
Bachelor Thesis

NP-hardness of Invariants in Rational
Homotopy Theory

Eric Ritte

Datum der Abgabe
10. 11. 2021

Advisors:

Dr. Andreas Ott Prof. Dr. Torsten
Ueckerdt

Department of Mathematics Department of
Computer Science

Karlsruhe Institute of Technology

Contents

1 Introduction 1

2 Complexity Theory 2
2.1 A Small Vocabulary for Computation 2
2.2 A Model of Computation . 4
2.3 Two Important Complexity Classes 12

3 Rational Homotopy Theory 17
3.1 Basic Homotopy Theory . 17
3.2 Rational Spaces and Rationalizations of Spaces 22
3.3 Sullivan Models of Rational Spaces 31

4 Cohomology of Finite-Type Rational Spaces 35

5 Betti Numbers of Elliptic Spaces 40

1 Introduction

1 Introduction

In algebraic topology, one constructs algebraic invariants of topological spaces
in order to classify them. This is done by constructing one’s invariants that
they are exactly that – invariant under homeomorphism. Then, two spaces
with different invariants may not be homeomorphic, the kind of result that
is often very tricky to prove otherwise. One of the most powerful invariants
is the set of homotopy groups of a space. However, this power comes at a
price: the higher homotopy groups of even simple spaces are notoriously hard
to compute, and much research has been done into both developing techniques
to compute them and develop alternative invariants that trade power for ease
of computation. One such invariant can be found in rational homotopy theory,
which allows us to describe a certain subclass of topological spaces with the
help of an alluringly easy to handle algebraic object. It does this by “forgetting”
about unwieldy twists and torsion maps that can occur in regular homotopy
theory. The apparent ease of computation it offers raises a new question:
does rational homotopy theory actually make computations “easy”? Luckily,
complexity theory offers us a powerful theoretical framework to argue about the
difficulty of computational problems. We will examine a handful of invariants
one generally cares about in algebraic topology and come to a conclusion that
may be underwhelming to some (and exciting to others): even though rational
homotopy theory makes computation “easier” in an everyday understanding of
the word, computing interesting invariants is still “hard” in a formal sense.

1

Torsten Ueckerdt

2 Complexity Theory

2 Complexity Theory

In this chapter, we will give a brief overview over the concepts required from
theoretical computer science, specifically computation and complexity theory,
to understand the results outlined in this thesis. Roughly speaking, compu-
tation theory asks the question “What can we compute?”, whereas complexity
theory tries to further classify that which is computable by asking “How ef-
ficiently can we compute it?” The object of study of complexity theory thus
are computation problems (for example finding the shortest path between two
vertices in a weighted directed graph) and routines or procedures1 that can
solve such problems in either the general case or under a specified set of re-
strictions. The goal then becomes to explicitly construct such procedures and
to prove upper and lower bounds of their running time (or other resource use)
in dependence on the size of the problem instance to solve (for example the
number of edges and vertices in a graph).

Our goal in this chapter is to give a precise, mathematical rigorous meaning
to the statements above. Slightly more material than what would be strictly
needed to understand the results presented in sections 4 to 5 will be covered,
with the goal to better contextualize that which is.

2.1 A Small Vocabulary for Computation

To start out, we introduce some basic terminology from theoretical computer
science, which we will need for the definitions in the following sections. A lot of
the nomenclature in this section may seem strange to the modern reader, but
it is historically motivated and bears witness to a certain influence theoretical
linguistics had on early theoretical computer science.

Definition 1 (Alphabet) A finite set of symbols Σ is referred to as an al-
phabet. The term is meant to emphasize that we do not assume a structure on

1We are avoiding using the term “algorithm” for now, as we do not yet have developed the
necessary theoretical machinery to give it a precise technical meaning.

2

2 Complexity Theory

Σ and view the elements bereft of any (initial) interpretation or context, even
if they might already be highly familiar to us. 2

Definition 2 (String) Let Σ be an alphabet. For a finite n ∈ N, an ordered
n-tuple ω of symbols in Σ (duplicates allowed) is called a string (over Σ). The
natural number n is referred to as the length of the string, which we denote
with |ω|. The set of all strings of length n over Σ is denoted by Σn. There is
exactly one string of length 0, the empty string ε. 2

Definition 3 (The Set of all Strings) For an alphabet Σ, we define Σ∗ to
be the set of all finite-length strings over Σ, i.e. Σ∗ = ∪n∈NΣn. 2

Definition 4 (Language) Given an alphabet Σ, a language L (over Σ) is a
subset of Σ∗. The elements of L are sometimes called words. The complement
of a language is the language L{ := {0, 1}∗ \L. 2

Example 1 (Binary Representations of Prime Numbers) Let Σ be the
set {0, 1}. Then Σ∗ is the set of all finite-length bit strings. We can define the
language

Lprime := {ω ∈ Σ∗ | ω is the binary representation of a prime number}

of all (binary) prime numbers. 2

It is generally easier to define a language then to give an explicit description
of what it looks like, i.e. a list of all its members, if just for the reason of sheer
size. The example Lprime was easy to define, but one could not write down a list
of all binary representations of prime numbers, as there are an infinite amount
of those. More interestingly, given a specific bit-string, e.g. 100011101001101,
it is not obvious whether or not this the binary representation of a prime. This
motivates the definition of the decision problem.

Definition 5 (Decision Problem) A language L is associated to the deci-
sion problem of which strings ω ∈ Σ∗ are also elements of L. When trying to

3

2 Complexity Theory

decide whether a given ω ∈ Σ∗ is a member of L, we refer to ω as an instance
of the decision problem.

Define χL : Σ∗ → {0, 1} to be the characteristic function of L, that is
χL (ω) = 1 if and only if ω ∈ L. Then the decision problem of L is equiv-
alent to calculating the characteristic function. 2

Example 2 (Primes again) Consider the language Lprime from example 2.1.
For a given bit string ω ∈ Σ∗, evaluating the characteristic function χprime of
Lprime at ω means checking whether the number represented by ω is a prime
number. More generally, calculating χprime means constructing an automatable
procedure that can check for any bit string whether it represents a prime
number. We will return to these notions in the next sections to make them
more rigorous. This decision problem is usually referred to as Primes. 2

2.2 A Model of Computation

Before we start talking about what it means for a computation problem to be
“efficiently computable”, we first need to clarify what it means for something
to be computable in the first place. To do so, we introduce a basic model
of computation, the Turing machine. We first give an informal description of
how a Turing machine works and what its internals look like, before moving
on to a more formal definition. However, Turing machines have a very nice
theoretical property that allows us to argue about them on a very high level
of abstraction, so the technical details of the definition are often regarded as
not as important as a good understanding of how they work.

A Turing machine consists out of a control unit, a read-write head and an
infinite-length tape to write on and read from, divided into an infinite amount
of uniformly sized cells. Note that the tape is only of infinite length to free us
from concerns about space constraints – the machine will never run out of tape
space during execution –, but as a result of how a Turing machine works (see
further below), it does not allow us to actually surpass the capabilities of an

4

2 Complexity Theory

actual computer (which obviously does not have access to an unlimited amount
of memory), so at any given point during execution, only a finite amount of
cells can actually have been written to/read from.

The control unit consists out of a finite amount of states and possible tran-
sitions between them. This can be thought of as a directed graph that permits
loops and multi-edges. One state is the designated starting state, and two or
more designated halting states, which are either accepting or rejecting.

At the start of execution, the tape contains the input, a finite string of
symbols (for example the binary representation of an integer), one symbol per
cell. The read-write head points to the start of the input, the control unit is in
the starting state. The start of the input, however, is not the start as the tape,
but “somewhere in the middle”, that is to say that at the beginning, there is
an infinite amount of tape space to both the left and the right of the input.
It might be helpful to view the tape cells as indexed by the integers – there is
no first cell, same as there is no last cell –, and the input string just starts at
some integer.

The execution itself consists of discrete steps. At the beginning of each
step, the read-write head reads the content of the cell it is currently pointing
at. This then triggers a state transition, even though transitions into the state
the machine is already in are allowed (that is to say the machine does not
necessarily change state during a transition). During the transition, the ma-
chine may write a symbol to the cell the read-write head is currently pointing
at, replacing any symbol already inside that cell, and/or move the read-write
head one cell to the left or right. If the machine both writes a symbol to the
tape and moves the head, the writing is always done first, the moving second.
If the transition includes a change of state, this is done last.

If, at any point during execution, the machine transitions into one of the des-
ignated halting states, it immediately stops executing. We say that the input
was either accepted or rejected, depending on whether the machine stopped in
an accepting or rejecting halting state. Any string of symbols still left on the
tape is referred to as the output of the execution. However, it is also possible

5

2 Complexity Theory

for the machine to never halt, for example when, during execution, the ma-
chine enters an ever-repeating circular sequence of transitions into non-halting
states. We then say that the machine loops.

Definition 6 (Turing Machine) A (deterministic) Turing Machine TM is a
7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject), consisting out of

• A finite set of states Q

• A finite set of symbols Σ, the input alphabet

• A finite set of symbols Γ, the tape alphabet, containing Σ, the blank
symbol ␣ and any other symbol the machine may write to the tape

• A transition function δ : Q× Γ→ Q× Γ× {L,R,N}

• A start-state q0 ∈ Q

• An accept-state qaccept ∈ Q

• A reject-state qreject ∈ Q

The input alphabet may not contain the blank symbol. The transition function
takes the current state and the symbol written in the cell the read-write head
is currently pointing to and maps it to a triple of the new state of the machine
(can be the one the machine is already in), the symbol that is to be written
to the tape cell (can be the one read from the tape) and the direction to move
the read-write head to (left, right or no movement). 2

Note that in the literature one can find several slightly different, but ulti-
mately equivalent, definitions. Some may include multiple single-purpose tapes
(for example one for input, one for output and one for calculations), each one
with its own dedicated read, write or read-write head. Some define the tape
cells as indexed by the natural numbers, that is there is a unique starting cell.
Some may include a “square” tape, that is one where the cells are indexed by
Z × Z, and where the read-write head can move up and down as well as left
and right. Some may include a fixed input-alphabet. Some may not include
rejecting final states, only accepting or even only halting ones.

However, these technical details do not actually matter a great deal: it is
a central notion of theoretical computer science that not only is every model

6

2 Complexity Theory

. . . ␣ 0 0 1 1 1 1 ␣ ␣ . . . Input/Output Tape

q0 q1 q2 q3

q4q5q6

q7

0|0, R

1|1, R

1|1, R

␣|␣, L 1|␣, L 0|0, L
1|1, L

␣|␣, R

0|␣, R0|0, R
1|1, R

0|0, R
1|1, R

␣|␣, L

␣|␣, R

Control Unit

q0
Read-Write Head

(moves in both directions)

Figure 1: An illustration of a Turing Machine. The transitions should be read as “in-
put |output, head movement”. The state diagram of the control unit was lifted
from [Wag+ 1] and recognizes the language L= := {0n1n | n ≥ 1}. There are
a couple of transitions not drawn, all of which lead into the (also not drawn)
rejecting state.

7

2 Complexity Theory

of classical computation as powerful as any other one, any model can also
simulate any other model efficiently. This is (a slight restriction of) the so-
called extended Church-Turing thesis. In order to properly state the extended
Church-Turing thesis, we first need to specify what we mean when we say
“efficiently”.

Definition 7 (Polynomial Execution Time) A Turing machine TM halts
(or terminates) in polynomial time if there is a polynomial p such that TM

halts on any input string ω after at most p (|ω|) steps. 2

A bit more reasoning on why it has become custom to interpret computation
in polynomial time as efficient will be given once we have defined some basic
complexity classes in section 2.3.

Claim 2.1 (Extended Church-Turing Thesis)
Every physically realizable model of computation can be simulated by a Turing
machine in polynomial time, that is there is a Turing machine TM a polynomial
p such that in order to simulate t execution steps of the model, TM will need
at most p (t) steps.

This is the extended (or strong) Church-Turing thesis as stated in [AB09].
One will also often find it stated as “every intuitively realizable model of com-
putation can be efficiently simulated by a Turing machine”. While there exists
no general proof of the Church-Turing thesis, and its somewhat non-rigorous
statement makes it insusceptible to mathematical proof, once one considers a
specific model of computation, this equivalence of power can be proven. Note
that there are models of computation that are not just differing definitions of
Turing machines (for example, every programming language is also a model of
computation), which are, of course, also covered by the Church-Turing thesis.
See for example section 1.2.1 of [AB09] for an outline of a proof that Turing
machines can simulate a general programming language.

Only the advent of quantum computing and the possibility that of a physi-
cally realizable universal quantum computer has brought forward a likely can-
didate for a model of computation that is strictly more powerful than Turing

8

2 Complexity Theory

machines. At this point in time, however, this has not been formally proven,
and it is still an open research question as to whether quantum computers
are more powerful than Turing machines. For more information, see Scott
Aaronson’s survey [Aar17] [Aar17], specifically section 5.5, or chapter 10 in
Arora’s book. Still, even with the advent of quantum computing, the extended
Church-Turing thesis is still widely held to be true if one only considers mod-
els of classical computation, that is models of the kind of deterministic digital
computation one finds in modern-day regular computers.

To close this chapter, we will return to the notion of “algorithm” and how
Turing machines actually offer a framework to formalize it. In the following, for
simplicity’s sake, we will only consider Turing machines with a single halting
state which is neither accepting nor rejecting. This does, of course, in no way
influence the computational power of the definition.2

Note that the entire “computational information” of a Turing machine is
encoded in its transition function. Like the integrated circuits one would find in
an old pocket calculator, they are very much single-purpose – a Turing machine
can perform exactly the one kind of calculation described by its transition
function. But this is not how a modern computer works. Given that we want
Turing machines to offer a theoretical model that allows us to argue about
the computational capacities of a computer, the question as to whether we
can construct a Turing machine that can calculate anything offers itself up.
The answer is yes.3 The reason for this is that, due to its finite size, the
transition function offers itself up to be written as a single string, which can
then be given to another Turing machine as input. Then, we only need to

2For a Turing machine TM with an accepting and rejecting state, we can construct an
equivalent Turing machine TM′ with a singular halting state by turning the accepting
and rejecting state into non-halting ones, adding a new halting state qend and a set of
transitions such that on reaching the old accepting state, the Turing machine TM′ empties
the entire tape except for a special accepting symbol, e.g. a “1”, in a single cell (and,
accordingly, new transitions from the old rejecting state that empty the tape except for
a single rejecting symbol) and then halts. We can then say that TM′ accepts an input ω
if it halts with output 1 (or rejects it if it halts with output 0).

3While this may not be surprising in the day and age of ubiquitous universal computing,
it was considered to be a most remarkable result when it was first proven by Turing in
1936.

9

2 Complexity Theory

construct a Turing machine whose “one kind of computation” it can perform
is other Turing machines. More precisely, a Turing machine that, on an input
consisting of a string encoding another Turing machine and some input string
ω, will simulate the encoded Turing machine on the input ω efficiently. This
then uniquely identifies a Turing machine with what can be thought of as an
executable bit string consisting of a sequence of instructions describing how to
perform a certain kind of calculation. Or in simpler terms: a program.

Definition 8 (Turing Machines as Programs) We now show how any Tur-
ing machine can be encoded as a bit string, that is an object α ∈ {0, 1}∗. While
the choice of alphabet is somewhat arbitrary, it has established itself as a stan-
dard in complexity theory, and some textbooks, such as [AB09], do not even
define languages and Turing machines over any other alphabet.

Let TM be a Turing machine consisting of

• the set of states Q = {q0, . . . , qn},

• the input alphabet Σ = {a1, . . . , am},

• the tape alphabet Γ = {a1, . . . , am, am+1, . . . , ak =},

• the transition function δ : Q× Σ→ Q× Γ× {L,R,N},

• the starting state qstart ∈ Q,

• a single halting state qhalt ∈ Q.

In order to encode δ as a string, we note that we can view it as a subset
Q2 × Σ× Γ×D ⊃ ∆ := {(qi, qj, as, at, d`) | δ (qi, as) = (qj, at, d`)}, where D =

{d1, d2, d3} with d1 = L, d2 = R and d3 = N . We introduce an ordering ≺ on
∆ with

(qi, qj, as, at, d`) ≺ (qr, qk, as′ , at′ , d`′) :⇐⇒ i ≤ r and j ≤ k.

Note that this is a total order and since ∆ is finite, it has a minimal element.
We can therefore use it to enumerate the elements in ∆. Should two elements
d1, d2 be two transitions from the same state into the same state, we order them
via the index of the input symbol. We encode an element (qi, qj, as, at, d`) ∈ ∆

as the bit string 0i10s10j10t10` and write codek for it, where k is the index of

10

2 Complexity Theory

the element in the enumeration given by ≺. This allows us to encode ∆ by
concatenating all the bit strings in the order defined by ≺ with sequences of
1’s as delimiters, resulting in a string

111code111code211 . . . 11code|∆|111.

Furthermore, by convention, it is often assumed that q0 = qstart and q1 = qhalt

(since we can always just re-index the states), so that these get encoded at
the start. Note that this, like the enumerating we defined above, is not a
necessary convention – even with an arbitrary enumeration of the elements in
∆, the construction would still work. It does, however, make the following
proofs a bit less messy.

We can now describe any Turing machine as an element α ∈ {0, 1}∗. We
now introduce two further useful conventions. The first is that any string that
is not a well-formatted encoding of a Turing machine is an encoding of the
Turing machine that immediately halts with output 0. The second one is that
if α is an encoding of a Turing machine, α1∗ is an encoding of the same Turing
machine. This is to say we can add any amount of trailing ones to an encoding
of a Turing machine without changing its computational content. Finally, we
write TMα for the Turing machine encoded by the string α. The two previous
conventions guarantee that this is always a meaningful piece of notation, no
matter the string α. 2

Theorem 1 (The Universal Turing Machine) There exists a universal Tur-
ing machine TMU with input alphabet {0, 1} and tape alphabet {␣, 0, 1} such that
for every ω, α ∈ {0, 1}∗, on the input (α, ω), TMU will simulate TMα on the
input ω. Moreover, this is an efficient simulation. If TMα halts on the input ω
within t steps, then TMU halts on (ω, α) within c ·t · log t steps, where c depends
not on ω but only on the size of TMα. 2

Proof For a detailed proof, see section 1.7 in [AB09], we will only give an
outline here. For this, we will assume that the Turing machine encoded in
the input also uses the binary alphabet, which we will justify afterwards. The

11

2 Complexity Theory

rough idea of how the universal Turing machine works is as follows. It reads
the description and input and then saves the state-transition function of the
Turing machine to be simulated as a look-up table on its tape. Furthermore,
it saves the current state and head position of the simulated Turing machine
as well. Then it just starts working on input: it reads the first symbol, checks
the current state, looks up the transition from the current state on the input
symbol, performs it, updates head position, writes new symbol, updates the
current state of the simulated Turing machine etc. �

Lemma 1 For any Turing machine TM, one can construct an equivalent Tur-
ing machine T̃M that uses a binary input alphabet and carries the same com-
putational info as TM. 2

Proof We only give a quick sketch of the proof, by outlining how such a
Turing machine T̃M can be constructed. The idea is to replace each input
symbol with a 2dlog ke bit string, where k is the length of the input alphabet of
TM. We then extend the amount of states and the state transition function such
that T̃M can “remember” the bits of the string encoding the input symbol which
it has already scanned and perform the state transition function of TM “bit-
wise”. This construction yields a Turing machine performing a computation
equivalent to that of TM and using the binary alphabet. �

2.3 Two Important Complexity Classes

Having laid the groundwork of developing a model of computation and for-
malizing what it means for a problem to be solvable by an algorithm, we now
properly enter the subject area of complexity theory. Complexity theory is
interested in classifying problems by the efficiency properties of the algorithms
that solve them, or, spoken more casually, by how hard they are. This desire
naturally gives rise to the concept of complexity classes, in which we collect
problems of similar difficulty. While we will only consider classifications of
runtime efficiency measured in required steps of computation, other kinds of
complexity, such as space complexity, also exist.

12

2 Complexity Theory

Definition 9 (Computable Function) A function f : Σ∗ → Γ∗ is called
computable if there exists a Turing machine TMf that halts on any input ω ∈ Σ∗

with output f (ω).

If TMf is polynomial time, then we say f is computable in polynomial time.2

Definition 10 (Decidable Languages) A language L is called decidable if
its characteristic function is computable. We then say that the Turing machine
computing the characteristic function decides the language (or the associated
decision problem). 2

Definition 11 (Semi-decidable Language) A language L is called semi-
decidable if there is a Turing machine TML that accepts any ω ∈ L, but which
may loop indefinitely on an ω /∈ L. We then sometimes say that TML verifies
(or recognizes) L. 2

Definition 12 (The Class P of Problems) The class P is the class of lan-
guages (or decision problems) L for which there exists a Turing machine TML

and a polynomial p such that for each ω ∈ Σ∗, TML decides whether ω ∈ L in
at most p (|ω|) steps. In other words, the Turing machine TML decides L in
polynomial time. 2

Example 3 (Primes is in P) We return to example 2.1 one last time. By
our previous note on encoding, we can view this as just the language of all
prime numbers or equivalently the decision problem of whether a given natural
numbers is prime. As proven in [AKS04], this problem is in P. 2

As noted before, computation in polynomial time is often viewed as “efficient
computation” in practice. Therefore, the problems in P are often described as
the problems which we can solve efficiently in practice. Of course, a polyno-
mial of degree 1000 is still a polynomial, and if one had a problem that was
decided by a Turing machine whose runtime was a polynomial of such high
degree, its large instances would take an infeasible amount of time to com-
pute in practice. One might therefore justifiably question the identification

13

2 Complexity Theory

of “computable in polynomial time” with “efficiently computable”. Thus, it is
therefore a most remarkable fact that for almost all problems in P, especially
the ones of practical concern, there exist algorithms that run in at most cu-
bic time [Aar17], making this identification a lot more reasonable. We will
now introduce another important class of problems, for which it is not known
whether or not they can be efficiently solved.

Definition 13 (The Class NP of Problems) The class NP is the class lan-
guages (or decision problems) L for which there exists a Turing machine TML

and a polynomial p such that for all ω ∈ Σ∗, ω ∈ L if and only if there exists a
witness w ∈ Σp(|ω|) (sometimes also referred to as a certificate) such that TML

accepts (w, ω), the concatenation of w and ω separated by a delimiter symbol,
in polynomial time depending only on |ω|. We then say that TML verifies L.2

For instances of problems in P, witness strings always exist. Indeed, any
string is a witness string of any instance of any problem in P. This is since there
exists a Turing machine which decides the problem, so we can construct one
that verifies the problem by constructing a Turing machine that first discards
the witness and then just decides the input. In other words, for a language
L ∈ P the empty string ε is a witness for any ω ∈ L (and any α ∈ L{). Thus,
P is in NP.

It is often helpful to think of the witness as a suggested solution to the
problem instance, and this is how candidates for witness strings are usually
chosen in practice. The definition above can therefore be understood as the
problems in NP being the problems for which a solution can be verified in
polynomial time. It is an open problem in complexity theory whether the
inclusion P ⊂ NP is a proper one, i.e. whether there are problems for which
there exists no polynomial-time algorithm. However, this is widely assumed
to be true (for example in all of modern cryptography). A thorough survey of
the current state of research on that question can be found in [Aar17].

In complexity theory, we are interested in classifying problems by their dif-
ficulty. One way of doing this is to compare a problem’s difficulty to that of

14

2 Complexity Theory

a problem where we already know “how hard” it is. The primary theoretical
tool to do this is the proof technique of a Turing reduction. We will, however,
not discuss Turing reductions in the entirety of their formal depth and instead
focus on a slightly weaker variant usually referred to as a many-one reduction,
as it is sufficient for the purposes of this thesis.

Definition 14 (Many-One Reduction) Let Pbm,Qst be two languages
over the same alphabet Σ. A many-one reduction from Pbm to Qst is a
computable function M : Σ∗ → Σ∗ such that ω ∈ Pbm ⇐⇒ M (ω) ∈ Qst.
We then say that Pbm is reducible to Qst or that Qst is “at least as hard as”
Pbm.

A reduction M is called polynomial if there exists a Turing machine TM that
computes M in polynomial time. 2

Definition 15 (NP-Hardness) A problem Pbm is called NP-hard if it is at
least as hard as any other problem in NP, that is if for any other problem
T ∈ NP, there exists a Turing reduction from T to Pbm. 2

Note that to show that a problem is NP-hard, it suffices to construct a
reduction to another NP-hard problem, as polynomial reductions are closed
under composition.

Definition 16 (NP-Completeness) A problem Pbm is called NP-complete
if it is NP-hard and Pbm ∈ NP. 2

A lot of NP-hard problems that are considered to be of practical importance
are also known to be NP-complete. We will conclude this chapter by giving
just three examples, the latter two of which we will use in the proofs of sections
4 to 5.

Problem 2.1 (kSat)
Instance : A boolean formula in conjunctive normal form with k literals
per clause,

(x11 ∨ x12 ∨ · · · ∨ x1k)∧(x21 ∨ x22 ∨ · · · ∨ x2k)∧· · ·∧(xj1 ∨ xj2 ∨ · · · ∨ xjk) .

15

2 Complexity Theory

Question: Is there a configuration – that is a mapping that assigns each
variable a boolean truth value true or false –, such that the formula is
satisfied?

This problem was first proved to be NP-complete by S.A. Cook in his land-
mark paper [Coo71]. It was in this paper that the notion of NP-completeness
was first defined. One year later, R.M. Karp proved the NP-completeness of
a further 21 important problems using reductions to the boolean satisfiability
problem in [Kar72], including the following two examples. For these reasons,
boolean satisfiability is often considered to be the “grandfather” of NP-complete
problems.

Problem 2.2 (kCol)
Instance : A graph G := (V,E).
Question: Does G allow a proper k-coloring, that is exists there a function
κ : V → {1, . . . , k} such that κ(vi) 6= κ(vj) for all (vi, vj) ∈ E?

Problem 2.3 (SubsetSum)
Instance : A pair consisting out of a multiset M of integers and a target
integer t.
Question: Does there exist a subset S of M such that the elements of S
add up to t?

16

3 Rational Homotopy Theory

3 Rational Homotopy Theory

3.1 Basic Homotopy Theory

Before we start introducing the ideas of rational homotopy theory, we want to
give a rundown of some definitions and theorems from homotopy theory and
general algebraic topology that we will need later on. These definitions – and,
of course, proofs of the mentioned theorems – can be found in most textbooks
on algebraic topology, such as [Hat02], [May99] or [Die08]. In the following,
any assumed map between topological spaces is continuous, unless explicitly
stated otherwise, and we write I for the unit interval [0, 1] ⊂ R endowed with
the subspace topology. Two other kinds of spaces we will often use are the
n-spheres Sn, the subspace of points in Rn+1 with distance 1 to the origin, and
the n-disks Dn, the subspace of points Rn with distance less than or equal to 1

to the origin. In all of the previous definitions, we assumed Rn to be equipped
with the standard topology induced by the Euclidean metric.

Definition 17 (Pointed Topological Spaces) A pair (X, x0) consisting of
a topological space X and a designated point x0 ∈ X is called a pointed
topological space, and x0 is referred to as the base point of X.

A map of pointed topological spaces f : (X, x0)→ (Y, y0) is a map f : X →
Y such that f (x0) = y0. 2

Definition 18 (Homotopies of Maps) LetX, Y be topological spaces, f, g : X →
Y be maps. A homotopy between f and g (sometimes from f to g) is a map
h : X×I → Y such that the map h0 : X → Y, x 7→ h (x, 0) =: h0 (x) is equal to
f and the map h1 : X → Y, x 7→ h (x, 1) =: h1 (x) is equal to g. Furthermore,
we ask that for any t ∈ I, the analogously defined map ht is continuous and
that for any x ∈ X, the map hx : I → Y, t 7→ ht(x) =: hx(t) is continuous.
In less formal language, a homotopy continuously transforms f into g, never
passing through a non-continuous state.

A homotopy h is called a homotopy relative A for some subspace A ⊆ X if
ha is constant for any point a ∈ A.

17

3 Rational Homotopy Theory

A map k from X to Y is called null-homotopic if there exists a homotopy
from f to the map pt that maps the entirety of X onto a single point in Y .2

Definition 19 (Homotopy Groups) Let (Sn, s0) be the pointed n-sphere,
(X, x0) be a pointed topological space. We define the n-homotopy group of
(X, x0) as the set of equivalence classes of continuous, base-point preserving
maps (Sn, s0)→ (X, x0) up to homotopy relative endpoint. 2

Note 3.1 (π1)
The first homotopy group is often referred to as the fundamental group.

Note 3.2 (Alternative Definition)
Occasionally, it will be more convenient to instead consider maps from the n-
cube In into (X, x0), where the entire boundary of In gets mapped to x0, up to
homotopy relative boundary. Since In is homeomorphic to Dn and collapsing
the boundary ofDn to a single point results in an Sn, this gives us an equivalent
definition.

Claim 3.1 (The Homotopy Groups are Groups)
We define an operation ◦ on the n-th homotopy group by concatenation. As
it is more convenient for writing out the specifics, we will use the alternative
definition for this. Specifically, the product [α]◦[β] of the homotopy equivalence
classes [α] and [β] is given by the homotopy equivalence class of the map

(α ∗ β) (t1, t2, . . . , tn) :=

α (2t1, t2, . . . , tn) if t1 ∈
[
0, 1

2

]
β (2t1 − 1, t2, . . . , tn) if t1 ∈

[
1
2
, 1
]
.

Proof We quickly outline the proof. Note that since the entire boundary of
the In gets mapped to the point x0, we have α (1, t2, . . . , tn) = β (1, t2, . . . , tn) =

x0 for every (t2, . . . , tn) ∈ In−1, so the map is indeed continuous. Furthermore,
if α′ ∈ [α] and β′ ∈ [β], then α′ ∗β′ ∈ [α ∗ β], so the operation does not depend
on the choice of representatives. To see this pick a homotopy hα from α to α′

and a homotopy hβ from β to β′. Then the map hα∗β := hα ∗hβ is a homotopy
from α ∗ β = α′ ∗ β′. Finally, one can check that this indeed turns the set
of homotopy equivalence classes of maps into a group with the constant map

18

3 Rational Homotopy Theory

α β

γ δ

∗1→ ∗2→ ∗1← ∗2←
α β

γ δ

Figure 2: A visual outline of the proof that ∗1 and ∗2 commute over each other
for n = 2.

as the neutral element, the inverse of a map σ being the map σ−1 given by
σ−1 (t1, . . . , tn) = σ (1− t1, . . . , tn). �

Note 3.3 (The Higher Homotopy Groups are Abelian)
While this is generally not true for the fundamental group, one can see that
πn is abelian for any n ≥ 2 by defining another operation ∗i on the set of
homotopy equivalence classes (obviously, i ≤ n) that concatenates in the i-th
instead of the first argument.

One can then apply the Eckmann-Hilton argument, which tells us that for
a set S equipped with two operations ◦, • : S × S → S with a common unit
e ∈ S which commute over each other, meaning that

∀α, β, γ, δ ∈ S : (α ◦ β) • (γ ◦ δ) = (α • β) ◦ (γ • δ) ,

the operations ◦ and • are the same operation, and that operation is commu-
tative and associative. Both ∗ and ∗i have the constant map as a unit and
they do indeed commute over each other.

This not only tells us that the higher homotopy groups are abelian, but also
that the choice of which argument we concatenate in does not actually matter
for the definition.

Definition 20 (Weak Equivalences) A map of topological spaces f : X →
Y is called a weak homotopy equivalence (or sometimes just weak equivalence) if
it induces isomorphisms on the homotopy groups. In more detail, for an n ∈ N
we define the induced map fn : πn (X)→ πn (Y) as postcomposition with f , so
(σ : S1 → X) 7→ (f ◦ σ : S1 → Y). Then f is a weak equivalence if ∀n ∈ N\ {0},

19

3 Rational Homotopy Theory

the maps fn are group isomorphisms and the map f0 is a bijection of pointed
sets. Noticeably, any homeomorphism is a weak homotopy equivalence, so
spaces with non-isomorphic homotopy groups can not be homeomorphic. 2

Definition 21 (Path-Connected) A topological spaceX is called path-connected
if ∀x, y ∈ X, there is a continuous map γ : [0, 1] → X (a path) such that
γ(0) = x and γ(1) = y. 2

Claim 3.2 (The Fundamental Group of a Path-Connected Space)
The choice of base-point does not matter when calculating the fundamental
group of a path-connected space X, so π1 (X, x0) ∼= π1 (X, x1) for any two
x0, x1 ∈ X.

Proof Let x0, x1 be two points in X and let γ be a path from x0 to x1. We
define a map γ̂ : π1 (X, x0) → π1 (X, x1) , [σ] 7→ [γ−1 ∗ σ ∗ γ], where γ−1 is the
path from x1 to x0 defined by γ−1(t) := γ(1 − t). Since the concatenation
γ ∗ γ−1 is null-homotopic (and therefore the neutral element of ◦), we have

γ̂ ([σ] ◦ [θ]) = γ̂ ([σ ∗ θ])

=
[
γ−1 ∗ σ ∗ θ ∗ γ

]
=

[
γ−1 ∗ σ ∗ γ ∗ γ−1 ∗ θ ∗ γ

]
=

[
γ−1 ∗ σ ∗ γ

]
◦
[
γ−1 ∗ θ ∗ γ

]
= γ̂ ([σ]) ◦ γ̂ ([θ])

and

[
γ ∗ γ−1 ∗ σ ∗ γ ∗ γ−1

]
=

[
γ ∗ γ−1

]
◦ [σ] ◦

[
γ ∗ γ−1

]
= [pt] ◦ [σ] ◦ [pt]

= [σ] ,

this is a morphism of groups and there is a morphism γ̂−1 : π1 (X, x1) →
π1 (X, x0) such that γ̂−1γ̂ is the identity, and therefore an isomorphism. �

20

3 Rational Homotopy Theory

Definition 22 (Simply and n-Connected) A topological space X is called
simply connected if it is path-connected and its first homotopy group is trivial.

More generally, a topological space X is called n-connected if it is path-
connected and its first n homotopy groups are trivial. A simply connected
space is therefore also referred to as a 1-connected space. 2

Claim 3.3 (Higher Homotopy Groups of Simply-Connected Spaces)
The choice of base-point does not matter when calculating the higher homotopy
groups of a path-connected space X, so πn (X, x0) ∼= πn (X, x1) for any n ∈ N
and any two x0, x1 ∈ X. However, this isomorphism is only canonical if π1 (X)

is trivial, that is if X is simply connected.

In the following definitions, every topological space is assumed path-connected
unless specified otherwise.

Definition 23 (CW complex) A relative CW complex (X,A) is a pair of
hausdorff topological spaces X and A together with an ascending chain of
topological subspaces Xi ⊆ X,

A = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ X3 ⊆ · · · ,

such that X =
⋃
i≥−1Xi and for all k ≥ 0, Xk can be constructed from Xk−1

by adjoining (or glueing) k-cells, e.g. there exists a pushout-diagramm

∐
i∈I S

k−1 Xk−1

∐
i∈I D

k Xk

where the left arrow is just the disjoint union of the inclusions into the bound-
ary. Furthermore, X then has the final topology with regards to the family
Xi, that is the finest topology such that the inclusions Xi ↪→ X are continuous

21

3 Rational Homotopy Theory

and the triangles
Xi Xj

X

commute for every choice i < j. 2

Theorem 2 (CW Approximation) For every space Y there exists a CW-
complex X together with a map f : X → Y such that f is a weak equivalence.
This is called the CW approximation of Y , and is unique up to homotopy. 2

Proof Section 8.6 in [Die08]. �

3.2 Rational Spaces and Rationalizations of Spaces

While the homotopy groups are a powerful and valuable topological invariant,
they are also notoriously hard to compute. A key difficulty here is that there
are maps from higher-dimensional spheres into lower-dimensional ones that are
not null-homotopic. The most famous example of such a map is probably the
Hopf-fibration η : S3 → S2, a write-up of which can be found in [Lyo]. While
it is known that πn(Sn) ∼= Z and πn(Sm) = 0 for n < m, no general rule for
the case n > m is known. Consider the following table of homotopy groups of
spheres, lifted from [Bae09]:

π3(S2) = Z π9(S5) = Z/2Z
π5(S3) = Z/2Z π11(S6) = Z
π7(S4) = Z × Z/12Z π15(S8) = Z × Z/120Z

While this is obviously just a (very) small sample, the seeming randomness
of the non-free part might motivate one to wonder if it is possible to calculate
homotopy groups while “ignoring” torsion. From an algebraic perspective,
one can “eliminate” torsion in Z-modules by tensoring with Q. But this is

22

3 Rational Homotopy Theory

an algebraic operation, and its result is not guaranteed to have a sensible
interpretation on the level of spaces. For example, consider tensoring π1(S1) ∼=
Z with Q. The result is Q, but if the integer z ∈ Z corresponded to the base-
point preserving map from S1 to S1 given by wrapping it around itself z times,
what does the fraction 1

z
represent? There is no base-point preserving map

from S1 to itself that covers only a fraction of the circle. The question then
raises itself if it is possible to perform the algebraic operation of tensoring with
Q on the level of topological spaces, if one can develop a well-behaved theory
of “tensoring spaces with the rationals”. This is the jump-off point for rational
homotopy theory.

Definition 24 (Rational Space) A simply connected space X is called a
rational space if all its higher homotopy groups are rational vector spaces,
that is

πi (X)⊗Q = πi (X) ∀i > 0.
2

Definition 25 (Finite-type Rational Spaces) LetX be some rational space.
If all the homotopy groups of X are finite-dimensional vector spaces, then we
say X is of finite-type. 2

Since we will only consider simply connected spaces, as by the previous
section, we will drop the base point from the notation when discussing the
higher homotopy groups.

Definition 26 (Rational Homotopy Equivalence) A continuous map of
topological spaces f : X → Y is called a rational homotopy equivalence (or
rational equivalence for short) if it induces a linear isomorphism on the rational
homotopy groups, which is to say

π?f ⊗Q : π? (X)⊗Q
∼=→ π? (Y)⊗Q

. 2

23

3 Rational Homotopy Theory

Note 3.4 (Weak and Rational Homotopy Equivalences)
Any weak equivalence is a rational equivalence. A map f : X → Y is a rational
equivalence if and only if it is a weak equivalence.

Definition 27 (Rationalizations) A continuous map f : X → Y is called a
rationalization of X if it is a rational homotopy equivalence and Y is a rational
space. 2

Theorem 3 (Rational Hurewicz Theorem) Let X be a simply connected
space, r some natural number Then the following two statements hold:

(i) If πi (X)⊗Q = 0 for all i < r, then the map H : πi (X)⊗Q
∼=→ Hi (X;Q)

induced by the Hurewicz-map is a natural isomorphism for all i < 2r− 1

and a surjection for i = 2r − 1.

(ii) The i-th homotopy group of X is a rational vector space if and only if
the i-th homology group is one. 2

Proof (i) Can be found in [KK04].

(ii) This is lemma 8.8 in [GM13]. �

Theorem 4 (Rational Whitehead Theorem) Let f : X → Y be a map
of simply connected spaces. Then f is a rational equivalence if and only if
H∗(f ;Q), the map induced by f in homology with rational coefficients, is an
isomorphism. 2

Proof Theorem 8.6 in [FHT01]. �

Theorem 5 (Rationalization of a Space) For any simply connected space
X, there exists a rationalization XQ of X, that is to say a rational space XQ

such that

(a) the map
ιQ : X ↪→ XQ

is both an inclusion and a rational homotopy equivalence

24

3 Rational Homotopy Theory

(b) any other rationalization of X factors over XQ, that is to say if Y is
a simply connected, rational space and f : X → Y is a rational homotopy
equivalence, then there exists a unique (up to homotopy) map fQ : XQ → Y

such that the diagram below commutes:

X Y

XQ

f

ιQ fQ

2

This theorem tells us that it is sensible to speak of the rationalization of a
space, since the space XQ from the above theorem is unique up to homeomor-
phism (to see this, assume another space with the same property and plug the
two triangle diagrams together). We will not explicitly prove this theorem due
to size constraints, but hopefully, the exemplary constructions below will give
a good intuition as to why it holds true.

We will now explicitly construct the rationalization of the 1-sphere and use
it to give an intuition as to how one can construct the rationalization of an
arbitrary simply connected space. Note that, since the 1-sphere is not a simply
connected space itself, it is technically not covered by the above theorem.
However, it is an example of a non-simply connected space that still permits
a rationalization, since its fundamental group is abelian.4 For a more in-
depth and rigorous account that covers the higher dimensional spheres, CW-
complexes and arbitrary simply connected spaces as well, see chapter 9 of
[FHT01].

Example 4 (Rationalization of the 1-Sphere) A way of characterizing that
an abelian group A permits the structure of a Q-vector space is that the equa-
tion zα = β has a unique solution α ∈ A for all z ∈ Z\ {0}, β ∈ A [GM13].
More informally, we can “divide by any integer” in A. Since the higher homo-
topy groups of the 1-sphere are trivial, we can focus on only the fundamental

4One can extend rational homotopy theory to 0-connected spaces that satisfy certain prop-
erties, see [GHT99]. However, for scope reasons, we will not cover that case here as
well.

25

3 Rational Homotopy Theory

“1” “ 1
2
” “ 1

6
” “ 1

24
” “ 1

120
”

· · ·

Figure 3: Constructing S1
Q, step 1: Adding copies of the S1.

group when discussing the rationalization.

Consider that we can identify π1(S1) with the integers, where the (homotopy
equivalence class of the) map fz : S1 → S1 wrapping the circle around itself z
times is identified with the integer z. From this, we can use our understanding
of how division by integers works to derive a geometric intuition of what the
rationalization S1

Q of the S1 needs to look like as a space.

To develop that intuition, let us return to the equation zα = β again,
and let β be the identity on S1. Then the equation is solvable if there is a
base-point preserving map S1 → S1

Q that corresponds to “walking” a 1/z-th of
the unit circle. In other words: for each integer z, there needs to be a map
from the 1-sphere into the rationalization such that “walking around” the map
corresponding to the identity is homotopic to “walking around” that map z

times. Furthermore, these need to be compatible with each other, so “walking
around” the “z-copy” once has to be homotopic to traversing the “kz-copy” k
times.

Now, we face the issue that the maps of the S1 onto these different copies
are not homotopic to each other (and therefore, we can not really speak of one
of them corresponding to z times another one). To rectify this issue, we glue
a hollow cylinder in between each copy of the S1 and its successor, the “left
end” of the cylinder being glued to the z-th copy of S1 via the identity and
the “right end” being glued to the successor by being wrapped around it z + 1

26

3 Rational Homotopy Theory

“1” “ 1
2
” “ 1

6
” “ 1

24
” “ 1

120
”

· · ·

Figure 4: Constructing S1
Q, step 2: Gluing cylinders inbetween the copies of

the S1.

times.

So we end up with a space that looks like some sort of infinite twisted
telescope. Let us investigate how this space actually fulfills our algebraic re-
quirement from above. Note that by the way we glued the cylinders in, going
around the first circle once is homotopic to going around the second circle
twice, and going around the second circle twice is homotopic to going around
the third circle thrice, so going around the first circle once is homotopic to
going around the third circle six times. In more general terms: going around
the first circle once is homotopic to going around the z-th circle z! times, and
going around the n-th circle once is going around the z-th circle z!

n!
times. So

it seems this space allows us to solve all the above equations.

Let us now attempt to turn this intuition into a rigorous description. The
first thing we notice is, that since all maps from the S1 into our space are
supposed to be base-point preserving, we can’t actually just use disjoint copies
of the S1, but need to identify their base point with each other somehow.
Starting out with S1 (1) = S1, we build the rationalization inductively by

27

3 Rational Homotopy Theory

defining S1 (r + 1) as the pushout

S1 S1 (r) ∨ S1

D2 S1(r + 1),

φ

i

where i is the inclusion into the boundary and φ is the composition

S1 S1 ∨ S1 S1(r) ∨ S1,
j∨gr

with the first map being the collapse of the equator, j being the inclusion into
the r-th copy of the S1 in S1(r) and gr being the map wrapping the sphere r+1

times around itself. This yields the definition S1 (k) =
∨k
i=1 S

1 ∪g
∐k−1

i=1 D
2,

where ∪g is supposed to signify that we glue the disjoint union of disks into
the smash product of spheres along the maps gi. Since S1 (r + 1) is created
from S1 (r) by adjoining cells, this defines the structure of a CW-complex
S1
Q :=

∨
k≥1 S

1 ∪g
∐

k≥2D
2. This space is exactly the rationalization of S1.

Why is this the case? Note that at any point in the construction, the inclu-
sion ir : S1 ↪→ S1(r) into the r-th copy of the S1 is a weak equivalence, as we
can collapse the “telescope” to the last sphere, so π1 (S1(r)) = Z. Furthermore,
consider the maps ir : S1 ↪→ S1(r+ 1) and ir+1 : S1 ↪→ S1(r). By construction,
ir is homotopic to (r + 1) times ir+1, so [ir] = (r + 1) [ir+1] ∈ π1(S1(r + 1)).
That means we can divide the class [ir] by (r+1) in π1(S1(r+1)) and the map
induced by the inclusion S1(r) ↪→ S1(r + 1) is given by multiplication with
(r + 1). Since the fundamental group and the first homology group of the S1

are isomorphic, we get a filtered colimit of homology groups

Z Z Z Z Z · · · .·2 ·3 ·4 ·5 ·6

28

3 Rational Homotopy Theory

Homology commutes with colimits, and doing this in every degree yields that

Hn

(
S1
Q
)

=

Q, n = 1

0, otherwise,

and by the second version of the rational Hurwicz theorem, S1
Q is a rational

space. But then the rational Whitehead theorem tells us that the inclusion
i1 : S1 ↪→ S1

Q into the initial sphere is a rationalization. The only thing left to
show is that every other rationalization factors over it. We will not prove this
right now, but prove a more general statement in a second.

Having defined the rational 1-sphere, we can define the rational 2-disk D2
Q

analogous to how we can define the regular D2: as the cone of S1
Q, that is as

the space S1
Q × I/S1

Q × {0}, where I is the unit interval. 2

Note 3.5 (Rational Spheres and Disks)
Analogous to the constructions above, we can construct SnQ =

∨
k≥1 S

n ∪g∐
k≥2D

n+1 and Dn+1
Q = SnQ × I/SnQ × {0}, the rational n-sphere and rational

n-disk.

Lemma 2 Let X be a rational space and f : Sn → X be a map. Then f

factors over SnQ, that is there exists an extension fQ : SnQ → X such that the
diagram

Sn SnQ

X

f
fQ

commutes. This map is determined up to homotopy, that is homotopic maps
have homotopic extensions and for any homotopy class of maps from Sn to X,
their extension is unique up to homotopy. 2

Proof Note that the map f represents an element [α] in the n-th homotopy
group of X. Since the n-th homotopy group is a rational vector space by
assumption, there exist elements 1

2
[α] , 1

3
[α] , . . . in it. We pick representatives

of these elements and suggestively call them 1
2
f, 1

3
f etc. We then extend f

29

3 Rational Homotopy Theory

onto S1
Q by defining fQ to be equal to 1

k!
f on the k-th copy of the Sn in SnQ.

One can then verify that this a well-defined map and that it has the desired
properties. �

Example 5 (The Rationalization of a CW-Complex) Having constructed
the rationalizations of the n-spheres and -disks, we now use this to construct
the rationalization of an arbitrary simply connected CW-complex X. The
basic idea is to replace the copies of Sn and Dn in the push-outs with their
rationalizations.

We again define the rationalization XQ inductively, by rationalizing every
space Xi in the ascending chain of the CW-structure of X. Since X is simply
connected, we can assume it contains no 1-cells, so X0

Q and X1
Q are just the

single-point space. Now, let

∐
i∈I S

k Xk

∐
i∈I D

k+1 Xk+1

∐
gi

be the pushout defining Xk+1 and assume the rationalization of Xk has already
been constructed. We can post-compose the rationalization map Xk → Xk

Q

to the attaching maps gi from the Sk to Xk in the pushout diagram defining
Xk+1, and by the previous lemma, this yields attaching maps g′i from SkQ to
Xk

Q. Thus, we can construct a pushout

∐
i∈I S

k
Q Xk

Q

∐
i∈I D

k+1
Q Xk+1

Q .

∐
g′i

We can plug together these two pushouts and, by the universal property of
the pushout, this yields a unique map Xk+1 → Xk+1

Q . One can then show
that both Xk+1

Q is rational and that this map is a rationalization using the
Mayer-Vietoris sequence for push-outs and the 5-lemma. 2

30

3 Rational Homotopy Theory

Corollary 1 Every simply connected space X admits a rationalization. 2

Proof Let Y f→ X be a CW-approximation of X and let Y φ→ YQ be the
rationalization of that approximation. We define XQ := X ∪f (Y × I) ∪φ YQ,
with the inclusion X

ψ
↪→ XQ into the “starting point”.

Using excision, we can see that

Hast (XQ, YQ) ∼= Hast (X ∪f (Y × I) , Y × 1) = 0.

By the long exact sequence of homology, we thus get Hast(XQ) ∼= Hast(YQ),
and by rational Hurewicz, XQ is a rational space. Using again the long exact
sequence of homology, the five lemma and the already known isomorphisms of
two of its parts, we get that Hast(XQ, X;Q) ∼= Hast(YQ, Y ;Q) = 0, and there-
fore ψ induces an isomorphism in rational homology. But then the rational
Whitehead theorem tells us that XQ is a rationalization of X. �

3.3 Sullivan Models of Rational Spaces

In order to understand the machinery we use to take a topological space and
“turn it into” an algebraic object one can calculate with, we first need to
introduce some algebraic notions. Throughout this chapter, we assume all
structures to be over Q. One can define all of the following notions in terms of
modules over a ring as well, but as we do not require that generality, we will
not bother with it. The main references for this chapter are [FHT01] as well
as the STACKS project.

Definition 28 (Graded Vector Space) A vector space V is called a graded
vector space if it can be written as a direct sum of vector spaces V i indexed
over the natural numbers,

V =
⊕
i∈N

V i.

We will often write V ∗ instead of just V in order to signify we are considering
a graded object.

31

3 Rational Homotopy Theory

An element v ∈ V that is contained within one of the V i is called homoge-
neous of degree i.

A map of graded vector spaces φ : V → W is said to be of degree n (or
have degree n) if it maps homogeneous elements of degree i to homogeneous
elements of degree i+ n.

If a graded vector space consists only out of homogeneous elements of the
same degree, that is V ∗ =

⊕
i∈N V

i with V ∗ = V i for some i ∈ N and for all
j 6= i we have V j = 0, then we say that V ∗ is concentrated in degree i. 2

Definition 29 (Cochain Complex) A Cochain complex is a graded vector
space C∗ together with a map d : C∗ → C∗ of degree 1 such that d ◦ d = 0.
This is also sometimes written as d2 = 0. The map d is usually referred to as
the coboundary map or as the differential, and the elements in its image are
referred to as the coboundaries, where as the elements in its kernel are called
the cocycles. 2

Definition 30 (Graded (Commutative) Algebras) A graded vector space
A∗ is called a graded algebra if there exists a bilinear and associative multi-
plication µ : A∗ × A∗ → A∗ such that µ (An, Am) ⊆ An+m and which has
a unit e ∈ A0. For two elements a, b ∈ A∗, we will usually write just ab
for µ(a, b). Furthermore, if for all homogeneous elements a, b ∈ A∗ we have
ab = (−1)|a||b| ba, then we call A∗ graded commutative. Some authors will also
refer to this property as just commutativity.

If there exists a map of graded algebras ε : A∗ → Q, with Q viewed as a
graded algebra concentrated in degree 0, we call A∗ augmented and the map ε
the augmentation. 2

Definition 31 ((Commutative) Differential Graded Algebra) A differ-
ential graded algebra is a graded algebra that also carries the structure of a
cochain complex in a compatible way, so it is equipped with a differential
d : A∗ → A∗ that fulfills the Leibniz rule

d (a, b) = (da) b+ (−1)|a|a (db) .

32

3 Rational Homotopy Theory

We then call d a derivation. Furthermore, if the multiplication on A∗ is graded
commutative, we call A∗ a commutative differential graded algebra, or cdga for
short. 2

Definition 32 (The Free Algebra over a (Graded) Vector Space) Let
V be a graded vector space. We define the free algebra over V as the graded
commutative algebra

Λ (V) :=
⊕
n∈N

Λn (V) , where Λn (V) := {v1v2 · · · vn | vi ∈ V }

and the multiplication is graded commutative. Another way to think about
this is to view the elements of V (obviously, it is sufficient to just consider any
basis) as an alphabet. Then Λn (V) is set of all words of length n over that
alphabet, with a handful of special properties

(i) The words permits a scalar multiplication with elements from Q

(ii) The letters have degrees

(iii) The positions of adjacent letters can be swapped, inducing a multiplica-
tion with −1 to the power of the product of the degrees of those letters
(this is just graded commutativity)

(iv) As a direct result of the previous property, we have a2 = −a2 for any
odd-degree letter, so odd-degree letters cancel themselves.

It is important to be aware of the difference between word-length and degree.
A word of the shape v1v2 · · · vn will be of length n, but its degree will be the
sum of the degree of the letters, so generally speaking not n. We will write
Λn (V) for the set of all elements of word-length n and Λ (V)n for the set of
all elements of degree n. 2

Definition 33 (Reduced and Minimal Algebras) Let A∗ be a cdga. If
A0 = Q, then we call A∗ reduced. Furthermore, if Ar = 0 for 0 < r ≤ n, we
call A∗ n-reduced.

A 1-reduced cdga is called minimal if it is isomorphic to a free algebra over a
graded vector space (Λ(V ∗), d) that fulfills the following (equivalent) conditions

33

3 Rational Homotopy Theory

(i) The graded vector space V ∗ is trivial in degree 0 and 1, V 0 = 0 and
V 1 = 0, so (Λ(V ∗), d) is also 1-reduced

(ii) The differential d has the property that d (V ∗) ⊂ Λ≥2 (V ∗), so every
coboundary is of word-length at least 2. 2

Definition 34 (Sullivan Algebras) A cdga S is called a Sullivan algebra if
it can be written as the free graded commutative algebra over a vector space
V , that is S = (ΛV, d) such that

(i) V permits a filtration

0 = V (−1) ⊂ V (0) ⊂ V (1) ⊂ V (2) ⊂ · · ·
⋃
i∈N

V (i) = V

(ii) d(V (k)) ⊂ ΛV (k + 1) 2

Theorem 6 (The Main Equivalence) There exists a bijection between ra-
tional homotopy types of finite-type rational spaces and isomorphism classes
of minimal Sullivan algebras. We will thus often speak of a space’s (minimal)
Sullivan model to signify the image of its rational homotopy type under this
bijection. 2

This is maybe the central result of rational homotopy theory, and it is what
enables us to do all of the work in the later sections. There are two proofs of
this, one due to Sullivan [Sul77] and one due to Quillen [Qui69], but unfortu-
nately, either is too large in scope and too reliant on abstract machinery to
cover here. A more modern treatment can be found in section II of [FHT01].

Proposition 1 Let X be a finite-type rational space and (ΛV, d) its minimal
Sullivan model. Then we have

H∗ (ΛV, d) ∼= H∗(X;Q) and V ∼= HomZ (πast(X),Q) .
2

Proof Theorem 10.11 and 15.11 in [FHT01]. �

34

4 Cohomology of Finite-Type Rational Spaces

4 Cohomology of Finite-Type Rational Spaces

In this section, we will carry out Lechuga’s and Murillo’s proof that the cal-
culation of the cohomology groups of a finite-type rational space is NP-hard.
To do this, we will proceed along the following steps: After introducing the
necessary mathematical vocabulary and defining the computational problem,
we first prove a statement that relates the k-colorability of a graph to the
cohomology of a rational space with a carefully constructed Sullivan algebra.
Second, we introduce a way to uniquely and unambiguously encode a finite
type rational space as a string, using its Sullivan algebra. Finally, we use this
encoding to construct a Turing reduction from the problem kCol to a subclass
of the problem coHomQ. This, together with the first theorem, will then yield
the desired result.

Definition 35 (Elliptic Space) Let X be a finite-type rational space. If all
the rational cohomology groups are finitely generated, dimH∗ (X;Q) < ∞,
then we call X (rationally) elliptic. 2

Note that in this thesis, whenever we consider homology or cohomology
of a space, we use these terms to refer to singular cohomology with rational
coefficients.

Definition 36 (Finite-Type and Elliptic Sullivan Algebras) Aminimal
Sullivan algebra (ΛV, d) is finite-type (and elliptic) if and only if the rational
space represented by it is. This is a direct consequence of 1. 2

Problem 4.1 (coHomQ)
Instance : A rational space S of finite-type.
Question: Is S elliptic, that is are the cohomology groups /Hn (S;Q) of
S finite dimensional?

Before we construct the actual reduction, we are first going to prove an
important result relating the colorability of a graph to the ellipticness of a
carefully constructed Sullivan algebra.

35

Torsten Ueckerdt

4 Cohomology of Finite-Type Rational Spaces

Theorem 7 (Theorem 3, [LM00]) Let G be an undirected, connected, sim-
ple and finite graph with vertex set V (G) := {v1, v2, . . . , vn} and edge set
E (G) := {(vi, vj) | (i, j) ∈ J} for an appropriate index set J . Let further be
SG,k be the rational space with minimal Sullivan model (ΛZG,k, ∂) where

Zeven
G,k = 〈x1, . . . , xn〉 , where ∀i ∈ {1, . . . , n} : deg xi = 2 and ∂xi = 0

Zodd
G,k =

〈
y(i,j)

〉
, where ∀ (i, j) ∈ J : deg y(i,j) = 2k−3 and ∂y(i,j) =

k∑
`=1

xk−`i x`−1
j

Then G is k-colorable if and only if S is non-elliptic. 2

Proof By proposition 32.5 in [FHT01], a minimal Sullivan algebra (ΛZG,k, d)

is elliptic if and only if there is a non-trivial morphism of differential graded
algebras φ : (ΛZG,k, d)→ (C[α] , 0), where degα = 2.

Consider the following diagram displaying φ:

y(r,s)
k∑̀
=1
xk−`
r x`−1

s

ΛZ0
G,k
∼= Q ΛZ1

G,k ΛZ2
G,k · · · ΛZ2k−3

G,k ΛZ2k−2
G,k · · ·

C[α]0 ∼= C C[α]1 C[α]2 · · · C[α]2k−3 C[α]2k−2 · · ·

φ
(
y(r,s)

)
0

!
=

k∑̀
=1
φ (xr)k−` φ (xs)`−1

φ0 φ1 φ2 φ2k−3 φ2k−2

0 0 0 0 0 0

Since such a morphism needs to fulfill the chain map property (that is each of
the squares in the above diagram needs to commute), it follows that such a mor-
phism exists if and only if ∀ (i, j) ∈ J : φ2k−2 ◦∂y(i,j) = dC[α] ◦φ2k−3

(
y(i,j)

)
= 0,

which is equivalent to the system of linear equations
{∑k

`=1 x
k−`
i x`−1

j | (i, j) ∈ J
}

having a non-trivial solution. Since φ, as a morphism of graded algebras, needs
to “respect degree”, there is a set of λi ∈ C such that φ (xi) = λiα, and the λi
are a non-trivial solution to the system of equations.

We now use this preliminary thought to prove the theorem:

36

4 Cohomology of Finite-Type Rational Spaces

“⇐” : Assume that S is non-elliptic. This means that the system of lin-
ear equations described by the differentials of the y(r,s) has a non-trivial so-
lution. Let {z1, . . . , zn} be such a solution. Again, there is a morphism
φ : (ΛVG,k, d) → (C [α] , 0) such that φ (xi) = ziα. Furthermore, since G is
connected, it follows that, if there is a zi = 0, then ∀ (i, j) ∈ J : zj = 0, since
0 =

∑k
`=1 z

k−`
i z`−1

j = zk−1
j . Therefore, for a path of vertices P = (va, vb, . . . , vz)

in G, it follows that the zi corresponding to the vertices of the path must all
be zero if at least one of them is zero. But since G is connected, there is a path
from each vertex to any other vertex. So if one of the zi was to be zero, this
would "propagate" through the edges of the graph and all zi would be zero,
which contradicts the assumption of the set of zi being a non-trivial solution.
Therefore, all zi are non-zero.

Note that as a corollary from this, we get that no two “adjacent” zi are equal.
Assume (i, j) ∈ J such that zi = zj (note that, since (i, j) ∈ J ⇐⇒ (vi, vj) ∈
E(G) and G has no loops, (i, j) ∈ J ⇒ i 6= j). Then

∑k
`=1 z

k−`
i z`−1

j = k zk−1
i

and this expression can only be zero if zi is zero.

Furthermore, since

0 = (zi − zj)
k∑
`=1

zk−`i z`−1
j

=
k∑
`=1

zk+1−`
i z`−1

j −
k∑
`=1

zk−`i z`j

= zki +
k∑
`=2

zk+1−`
i z`−1

j −
k−1∑
`=1

zk−`i z`j − zkj

= zki − zkj ,

it follows that the k-th powers of all zi are equal (again, the equality "propa-
gates" sinceG is connected). We can pick to be what we like ! more detail reason !,
for example 1. Then, the zi are the k-th roots of unity, and κ (vi) := σ−1 (zi)

gives us a k-coloring of G.

37

Torsten Ueckerdt

4 Cohomology of Finite-Type Rational Spaces

“⇒” : Assume that G is k-colorable. This means that there is a map
κ : V (G) → {1, . . . , k} such that ∀ (i, j) ∈ J : κ (xi) 6= κ (xj). Let further σ
be the bijection between the set {1, . . . , k} and the set of k-th roots of unity,{

exp
(

2piπ
k

)
| p ∈ {1, . . . , k}

}
. Since there is a one-to-one correspondence be-

tween vertices of G and even-degree generators xi of Z and a homomorphism
of algebras (over a field) is completely defined by how it behaves on the basis of
the domain (after all, an algebra is still a vector space), we can define a homo-
morphism of (graded) algebras φ : (ΛZG,k, d) → (C [α] , 0), xi 7→ σ (κ (vi))α.
Let ζp := exp

(
2piπ
k

)
be the p-th k-th root of unity. Using the calculation that

we used to show that the k-th powers of the coefficients of the images of the
xi must all be equal from the first part of the proof, we get that

k∑
`=1

ζk−`i ζ`−1
j =

= 1ª
ζ ki −

= 1ª
ζ kj

ζi − ζj
= 0 ,

so the ζj are a non-trivial solution to the system of linear equations described
by the differentials of the y(i,j), and by our preliminary considerations, this
means that S is non-elliptic. �

Note 4.1 (Encoding of a Finite-Type Space)
We will now construct a unique encoding for a sub-class of finite-type rational
spaces, which we will then use in constructing our Turing reduction.

Consider the class Γk of finite-type rational spaces whose minimal models
(ΛV, d) satisfy the condition that dV ⊂ Λ<kV , that is every element in the
differential is of word-length less than k. For a space S ∈ Γk, let (ΛV, d) be
the minimal Sullivan model of S. Pick a homogeneous basis {xi, . . . , xm} of V .
The differentials of the xj can be written as

dxj =
∑
p<k

λji1···ipxi · · ·xp for 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m.

As we allow index repetition, but do not take order into account (due to the
commutativity of the algebra), the amount of such coefficients λji1···ip is bound

38

4 Cohomology of Finite-Type Rational Spaces

from above by the sum of multiset coefficients

k−1∑
p=1

((
m

p

))
=

k−1∑
p=1

(
m+ p− 1

p

)
=

k−1∑
p=1

(m+ p− 1)!

(m− 1)!p!
.

However, since we are considering a minimal Sullivan model, we have dV ⊂
λ≥2V , so the first summand disappears and the upper bound of the amount
of coefficients is actually given by

m

k−1∑
p=2

(m+ p− 1)!

m!p!
,

which is itself bounded by a polynomial in m.

Since there is a one-to-one correspondence between isomorphism classes of
minimal Sullivan models and rational homotopy equivalence classes of finite-
type rational spaces, we can uniquely encode S as a string consisting out of
the amount of generators m, the degree of each generator and the coefficients
of the differentials.

Theorem 8 (Corollary 3, [LM00]) The problem coHomQ is NP-hard. 2

Proof We begin by fixing an integer k ≥ 3 and then construct a Turing
reduction from kCol to the subproblem of coHomQ that only considers spaces
in Γk. Note that since this is a proper subclass of the class of finite-type rational
spaces, proving that the problem is NP-hard for this subclass automatically
extends to a proof that the problem is NP-hard for the entire class. After all, if
there was an algorithm that was capable of solving the problem in polynomial
time for any arbitrary finite-type rational space, that same algorithm would
surely also solve the problem in polynomial time for any space in Γk.

Now, let G = (V,E) a graph with n vertices, encoded as its number of
vertices and adjacency matrix. Thus, if we view the amount of vertices as
the size of the input instance, the length of the encoding is bound from above
by the polynomial log2 n + n2 (binary encoding). We transform this graph

39

5 Betti Numbers of Elliptic Spaces

into a Sullivan algebra (ΛZG,k, ∂) as defined in 4 using the encoding outlined
above. Note that by definition, (ΛZG,k, ∂) ∈ Γk. Since the length of the
encoding is bound from above by a polynomial in the amount of generators,
and the amount of generators itself is equal to the size of G plus the order
of G, the size of the encoding of the Sullivan algebra is bound from above
by a polynomial in the size of the original input instance. Therefore, this
construction can be performed in polynomial time and is a Turing reduction.
But then the NP-hardness of kCol, in combination with 4, immediately gives
us the desired result. �

5 Betti Numbers of Elliptic Spaces

In the previous section, we showed that deciding whether a finite-type rational
space was elliptic is NP-hard. In this section, we will prove a result that is
maybe even more surprising: even if we consider a space which we know to
be elliptic (remember: that means that it has finite dimensional cohomology),
computing the exact dimensions of the cohomology (also called the Betti num-
bers) of that space is NP-hard. To prove this, we will utilize a Turing reduction
to the subset sum problem.

Definition 37 (Betti numbers) The n-th Betti number bn of a topological
space X is defined as the rank of the n-th cohomology groups Hn(X). If, as
in our case, the cohomology groups are vector spaces, then bn is the dimension
of Hn(X). 2

Let S be an elliptic space. We again encode S using its minimal Sullivan
model (ΛZ, d), using the same encoding described in note 4, except for this
time, we do not require the length of the differentials to be bounded from
above. For our proof, we will construct a Turing reduction from the problem
SubsetSum to the following problem:

40

Torsten Ueckerdt

Torsten Ueckerdt

Torsten Ueckerdt

Torsten Ueckerdt

5 Betti Numbers of Elliptic Spaces

Problem 5.1 (Bettie``)
Instance : An elliptic space S and a positive integer n ∈ N.
Question: Is bn := dimHn (S;Q), the n-th Betti number of S, positive?

Note that this will also give us the NP-hardness of the problem of computing
the Betti numbers. After all, if an algorithm existed that could compute the n-
th Betti number of a space in polynomial time, one could use it to construct a
polynomial-time algorithm for Bettie`` – just calculate the n-th Betti number
and check whether it is positive or not! Thus, it follows as an immediate
corollary from the NP-hardness of Bettie`` that computing the Betti numbers
is also NP-hard.

Theorem 9 Let S be an elliptic space. The computation of the Betti numbers
bn of S is NP-hard. 2

Proof Let P := {T,N} be an instance of subset sum, where T := n1, . . . , nm ⊂
N and N ∈ N. We first sort T by parity (or congruence class mod 2), so that
the odd numbers are in front and the even numbers are in the back. This can
be done in polynomial time since both parity checking and sorting are poly-
nomial, and since the class of polynomial functions in closed under addition,
it will not increase the complexity of our reduction.

Let Todd = {n1, . . . , np} be the set of odd numbers in T and let Teven =

{np+1, . . . , nm} be the set of even numbers in T . We now construct a Sullivan
model (ΛZT , ∂) corresponding to T . To do this, we set

ZT = 〈x1, . . . , xm, yp+1, . . . , ym〉 , where deg xi = ni, ∂xi = 0 and ∂yi = x2
i .

The will illuminate the reasoning behind this construction in more depth in
a second. But first, we note that the rational space corresponding to this
Sullivan model is indeed both of finite type and elliptic. By definition, the free
algebra over a graded vector space is of finite type if the graded vector space
itself is finitely generated, and this follows immediately from the construction.

41

5 Betti Numbers of Elliptic Spaces

To see this, consider that

∀m ∈ N : ΛZm
T =

〈 ∧
ik∈Ip

zik

〉
Ip∈Im

,

where each zik is some generator (duplicates possible) and

Im :=

{
Ip

∣∣∣ Ip = {i1, . . . , ip} s.t.
p∑

k=1

nik = m

}
.

Since we only have finitely many generators, we only have finitely many combi-
nations of indices that give us a product element of a certain degree. Therefore,
each degree of the Sullivan algebra can only have finitely many generators, and
thus our algebra is of finite type.

Furthermore, the cohomology of the Sullivan model is

H? (ΛZT , d) = (Λp
i=1 〈xi〉)⊗

(
Λm
i=p+1H? (〈xi, yi〉 , d)

)
.

By definition, the cohomology is given by quotienting the cocycles with the
coboundaries, that is the elements in the kernel of the differential with the one
in the image of the differential. Due to the free nature of the construction of
a Sullivan algebra, to calculate cohomology, it is sufficient to consider what
happens on the generators. For i ∈ {1, . . . , p}, the generator xi is a cocycle
but not a coboundary, therefore also an element in cohomology (the same logic
applies to any product of odd-degree generators). This is expressed by the left-
hand of the tensor-product. The even-degree generators are also cocycles, but
their products with themselves are coboundaries (as they are the differential of
the yj with appropriate degree), so they will disappear in cohomology. This is
expresses by the left-hand side of the tensor-product. Therefore, the Sullivan
algebra is elliptic, and it follows it is indeed the Sullivan model of an elliptic
rational space.

Note that an element xixjxp in cohomology corresponds to a sum ni+nj+np

(by additivity of degree) in the original subset sum instance. Now the ingenuity

42

5 Betti Numbers of Elliptic Spaces

of our construction reveals itself. Since, by definition of the exterior algebra,
each xi of odd degree is inverse to itself and the product is graded commutative,
we can not have “double copies” of such an xi in a product of elements. The yj
disappear in cohomology, since they aren’t cocycles, and take “double copies”
the xj of even degree with them (since the product xjxj is a coboundary for
even-degree xj). Thus, the cohomology of the Sullivan algebra has an element
of degreeN (so a positive n-th Betti number) if and only if there is a subset of T
summing up to N . Since the length of the string encoding the Sullivan algebra
is obviously bounded by a polynomial in the size of the SubsetSum-instance,
this is a Turing reduction and thus we have proven our statement. �

43

Bibliography

References

[Aar17] Scott Aaronson. “P ?= NP”. Survey. University of Texas - Austin,
Texas (USA), 2017.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge ; New York: Cambridge University Press,
2009. isbn: 978-0-521-42426-4.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES Is
in P”. In: Annals of Mathematics 160.2 (Sept. 2004), pp. 781–793.
issn: 0003-486X. doi: 10.4007/annals.2004.160.781.

[Bae09] John Carlos Baez. This Week’s Finds 286: Rational Homotopy The-
ory. Blog. Dec. 2009.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Proce-
dures”. In: Proceedings of the Third Annual ACM Symposium on
Theory of Computing - STOC ’71. Shaker Heights, Ohio, United
States: ACM Press, 1971, pp. 151–158. doi: 10.1145/800157.
805047.

[Die08] Tammo tom Dieck. Algebraic Topology. EMS textbooks in mathe-
matics. Zürich: European Mathematical Society, 2008. isbn: 978-
3-03719-048-7.

[FHT01] Yves Félix, Stephen Halperin, and Jean-Claude Thomas. Rational
Homotopy Theory. Vol. 205. Graduate Texts in Mathematics. New
York, NY: Springer New York, 2001. isbn: 978-1-4612-6516-0 978-
1-4613-0105-9. doi: 10.1007/978-1-4613-0105-9.

[GHT99] Antonio Gómez-Tato, Stephen Halperin, and Daniel Tanré. “Ra-
tional Homotopy Theory for Non-Simply Connected Spaces”. In:
Transactions of the American Mathematical Society 352.4 (Nov.

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-1-4613-0105-9

1999), pp. 1493–1525. issn: 0002-9947, 1088-6850. doi: 10.1090/
S0002-9947-99-02463-0.

[GM13] Phillip Griffiths and John Morgan. Rational Homotopy Theory and
Differential Forms. Vol. 16. Progress in Mathematics. New York,
NY: Springer New York, 2013. isbn: 978-1-4614-8467-7 978-1-4614-
8468-4. doi: 10.1007/978-1-4614-8468-4.

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge ; New York: Cam-
bridge University Press, 2002. isbn: 978-0-521-79160-1 978-0-521-
79540-1.

[Kar72] Richard M. Karp. “Reducibility among Combinatorial Problems”.
In: Complexity of Computer Computations. Ed. by Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger. Boston, MA:
Springer US, 1972, pp. 85–103. isbn: 978-1-4684-2003-6 978-1-4684-
2001-2. doi: 10.1007/978-1-4684-2001-2_9.

[KK04] Stephan Klaus and Matthias Kreck. “A Quick Proof of the Rational
Hurewicz Theorem and a Computation of the Rational Homotopy
Groups of Spheres”. In:Mathematical Proceedings of the Cambridge
Philosophical Society 136.3 (May 2004), pp. 617–623. issn: 0305-
0041, 1469-8064. doi: 10.1017/S0305004103007114.

[LM00] Luis Lechuga and Aniceto Murillo. “Complexity in Rational Ho-
motopy”. In: Topology 39.1 (Jan. 2000), pp. 89–94. issn: 00409383.
doi: 10.1016/S0040-9383(98)00059-7.

[Lyo] David W Lyons. “An Elementary Introduction to the Hopf Fibra-
tion”. In: (), p. 16.

[May99] J. Peter May. A Concise Course in Algebraic Topology. Chicago
Lectures in Mathematics. Chicago: University of Chicago Press,
1999. isbn: 978-0-226-51182-5 978-0-226-51183-2.

[Qui69] Daniel Quillen. “Rational Homotopy Theory”. In: The Annals of
Mathematics 90.2 (Sept. 1969), p. 205. issn: 0003486X. doi: 10.
2307/1970725.

https://doi.org/10.1090/S0002-9947-99-02463-0
https://doi.org/10.1090/S0002-9947-99-02463-0
https://doi.org/10.1007/978-1-4614-8468-4
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1017/S0305004103007114
https://doi.org/10.1016/S0040-9383(98)00059-7
https://doi.org/10.2307/1970725
https://doi.org/10.2307/1970725

[Sip12] Michael Sipser. Introduction to the Theory of Computation. 3rd Ed.
Boston, MA: Course Technology Cengage Learning, 2012. isbn:
978-1-133-18779-0.

[Sul77] Dennis Sullivan. “Infinitesimal Computations in Topology”. In: Pub-
lications mathématiques de l’IHÉS 47.1 (Dec. 1977), pp. 269–331.
issn: 0073-8301, 1618-1913. doi: 10.1007/BF02684341.

[Wag+ 1] Dorothea Wagner et al. “Vorlesungsskript Theoretische Grundla-
gen der Informatik”. Lecture Notes. Karlsruhe Institute of Tech-
nology - Karlsruhe, Germany, WS 11/12.

https://doi.org/10.1007/BF02684341

Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu
haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnom-
men wurde, sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis in der jeweils gültigen Fassung beachtet zu haben.

Ort, Datum

	Introduction
	Complexity Theory
	A Small Vocabulary for Computation
	A Model of Computation
	Two Important Complexity Classes

	Rational Homotopy Theory
	Basic Homotopy Theory
	Rational Spaces and Rationalizations of Spaces
	Sullivan Models of Rational Spaces

	Cohomology of Finite-Type Rational Spaces
	Betti Numbers of Elliptic Spaces

