order of vertices
σ is the minimum number of stacks of any forest stack layout Γ = (σ, S) of G that uses the
given order of vertices σ.

8

2.3. Basic observations about stack numbers and forest stack numbers

2.3 Basic observations about stack numbers and forest stack
numbers

First, we observe that the forest stack number is always larger than or equal to the stack
number of a graph.

Lemma 2.6. For any graph G we have sn(G) ≤ snf(G).

Proof. Let G be a graph with snf(G) = k. By definition, there exists a forest stack layout
(σ, S) using k stacks. Because (σ, S) is in particular a stack layout it follows that G
sn(G) ≤ k = snf(G).

Next, we observe that circular shifts of the order of vertices σ in a stack or forest stack
layout do not create crossing edges or cycles. Hence, when constructing stack layouts or
forest stack layouts of graphs, the vertices can also be arranged on a circle with the edges
inside the circle.

Lemma 2.7. Circular shifts of the order of vertices σ in a stack or forest stack layout
create a new stack layout or forest stack layout using the same stacks.

Proof. Let Γ = (σ, S) be a forest stack layout or stack layout of G with σ = v1, . . . , vn. Let
σ′ = v2, . . . , vn, v1 be the new order of vertices. Assuming that two edges uv, xy ∈ E(G) do
not cross with regard to σ. Without loss of generality, either σ(u) > σ(v) > σ(x) > σ(y) or
σ(u) > σ(x) > σ(y) > σ(v). If u ̸= v1 this order is the same for σ′ in either case and the
edges still do not cross. If u = v1 the vertices are either sorted σ′(v) > σ′(x) > σ′(y) > σ′(u)
or σ′(x) > σ′(y) > σ′(v) > σ′(u) in σ′. Therefore, the edges do not cross with regard to σ′.
Changing the order of vertices also creates no new cycles. Therefore, Γ = (σ′, S) is still a
stack layout or forest stack layout, respectively. Repeatedly moving the first vertex to the
end can create all circular shifts of σ and the resulting layouts are thus still stack layouts,
respectively forest stack layouts, using the same stacks.

9

3. Testing the conjecture for different
graph families

In this chapter, we begin testing Conjecture 1.1 by determining the forest stack number
for different graphs.

3.1 Complete graphs
For complete graphs Km the stack number was shown to be ⌈m/2⌉ by Bernhart and Kainen
using the following proofs[3].

Lemma 3.1 ([3]). For m ≥ 4, sn(Km) ≥ ⌈m/2⌉.

Proof. Let us assume that a stack layout with k stacks exists for Km. Then it is well
known that the subgraph on each stack is an outerplanar graph and therefore contains at
most 2m − 3 edges. Since the m short edges can be at most in one stack, we have for the
numbers of edges e in the graph e ≤ k · (m − 3) + m. For a complete graph Km with m ≥ 4
and e = m · (m − 1) this resolves to m/2 ≤ k. Since k can only be an integer, it follows
that sn(Km) ≥ k ≥ ⌈m/2⌉.

Theorem 3.2 ([3]). For m ≥ 4, sn(Km) = ⌈m/2⌉.

Proof. The stack number of Km is at least ⌈m/2⌉ as can be seen in Lemma 3.1. It remains
to show that sn(Km) ≤ ⌈m/2⌉. If m is odd, Km is a subgraph of Km+1 and therefore
snf(Km) ≤ snf(Km+1). Since ⌈m/2⌉ = ⌈(m + 1)/2⌉ for m odd the result for Km follows
from Km+1. Thus, we will only consider the case of m = 2k for some integer k. It can
be seen that for a complete graph Km the order of the vertices σ in the layout is not
important. Thus, we assume σ = (v0, . . . , vm−1) for V (Km) = {v0, . . . , vm−1}.

We draw the vertices V (Km) in a circular layout in this order and get the edges on
the first stack of our layout according to Figure 3.1. More precisely S0 = I ∪ Es with
I = {vivj ∈ E(Km) | j = m − i ∨ j = m − i − 1} \ {v0vm−1, vk−1vk} and Es the short
edges of order σ. To get the set of edges on the other stacks we rotate the triangulated
2k-gon in Figure 3.1 k-times meaning that in the previous figure we replace vi with π(vi)

11

3. Testing the conjecture for different graph families

v0

vm−1

vm−2

v1
v2

vm−3

. . .

vk−1

vk

vk−2

vk+1

Figure 3.1: First stack in proof of Theorem 3.2.

for i = 0, . . . , m − 1 where π is defined as π(vi) = vi+1 where all indices are taken modulo
m. As we have already assigned all short edges to a stack we only put the remaining long
edges of the rotated figure on the new stacks. Formally speaking, stack Sl is defined by

Sl = {vi+lvj+l ∈ E(Km) | vivj ∈ I}

for l = 1, . . . , k − 1 where all indices are also taken modulo m.

It can be seen from Figure 3.1 that all edges are assigned only to one stack. We have 2k − 3
long edges per stack and 2k short edges on the first stack. Because

k(2k − 3) + 2k = 2k2 − k = m2

2 − m

2 = m(m − 1)
2

this accounts for all the edges in the complete graph Km. Since we can also see from
Figure 3.1 that there are no conflicts between the edges on any stack we thus have created
a stack layout using k = m/2 stacks and therefore sn(Km) = ⌈m/2⌉.

For complete graphs Km the forest stack number is also ⌈m/2⌉. This can be shown by
slightly altering the construction used in the proof of the upper bound of the stack number
of complete graphs in Theorem 3.2.

Theorem 3.3. For m ≥ 4, snf(Km) = ⌈m/2⌉.

Proof. For Km with V (Km) = {v0, . . . , vm−1} and m ≥ 4 Theorem 3.2 and Lemma 2.6
imply that snf(Km) ≥ sn(Km) = ⌈m/2⌉. It remains to show that snf(Km) ≤ ⌈m/2⌉. For
this purpose the edge partition used in the proof of Theorem 3.2 can be slightly modified.
The proof of Theorem 3.2 uses the partition of edges created by rotating Figure 3.2 k times.
Recall that in Theorem 3.2 the short edges of the graph are all assigned to the first stack.
We modify this partition such that two short edges are assigned to each stack according to
Figure 3.3. The remaining stacks are created by rotating the first stack. Thus, the stacks
Sl are defined as

Sl = {vi+lvj+l ∈ E(Km) | j = m − i ∨ j = m − i − 1}

12

3.2. Complete bipartite graphs

v0

vm−1

vm−2

v1
v2

vm−3

. . .

vk−1

vk

vk−2

vk+1

Figure 3.2: First stack in the proof
of Theorem 3.2.

v0

vm−1

vm−2

v1
v2

vm−3

. . .

vk−1

vk

vk−2

vk+1

Figure 3.3: First stack in the proof
of Theorem 3.3.

for l = 0, . . . , k − 1. As can be seen in Figure 3.3 no cycles are created and no edges cross.
There are 2k − 1 edges in each stack and since

k(2k − 1) = 2k2 − k = m2

2 − m

2 = m(m − 1)
2

all edges are assigned a stack.

3.2 Complete bipartite graphs

For complete bipartite graphs in general the stack number has not been completely
determined. In the special case that n is significantly larger than m for a graph Km,n the
stack number is m [3]. Under these circumstances, a forest stack layout can be found that
uses the same number of stacks.

Theorem 3.4. For m ≤ n with n > m2 − m + 1, we have snf(Km,n) = m.

Proof. For m, n given as in Theorem 3.4 the stack number of Km,n is m [3]. Lemma 2.6
implies that snf(Km,n) ≥ sn(Km,n) = m. If Km,n has the two sets of vertices X =
{x1, . . . , xm} and Y = {y1, . . . , yn} we can construct a forest stack layout of Km,n by
assigning all edges incident to xi to a stack Si for all i in 1, . . . , m. Since the edges on each
stack form a star, the result is a forest stack layout. Therefore snf(Km,n) = m.

The construction of the forest stack layout in the proof of Theorem 3.4 also shows that
min(n, m) is an upper bound for the forest stack number of complete bipartite graphs
Km,n in general. However, this upper bound for the forest stack number is not tight for all
complete bipartite graphs. For example, K4,4 has a stack layout using three stacks[3] and
we can assign the short edges to specific stacks in this stack layout to create a forest stack
layout using the same number of stacks.

Theorem 3.5. The forest stack number of K4,4 is 3.

13

3. Testing the conjecture for different graph families

Figure 3.4: 3-Stack layout of K4,4 without short edges[3].

Figure 3.5: Forest 3-stack layout of K4,4.

Proof. A stack layout of K4,4 is shown in Figure 3.4 where the short edges are not assigned
to any specific stack[3]. We assign the short edges to stacks to create the forest stack
layout in Figure 3.5. The different line types represent the different stacks. Since the
original layout was a stack layout and we only altered the stacks of short edges we have no
crossing edges in our layout. Thus, the forest stack number of K4,4 is at most 3. Since
|E(K4,4)| = 16 and two forests can contain at most 2|V (K4,4)| − 2 = 14 edges, 3 stacks are
necessary.

It is, however, not the case that for all complete bipartite graphs the stack number equals
the forest stack number.

Theorem 3.6. The stack number of K2,2 is 1 but the forest stack number is 2.

Proof. Because K2,2 and C4 are isomorphic, K2,2 is an outerplanar graph. Therefore, it
has stack number 1[3]. To ensure that all stacks of the layout are forests, we have to move
at least one of the edges to a different stack. By moving two incident edges we only have
two incident edges per stack and therefore no conflicts in the layout. We have constructed
a forest stack layout with two stacks, therefore snf(K2,2) = 2.

The trivial lower bound for sn(Km,n) proved by counting the number of non-short edges
per stack is ⌈(nm − n − m)/(n + m − 3)⌉[3]. For the forest stack number we can show
the lower bound ⌈nm/(n + m − 1)⌉ because at most m + n − 1 edges fit in one forest
stack. If the two bounds are considered without rounding up, for m = n the bound for

14

3.3. Outerplanar graphs

the forest stack number is (2n2 − 2n)/(4n2 − 8n + 3) stacks larger than the bound for the
stack number. Thus, for large n the bound is improved by about half a stack. Since the
forest stack number and stack number can only be integers, in some cases the bound for
the forest stack number is one larger than the bound for the stack number. For the case
m = kn, for some k ∈ N, further improvements can be made, however never more than one
additional stack. For large enough n about (1 + k2)/(1 + k2 + 2k) stacks more are needed
without rounding.

3.3 Outerplanar graphs
Outerplanar graphs are exactly graphs with stack number 1. We show that the forest
stack number of outerplanar graphs is at most 2. Additionally, for any 1-stack layout of an
outerplanar graph G we can use the same order of vertices for a forest 2-stack layout of G.
We use this fact to construct an upper bound for forest stack numbers in general.

Theorem 3.7. The forest stack number of an outerplanar graph is at most 2. Moreover,
the order of vertices in the forest stack layout can be the same as the order of vertices in
any given 1-stack layout of the graph.

Proof. Let G be an outerplanar graph with |V (G)| = n. It is well known that the stack
number of any outerplanar graph is 1[3]. Therefore, there is a stack layout L = (σ, S) of
G using only one stack. We construct a forest stack layout L̂ = (σ, Sf) with two stacks
Sf = {S1, S2}. The layout L̂ is constructed by retaining the order of the vertices and
assigning the edges to S1 or S2 such that no stack contains a cycle.

In any outerplanar graph we find a vertex with degree at most two in each subgraph
[14]. We will therefore iterate over subgraphs G1, . . . , Gn of G. Let vi be a vertex with
degree at most two in Gi for i = 1, . . . , n. We then define Gn = G and Gi = Gi+1 − vi+1
for i = 1, . . . , n − 1. In each step we assign all incident edges of vi in Gi to stacks. We
guarantee that after the step in which we consider Gi neither S1 nor S2 contain cycles
and exactly the edges of Gi are assigned to stacks in the layout. We start with G1 which
contains only one vertex and therefore no edges. Hence, our layout contains the edges of
G1 and has no cycles on any stack. In the step where we consider Gi, vi has at most degree
2 in Gi. Thus, we assign the incident edges of vi in Gi such that no stack has more than
one of these edges assigned to it. Our inductive assumption guarantees that before this
step S1 and S2 did not contain any cycles. Hence, the newly assigned edges and therefore
also v1 would have to be part of any cycle that could now exist. However, since vi has at
most degree 1 in each stack, this is not the case. Thus, the stacks S1 and S2 do not contain
cycles and all edges of Gi are assigned to a stack. Our inductive assumption holds and
when we reach Gn after n steps, we have constructed a forest stack layout using only two
stacks. The inductive assumption guarantees that each stack of L̂ is a forest and since
there are no crossings in L and the order of vertices is the same, there are no crossings in
L̂. It follows that the forest stack number of G is at most 2.

Since this constructive proof of Theorem 3.7 uses the same order of vertices as any given
1-stack layout, the second part of the theorem also holds.

Note that Theorem 3.7 is tight since Theorem 3.6 shows that two stacks are necessary for
a forest stack layout of K2,2.

Corollary 3.8. For any graph G, snf(G) ≤ 2 · sn(G).

15

3. Testing the conjecture for different graph families

Proof. Let G be a graph with stack number k. Thus, a stack layout of G exists using k
stacks. Since the subgraph on each stack of the stack layout is an outerplanar graph we
can create a forest stack layout of the subgraph that uses two stacks while keeping the
order of the vertices. Doing so for each stack creates a forest stack layout of graph G using
2 · k stacks.

Corollary 3.8 also implies that for any graph family with bounded stack number, the forest
stack number is bounded. For example, planar graphs need at most four stacks for their
stack layout [24]. Hence, the forest stack number of planar graphs is at most eight.

3.4 Planar 3-trees
The stack number of planar 3-trees is at most 3[9]. We prove that the stack layout found by
Heath in his proof is already a forest stack layout. This can be proven by adding another
inductive assumption to his proof. Therefore, we obtain the following Theorem 3.10 that
uses Lemma 3.9 in the proof.

Lemma 3.9. Let x, y, z be three vertices in a stack layout Γ = (σ, S) where x is directly
next to y in the order σ of vertices. Let there be only one edge xz that starts at x on a
stack Si. It follows that Si ∪ yz is also a stack.

Proof. Let x, y, z be given as in the lemma. Assuming uv ∈ Si is an edge that conflicts
with edge yz. Then without loss of generality σ(u) > σ(y) > σ(v) > σ(z). Since x is next
to y this implies σ(u) ≥ σ(x) ≥ σ(v) > σ(z). Since no edge other than xz starts at x it
follows that σ(u) > σ(x) > σ(v). Thus, xz is in conflict with uv and therefore any such
edge uv cannot exist.

Theorem 3.10. The forest stack number of planar 3-trees is at most 3.

Proof. For a graph G the stellation ST (G) is defined by Heath as the graph where in
every face of G a new vertex is added with edges connecting to all vertices on the face.
Any planar 3-tree is a subgraph of ST n(K3) for some n where ST n(G) = ST (ST n−1(G)).
Therefore, we prove that a forest stack layout with three stacks exists for ST n(K3) for
every n. Let the three vertices of K3 be a, b, c. In ST (K3) d is added to the interior face
and e to the exterior. This graph has a forest stack layout using three stacks which is
shown in Figure 3.9. The forest stack layouts for successive stellations of the graph are
constructed iteratively. The following invariants are defined by Heath and have to hold for
each vertex z that is added into a triangle u, v, w in any step.

(i) For some vertex x ∈ {u, v, w} no other vertices that have been added previously are
between x and z in the order of vertices σ.

(ii) The three new edges from z to u, v, w are in three different stacks.

To prove that the layout is also a forest stack layout we add this third invariant:

(iii) The stack layout of the thus far embedded vertices is a forest stack layout.

The basis of Heath’s inductive construction is the stack layout of ST (K3) shown in
Figure 3.9. The different types of lines represent the three different stacks. In this layout d
is directly next to c and e is next to a. Therefore, the first condition is fulfilled. The second
condition also holds as all the edges incident to e and d are on pairwise different stacks. It
can also be seen that no stack contains a cycle and therefore it is a forest stack layout. In

16

3.5. k-Trees

a

b c

d
g

h

f

Figure 3.6: ST 2(K3)

each inductive step we add new vertices in the interior of all triangles. We only show how
the new vertices added to any ST (K3) from ST n−1(K3) are added to the layout. All other
vertices are added analogously. In addition, the vertices and edges added to the exterior
of the ST (K3) are also assigned analogously and will therefore not be further mentioned.
Thus, we consider three new vertices f, g, h added in each triangle of ST (K3) around a
vertex d to create ST 2(K3) (see Figure 3.6). The inductive assumption 1 guarantees that
for some vertex, say c, there are no previously embedded vertices between c and d. We
therefore place f and g between c and d such that σ(d) > σ(f) > σ(g) > σ(c). The vertex
h is placed directly next to d on the opposite side and we get the order of vertices shown
in Figure 3.8. This placement ensures that condition 1 also holds for the newly added
vertices. The edges going from the new vertices to d can be added to any of the stacks with
no problem since no formerly added vertices are in between. The same is the case for the
edge gc. The vertex d has only three adjacent edges. Invariant 1 guarantees that all those
edges are assigned to different stacks. The remaining new edges are hc, hb, fb, fa, ga and
since the edges dc, db, da exist Lemma 3.9 guarantees that the new edges can be assigned
to the stack of the respective assigned edge next to them without causing conflicts. We
can thus assign all new edges to stacks as shown in Figure 3.8. Since the stacks of all three
edges of each vertex are pairwise different for each vertex f, g, h invariant 2 also holds for
the new vertices.

The proof that these two invariants hold is part of Heath’s construction of the stack layout.
We now have to prove that the third invariant also holds. For this purpose in every
inductive step let Γ be the stack layout of ST n−1(K3) and Vn be the vertices added in
this step to create the stack layout Γnext. The second invariant guarantees that for every
v ∈ Vn all three new incident edges are on pairwise different stacks. Hence, the vertices in
Vn are not part of any cycle on a stack. Therefore, a possible cycle in Γnext would have
to consist only of vertices of ST n−1(K3). Since no new edges are added between those
vertices, this would contradict the third inductive assumption. Thus, Γnext is also a forest
stack layout. This inductive step can now be repeated as many times as needed to create a
forest 3-stack layout of ST n(K3) for any n.

3.5 k-Trees
For k-trees there is a tight upper bound of k + 1 of their stack number[13]. Similarly to
planar 3-trees and complete graphs the proof of this bound constructs a stack layout that
is already a forest stack layout.

17

3. Testing the conjecture for different graph families

a

b c

h

d f

g

Figure 3.7: Stack layout of ST 2(K3)

ab c g fa d h

Figure 3.8: Stack layout of ST 2(K3) in linear layout

In the proof of the stack number of k-trees the following definitions and lemmas are used.

A tree decomposition of a graph G is a tuple (X, T) where X is a set of subsets of the vertices
V (G) with X = {X1, X2, . . . , Xn} and Xi ⊆ V (G). The tree T has as its vertices the sets
Xi that are also called bags. Tree decompositions fulfill the following three properties.
Firstly, the union of the bags X1, . . . , Xn is all vertices of G. Secondly, for every edge
(u, v) ∈ G there has to be a bag Xi with u, v ∈ Xi. And lastly, the subgraph of T induced
by all bags containing a vertex u is connected for all u ∈ G.

The chromatic number of a graph is the minimum number of colors needed to color the
vertices of a graph such that no two adjacent vertices have the same color. For perfect
graphs the chromatic number equals the size of the largest clique in the graph. A chordal
graph is a graph where there are no induced cycles with more than three vertices. Chordal
graphs are an example of perfect graphs.

The following lemma is equivalent to the Helly property:

Lemma 3.11 ([13]). Let I be an intersection graph of subtrees T1, . . . , Tn in a tree T .
Then if we have a clique of size k in I there exists a vertex v ∈ V (T) that is part of at least
k subtrees Ti.

18

3.5. k-Trees

d

b

a

e

c

Figure 3.9: Stack layout of ST (K3)

Proof. Assuming a clique C of size k in I exists but every vertex v ∈ V (T) is part of at
most k − 1 subtrees Ti. Let T1 be a vertex of I that is part of C. Since no vertex in the
subtree T1 is part of k subtrees we find two other subtrees T2, T3 ∈ C which intersect T1 at
vertices v2 and v3 respectively but v2 /∈ V (T3) and v3 /∈ V (T2). The subtrees T2 and T3
also intersect at a vertex v2,3 because they are part of C. This, however, induces a cycle
that includes the vertices v2, v3, v2,3 in T , which is a contradiction. Therefore, there is a
vertex v ∈ V (T) that is part of at least k subtrees.

Theorem 3.12. The forest stack number of a k-tree is at most k + 1.

Proof. Let us first look at Ganley’s and Lenwood’s construction of a stack layout on k + 1
stacks. For any k-tree G it is well known that there is a tree decomposition D = (X, T) of
G of width k. To get the order of vertices σ of their stack layout Γ = (σ, S) they first do a
depth-first search of T to get a pre-order σ̂ of the Xi ∈ X. The order σ is then determined
by when an Xi in σ̂ is first considered with v ∈ Xi. For any v ∈ V (G) let Tv be the subtree
of T induced by all Xi ∈ X with v ∈ Xi. Since D is a tree decomposition, Tv is connected
for all v ∈ V (G). The intersection graph I of the subtrees Tv of T is a chordal graph[8].
Therefore, I is perfect and the size of the largest clique ω(I) equals the chromatic number
χ(I). Since D has width k, for any bag Xi of the tree decomposition we have |Xi| ≤ k + 1.
If any cliques of size greater than k + 1 exist in I, Lemma 3.11 implies that there is a
bag Xi ∈ X with more than k + 1 vertices. This would directly contradict |Xi| ≤ k + 1.
Therefore, it follows that cliques in I have at most size k + 1. Since I is perfect we thus
find a coloring using k + 1 colors. This coloring will be used to color the edges of G. For
an edge uv ∈ E(G) the color c(uv) is defined as follows:

c(uv) =
{

c(Tu) σ(u) < σ(v)
c(Tv) σ(v) < σ(u).

Ganley and Lenwood show that no two edges of the same color cross with regard to σ.
Let ab, cd ∈ E(G) with c(ab) = c(cd). If they cross, it can be assumed without loss of
generality that σ(a) < σ(c) < σ(b) < σ(d). We show that the trees Ta and Tc intersect and
therefore ab and cd are not assigned the same color. Let vx = Xi be the first vertex of the
tree decomposition found during the depth-first search with x ∈ Xi. The assumed order σ
implies that the vertex va containing a was found first in our depth-first search. The edge
ab implies that vb is part of the subtree with root va. Since the vertex vc first containing
c is found between the two it is also part of the same subtree. If vc is on the path from

19

3. Testing the conjecture for different graph families

a b c

< <

d1 d2

σ(d2)σ(c)σ(b)σ(d1)σ(a) < <

Figure 3.10: Vertices a, b, c in potential cycle in the k-tree stack layout.

va to vb the two trees Ta and Tc intersect. Thus, we assume that va, vb, vc must be in the
configuration C shown in Figure 3.11. The edge cd implies that vd is part of the subtree
with root vc. However, since vc is found before vb in the depth-first search the subtree with
root vc, including vd, is searched before vb. This contradicts the assumed order σ found
by a depth-first search and therefore the vertices of the tree decomposition cannot be in
constellation C. Thus Ta and Tc intersect and ab and cd do not have the same color. The
stack layout Γ with the ordering σ and stacks of each individual color of edges therefore is
a stack layout of G with k + 1 stacks.

We now prove that this stack layout is a forest stack layout. For this purpose, we consider
some stack S of the layout and proof that it contains no cycles. First we claim that no
edges ab, bc ∈ S with σ(a) < σ(b) < σ(c) can exists since the edge ab implies that Ta and
Tb intersect and therefore c(ab) = c(Ta) ̸= c(Tb) = c(bc). Hence, for every cycle c1, . . . , ck

in S, we have without loss of generality σ(ci) < σ(ci+1) for i even and σ(ci) > σ(ci+1) for
i odd. Again, without loss of generality we can thus assume that any cycle contains two
edges ac, bc with σ(a) < σ(b) < σ(c) as seen in Figure 3.10. Let ad also be part of the cycle,
then σ(a) < σ(d). We cannot close the cycle with d = b because the edges ab, bc cannot
both exist as claimed in the first part of this section. Since the edge ad cannot cross bc,
the only potential places for d are between a and b (see d1 in Figure 3.10) and behind c
(see d2 in Figure 3.10). In the case of d = d1 the next edge would be d1e with e between a
and d1. However, since σ(a) < σ(e) < σ(d1) < σ(b) any path that closes the cycle from d1
to b crosses the edge ad1. Therefore, d1 is an invalid choice for d. The same is true as well
for d2 since any path from d2 to b needs to cross the edge ac. Therefore, no cycles exist on
any stack of the layout and the given layout is a forest (k + 1)-stack layout.

3.6 Graphs with snf(G) = sn(G) + 1
For all previously looked at graphs besides outerplanar graphs, the stack number equaled
the forest stack number. This poses the question if for each k there really exists a graph
with sn(G) = k and snf(G) = k + 1. We construct the following graphs that can be shown
to have this property.

For any n and k ≤ n let Fn,k be the graph with vertices V (Fn,k) = {s1, . . . , sk, v1, . . . , vn−k}.
The edges are defined as E(Fn,k) = {vivj | j = i + 1} ∪ {siv | v ∈ V (Fn,k)}. In Figure 3.12
the graph F8,3 is shown as an example. These graphs can also be constructed by first
considering a path with n − k vertices. Then k vertices are added iteratively all being
adjacent to all previously added vertices.

Theorem 3.13. For any given k a large enough n can be chosen such that sn(Fn,k) = k
and snf(Fn,k) = k + 1.

20

3.6. Graphs with snf(G) = sn(G) + 1

va

vc vb

Figure 3.11: Possible structure of va, vb, vc in the tree decomposition.

v1 v2 v3 v4 v5s1 s2 s3

Figure 3.12: The graph F8,3 with a 3-stack layout.

Proof. For any n, k we calculate the number |E(Fn,k)| of edges in Fn,k. There are n − k − 1
edges between vertices vivi+1 with i = 1, . . . , n − 1. For each si there are an additional
n − i edges. Thus, it follows that |E(Fn,k)| = (n − 1) + (n − 2) + · · · + (n − k − 1) =
(k + 1)n − (k + 1)(k + 2)/2.

The layout (σ, S) with order of vertices σ = s1, . . . , sk, v1, . . . , vn−k and the star at si for
i ≤ k on stack Si with all remaining short edges also assigned to stack S1 is a stack layout.
Therefore, Fn,k has at most stack number k. For a forest stack layout with k stacks the
average number of edges per stack are |E(Fn,k)|/k = n + n/k − k/2 − 3/2 − 1/k. If this
average is greater than n − 1 there is a stack with more than n − 1 edges, which is not
possible in a forest stack layout.

n + n/k − k/2 − 3/2 − 1/k
!

> n − 1

⇔ n
!

> k2/2 + k/2 + 1

21

3. Testing the conjecture for different graph families

Therefore, for a large enough n the forest stack number of Fn,k is at least k + 1. The forest
stack number is exactly k + 1 since changing the k-stack layout by putting all edges vivi+1
on an additional stack creates a forest stack layout with k + 1 stacks.

We now show that for n > k2/2 + k/2 + 1 a stack layout of Fn,k needs k stacks. A stack
layout with k − 1 stack contains at most (k − 1)(n − 3) + n edges. Therefore, the number
of edges should exceed this number so that the stack layout needs at least k stacks:

(k + 1)n − (k + 1)(k + 2)/2
!

> (k − 1)(n − 3) + n

⇔ n
!

> k2/2 − 3k/2 + 4

For k ≥ 2 the chosen n > k2/2 + k/2 + 1 fulfills this condition and thus exactly k stacks
are needed for a stack layout of Fn,k.

3.7 Subhamiltonian Graphs
Since the stack number of subhamiltonian graphs is 2, Conjecture 1.1 suggests that the
forest stack number might be at most 3. We can find a subhamiltonian graph with forest
stack number 3. Note that Fn,2 is subhamiltonian for all n. Additionally, Theorem 3.13
guarantees that we can chose an n such that snf(Fn,2) = 3. We also know that snf(G) ≤ 4 for
subhamiltonian graphs G because of Corollary 3.8. Thus, there might be a subhamiltonian
graph G with snf(G) = 4. Finding such a graph would disprove Conjecture 1.1.

Stack layouts of subhamiltonian graphs have an additional property. The order of vertices
in a 2-stack layout of a subhamiltonian graph corresponds to a Hamiltonian cycle if all
missing short edges are added to the graph. Reversely, any Hamiltonian cycle or order of
vertices that can be made into a Hamiltonian cycle by adding edges, such that the graph
remains planar, can be chosen as an ordering for the vertices in the 2-stack layout. The
graph given in Figure 4.2 and Theorem 4.1 prove that this is not the case for forest stack
layouts. Thus, there is a subhamiltonian graph G with a Hamiltonian cycle such that using
the Hamiltonian cycle as the order σ of vertices, we have sn(G, σ) = 2 and snf(G, σ) = 4.

22

4. Counterexamples

4.1 Counterexamples with fixed order of vertices
For stack layouts and forest stack layouts when using a fixed order σ of vertices we can
find counterexamples to Conjecture 1.1. Additionally, for any n ∈ N we can find a graph G
with a fixed order σ of vertices, such that snf(G, σ) − sn(G, σ) > n.

First, we show that a subhamiltonian graph exists that, using a fixed order σ of vertices,
needs at least four stacks for a forest stack layout.

Theorem 4.1. The graph G in Figure 4.1 with the order σ of vertices in Figure 4.1 has
sn(G, σ) ≤ 2 and snf(G, σ) ≥ 4.

Proof. Consider the graph G with vertex order σ in Figure 4.1. Note that sn(G, σ) ≤ 2.
Consider a 3-forest stack layout where the edges on the three stacks are colored orange,
red and green respectively. In Figure 4.2 the graph is shown with all edges colored as
follows. To begin with, we consider the central triangle h, j, l. Since no cycles are allowed
on a stack, at least two edges have different colors. Without loss of generality, let hj be
orange and hl red. It follows that all edges incident to i are green since they cross hj and
hl. Thus, eg has to be either orange or red since it would close a circle on the green stack.
Because the remaining edges that we consider have no interactions with any edges that are
already orange or red, we can without loss of generality let eg be red. Hence, the edges
incident to f are orange since they cross the red and green edge incident to e. The edge bd
cannot be orange since that would close a cycle on the orange stack. It can also not be
green as it crosses the green edge ci. Therefore, bd must be red. It is now impossible for
the edge ac to be any of the three colors. It is not red or orange since it crosses the edges
incident to b. Furthermore, it is also not green since that would close a cycle on the green
stack. Therefore, we have shown that using the order of vertices σ more than three stacks
are needed for a forest stack layout.

If all short edges are added to the graph in Figure 4.1 it would still be a subhamiltonian
graph, since adding short edges does not increase the stack number. After adding the short
edges, the fixed order σ of vertices in Figure 4.1 is a Hamiltonian cycle. However, because
of Theorem 4.1 the graph still needs at least four stacks for a forest stack layout using the
order of vertices σ.

23

4. Counterexamples

a

b

c

d

e

f

g

h

i
j

k

l

m

n

o
p

q

r

s

Figure 4.1: Graph that for shown order of vertices needs 4 stacks for forest stack layout.

a

b

c

d

e

f

g

h

i
j

k

l

m

n

o
p

q

r

s

Figure 4.2: Trying to use only 3 stacks for a forest stack layout.

Next, we introduce graphs Tk with order σ of vertices such that the difference between the
forest stack number and stack number using the fixed order σ increases linearly in k.

Theorem 4.2. For infinitely many k, there are G and σ subject to sn(G, σ) = k and
snf(G, σ)/ sn(G, σ) ≥ 3/2.

Proof. We define the graph Tk to consist of k triangles K3. In the i-th triangle Ki
3 with

i = 1, . . . , k we name the vertices ai, bi and ci. The order of vertices σ of the graph Tk

is set as σ = a1, . . . , ak, b1, . . . , bk, c1, . . . , ck. As an example, the graph T3 can be seen in
Figure 4.3 with the vertices ordered according to σ. We call all edges aibi the left edges,
all edges bici the right edges and all edges aici the upper edges. For any i ̸= j the edges
aibi and ajbj cross with regard to σ. Therefore all left edges pairwise cross. It can be seen
that the same applies to the right and upper edges respectively. Hence, any stack in a
stack layout using σ can contain at most 3 edges: a left edge, a right edge and an upper
edge. We now try to pick three such edges. Using the order σ, a left edge aibi does not
conflict with a right edge bjcj if and only if i ≤ j. An upper edge alcl does not conflict
with the edge aibi if and only if l ≤ i. Lastly, the upper edge alcl does not conflict with
the right edge bjcj if and only if l ≥ j. It follows that only when i = j = l do the edges not
conflict. Therefore, three edges fit on one stack only when they are from the same triangle.
By assigning all edges in a triangle Ki

3 to a stack Si, a stack layout with three edges on
each stack is found. Therefore, the stack number of Tk using order σ is k. However, when
constructing a forest stack layout putting three edges from the same triangle on a stack
is not allowed. Thus, the forest stack number is at least 3k/2. The forest stack number
is exactly ⌈3k/2⌉ because each two triangles can be assigned to three stacks, as shown in
Figure 4.4. Hence, snf(Tk, σ)/ sn(Tk, σ)) ≥ 3/2 and Tk with order σ fulfills the conditions
of the theorem.

24

4.2. Modifications to graphs from Section 3.6

a1 a2 a3 b1 b2 b3 c1 c2 c3

Figure 4.3: Example of T3 as defined in the proof of Theorem 4.2.

a1 a2 b1 b2 c1 c2

Figure 4.4: T2 as defined in the proof of Theorem 4.2 with forest stack layout on three
stacks.

4.2 Modifications to graphs from Section 3.6
For the graphs G defined in Section 3.6 the number of edges already guarantees that
snf(G) ≥ sn(G) + 1. We preserve this property and alter these graphs with the goal of
increasing the forest stack number by one more. The stack number stays the same and
thus a difference of two would be achieved. While we do not find such a graph G with
snf(G) ≥ sn(G) + 2, if we assume that some more restrictions apply, we find graphs that
need two more stacks for a forest stack layout than a stack layout.

We first consider a simple modification that we use in various ways. Recall that graph Fn,k

consists of a path with n − k vertices named v1, . . . , vn−k from one end of the path to the
other. We call the vertices on the path path vertices and the edges between path vertices
vivi+1 for i ∈ {1, . . . , n − k − 1} path edges. There are an additional k vertices in Fn,k

named s1, . . . , sk that form a clique and also are each adjacent to all path vertices. We call
the vertices in this clique non-path vertices. A formal definition of Fn,k can be found in
Section 3.6. We now define a switching operation swi,j on graphs Fn,k that removes one
edge from the graph but adds a different new edge. For 1 ≤ j ≤ k and 2 ≤ i ≤ n−k −1 the
graph swi,j(Fn,k) is the graph (V (Fn,k), E) with the edges E = (E(Fn,k) \ sjvi) ∪ vi−1vi+1.

25

4. Counterexamples

Hence, in the new graph sj and vi are not adjacent but the new edge vi−1vi+1 is added.
As an example, the graph sw4,1(F8,3) is shown in Figure 4.5.

It can be observed that the switching operation does not change the stack number and
therefore sn(swi,j(Fn,k)) = sn(Fn,k) = k for 1 ≤ j ≤ k and 2 ≤ i ≤ n − k − 1 and n chosen
large enough so that sn(Fn,k) = k and snf(Fn,k) = k + 1 according to Theorem 3.13. The
stack number does not increase since a k-stack layout Γ of Fn,k is given by placing all
edges adjacent to each non-path vertex sj on a stack Sj such that each of the k stacks
contains a star. The remaining path edges are added to the first stack S1. The order of
vertices σ is given by σ = s1, . . . , sk, v1, . . . , vn−k. The switching modification swi,j does
not increase the stack number, since the new edge vi−1vi+1 can be added to the stack Sj

in the layout Γ after the edge sjvi is removed. Therefore, we have found a k-stack layout
of swi,j(Fn,k) and the stack number of the modified graph is at most k. Since the proof
that sn(Fn,k) ≥ k in Theorem 3.13 only uses the number of edges, which has not changed,
it follows that sn(swi,j(Fn,k)) = sn(Fn,k) = k. As an example the resulting 3-stack layout
of the graph sw4,1(F8,3) is shown in Figure 4.5.

s1 s2 s3 v1 v2 v3 v4 v5

Figure 4.5: The graph sw4,1(F8,3) with a 3-stack layout.

Since the proof of snf(Fn,k) ≥ k + 1 in Theorem 3.13 also only uses the number of edges in
the graph, which stays the same, the forest stack number after the modification is still at
least one greater than the stack number. For the graph Fn,k a forest (k + 1)-stack layout
is given by placing all the edges adjacent to a non-path vertex sj on the same stack Sj ,
creating stars on these stacks. The path edges are put on an additional stack Sp. We first
investigate stack layouts with all path edges in the same stack Sp. Under this assumption,
by using the above switching modification the pattern of stars can be broken.

Lemma 4.3. Let Γ be a forest (k + 1)-stack layout of the graph swi,j(Fn,k) with 1 ≤ j ≤ k
and 2 ≤ i ≤ n − k − 1 that places all path edges on a single stack Sp. Then there exists an
l ∈ {1, . . . , k} such that the two edges slvi−1 and slvi+1 are on different stacks in Γ.

An example of the effects of Lemma 4.3 for the graph sw4,1(F8,2) is shown in Figure 4.6.

Proof. The edge vi−1vi+1 cannot be on the stack Sp of the path edges since that would
close a cycle. We now assume that for every l ∈ {1, . . . , k} the two edges slvi−1 and slvi+1
are in the same stack Sl. Since the path edges together with slvi−1 and slvi+1 close a

26

4.2. Modifications to graphs from Section 3.6

cycle, we have Sl ̸= Sp for every l ∈ {1, . . . , k}. For every l the stack Sl cannot be the one
containing vi−1vi+1, since that would also create a cycle. For two different l1 ̸= l2 with
l1, l2 ∈ {1, . . . , k} the stacks Sl1 and Sl2 cannot be the same, since that would close the
cycle sl1vi−1sl2vi+1. However, since there are only k + 1 − 2 = k − 1 stacks left that could
be Sl and k different sl the assumption is wrong and there exists an l ∈ {1, 2, . . . , k} where
the two edges slvi−1 and slvi+1 are on different stacks.

s1 v1 v2 v3 v4 v5 v6 s2

Figure 4.6: A subgraph of sw4,1(F8,2) where the edges s2v3 and s2v5 are not in the same
stack.

The switching operation swi,j for 1 ≤ j ≤ k and 2 ≤ i ≤ n − k − 1 can be used on
a graph Fn,k multiple times. If multiple operations were used we define for a set X =
{(i1, j1), (i2, j2), . . . , (im, jm)} the operation swX(Fn,k) = swi1,j1(swi2,j2(. . . (swim,jm(Fn,k)))).
We only use multiple switching operations swX on a graph Fn,k if for each two tuples
(i, j), (i′, j′) ∈ X the distance |i − i′| ≥ 3. We call such sets X that keep the minimum
distance feasible sets. Only for feasible sets X the different modifications do not affect
each other and Lemma 4.3 works for each switching operation independently. Additionally,
since the modifications do not affect each other and each modification does not increase the
stack number it follows that sn(swX(Fn,k)) ≤ sn(Fn,k) = k. By using multiple switching
operations on the graph Fn,2 we get the following theorem:

Theorem 4.4. For a large enough n there exists a set X such that snf(swX(Fn,2)) ≥
sn(swX(Fn,2)) + 2 when always placing all path edges on a stack Sp.

Proof. For a graph Fn,2 let the n − 2 vertices on the path be called v1, . . . , vn−2 from one
end of the path to the other. Let s1 and s2 be the vertices connected to all other vertices
including each other.

Since the switching operations do not increase the stack number, it follows that sn(swX(Fn,2)) ≤
sn(Fn,2) = 2 for any feasible set X. We can also find a 2-stack layout of swX(Fn,2) where
all path edges are in the same stack. For this we take the stack layout of a Fn,2 with the
vertex order σ = s1, v1, . . . , vn−2, s2 that places all edges adjacent to s1 and the path edges
in a stack S1 and all other edges in a stack S2. Now for each switching operation in X that
removes an edge sjvi and creates an edge vi−1vi+1 we assign the new edge to the stack Sj .

Thus, if for some set X four stacks are needed for a forest stack layout with the path
edges on a stack Sp we have snf(swX(Fn,2)) ≥ sn(swX(Fn,2)) + 2 under this assumption.
Therefore, we now consider a forest 3-stack layout Γ of swX(Fn,2) with the path edges on
a stack Sp and find a contradiction.

In the forest 3-stack layout Γ all path edges are on the same stack Sp. Let Sred and Sorange

be the other two stacks. We now modify the graph Fn,2 with switching operations swi,j

with 1 ≤ j ≤ 2 and 2 ≤ i ≤ n − 3. For any two operations swi,j , swi′,j′ we keep the
minimum distance |i − i′| ≥ 3 and thus the modifications are independent of each other.
Thus, Lemma 4.3 guarantees that for each switching operation we have two edges in a star
on different non-path stacks or an edge on the path stack Sp connecting to s1 or s2.

27

4. Counterexamples

Next, we show that by using enough switching operations either the star adjacent to s1 or
the star adjacent to s2 contains two edges on different non-path stacks. For the sake of
contradiction, we assume an edge connecting to s1 or s2 is placed on the path stack Sp.
Without creating cycles this can happen at most once for s1 and once for s2. Therefore, if
we do switching operations more than two times, each additional operation ensures either
the star adjacent to s1 or the star adjacent to s2 contains one more edge on the stack Sred

and one more edge on Sorange.

For n = 47 we define the feasible set X = {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1), (20, 1),
(23, 1), (26, 1), (29, 1), (32, 1), (35, 1), (38, 1), (41, 1), (44, 1)}. The operation swX consists of
fifteen independent switching operations. Two of the operations can result in non-path
edges in the path stack Sp. However, for any feasible set containing at least thirteen
additional operations, one of the two stars contains at least seven pairs of edges with one
edge on Sred and one edge on Sorange. Without loss of generality, let the star adjacent to
s2 be the one containing these pairs of edges. Additionally, Lemma 2.7 guarantees that
without loss of generality we can assume that v1 is the first vertex in the order of vertices
σ of the forest stack layout Γ. Each path vertex can now be either before s2 or after in the
order of vertices σ. We now call all vertices with an edge connecting them to s2 on the
stack Sred red vertices and all vertices with an edge connecting them to s2 on the stack
Sorange orange vertices. Since there are at least seven red and orange vertices each, either
there are at least three red and three orange vertices on one side of s2 or one side has at
most two out of seven red vertices and the other at most two out of seven orange vertices.

We first rule out the second case. Without loss of generality, the left side of s2 has at most
two red vertices and the right at most two orange vertices. For each switching operation
swi,2 that forced the edges vi−1s2 and vi+1s2 to be on different non-path stacks one vertex,
either vi−1 or vi+1, is colored red and the other orange. The edge vi−1vi+1 /∈ Sp therefore
connects one red vertex and one orange vertex for each (i, 2) ∈ X. Since at most two red
vertices are on one side and at most two orange vertices on the other there can be at most
four edges connecting red and orange vertices that do not go from the left side of s2 to the
right. The number of edges connecting a red and an orange vertex from left to right is also
limited because of the problem shown in Figure 4.7. Any edge eo,cross on the orange stack
Sorange going from the left side to the right can only connect to the leftmost orange vertex
before s2 in the order of vertices σ. Else, the edges going from s2 to orange vertices further
away on the left conflict with eo,cross. The same is true for edges er,cross on the red stack
Sred going from one side to the other that can only connect to the rightmost red vertex
after s2 in the order of vertices σ. Hence, under the assumption that one side of s2 has
at most two red vertices and the other at most two orange vertices at most six pairs of
red and orange vertices can be connected by an edge on Sred or Sorange. An example of an
ordering of vertices and six edges connecting red and orange vertices is shown in Figure 4.8.
However, since at least seven pairs of edges were affected adjacent to s2, seven pairs have
to be connected. Hence, the assumption must be false and at least three red and three
orange vertices are on one side of s2.

First, we assume three red and three orange vertices are before s2 in the order of vertices.
We call these six vertices c1, . . . , c6 with σ(s1) < σ(c1) < σ(c2) < · · · < σ(c6) < σ(s2).
Since there is at least one red vertex and one orange vertex to the left of c5 and c6 the
edges s1c5 and s1v6 cannot be on the stacks Sred or Sorange. However, placing them both
on the path stack would close a cycle. The problematic edges in this stack layout are shown
in Figure 4.9. Therefore, in this case the assumption that a forest 3-stack layout Γ exists if
all path edges are placed on one stack is false.

Therefore, we assume that three red and three orange vertices are after s2 in the order of
vertices. We call these six vertices c1, . . . , c6 with σ(s1) < σ(s2) < σ(c1) < σ(c2) < · · · <

28

4.2. Modifications to graphs from Section 3.6

σ(c6). Since there is at least one red vertex and one orange vertex to the right of c1 and c2
the edges s1c1 and s1c2 cannot be on the stacks Sred or Sorange. However, placing them
both on the path stack would close a cycle. The problematic edges in this stack layout are
shown in Figure 4.10. Therefore, in this case the assumption that a forest 3-stack layout Γ
exists if all path edges are placed on one stack is false.

Hence, at least four stacks are needed for a forest stack layout assuming all path edges are
on a stack Sp. Therefore, for any set X of at least fifteen independent switching operations
it follows that snf(swX(Fn,2)) ≥ sn(swX(Fn,2)) + 2 when always placing all path edges in a
stack Sp.

s1 va vb vc vd ve vf vg vh vi vj vk vl vm vns2

not the maximum distance to an orange vertex left of s2

Figure 4.7: Connecting to an orange vertex on the left from the right side that does not
have maximum distance from s2 creates conflicting edges.

s1 va vb vc vd ve vf vg vh vi vj vk vl vm vns2

Figure 4.8: An example of the maximum of six possible edges between red and orange
vertices with at most two red vertices left of s2 and at most two orange vertices
on the right.

s1 c1 c2 c3 c4 c5 c6 s2

contains at least on red and orange vertex

Figure 4.9: Assuming there are three red and three orange vertices to the left of s2 the
purple edges cannot both be placed on the 3 stacks of the stack layout.

In the graphs modified as described above, we always assume that the edges on the path
are placed on a single stack Sp. To avoid this constraint we consider the second power

29

4. Counterexamples

s1 c1 c2 c3 c4 c5 c6s2

contains at least on red and orange vertex

Figure 4.10: Assuming there are three red and three orange vertices to the right of s2 the
purple edges cannot both be placed on the 3 stacks of the stack layout.

of a path. The second power of a path consists of a normal path. Additionally, every
vertex vi in the path is also connected to vi+2. We now construct graphs similar to Fn,2
but using the second power of paths instead. We call them Pn,2. Let s1, s2 be again two
vertices in V (Pn,2) not part of the second power of a path on n − 2 vertices. One of these
vertices, say s1 is connected to all even vertices in the second power of the path, and the
other to all odd vertices. We get the same graph if we apply the switching operation
swi,j described above on a Fn,2 multiple times and remove the edge s1s2. In this case, the
switching operations do not keep the minimum distance to be independent. For the order
of vertices σ = s1, v1, v2, . . . , vn−2, s2 the stack number of Pn,2 is still 2. We consider the
2-stack layout of Fn,2 where all edges incident to s1 and all path edges are on a stack S1
and all other edges are on a stack S2. For each switching operation that adds a new edge
vivi+2 the new edge can be placed on the stack S1 if i is even and on stack S2 is i is odd.
This creates a 2-stack layout using the order of vertices σ of the graph Pn,2. As an example
in Figure 4.11 the 2-stack layout of the graph P8,2 is shown.

s1 s2v1 v2 v3 v4 v5 v6

Figure 4.11: A 2-stack layout of the graph P8,2.

We now show that the graphs Pn,2 using the fixed order of vertices σ need at least four
stacks for a forest stack layout but only two for a stack layout. Only for a fixed order of
vertices the forest stack number is two larger for graphs Pn,2. However, in contrast to the
triangle graphs in Theorem 4.2 the order of vertices σ is optimal for stack layouts of Pn,2.

Theorem 4.5. There is a vertex ordering σ such that snf(Pn,2, σ) ≥ 4 and sn(Pn,2, σ) = 2
for n > 7.

Proof. As fixed order of vertices σ we consider the ordering σ = s1, v1, v2, . . . , vn−2, s2.
The graph P8,2 is shown in Figure 4.12 using the order of vertices σ. Since for n > 7 the
graph P8,2 is a subgraph of Pn,2 it is sufficient to show that P8,2 needs four stacks for a
forest stack layout. Let the four edges v1v3, v2v4, v3v5, v4v6 of P8,2 be called e1, e2, e3, e4 in

30

4.2. Modifications to graphs from Section 3.6

that order. We try to color the edges of the graph with three colors green(g), red(r) and
orange(o). Up to renaming the colors for the four edges e1, . . . , e4 because of crossing edges
only the following colorings are possible: (g, r, g, r), (g, r, g, o), (g, r, o, g) and (g, r, o, r). For
all cases we now find a contradiction. Deriving the color of the edges is always done based
only on crossing edges and cycles that would be closed. In the corresponding figures the
edges are colored as assumed in the specific case.

Case 1: c(e1, e2, e3, e4) = (g, r, g, r)
The edges e1, e2, e3, e4 are colored (g, r, g, r) as shown in Figure 4.12. The edge v3s2 can
only be green or orange. Assuming v3s2 is green the following colors follow in the given
order: c(v5s2) = o, c(s1v6) = r, c(s1v4) = o. Now the edge v1s2 cannot be green, red or
orange. Therefore, we assume v3s2 is orange. In that case the following colors follow in
the given order: c(s1v4) = r, c(s1v6) = g, c(s1v2) = o. Now the edge v1s2 cannot be green,
red or orange. Therefore, in the case of c(e1, e2, e3, e4) = (g, r, g, r) the graph has no forest
stack layout on three stacks.

Case 2: c(e1, e2, e3, e4) = (g, r, g, o)
The edges e1, e2, e3, e4 are colored (g, r, g, o) as shown in Figure 4.13. The edge v3s2 can
only be green or orange. Assuming v3s2 is green the following colors follow in the given
order: c(v5s2) = r, c(s1v6) = o, c(s1v4) = r. Now the edge v1s2 cannot be green, red or
orange. Therefore, we assume v3s2 is orange. In that case the following colors follow in the
given order: c(s1v4) = r, c(s1v2) = o, c(v1s2) = g, c(v5s2) = r. Now the edge s1v6 cannot
be green, red or orange. Therefore, in the case of c(e1, e2, e3, e4) = (g, r, g, o) the graph has
no forest stack layout on three stacks.

Case 3: c(e1, e2, e3, e4) = (g, r, o, g)
The edges e1, e2, e3, e4 are colored (g, r, o, g) as shown in Figure 4.14. The edge v3s2 can only
be green or orange. Assuming v3s2 is green the following colors follow in the given order:
c(s1v4) = r, c(s1v2) = o. Now the edge v1s2 cannot be green, red or orange. Therefore,
we assume v3s2 is orange. In that case the following colors follow in the given order:
c(v5s2) = r, c(s1v6) = g, c(s1v4) = r, c(s1v2) = o. Now the edge v1s2 cannot be green, red
or orange. Therefore, in the case of c(e1, e2, e3, e4) = (g, r, o, g) the graph has no forest
stack layout on three stacks.

Case 4: c(e1, e2, e3, e4) = (g, r, o, r)
The edges e1, e2, e3, e4 are colored (g, r, o, r) as shown in Figure 4.15. The edge v3s2 can only
be green or orange. Assuming v3s2 is green the following colors follow in the given order:
c(s1v4) = r, c(s1v2) = o. Now the edge v1s2 cannot be green, red or orange. Therefore,
we assume v3s2 is orange. In that case the following colors follow in the given order:
c(v5s2) = g, c(s1v6) = r, c(s1v4) = g, c(s1v2) = o. Now the edge v1s2 cannot be green, red
or orange. Therefore, in the case of c(e1, e2, e3, e4) = (g, r, o, r) the graph has no forest
stack layout on three stacks.

Since all cases lead to a contradiction it follows that snf(Pn,2, σ) ≥ 4.

For graphs Pn,2 four stacks are needed for a forest stack layout if the order of vertices
is fixed as σ = s1, v1, . . . , vn−2, s2. When using a different order σ′ of vertices only three
forest stacks are needed. Let i be the largest even number such that vi ∈ V (Pn,2) and j
be the largest odd number such that vj ∈ V (Pn,2). We define the new order of vertices
σ′ = v2, v4, . . . , vi, s1, s2, vj , . . . , v3, v1.

Lemma 4.6. The forest stack number of Pn,2 is 3 for n > 7.

31

4. Counterexamples

s1 s2v1 v2 v3 v4 v5 v6

s1 s2v1 v2 v3 v4 v5 v6

e1 e2 e3 e4

e1 e2 e3 e4

Figure 4.12: The graph P8,2 in the case
c(e1, e2, e3, e4) = (g, r, g, r).

s1 s2v1 v2 v3 v4 v5 v6

s1 s2v1 v2 v3 v4 v5 v6

e1 e2 e3 e4

e1 e2 e3 e4

Figure 4.13: The graph P8,2 in the case
c(e1, e2, e3, e4) = (g, r, g, o).

s1 s2v1 v2 v3 v4 v5 v6

s1 s2v1 v2 v3 v4 v5 v6

e1 e2 e3 e4

e1 e2 e3 e4

Figure 4.14: The graph P8,2 in the case
c(e1, e2, e3, e4) = (g, r, o, g).

s1 s2v1 v2 v3 v4 v5 v6

s1 s2v1 v2 v3 v4 v5 v6

e1 e2 e3 e4

e1 e2 e3 e4

Figure 4.15: The graph P8,2 in the case
c(e1, e2, e3, e4) = (g, r, o, r).

32

4.3. Counterexamples for directed acyclic graphs

Proof. The number of edges in Pn,2 is (n − 2) + (n − 3) + (n − 4) = 3n − 9. However, a
forest 2-stack layout can contain at most 2n − 2 edges. Therefore, for n > 7 the forest
stack number of Pn,2 is at least 3.

We construct a forest 3-stack layout Γ of Pn,2 using the order of vertices σ′. As an example
the forest 3-stack layout of P8,2 is shown in Figure 4.16. All edges adjacent to s1 are
assigned to a stack S1. The vertex s1 is adjacent only to vertices vi with i even, which are
before s1 in the order of vertices σ′. Therefore, at this point in the stack S1 the vertex s1
is the rightmost vertex any edge connects to. Since we add a star to S1 no edges conflict
and no cycles are created. The edges between odd vertices in the path are now also added
to the stack S1. Since all odd vertices are behind s2 in descending order in σ′, no cycles
are created and no edges cross. Now the edges adjacent to s2 are added to a stack S2.
Additionally, the edges connecting even vertices on the path are added to S2. For the same
reasons that S1 contains no cycles and crossing edges, S2 is also a stack in a forest stack
layout. The only remaining edges of Pn,2 are the edges vivi+1 on the path. We assign these
path edges to a stack S3. It can be seen that no path edges cross when using the order
of vertices σ′. Therefore, we have found a forest 3-stack layout of Pn,2 using the order of
vertices σ′.

v2 v1v4 v6 s1 s2 v5 v3

Figure 4.16: Forest 3-stack layout of P8,2.

4.3 Counterexamples for directed acyclic graphs
For stack layouts of directed acyclic graphs D, the order of vertices σ is a topological
ordering of vertices. Therefore, for two vertices u, v ∈ V (D) with an edge uv ∈ E(D)
the order is σ(u) < σ(v). For forest stack layouts of directed acyclic graphs the same
restriction applies. Additionally, the corresponding undirected graph on each stack of the
forest stack layout has to be a forest. Because the same number of edges can be in a stack
of a stack layout of an undirected graph as in a stack for a directed graph the motivation
from Section 1.1 still works. Thus, the conjecture snf(D) ≤ sn(D) + 1 for directed acyclic
graphs can be proposed.

However, for directed acyclic graphs a counterexample to this conjecture can be found. In
Section 4.1 and Section 4.2 we introduce some graphs G with set orders of vertices σ for
which snf(G, σ) ≥ sn(G, σ) + 2. We find directed acyclic graphs D with snf(D) ≥ sn(D) + 2
by altering these graphs. In particular, for the following directed acyclic graphs the
difference between the forest stack number and stack number increases linearly with k.

33

4. Counterexamples

Lemma 4.7. For infinitely many k, there are directed acyclic graphs D such that sn(D) = k
and snf(D)/ sn(D) ≥ 3/2.

Proof. We consider the graph Tk from Theorem 4.2 that consists of k triangles K3. In
the i-th triangle Ki

3 with i = 1, . . . , k we name the vertices ai, bi and ci. The order of
vertices σ of the graph Tk is fixed as σ = a1, . . . , ak, b1, . . . , bk, c1, . . . , ck. Currently, the
graph contains no short edges. We add all short edges and get an undirected graph G.
The graph G has stack number k since short edges do not increase the stack number given
by Theorem 4.2. We direct all edges of G according to the order σ to get the directed
acyclic graph D. As an example, the directed acyclic graph created from T3 is shown in
Figure 4.17. Since D contains all short edges the only topological ordering of vertices in D
is σ. Thus, finding a stack layout for D is equivalent to finding a stack layout for G using
the fixed order of vertices σ. Since the added short edges can only increase the forest stack
number, Theorem 4.2 implies that snf(D)/ sn(D) ≥ 3/2.

a1 a2 a3 b1 b2 b3 c1 c2 c3

Figure 4.17: The directed acyclic graph created from T3 in Lemma 4.7.

Lemma 4.7 already gives us a counterexample to Conjecture 1.1 for directed acyclic graphs.
However, for upward planar graphs it only proves the existence of an upward planar graph
D with sn(D) = 2 and snf(D) = 3.

Lemma 4.8. There is an upward planar graph D for which sn(D) = 2 and snf(D) ≥ 4.

Proof. We consider the graph P8,2 shown in Figure 4.12. We add all missing short edges,
that is the edges s1v1, v6s2 and s1s2, to P8,2 to get the undirected graph G. Using the
order of vertices σ = s1, v1, . . . , v6, s2 the graph G still has stack number 2 proven by the
stack layout shown in Figure 4.18. We direct all edges of G according to the order σ to get
the directed graph D shown in Figure 4.19. Figure 4.19 also proves that an upward planar
drawing of D exists and it is therefore an upward planar graph. Since the only topological
ordering of vertices in D is σ, finding a stack layout for D is equivalent to finding a stack
layout for G using the fixed order of vertices σ. Therefore sn(D) = 2. Finding a forest
stack layout of D is also equivalent to finding a forest stack layout of G using the fixed
order of vertices σ. Since the added short edges can only increase the forest stack number,
Theorem 4.5 implies that snf(D) ≥ 4.

34

4.3. Counterexamples for directed acyclic graphs

The graph P8,2 used in Lemma 4.8 is not the only one that can be altered to be an
upward planar graph D with sn(D) = 2 and snf(D) ≥ 4. Equivalently the graph given in
Theorem 4.1 can also be used.

s1 s2v1 v2 v3 v4 v5 v6

Figure 4.18: A 2-stack layout of the graph P8,2 with all missing short edges added in.

s1 s2v1 v2 v3 v4 v5 v6

Figure 4.19: An upward planar drawing of the graph P8,2 with all short edges and the
edges directed according to the shown order of vertices σ.

35

5. Conclusions

For complete graphs and complete bipartite graphs Km,n with m ≪ n we were able to
determine the forest stack number. Additionally, for outerplanar graphs, planar 3-trees and
k-trees we were able to find tight upper bounds for the forest stack number. We did not
determine the forest stack number for complete bipartite graphs in general since a tight
upper bound for the stack number of complete bipartite graphs in general is not known.
Hence, finding the forest stack number of complete bipartite graphs is still an open question.
Currently the best known upper bound for the stack number of Km,n is ⌈(m + 2n)/4⌉[16].
Thus, finding a better upper bound for the forest stack number of complete bipartite graphs
might help find or prove a smaller bound on the stack number of complete bipartite graphs.

Question 5.1. Is there an upper bound for snf(Km,n) that is smaller than min(m, n)?

For the forest stack number of complete bipartite graphs Km,n we improved the trivial
lower bound ⌈(nm − n − m)/(n + m − 3)⌉ found by Bernhart and Kainen[3]. The lower
bound for the forest stack number we found is ⌈nm/(n + m − 1)⌉. In the best case, this
bound is one large than the bound for the stack number. It is still an open question if this
lower bound can be further improved.

Question 5.2. Is there a lower bound for snf(Km,n) that is larger than ⌈nm/(n + m − 1)⌉?

Subhamiltonian graphs are the graphs with stack number at most 2[3]. Furthermore,
any Hamiltonian cycle or order of vertices that can be made into a Hamiltonian cycle by
adding edges, such that the graph remains planar, can be chosen as the order of vertices
in a 2-stack layout. We have found a subhamiltonian graph with forest stack number 3.
Additionally, Corollary 3.8 shows that at most four stacks are needed for a forest stack
layout of subhamiltonian graphs. Using a fixed Hamiltonian cycle as the order of vertices,
we found a subhamiltonian graph needing four stacks for a forest stack layout. However, if
a subhamiltonian graph needing four stacks without a fixed order of vertices is found this
would disprove Conjecture 1.1.

Question 5.3. Is there a subhamiltonian graph G with snf(G) = 4?

We have found counterexamples to Conjecture 1.1 when using a fixed order of vertices or
guaranteeing that a specific path in a graph is placed on a single stack. In general, the
validity of Conjecture 1.1 is still an open question.

37

5. Conclusions

Question 5.4. Is there a graph G with snf(G) ≥ sn(G) + 2?

Getting closer to finding such a graph might be done by altering the counterexamples we
found such that the restrictions we need to fulfill can be loosened.

Another possibility of attacking Question 5.4 that could be further researched is the
introduction of a game for forest stack layouts. We consider a first player called Alice that
iteratively introduces edges and vertices into a graph G such that the stack number of G
stays at most k. The second player called Bob is given the newly added edges and vertices
by Alice and has to insert them into a forest stack layout Γ of G that he is constructing. If
for all additional edges and vertices that Alice introduces, Bob manages to keep the forest
stack number of Γ below k + 2, he wins. Alice can, however, react to the forest stack layout
that Bob has constructed and wins if it is impossible for Bob to continue the layout on
k + 1 stacks. Thus, if a graph G with snf(G) ≥ sn(G) + 2 exists Alice can win the game by
giving this graph to Bob, since it would be impossible for Bob to construct a forest stack
layout of G using sn(G) + 1 stacks.

In general, this game can always be won by Alice. She can give Bob a set of six vertices
without any edges. Let a k-twist be k edges in a stack layout such that each of the k edges
is crossing all other edges. For any order of vertices that Bob chooses for the forest stack
layout, Alice can simply add three edges as shown in Figure 5.1 and construct a 3-twist.
Thus, even though the graph has forest stack number 1, three stacks are needed for the
forest stack layout Γ that Bob constructs.

d e fa b c

Figure 5.1: For any order of vertices the corresponding three edges can be added to create
a 3-twist.

Thus, to make the game interesting, additional restrictions have to be placed on what edges
Alice is allowed to add.

For example, Alice is only allowed to add edges such that any new edge is adjacent to a
new vertex that is added simultaneously. Hence, the following question might bring us
closer to determining the validity of Conjecture 1.1.

Question 5.5. With rules as introduced above is there a way for Alice to always win the
game?

Considering graphs Fn,k that need one additional forest stack, we introduce a different
game. In this game Alice gives Bob a graph Fn,2 or, more generally, Fn,k. Bob then
chooses an order of vertices σ. Next Alice is allowed to apply switching operations on
the graph. We define the more generalized switching operation swe

i,j that removes the
edges sjvl with i ≤ l < i + e and inserts the edge vi−1vi+e for a j ∈ {1, 2} and an i with
2 ≤ i ≤ n − e − 2. As an example the graph sw2

3,1(F8,2) is shown in Figure 5.2. These

38

new switching operations also do not increase the stack number. Alice is allowed to use
the switching operations sw1

i,j = swi,j and sw2
i,j . After Alice has given Bob the switching

operations, Bob has to find a forest 3-stack layout of the modified graph using the order of
vertices σ that he chose before.

In this type of game, if Bob chooses the order of vertices σ = s1, v1, v2, . . . , vn−2, s2 then
Theorem 4.5 tells us that no forest stack layout using three stacks exists if Alice constructs
a Pn,k with her switching operations. Thus, Alice wins. Else if Bob chooses the vertex
ordering σ′ = v2, v4, . . . , vi, s1, s2, vj , . . . , v3, v1 for which Pn,k needs only three forest stacks,
Alice can instead use the new switching operations. She can construct the graph shown in
Figure 5.3. For this graph Figure 5.4 shows that four pairwise crossing edges exist when
using the order of vertices σ′. Hence, Bob would also lose in this case. In the case that
Bob groups together all odd path vertices and all even path vertices, a similar problem
occurs. Hence, we pose the following open question.

Question 5.6. For each order σ of vertices that Bob chooses, can Alice always find
switching operations swi,j and sw2

i,j, such that Bob cannot construct a forest 3-stack layout
using the order σ?

v1 v2 v3 v4 v5s1 s2 v6

Figure 5.2: The graph sw2
3,1(F8,2) with a 2-stack layout.

39

5. Conclusions

v1 v2 v3 v4 v5s1 s2 v6 v7 v8 v9 v10

Figure 5.3: A graph that can be constructed by using switching operations sw2
i,j on F12,2.

s1 s2 v9 v7 v5 v3 v1v2 v4 v6 v8 v10

Figure 5.4: For this order of vertices the graph needs at least four stacks for a forest stack
layout, since s1v1, v10v7, v8v9 and v2s2 are all pairwise crossing.

40

Bibliography

[1] J. M. Alam, M. A. Bekos, V. Dujmović, M. Gronemann, M. Kaufmann, and S. Pupyrev.
On dispersable book embeddings. Theoretical Computer Science, 861:1–22, 2021.
doi:0.1016/j.tcs.2021.01.035.

[2] M. A. Bekos, M. Kaufmann, F. Klute, S. Pupyrev, C. Raftopoulou, and T. Ueckerdt.
Four pages are indeed necessary for planar graphs. Journal of Computational Geometry,
11(1):332–353, 2020. doi:10.20382/jocg.v11i1a12.

[3] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

[4] C. Binucci, G. D. Lozzo, E. D. Giacomo, W. Didimo, T. Mchedlidze, and M. Pa-
trignani. Upward Book Embeddings of st-Graphs. In G. Barequet and Y. Wang,
editors, 35th International Symposium on Computational Geometry (SoCG 2019),
volume 129 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–
13:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.SoCG.2019.13.

[5] H. Enomoto, T. Nakamigawa, and K. Ota. On the pagenumber of complete bi-
partite graphs. Journal of Combinatorial Theory, Series B, 71(1):111–120, 1997.
doi:10.1006/jctb.1997.1773.

[6] Z. Galil, R. Kannan, and E. Szemerédi. On 3-pushdown graphs with large separators.
Combinatorica, 9(1):9–19, 1989. doi:10.1007/BF02122679.

[7] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods,
1(2):216–227, 1980. doi:10.1137/0601025.

[8] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-
8956(74)90094-X.

[9] L. Heath. Embedding planar graphs in seven pages. In 25th Annual
Symposium on Foundations of Computer Science, 1984., pages 74–83, 1984.
doi:10.1109/SFCS.1984.715903.

[10] L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed
acyclic graphs: Part ii. SIAM Journal on Computing, 28(5):1588–1626, 1999.
doi:10.1137/S0097539795291550.

[11] L. S. Heath, S. V. Pemmaraju, and A. N. Trenk. Stack and queue layouts of di-
rected acyclic graphs: Part i. SIAM Journal on Computing, 28(4):1510–1539, 1999.
doi:10.1137/S0097539795280287.

41

https://doi.org/0.1016/j.tcs.2021.01.035
https://doi.org/10.20382/jocg.v11i1a12
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.4230/LIPIcs.SoCG.2019.13
https://doi.org/10.1006/jctb.1997.1773
https://doi.org/10.1007/BF02122679
https://doi.org/10.1137/0601025
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1109/SFCS.1984.715903
https://doi.org/10.1137/S0097539795291550
https://doi.org/10.1137/S0097539795280287

Bibliography

[12] P. Jungeblut, L. Merker, and T. Ueckerdt. A sublinear bound on the page number of
upward planar graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 963–978. doi:10.1137/1.9781611977073.42.

[13] J. L. Ganley and L. S. Heath. The pagenumber of k-trees is O(k). Discrete Applied
Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.

[14] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathematics,
22(5):1082–1096, 1970. doi:10.4153/CJM-1970-125-1.

[15] L. Merker and T. Ueckerdt. Local and union page numbers. In D. Archambault and
C. D. Tóth, editors, Graph Drawing and Network Visualization, pages 447–459, Cham,
2019. Springer International Publishing. doi:10.1007/978-3-030-35802-0_34.

[16] D. J. Muder, M. L. Weaver, and D. B. West. Pagenumber of complete bipartite graphs.
Journal of Graph Theory, 12(4):469–489, 1988. doi:10.1002/jgt.3190120403.

[17] M. Nöllenburg and S. Pupyrev. On families of planar dags with constant stack number.
arXiv preprint arXiv:2107.13658, 2021. doi:10.48550/arXiv.2107.13658.

[18] R. Nowakowski and A. Parker. Ordered sets, pagenumbers and planarity. Order,
6(3):209–218, 1989. doi:10.1007/BF00563521.

[19] S. Overbay. Generalized Book Embeddings. PhD thesis, 05 1998. URL https://www.
researchgate.net/publication/267270871_Generalized_Book_Embeddings.

[20] S. Pupyrev. Book embeddings of graph products, 2020.
doi:10.48550/ARXIV.2007.15102.

[21] Z. Shao, Y. Liu, and Z. Li. Matching book embedding of the cartesian product of a
complete graph and a cycle. 2020. doi:10.48550/ARXIV.2002.00309.

[22] J. Vandenbussche, D. B. West, and G. Yu. On the pagenumber of k-trees. SIAM
Journal on Discrete Mathematics, 23(3):1455–1464, 2009. doi:10.1137/080714208.

[23] A. Wigderson. The complexity of the hamiltonian circuit problem for maximal planar
graphs. Technical report, Tech. Rep. EECS 198, Princeton University, USA, 1982. URL
https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/W82a/tech298.pdf.

[24] M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer and
System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

[25] M. Yannakakis. Planar graphs that need four pages. Journal of Combinatorial Theory,
Series B, 145:241–263, 2020. doi:10.1016/j.jctb.2020.05.008.

42

https://doi.org/10.1137/1.9781611977073.42
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/10.1007/978-3-030-35802-0_34
https://doi.org/10.1002/jgt.3190120403
https://doi.org/10.48550/arXiv.2107.13658
https://doi.org/10.1007/BF00563521
https://www.researchgate.net/publication/267270871_Generalized_Book_Embeddings
https://www.researchgate.net/publication/267270871_Generalized_Book_Embeddings
https://doi.org/10.48550/ARXIV.2007.15102
https://doi.org/10.48550/ARXIV.2002.00309
https://doi.org/10.1137/080714208
https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/W82a/tech298.pdf
https://doi.org/10.1016/0022-0000(89)90032-9
https://doi.org/10.1016/j.jctb.2020.05.008

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contribution
	1.4 Outline

	2 Preliminaries
	2.1 Different graph families
	2.2 Stack layouts and forest stack layouts
	2.3 Basic observations about stack numbers and forest stack numbers

	3 Testing the conjecture for different graph families
	3.1 Complete graphs
	3.2 Complete bipartite graphs
	3.3 Outerplanar graphs
	3.4 Planar 3-trees
	3.5 k-Trees
	3.6 Graphs with forest stack number one larger
	3.7 Subhamiltonian Graphs

	4 Counterexamples
	4.1 Counterexamples with fixed order of vertices
	4.2 Modifications to graphs from Section 3.6
	4.3 Counterexamples for directed acyclic graphs

	5 Conclusions
	Bibliography

