
Labeling Maps with Free Spaces

Bachelor Thesis of

Joachim Priesner

At the Department of Informatics
Institute for Theoretical Informatics

Advisors: Dipl.-Inform. Benjamin Niedermann
Dr. Martin Nöllenburg

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

1st June 2013 – 30th September 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

iii

Abstract

Map labeling is the problem of visualizing a given set of points in the two-dimensional
plane, called sites, each of which has an associated name, in such a way that the viewer
can easily identify the name of a site. The sites themselves are fixed, but the position
of the labels may vary. Its usages range from labeling actual maps to labeling diagrams,
photos, and technical drawings.

Often, labels are not placed directly next to the sites but connected via a line called
a leader. The labels are then placed somewhere else on the map, preferably grouped
together in a labeling area. Common criteria include the absence of leader crossings and
the minimization of the leader length.

In the variants of the problem studied until now, the labels are mainly placed on the outer
sides of the rectangle containing the sites. We present an algorithm for labeling sites on
one side of the instance, where the labeling area is bounded by a rectilinear polygon. This
allows the labels to better utilize the free space of the instance. The labels are connected
to the sites via leaders consisting of two horizontal and a vertical line segment.

We also study the problem of labeling sites outside of a rectangle to two adjacent sides
of this rectangle. We study two variants: the number of possible label positions being
greater than and this number being equal to the number of sites, each time with and
without minimization of the leader length.

Lastly, we study boundary labeling on free spaces inside a map, for the case of rectangular
labeling areas situated at an arbitrary place on the map. We study the problem for one
such labeling area and give a short outlook on two and more labeling areas.

Deutsche Zusammenfassung

Das Problem der Kartenbeschriftung besteht darin, eine gegebene Menge von Orten –
Punkten in der zweidimensionalen Ebene, denen jeweils ein Name zugeordnet ist – so
zu visualisieren, dass der Betrachter den Namen eines Ortes schnell identifizieren kann.
Dabei ist die Position der Orte fest, die der Beschriftungen frei wählbar. Die Anwendun-
gen umfassen sowohl die Beschriftung von Landkarten im eigentlichen Sinne als auch die
Beschriftung von Diagrammen, Bildern und technischen Zeichnungen.

Oft werden die Beschriftungen nicht direkt neben dem zugehörigen Ort platziert, sondern
durch eine sogenannte Führungslinie mit diesem verbunden. Die Beschriftungen selbst wer-
den dann in einer anderen Region der Karte untergebracht, bevorzugt gruppiert in einem
Beschriftungsbereich. Gebräuchliche Qualitätskriterien für eine Lösung sind Kreuzungs-
freiheit und minimale Länge der Führungslinien.

In den bisher betrachteten Problemvarianten werden die Beschriftungen meist an den Au-
ßenseiten des Rechtecks angebracht, das die Orte enthält. Wir stellen einen Algorithmus
vor, der die Beschriftungen auf einer Seite der Instanz platziert, wobei der Beschriftungs-
bereich durch ein rechtwinkliges Polygon begrenzt ist. Auf diese Weise können die Beschrif-
tung den zur Verfügung stehenden Platz der Instanz besser ausnutzen. Die Beschriftungen
werden mit den Orten durch Führungslinien verbunden, die aus zwei horizontalen und
einer vertikalen Strecke bestehen.

Wir betrachten außerdem das Problem, die Beschriftungen auf zwei aneinanderliegenden
Seiten eines Rechtecks zu platzieren, außerhalb dessen die Orte liegen. Wir betrachten
sowohl die Variante mit mehr möglichen Beschriftungspositionen als Orten als auch mit
gleich vielen Beschriftungspositionen wie Orten, jeweils mit und ohne Längenminimierung.

Zuletzt beschäftigen wir uns mit Randbeschriftungen auf freien Bereichen innerhalb einer
Karte. Wir betrachten den Fall eines rechteckigen Bereiches, der beliebig auf der Kar-
te platziert ist, und geben einen kurzen Ausblick auf die Problemstellung mit mehreren
solchen Bereichen.

To my advisors Benjamin and Martin:

Many thanks for your careful supervision, great ideas, and constructive feedback!

Andreas Gemsa also gave some helpful hints on labeling with more than one free space.

I declare that I have developed and written the enclosed thesis by myself, and have not
used sources or means without declaration in the text.

Karlsruhe, 30th September 2013

. .
(Joachim Priesner)

Contents

1 Introduction 1
1.1 Definitions . 3

2 External opo labelings with rectilinear labeling area 5
2.1 Problem definition . 5
2.2 A dynamic programming algorithm . 6

3 External po labelings on adjacent sides of a rectangle 13
3.1 Problem definition . 13
3.2 Solution for the basic problem . 14
3.3 Leader length minimization . 16

4 External po labelings with rectangular labeling area 21
4.1 Problem definition . 21
4.2 Solution . 21
4.3 Outlook on labeling with more than one rectangle 24

5 Conclusion 27

Bibliography 29

1. Introduction

In this thesis, we will work on a particular type of map labeling problem. These are
problems where each one of a fixed set of points in the plane has to be labeled with a text
naming or describing that point.

The term map labeling stems from the art of cartography, as one would expect. The
problem of labeling maps is almost as old as the concept of a map itself. While the careful
eye of a designer can still produce the most aesthetically pleasing results, the process is
also very time-consuming and expensive. If more than a few sites are involved, it also
becomes very hard for humans to reach optimal solutions, e.g. maximizing the number of
sites that are labeled [Imh75].

Although often called map labeling, the problem is applicable to all sorts of two-dimensional
images to be labeled, such as diagrams, photos and other images – in short, anywhere text
is utilized to describe features in the two-dimensional plane.

A need for algorithmic solutions to these kinds of problems has therefore arisen with
greater problem size on the one hand: The origin of algorithmic map labeling dates back
to 1990, when Rudi Krämer, working for the city of Munich, wanted to label a map with
groundwater level checkpoints and asked his former professor Kurt Mehlhorn for help
(cited after [Kau09]).

On the other hand, algorithmic solutions have also become necessary because an increasing
number of imagery is computer generated: Online mapping services like Google Maps
and the OpenStreetMap project generate their map images from an ever-changing source
of vector elements. In map applications on mobile devices, only vector data may be
downloaded to save bandwidth which is then rendered on the device. Labeling therefore
has to be done almost in real time with a quality one would expect from a traditional
cartographer-generated map.

Thirdly, automatic map labeling enables users that do not have design experience to create
fast and aesthetically pleasing labelings, e.g. for presentation slides, as in Figure 1.1.

With this wide range of applications, many general problems in this area have already been
solved (or proven to be NP-complete). For example, the decision variant of the internal
map labeling problem, where a corner of the label is positioned at the site to be labeled
and the number of labeled sites has to be maximized, is NP-complete and no polynomial
approximation with a factor greater than 1

2 exists [FW91]. A detailed bibliography is
available at [WS09], an overview of external map labeling problems is given in [Kau09].

2 1. Introduction

© SBB • I-ST-ZB • Jan Richard • 2009 7

EBICAB 700/1000

EBICAB 900

ZUB 123

KHP

INDUSI/LZB

INDUSI/LZB

EVM120

AWS

TBL

TVM/KVB

ASFA/LZB

EBICAB 700

SIGNUM/ZUB

BACC/SCMT

INDUSI

Idee und Technologie

Europa heute

Figure 1.1: An example of external map labeling with
opo and popo leaders (probably created manually):
Overview of train protection systems used in Europe,
from a presentation by Swiss Federal Railways.1

Kiel

Schwerin

BERLIN

Potsdam
Magdeburg

Hannover

Bremen

Düsseldorf

Wiesbaden

Mainz

Saarbrücken

Stuttgart

München

Erfurt

Dresden

Hamburg

Figure 1.2: Example of in-
ternal map labeling: Map
of German capital cities.2

We can generally divide the problems into internal labeling problems, where the labels
touch the sites directly, for example with a corner or a side of the rectangular label, and
external labeling or boundary labeling problems, where the labels are connected to the
site with a curve called a leader. Usually the shape of the leaders is restricted in the
problem definition. Common shapes include po and opo leaders, consisting of two and
three axis-parallel line segments respectively.

As a third category, problems that allow both types of labelings, so-called mixed labeling
problems, have also been researched. An overview is given in [BKPS11].

To improve legibility in external labelings, it is often required that the leaders do not cross
at all or that the number of leader crossings is minimized. In mixed labeling problems,
the additional problem of avoiding crossings between a leader and an internal label has to
be considered. Other quality criteria for external labelings include the total length of the
leaders, the maximum length of a leader, and the total or maximum number of bends of
the leaders.

For some applications of map labeling, not only static maps are considered. Computing
labelings that work well with operations like zooming in and out of a map [NPS10] or
panning [Nie12] have practical applications e.g. in car navigation systems or online mapping
services.

In this thesis, we will study external labeling problems with opo and po leaders for static
maps. In the previous work on this problem area, the sites and the corresponding label po-
sitions have been strictly separated, for example by the sites being contained in a rectangle
and labels being allowed only outside this rectangle [Kau09]. This allows easy solutions,
but limits the quality of the drawings in some cases, as leaders might grow unnecessarily
long.

1Image taken from: J. Richard, “ETCS – Eine Standortbestimmung,” 2009. Available online: http:

//www.gdi-adi.ch/uploads/media/091117_GdI_Vortrag_ETCS.pdf, retrieved on 28 September 2013.
2Map source: “Germany location map,” 2013, by Wikimedia users SokoWiki et al., from Wikime-
dia Commons, licensed under GFDL. Available online: https://commons.wikimedia.org/wiki/File:
Germany_location_map.svg, retrieved on 28 September 2013.

http://www.gdi-adi.ch/uploads/media/091117_GdI_Vortrag_ETCS.pdf
http://www.gdi-adi.ch/uploads/media/091117_GdI_Vortrag_ETCS.pdf
https://commons.wikimedia.org/wiki/File:Germany_location_map.svg
https://commons.wikimedia.org/wiki/File:Germany_location_map.svg

1.1. Definitions 3

Figure 1.3: Example of external labeling with free spaces inside the map: Schematic
overview of the buildings surrounding the “Alter Hof” in Munich. The labeling
areas are surrounded with dotted lines.

Lorenzistock

Pfisterstock

Brunnenstock
Burgstock

Zwingerstock

In contrast, we will focus on problem definitions that do not have this strict separation.
This problem is mentioned in the open problems section of [Kau09] as “[allowing] the
placement of leader-connected labels not only at the boundary but anywhere in the map
where there is empty space”. A free space is a region with arbitrary shape and at an
arbitrary position on the map which does not contain any sites.

In Chapter 2 we solve a labeling problem with opo leaders where the labels may be placed
anywhere inside a simple rectilinear polygon at the left or right side of the instance. We
present a polynomial time algorithm for this problem. Related work includes [Jam12],
where the one-sided labeling problem with convex boundaries is solved using po leaders,
but labels are still restricted to be stacked on top of each other.

In Chapter 4, we solve this problem where the free space consists of one rectangle, and
give an outlook on the variant with two or more rectangles. The groundwork for this is
laid in Chapter 3, where we study a variant of the two-sided labeling problem and give
an efficient algorithm that runs in O(n log n) for leader length minimization in the simple
case where there are as many sites as there are possible label positions.

1.1 Definitions

The general labeling problem consists of a set of sites, points in the two-dimensional plane,
each of which has an associated text or description. The process of labeling consists of
placing a label for some or all of the sites at a place where it can be identified as belonging
to that site. A label is an axis-parallel rectangle containing the text that describes the
site.

To facilitate the solution, we will often assume that all labels have the same size. The
position of a label is defined as the position of its top-left corner. All relative positions
such as to the right, to the left, above and below are defined in respect to that position.

There are multiple methods of associating a label to its site. The main difference is between
internal and external labelings. An internal label is a label touching the site directly,
for example with a corner or a side of the rectangle. An external label can be placed
anywhere and is connected to the site with a leader, a curve with the site as one endpoint.
We denote the leader between site s and label ` by λ(s, `).

Accordingly, an internal labeling problem will allow only internal labels, while an
external labeling problem will only allow external labels. A mixed labeling problem
allows both types. In this thesis, we only consider external labeling problems.

4 1. Introduction

Leaders are categorized according to their shape. Although in theory arbitrary curves are
possible, leaders are mostly constrained to polygonal chains. These are often characterized
by their relative position of their segments to the side of the label the leader is connected
to: p means a parallel segment, o means an orthogonal segment. An opo leader is therefore
a leader consisting of an orthogonal segment (starting at the site), then a parallel segment,
and another orthogonal segment connected to the label. Other types include straight-line
leaders (s) and diagonal leader segments (d).

In external labeling problems, labels are grouped at a convenient place, e.g. at the border
of the map, in an area called the labeling area: A labeling area L of an instance of
an external labeling problem is a subset of R2 so that in each solution all label must be
completely contained in L.

Often, we will limit the set of points where a leader may connect to the label by assigning
ports to the label. For example, we could demand that the leader connects to the label
at the midpoint of a rectangle side. If a label has only one port, we often identify the port
with the label and only consider ports which we then also denote by the letter `.

To improve the legibility of the drawings, we do not allow leaders to be positioned arbi-
trarily close to other leaders or labels, instead we require a spacing around the leaders.
Given a labeling problem P with fixed label height h, the leader spacing parameter of
P is an amount of space ε (0 < ε ≤ 1

2h) at both sides of each leader which must be kept
free of other leaders or labels.

Leader spacing also has an effect on what we consider as a leader touching a label or
another leader. Two labels touch each other if their intersection is a point or a line
segment. In a labeling instance with leader spacing ε, a leader touches another leader or
a label if the intersection of the strip of width 2ε around the leader and the other leader or
the label is a line segment. A leader touches the outline of the labeling area if it intersects
the outline (in this case, there is no ε spacing between leader and outline).

2. External opo labelings with rectilinear
labeling area

In this chapter we will use a certain type of labeling area to accommodate our labels:

Definition 2.0.1. A rectilinear labeling area (L,R) is a rectilinear simple polygon
consisting of two y-monotone polygonal chains L and R at the left and right.

We also restrict ourselves to leaders that go to the right. A left-sided problem can be
solved in the same way by mirroring it horizontally.

Definition 2.0.2. A right-sided labeling problem is a problem where the label for a site
may only placed to the right of that site. A left-sided labeling problem is defined accord-
ingly.

2.1 Problem definition

We consider a right-sided external labeling problem with rectilinear labeling area A, uni-
form label size w × h and leader spacing ε.

Each of the n sites is connected to its corresponding label by a leader of type opo. The
leaders are crossing-free. The last segment of the opo leader has fixed length ε so that the
leader connects directly to the label, as shown in Figure 2.1. Furthermore, the two last
segments of a leader must lie completely inside A.

The strip of height h and width 2ε to the left of the label (shaded in Fig. 2.1) must be
kept free of other labels. This improves legibility as a label now cannot horizontally touch

Figure 2.1: A label together with an opo leader and the top and bottom labeling areas
defined by this label

w

h

ε

top labeling area

bottom
labeling
area

w

6 2. External opo labelings with rectilinear labeling area

another label directly. It also slightly simplifies our algorithm by eliminating some corner
cases.

Problem 2.1.1 (Rectilinear area opo labeling decision problem). Given a rectilinear
labeling area A, a label size w × h, leader spacing ε and a set of n sites to the left of the
labeling area with minimum vertical distance ε, is it possible to label all sites in the fashion
described above?

The minimum vertical distance of ε between the sites ensures leader spacing.

2.2 A dynamic programming algorithm

Our algorithm for Rectilinear area opo labeling will be based on partitioning an
instance via so-called top and bottom labels. To simplify definitions and proofs, we first
introduce the concept of dummy labels.

Definition 2.2.1 (Dummy sites and labels). Given a Rectilinear area opo labeling
instance with labeling area A, let (xt, yt) be the top-left site of A and (xb, yb) the bottom-left
site of A.

Then the dummy labels `T and `B are two fixed labels with straight-line leaders that
are connected to the dummy sites (xt, yt + ε) and (xb, yb − ε), respectively. The labels’
horizontal position is 2ε to the right of the rightmost site of A.

Note that these dummy labels are not legally placed with regard to the constraints for
Rectilinear area opo labeling. They are not included in the solution and just serve
as placeholders.

Our algorithm will place labels in the areas to the left of other labels and either above or
below them and their leaders. These areas are defined as follows:

Definition 2.2.2 (Top and bottom labeling areas). Given a leader λ := λ(s, `), the top
(bottom) labeling area of λ is the area above (below) ` and the ε space around the
leader λ, bounded at the right by the right-hand side of `, and unbounded to the left and to
the top (bottom).

Now we can define the area in which labels in a sub-instance defined by two other labels
can be legally placed:

Definition 2.2.3. The labeling area L(A, sT , `T , sB, `B) defined by a rectilinear labeling
area A, a top site sT , top label `T , bottom site sB and bottom label `B is defined as
the intersection of A, the bottom labeling area of λ(sT , `T) and the top labeling area of
λ(sB, `B).

This is the area in which a label for a site s that lies vertically between sT and sB can
be placed (without taking into account the label size and the leader) so that it lies to the
left of both `T and `B and vertically between `T and `B and their leaders. One example
is given in Figure 2.2.

Note that the dummy labels do not influence a labeling area. In particular, the labeling
area defined by A, `T and `B is A. This is exactly the purpose of the dummy labels: to
define a labeling area for a label when no other label lies to the right and above/below it.

We now show that the number of positions a label can take can be restricted without
affecting the solvability of the problem. We first introduce the concept of reference heights:

2.2. A dynamic programming algorithm 7

Figure 2.2: Visualization of L(A, `T , pT , `B, pB). The dummy labels `T and `B are also
shown.

`T

`B

bottom labeling area of `T

top labeling area of `B

L(A, sT , `T , sB , `B)

A

`T

`B

b

t

sT

sB

Figure 2.3: Some possible positions of a label (marked in gray) in a position-restricted
solution to Rectilinear area opo labeling.

}
h

href

href

href

href

Definition 2.2.4. The reference heights of a Rectilinear area opo labeling in-
stance with labeling area A and sites (x1, y1), . . . , (xn, yn) are the y coordinates of A’s
horizontal segments and the numbers y1 − ε, . . . , yn − ε.

Those reference heights will later define the top position of “label stacks”, sets of labels
that touch each other vertically. The outline y coordinates correspond to labels touching
the outline, the numbers yi − ε correspond to labels touching another label’s leader.

Now we can define a solution in which each label has a finite number of possible positions:

Definition 2.2.5. A solution to a Rectilinear area opo labeling instance I is called
position-restricted if for each label `i connected to site si

1. there exists a reference height href of I so that the vertical distance between the line
y = href and `i’s position is a multiple of h.

2. there exists a dynamic labeling area Ai = (Li, Ri) defined by A, `i, top label `T and
bottom label `B, both to the right of `i, and the sites sT , sB and si connected to them
such that

a) the right-hand side of `i or the leader λ(si, `i) touches Ri.

b) for each label `j to the left of `i connected to a site sj above (below) si, the top
and bottom labels `T ′ and `B′ of the dynamic labeling area Aj are connected to
sites sT ′, sB′ that lie vertically between si and sT (sB), inclusive.

8 2. External opo labelings with rectilinear labeling area

Some valid positions of a label in a position-restricted solution are shown in Figure 2.3.

Each label `i satisfying condition 2b) splits the instance in two independent sub-instances:
one “top instance” containing all labels of sites between sT and si, and one “bottom in-
stance” containing all labels of sites between si and sB. Both instances contain only labels
to the left of `i.

Theorem 2.2.6. For any solvable instance of Rectilinear area opo labeling there
exists a position-restricted solution.

Proof. Given a valid solution, we transform it into a position-restricted one as follows:

Algorithm 1: Transforming a valid solution into a position-restricted one

1 Order the labels from top to bottom by the order of their respective sites
2 repeat
3 Move each of the labels (starting at the top) upwards as far as legally possible

(i. e. until it touches another label, its leader or the outline of the labeling area).
4 Move each of the labels (starting at the top) to the right as far as legally possible.

5 until none of the labels has changed its position in the current iteration

The algorithm terminates because the labeling area is bounded to the top and to the
right, therefore each of the finitely many labels has a finite number of positions after
moving (restricted only by the outline and other labels, of which one must touch the
outline). Because moving is done only to the top and right, no previous position of a label
is repeated after moving it.

As only legal positions of labels are considered when moving them, the result is again a
legal labeling.

After the algorithm has terminated, each label is in one of the desired positions:

• It cannot be moved upwards. This means that its top edge touches a) a horizontal
edge of the labeling area (in this case href is the vertical position of the edge), or
b) another label’s leader (href is the y coordinate of the other label’s site minus ε),
or c) another stack of labels of which the uppermost is in position a) or b). The first
condition is therefore satisfied.

• It cannot be moved to the right. This means that the label itself or its leader touches
either another leader/label or the outline of the labeling area.

We can now define the label numbering and the labeling area Ai for each label. We number
the labels from `1 to `n from right to left (labels with the same horizontal position can be
numbered arbitrarily) and number the labels’ sites accordingly (s1 to sn). The top label `t
for Ai is the label for the site above si that is closest to si and whose label lies to the right
of `i. Similarly, the bottom label for Ai is the label for the site below si that is closest to
si and whose label lies to the right of `i. The labels `t and `b are always well-defined since
at least the dummy labels always satisfy the condition.

To prove that label `i or its leader touches Ri, note that if the label or leader touches the
right outline of A, the condition is fulfilled, since both the top and the bottom label of Ai

lie to the right of `i and therefore the segment of R which `i touches is also part of Ai.

Otherwise, `i or its leader touches another label `j whose site sj is above or below si. All
labels of sites between si and sj cannot be placed to the right of `i because there is no
space between `i or its leader and the leader of `j , and leader crossings are not allowed.
Therefore `j must be the top or bottom label of Ai, and any label or leader touching `j
also touches Ri.

2.2. A dynamic programming algorithm 9

We are left with condition 2b), of which we prove the first case (the second case is similar).
Let label `j be as described. The site s′t of Ai’s top label `′t must lie above si because
it already lies above sj . The bottom label `′b of Ai cannot belong to a site s′k below si
because `i lies to the right of `j and si is closer to sj than sk.

Theorem 2.2.6 leads to a dynamic programming algorithm, shown in Algorithm 2 and
using the function RectilinearLabelingSolution as the main part of the algorithm.

In the proof of the theorem we showed that each valid solution can be divided into two
smaller instances by one label which is one of the rightmost labels in the instance. We
therefore need to enumerate all possible candidates for this rightmost label and all possible
vertical positions for each candidate. For each possible vertical position, we place the label
as far to the right as possible. The horizontal position of the top and bottom label also
plays a role in determining whether there is enough space to accommodate all labels.

Function RectilinearLabelingSolution(I, T , s, (stop, `top), (sbottom, `bottom))

Data: I is a Rectilinear area opo labeling instance with a labeling area A, site
set {s1, . . . , sn}, dummy labels `T and `B and size parameters w, h and ε. T is
the dynamic programming table. s is a site. stop and sbottom are two sites
connected to the labels `top and `bottom positioned at ptop and pbottom.

Result: Whether a valid solution exists for the given sub-instance.
1 if T [s, stop, ptop, sbottom, pbottom] = ⊥ // if table entry not yet computed

2 then
3 V ← valid label positions for s in L(A, s, stop, `top, sbottom, `bottom)
4 if V = ∅ then
5 T [s, stop, ptop, sbottom, pbottom] ← false

6 else
7 U ← sites between stop and s
8 L← sites between s and sbottom
9 if U = ∅ ∧ L = ∅ then

10 T [s, stop, ptop, sbottom, pbottom] ← true

11 else
12 for p← V do
13 `← a label at position p connected to s
14 T [s, stop, ptop, sbottom, pbottom] ←

∨sj∈URectilinearLabelingSolution(I, T , sj , (stop, `top), (s, `)) ∧
∨sj∈LRectilinearLabelingSolution(I, T , sj , (s, `), (sbottom, `bottom))

15 return T [s, stop, ptop, sbottom, pbottom]

The sites stop and sbottom passed to RectilinearLabelingSolution are the sites whose labels
`top and `bottom (with positions ptop and pbottom) restrict the current instance. The site s
is the site whose label shall be placed as the rightmost label in this situation.

Algorithm 2: Dynamic programming solution for Rectilinear Labeling

Data: A Rectilinear area opo labeling instance I with labeling area A, site set
S, dummy labels `T and `B connected to the sites sT and sB and size
parameters w, h and ε.

Result: Whether a valid solution exists for the instance I.
1 initialize T with ⊥
2 return ∨s∈SRectilinearLabelingSolution(I, T , s, (sT , `T), (sB, `B))

10 2. External opo labelings with rectilinear labeling area

The following theorem is the main result of this chapter, stating that the problem we
considered can be solved in polynomial time. This is however mostly a theoretical result,
as the exponents of the polynomial running time are still quite large.

Theorem 2.2.7. Algorithm 2 solves the Rectilinear area opo labeling decision prob-
lem in O(n8 ·m3 · (n+m)3) time.

Proof. The correctness of the algorithm follows immediately from the proof of theo-
rem 2.2.6. For each solvable instance of Rectilinear area opo labeling we proved
that there exists a position-restricted solution S. As the algorithm tries all possible posi-
tions for each label, it will eventually find the label’s position in S. Each rightmost label
also divides the problem into two independent sub-instances. This allows us to calculate
the solution recursively in line 14 of the function RectilinearLabelingSolution.

For the running time, let us first remember that n is the number of sites to be labeled.
Let m denote the complexity of the labeling area, that is, the number of line segments
defining the polygon.

The defining factors for the running time are a) the size of the dynamic programming
table, b) finding the valid label positions in line 3 of function RectilinearLabelingSolution
and c) iterating over them in line 12. All three depend on nv, the number of valid vertical
positions for a label.

In the function RectilinearLabelingSolution, the number |V | of possible vertical positions
for the current label depends on the current parameters, but the worst-case number nv is
equal for each label. There are n+m reference heights and n possible positions of a label
relative to one such height, in total nv = (n+m) · n vertical positions.

For a) the size of the table we also have to take into account the number nh of horizontal
positions a label can take. As a label cannot be moved to the right in a position-restricted
solution, it either directly touches the right outline or it touches a sequence of labels
touching each other, of which the rightmost touches the right outline.

As we can see in table 2.1, a label being touched by another label causes the second label
to be placed w + 2ε units to the left of the first label, while the label being touched by a
leader causes a ε shift (or no shift at all). Therefore, for each of the at most m segments
of the right outline, the possible positions of any label are 2 · (a · ε + b · (w + 2ε)) to the
left of the segment, where a, b < n, a is the number of leaders touching another leader in
the sequence and b is the number of labels touching another leader. The factor 2 accounts
for the fact that the label touching the outline may do so either with the label or with the
leader.

Thus we have nh = m · 2n2 and the maximum size of the dynamic programming table is
n · (n ·nv ·nh + 1) · (n ·nv ·nh + 1). Note that we need to add 1 because the top and bottom
label can also be a dummy label.

For b) we have to calculate how long it takes to find the horizontal position for a label
corresponding to a given vertical position. Figure 2.4 illustrates this problem. As we can
see, only the outline between the top and the bottom label plays a role in finding the right
position. The top and bottom label each add three segments to the left or right outline
(depending on whether the leader bends upwards or downwards).

To find the possible horizontal positions, it suffices to find the x coordinate xl1 of the
rightmost vertical segment of the left outline and xr1 of the leftmost vertical segment of
the right outline that lies within the interval defined by htop and hbottom, the top and
bottom vertical positions of the label. These segments restrict the horizontal position of

2.2. A dynamic programming algorithm 11

Table 2.1: The different ways a label can touch another label or the outline.

. . . the right outline . . . another label or leader

label touching . . .

w + 2ε

leader touching . . .

ε

Figure 2.4: Finding the horizontal position for a label with given vertical position. The
two upper thick lines define xl1 and xr1, while the two lower thick lines define
xl2 and xr2.

top label

bottom l.

P

?
htop

hbottom

htop+hbottom

2

yP

xl1

xr1

xr2
xl2

the label. The leader’s position is restricted by the segments which lie in the interval
defined by

htop+hbottom

2 (the y coordinate of the label’s midpoint) and ys (the y coordinate
of s). The x coordinates of these segments are called xl2 and xr2. To find these coordinates,
it suffices to iterate over the left and right outline, a O(m) operation.

The final horizontal position of the label is min (xr2 + ε, xr1 − w). If it is less than xl1 + ε
or xl2 + ε, there is no legal horizontal position for the label at this vertical position.

Thus the running time for b) and c): For each entry that has to be computed, it takes
O(nv · m) steps to find the valid positions of the label, and O(nv) steps to iterate over
them, which gives a O(nv ·m) cost of calculating each table entry.

This gives us a total running time of O(n3 · n3v · n2h ·m) = O(n8 ·m3 · (n + m)3) for the
algorithm.

Note that the solution itself is not returned by the algorithm. However, this can easily be
accomplished by storing the position of the placed label in the dynamic programming table
instead of just true. We can then recreate the placement of the labels via an additional
pass through the table that takes O(n) steps.

3. External po labelings on adjacent sides
of a rectangle

3.1 Problem definition

In this chapter we work on the problem of external boundary labeling, where the boundary
consists of two adjacent sides of a rectangle R. This has already been solved for the case
that the sites lie inside R [KNR+13]. In our variant of the problem, the sites lie outside R.

On the one hand, this section lays the groundwork for the next chapter in which we will
make extensive use of this problem. On the other hand, the problem might arise in some
cases where space is limited, as in Figure 3.1

Problem 3.1.1 (Two-sided convex rectilinear boundary labeling (2CRB)). Let
R be a rectangle, `1, . . . , `m be m ports that lie on two adjacent sides r1 and r2 of R (but
not on the corner) and Hi, i ∈ {1, 2}, be the open half-plane defined by ri that does not
intersect R. Furthermore, let s1, . . . , sn be n (n ≤ m) sites that lie in H1 ∪H2.

The problem is to connect the sites s1, . . . , sn to the ports using crossing-free po leaders.

In the variant of the problem we will be studying, no two sites and no site and a port may
share an x or y coordinate. To achieve a leader spacing of ε, sites and ports must have a
minimum vertical and horizontal distance of ε.

If we use coordinates in the following text, we will always assume a Cartesian coordinate
system where the origin is the intersection point of r1 and r2, the positive x axis is r1 and
the positive y axis is r2. We will use the words “horizontal”, “vertical”, “up” and “down”
accordingly.

We partition the set of sites of an instance into the three disjoint sets P1, P2 and Q of sites
that lie in H1 \H2, H2 \H1 and H1 ∩H2, respectively. Any site in Pi, i ∈ {1, 2}, can be
connected only to ports on ri with a po leader, while the sites in Q can be connected to
all ports. Figure 3.2 illustrates this partition.

We also denote the ports that lie on ri by ports(ri) for i ∈ {1, 2}.
In the following section, we will show how to solve the Two-sided convex rectilinear
boundary labeling problem by splitting it into two one-sided labeling problems. One-
sided boundary labeling is a well-known problem for which efficient algorithms exist. It

14 3. External po labelings on adjacent sides of a rectangle

Figure 3.1: Example application of
2CRB labeling in a book layout.1

R

r1

r2

H1

H2

Figure 3.2: Illustration of a Two-sided con-
vex rectilinear boundary labeling in-
stance and how it is partitioned.

can be solved in O(n3) time for general badness functions, and in O(n log n) time for leader
length minimization [BHKN08].

When solving an instance in this way, we have to decide for each point in Q whether to
connect it to a port on r1 or r2. This leads to a partition of Q into two disjoint sets Q1

and Q2 of sites that are to be connected to ports on r1 and r2, respectively.

We first prove that Q1 and Q2 can be separated geometrically and furthermore that the
partition can be chosen to avoid crossings between leaders of sites in Q. This allows us to
solve the basic problem. For the additional goal of leader length minimization, we show
that the total leader length does not depend on the partition itself, but rather on the
partition size.

3.2 Solution for the basic problem

We want to partition Q into two sets P1 and P2 of sites to be connected to ports on r1 and
r2, respectively. We have some constraints for a partition that leads to a valid solution:

Definition 3.2.1. Let I be an instance of Two-sided convex rectilinear boundary
labeling, with the sites partitioned into P1, P2 and Q as described above. For i ∈ {1, 2},
let mi be the number of ports that lie on ri.

A valid partition of I is a partition (Q1, Q2) of Q so that |Pi|+ |Qi| ≤ mi for i ∈ {1, 2}.
A crossing-free partition of I is a partition (Q1, Q2) of Q so that for i ∈ {1, 2} the
following condition holds: If all sites in Qi are connected to ports on ri, then for j ∈ {1, 2},
for any two sites sj ∈ Qj and any two ports `j on rj, the leaders λ(s1, `1) and λ(s2, `2) do
not intersect.

A valid partition ensures that there are enough ports to accomodate all sites. It is imme-
diately obvious that a solution can only exist if a valid partition of Q exists.

1Drawing based on “Skeleton diagram of a cat.svg” by Przemek Maksim, licensed under CC-BY-SA,
available online at http://commons.wikimedia.org/wiki/File:Skeleton_diagram_of_a_cat.svg

http://commons.wikimedia.org/wiki/File:Skeleton_diagram_of_a_cat.svg

3.2. Solution for the basic problem 15

A crossing-free partition ensures that no crossings occur between leaders of sites in Q,
however it does not state anything about the leaders of sites in P1 and P2. A crossing-free
partition can also be described geometrically:

Lemma 3.2.2. A partition of I is crossing-free if and only if the inequality x2 ≤ x1∨y2 ≥
y1 is satisfied for any two sites (x1, y1) = s1 ∈ Q1 and (x2, y2) = s2 ∈ Q2.

Proof. Let λ1 = λ(s1 = (x1, y1), `1) and λ2 = λ(s2 = (x2, y2), `2) be two leaders, where
si ∈ Qi and `i lies on ri, for i ∈ {1, 2}.
As the orthogonal segment of λ1 lies in H1 \ H2 and the orthogonal segment of λ2 lies
in H2 \ H1, a crossing can only occur between the two parallel segments. The parallel
segment of λ1 is the horizontal line between (x1, y1) and (0, y1). The parallel segment of
λ2 is the vertical line between (x2, y2) and (x2, 0).

If the lines intersect, the intersection point has the coordinates (x2, y1) and lies on both
lines. The coordinates x1, x2, y1, y2 are all negative. Therefore the lines intersect if and
only if x1 ≤ x2 and y1 ≥ y2 which is the negation of the above inequality.

Fortunately, valid and crossing-free partitions can be found easily:

Lemma 3.2.3. Let I be an instance of Two-sided convex rectilinear boundary
labeling. Then a valid and crossing-free partition of I exists if and only if |Pi| ≤ mi for
i ∈ {1, 2}. This partition can be computed in O(n log n) time.

Proof. “⇒”: If |Pi| > mi for i = 1 or i = 2, then obviously |Pi| + |Qi| ≤ mi cannot be
satisfied for any partition of Q, thus no valid partition exists.

“⇐”: Let ∆i := mi − |Pi|, i ∈ {1, 2}, be the number of ports on ri that are not “reserved”
for sites in Pi. Qi may not contain more than ∆i sites in a valid solution. From our
premise we have ∆i ≥ 0. The minimum number of sites in Q1 is then |Q| −∆2 and the
minimum number of sites in Q2 is |Q| −∆1.

A simple (but not the only) way to find a valid crossing-free partition is to sort the
sites ascendingly by their x coordinate and place the first few sites into Q2 and the rest
into Q1 such that the number of sites in Q2 satisfies the inequalities 0 ≤ |Q2| ≤ |Q| and
|Q| −∆1 ≤ |Q2| ≤ ∆2. The second inequality can be satisfied because |Q| −∆1 ≤ ∆2 ⇔
|Q| −m1 + |P1| ≤ m2 − |P2| ⇔ |Q| + |P1| + |P2| ≤ m1 + m2 ⇔ n ≤ m, which is satisfied
by the problem definition.

This takes O(n log n) time because of the sorting. The partition is crossing-free because
for any two sites (x1, y1) = s1 ∈ Q1 and (x2, y2) = s2 ∈ Q2 we have x2 ≤ x1. It is also valid
because |Q2| ≤ m2 − |P2| = ∆2 per construction, and |P1| + |Q1| = |P1| + (|Q| − |Q2|) ≤
|P1|+ ∆1 = m1.

In the proof we have calculated the minimum and maximum cardinality of Q1 in a valid
partition. The cardinality of Q2 is uniquely defined by the cardinality of Q1, so it makes
sense to call |Q1| the size of the partition (Q1, Q2) of Q.

Corollary 3.2.4. Let I be an instance of the 2CRB problem. Then there are m − n + 1
possible differently-sized partitions of Q.

Proof. As we saw in the proof of the previous lemma, Q1 may contain between |Q|−∆2 and
∆1 sites. Thus there are |∆1−(|Q|−∆2)+1| = |m1−|P1|−|Q|+m2−|P2|+1| = |m−n+1|
possible partition sizes.

16 3. External po labelings on adjacent sides of a rectangle

Figure 3.3: A solution for the Two-sided convex rectilinear boundary labeling
instance from Figure 3.2. The thick parts of the leaders are the only parts of
the solution that influence the total leader length. The white circles are the
points in the axis projected sub-instances, see Definition 3.3.6.

It follows from Lemma 3.2.3 that the 2CRB problem is not harder than a one-sided labeling
problem:

Theorem 3.2.5. Any instance of the 2CRB problem has a solution if and only if |Pi| ≤ mi

for i ∈ {1, 2}. The solution can be computed in O(n log n) time.

Proof. If |Pi| > mi for i = 1 or i = 2, we have no valid partitions and thus no solution. We
now assume |Pi| ≤ mi for i ∈ {1, 2}. By Lemma 3.2.3, a valid and crossing-free partition
(Q1, Q2) of I exists.

Because the partition is valid, we have |Pi|+ |Qi| ≤ mi for i ∈ {1, 2}. We remove arbitrary
ports from r1 and r2 until |Pi|+ |Qi| = mi for i ∈ {1, 2}.
We now have two One-sided boundary labeling instances (P1 ∪ Q1,ports(r1)) and
(P2 ∪Q2, ports(r2)) with the same number of ports and sites. As described in [BHKN08],
a crossing-free solution for each of the sub-instances can be computed in O(n log n) time.

Because the individual one-sided labelings are crossing-free, leader crossings can only occur
between the leaders of a site in Q1 and a site in Q2. But our partition of I was crossing-free
which specifically rules out such crossings, thus the whole solution is crossing-free.

3.3 Leader length minimization

We are usually interested in not just any crossing-free labeling, but in one where the total
leader length is minimal. We modify our problem as follows:

Problem 3.3.1 (Length-minimal 2CRB labeling). The prerequisites are the same as
in the Two-sided convex rectilinear boundary labeling problem. The problem is
to connect the sites s1, . . . , sn to the ports using crossing-free po leaders such that the total
leader length length(S) of the solution S is minimized.

Figure 3.3 gives an idea of what possibilities we have to minimize the total leader length.
Intuitively, the thin parts of the leaders are fixed in every solution; their length only
depends on the sites’ positions. The only way to minimize the leader length is to minimize
the length of the thick leader parts.

We begin by examining the one-sided boundary labeling problem a bit closer. In the
following, we assume without loss of generality that the ports of a One-sided boundary
labeling instance lie on the vertical line x = 0. Thus the parallel leader segments in a

3.3. Leader length minimization 17

solution are vertical lines, and the orthogonal leader segments are horizontal lines with
length |xs|, where xs is the x coordinate of the site in question.

We first split up the leader length of a solution by examining the parallel and orthogonal
leader segments:

Definition 3.3.2. Let I be an instance of the One-sided boundary labeling problem
with po leaders. The (total) parallel segment length lengthp(S) of a solution S is the
total length of the parallel segments of the leaders. The (total) orthogonal segment
length lengtho(S) is the total length of the orthogonal segments of the leaders.

Of course we have length(S) = lengthp(S) + lengtho(S). The orthogonal segment length
is special as it does not depend on the solution:

Lemma 3.3.3. Let S and S′ be two solutions of an One-sided boundary labeling
instance with n sites s1, . . . , sn. Then lengtho(S) = lengtho(S′), i. e. the total orthogonal
segment length only depends on the instance.

Proof. The orthogonal segment length of a leader λ(si, `) is |xi|, where xi is the x coordi-
nate of the site si. Thus we have lengtho(S) =

∑n
i=1 |xi| = lengtho(S

′).

It therefore makes sense to define the total orthogonal segment length not only for a
solution, but also for an instance of One-sided boundary labeling:

Definition 3.3.4. Let I be an One-sided boundary labeling instance with n sites
s1, . . . , sn. The (total) orthogonal segment length of I is defined as lengtho(I) =∑n

i=1 |xi|, where xi is the x coordinate of the site si.

By the proof of Lemma 3.3.3 we have lengtho(S) = lengtho(I) for any solution S of I.

Having examined the orthogonal leader segments, we turn to the parallel ones. Their
length does depend on the solution, but their minimum length depends only on the vertical
position of the sites:

Lemma 3.3.5. Let I and I ′ be two instances of One-sided boundary labeling that
differ only in the set of sites. Let {s1, . . . , sn} be the set of sites in I, and let {s′1, . . . , s′n}
be the set of sites in I ′. Let S and S′ be a solution to I and I ′, respectively, with minimum
total leader length.

If for i ∈ {1, . . . , n} the sites si and s′i share the same y coordinate, then lengthp(S) =
lengthp(S′).

Proof. We take the solution S and create from it a solution T for I ′ by adding the leader
λ(s′i, `) for every leader λ(si, `) in S. Since si and s′i share their y coordinate, the parallel
segment length stays the same, so lengthp(T) = lengthp(S).

T may contain crossings. As described in [BHKN08], these crossings can be resolved
without increasing the total leader length, resulting in a solution T ′ for I ′ with length(T ′) ≤
length(T). Because of Lemma 3.3.3, we have lengtho(T

′) = lengtho(T) and therefore
lengthp(T ′) ≤ lengthp(T) = lengthp(S).

Because S′ has minimum total leader length, we have length(T ′) ≥ length(S′). Sub-
tracting lengtho(I

′) from both sides yields lengthp(T ′) ≥ lengthp(S′), therefore we have
lengthp(S) ≥ lengthp(S′). Reversing the roles of S and S′ in the previous transformation
yields lengthp(S′) ≥ lengthp(S) and thus the desired equality.

18 3. External po labelings on adjacent sides of a rectangle

Our next goal is to abstract from the partitions of Q and instead only consider partition
sizes. For this it is useful to split the part of the leaders that lies in H1∪H2 from the rest:

Definition 3.3.6. Let I be a Length-minimal 2CRB labeling instance partitioned by a
valid and crossing-free partition (Q1, Q2) of I. Then the axis-projected sub-instances I1
and I2 of the partitioned instance I are instances of the One-sided boundary labeling
problem defined as follows:

For i ∈ {1, 2}, the ports in Ii are the ports on ri. The sites in Ii are the sites in Pi ∪Q′
i,

where Q′
1 is the set (0, yi) for all sites (xi, yi) ∈ Q1 and Q′

2 is the set (xi, 0) for all sites
(xi, yi) ∈ Q2.

This means that the points in Q1 are projected onto the y axis, while the points in Q2 are
projected onto the x axis. Figure 3.3 visualizes this projection.

It is obvious that a solution to the axis-projected sub-instances yields a solution for I by
connecting the points in Q to their respective projections with a straight line.

Our next step is to express the leader length of a solution of a 2CRB instance in terms of
the leader lengths of the axis-projected sub-instances:

Lemma 3.3.7. Let I be a Length-minimal 2CRB labeling instance partitioned by a
valid and crossing-free partition (Q1, Q2) of I. Let I1, I2 the axis-projected sub-instances
of the partitioned instance.

Let S′ be a solution with minimum total leader length for the partitioned instance I, and
let S1, S2 be solutions with minimum total leader length for I1 and I2, respectively.

Then length(S′) = lengthp(S1)+lengthp(S2)+X where X is independent from the partition
(Q1, Q2) or the solution S′.

Proof. We claim that

X =
∑

(x,y)∈P1∪Q1

|y|+
∑

(x,y)∈P2∪Q2

|x|+
∑

(x,y)∈Q1

|x|+
∑

(x,y)∈Q2

|y|

=
∑

(x,y)∈P1

|y|+
∑

(x,y)∈P2

|x|+
∑

(x,y)∈Q

(|x|+ |y|)

which is indeed independent from the partition or the solution.

We consider the solution S for I induced by the solutions S1 and S2 and look at the leader
lengths for sites s = (x, y) in P1, Q1, P2 and Q2 separately. For s ∈ Q1 and s ∈ Q2, let s′

be the site corresponding to s in the relevant axis-projected sub-instance of I.

• For p ∈ P1, the orthogonal leader segment (a vertical line) has length |y|. The length
of the parallel segment adds to lengthp(S1) because s is a part of the sub-instance I1.

• For p ∈ P2, the orthogonal leader segment (a horizontal line) has length |x|. The
length of the parallel segment adds to lengthp(S2) because s is a part of the sub-
instance I2.

• For p ∈ Q1, the orthogonal leader segment (a vertical line) has length |y|. The
parallel segment can be split into a line between s and its projection s′, which has
length |x|, and the parallel segment of the leader of s′ in the solution S1, whose
length adds to lengthp(S1).

3.3. Leader length minimization 19

• For p ∈ Q2, the orthogonal leader segment (a horizontal line) has length |x|. The
parallel segment can be split into a line between s and its projection s′, which has
length |y|, and the parallel segment of the leader of s′ in the solution S2, whose
length adds to lengthp(S2).

Adding up the leader lengths yields the right-hand side of the above equation. To see that
this is indeed equal to the total leader length of a minimum-length solution S′, suppose
for the sake of contradiction that we have length(S) > length(S′). But S′ induces two
solutions S′

1 and S′
2 for I1 and I2, and length(S′) can be split up in the same way as above.

Thus the inequality becomes lengthp(S1) + lengthp(S2) > lengthp(S′
1) + lengthp(S′

2), a
contradiction because S1 and S2 were both minimum-length solutions of I1 and I2.

We see that the total leader length depends only on the parallel leader segments in the
solutions to the axis-projected sub-instances. These are the gray leader parts in Figure 3.3.

In our next step we assemble the previous lemmata to show that the minimum leader
length depends only on the size of the partition of Q, not on the partition itself.

Lemma 3.3.8. Let T = (Q1, Q2) and T ′ = (Q′
1, Q

′
2) be two crossing-free partitions of

a Two-sided convex rectilinear boundary labeling instance I with |Q1| = |Q′
1|.

Let S and S′ be the minimum-length solutions of I partitioned by T and by T ′, respectively.
Then length(S) = length(S′).

Proof. Let S1, S2 and S′
1, S

′
2 be minimum-length solutions of the axis-projected sub-

instances of I partitioned by T and by T ′, respectively. It suffices to prove lengthp(Si) =
lengthp(S′

i) for i ∈ {1, 2}. Then it follows from Lemma 3.3.7 that length(S) = length(S′).

We prove the equality lengthp(S2) = lengthp(S′
2), the other one is symmetric. S2 and

S′
2 are solutions for two One-sided boundary labeling instances that differ only in

the sites projected from Q2 and Q′
2, respectively. But we have |Q2| = |Q′

2| and these
projected sites all have the same y coordinate 0, so the sites in both instances can be
arranged in pairs of sites that share the same y coordinate. By Lemma 3.3.5, we have
lengthp(S2) = lengthp(S′

2).

This leads us to the main theorem of this section:

Theorem 3.3.9. Let I be a Length-minimal 2CRB labeling instance. I can be solved
in O((m− n+ 1) · α) time, where α is the time to solve a partitioned instance.

Proof. The number of differently-sized partitions ofQ ism−n+1, as seen in Corollary 3.2.4.
For each partition size s take an arbitrary partition of Q of size s and solve the partitioned
instance in O(α) time, then take the length-minimal one among all such partitions.

This solution has minimum leader length among all solutions: Let S be a solution with
minimum leader length. S induces a partition (Q1, Q2) of Q with a certain partition size.
The algorithm solves a (possibly different) partition of the same size, yielding a solution S′.
According to Lemma 3.3.8, we have length(S′) = length(S), meaning the algorithm finds
a solution of the same (and therefore minimum) length.

Now we can begin to apply this to concrete problems. Our first result is that for the same
number of sites and ports, the two-sided problem is not harder than the one-sided one:

Corollary 3.3.10. Any Length-minimal 2CRB labeling instance with m = n can be
solved in O(n log n) time.

20 3. External po labelings on adjacent sides of a rectangle

Proof. The number of differently-sized partitions is m − n + 1 = 1. The partitioned
instances have the same number of sites and ports and thus can be solved in O(n log n)
time each.

We prove one special case that may occur in real-world applications: Because the ports
belong to labels, it is possible that there exists a label at the corner of the labeling area
which has a port on r1 and one on r2. We cannot connect both ports, but instead have to
decide from which side to connect to this label.

Corollary 3.3.11 (Length-minimal 2CRB labeling with connected pair of ports).
Let I be a Length-minimal 2CRB labeling instance with m = n+ 1 and let (`1, `2) be
a pair of ports with `1 on r1 and `2 on r2.

Then a length-minimal solution in which only one of `1 and `2 is connected to a site can
be found in O(n log n) time.

Proof. The two instances I1 and I2 in which `1 and `2, respectively, is removed, are in-
stances with m = n and can be solved in O(n log n) time. A length-minimal solution for
I can be obtained by solving I1 and I2 and taking the shorter one of both solutions.

Up until now, we have only considered the case where m = n. For m > n, the O(n log n)
solution described in [BHKN08] does not work. Alternatively, but with a much higher
running time, we can solve such an instance using minimum-weight matching:

Theorem 3.3.12. A One-sided boundary labeling instance with m ports and n sites
(m ≥ n) can be solved in µ(m,n) +O(n2) time, where µ(m,n) is the time needed to solve
a minimum-weight matching problem on the complete bipartite graph Km,n.

Proof. Let P be the set of sites and L be the set of ports. We formulate the labeling
problem as a weighted matching problem. We construct the complete bipartite graph
Km,n from the node sets P and L, where the weight of each edge {p, `} is the unique
length of the po leader λ(p, `).

We retrieve a minimum-weight matching of cardinality n in µ(m,n) time and create a
leader λ(p, `) for every edge (p, `) in the matching. This solution may of course contain
crossings, but these can be removed using O(n2) crossing resolution steps that do not
increase the total leader length, as described in [BHKN08].

This solution has minimal leader length because each solution to the labeling problem
corresponds to a matching of cardinality n in Km,n whose weight is the total leader length
of the solution. A solution of shorter leader length would therefore lead to a matching
with less weight than the minimum-weight matching.

Corollary 3.3.13. Any Length-minimal 2CRB labeling instance can be solved in
O((m−n+1) ·(µ(m,n)+n2)) time, where β(m,n) is the time needed to solve a minimum-
weight matching problem on the complete bipartite graph Km,n.

Proof. Follows from Theorems 3.3.9 and 3.3.12.

Some example values for µ(m,n) are O(v3) (Gabow, 1974), O(ev log v) (Gabow, 1985) or
O(

√
vα(e, v) log ve log(vN) (Gabow and Tarjan, 1989), where e = n ·m is the number of

edges, v = m + n is the number of vertices and N is the maximum weight of an edge.
These values are cited from [CR98].

4. External po labelings with rectangular
labeling area

In the previous chapter we laid the groundwork for our next problem. This time we attempt
to label a real “free space” problem: The labels lie inside a rectangle that is surrounded
by the sites to be labeled.

4.1 Problem definition

Problem 4.1.1 (Rectangular area labeling). Let R be a rectangle, `1, . . . , `m be m
ports that lie on the sides R (but not on the corner) and s1, . . . , sn be n (n ≤ m) sites that
lie outside R.

Each two sites and/or ports must have a minimum vertical and horizontal distance of ε to
ensure leader spacing.

The problem is to connect the sites s1, . . . , sn to the ports using crossing-free po leaders.

Problem 4.1.2 (Length-minimal Rectangular area labeling). The prerequisites
are the same as in the Rectangular area labeling problem. The problem is to connect
the sites s1, . . . , sn to the ports using crossing-free po leaders such that the total leader
length length(S) of the solution S is minimized.

We divide the outside of the rectangle as before using half-planes: For i ∈ {1, . . . , 4},
let Hi be the open half-plane defined by ri that does not intersect R. For (i, j) ∈
{(1, 2), (2, 3), (3, 4), (4, 1)}, we set Cij := Hi ∩ Hj (the “corners” of the labeling area).
This is illustrated in Figure 4.1.

We partition the set of sites accordingly: Let Qij be the set of sites that lie in Cij . For
i ∈ {1, . . . , 4}, let Pi be the sites that lie exclusively in Hi.

4.2 Solution

Our idea is to split a Rectangular area labeling instance I into two Two-sided
convex rectilinear boundary labeling instances: one “bottom-left” instance I12
that contains all the ports from r1 and r2 and one “top-right” instance I34 that contains
all the ports from r3 and r4. I12 contains at least the sites in P1, P2 and Q12 (since these

22 4. External po labelings with rectangular labeling area

Figure 4.1: An instance of Rectangular area labeling with the area outside R par-
titioned.

H3

R

r1

r4

r3

r2

C41

C34
C23

C12 H1

H4

H2

have to be connected to ports on r1 or r2), similarly I34 contains at least the sites in P3,
P4 and Q34.

The sets Q23 and Q41 will have to be partitioned into the sets Q2
23, Q

3
23, Q

4
41 and Q1

41.
The instance I12 additionally contains the sites from Q2

23 and Q1
41, and the instance I34

additionally contains the sites from Q3
23 and Q4

41.

I1 and I2 are 2CRB instances if and only if the number of sites does not exceed the number
of ports, which leads to the following conditions for the partition of Q23 and Q41:

|Q2
23|+ |Q1

41| ≤ m1 +m2 − |P1| − |P2| − |Q12| (4.1)

|Q3
23|+ |Q4

41| ≤ m3 +m4 − |P3| − |P4| − |Q34| (4.2)

Additionally, Theorem 3.2.5 states that the 2CRB instance has a solution if and only if
the number of sites that can only be connected to one side of the rectangle does not exceed
the number of ports on that side. Thus we have the additional conditions:

0 ≤ |Q2
23| ≤ m2 − |P2| (4.3)

0 ≤ |Q3
23| ≤ m3 − |P3| (4.4)

0 ≤ |Q4
41| ≤ m4 − |P4| (4.5)

0 ≤ |Q1
41| ≤ m1 − |P1| (4.6)

Adding (4.3) to (4.4) and (4.5) to (4.6) yields the following equivalent system of inequa-
tions:

0 ≤ |Q2
23| ≤ m2 − |P2| (4.7)

0 ≤ |Q23| ≤ m2 +m3 − |P2| − |P3| (4.8)

0 ≤ |Q4
41| ≤ m4 − |P4| (4.9)

0 ≤ |Q41| ≤ m1 +m4 − |P1| − |P4| (4.10)

Now we can solve the basic problem of Rectangular area labeling:

Theorem 4.2.1. A Rectangular area labeling instance I has a solution if and only
if the inequations (4.1), (4.2) and (4.7) through (4.10) are satisfiable. I can be solved in
O(m+n log n+ γ(m,n)) time, where γ(m,n) is the time needed to solve a 2CRB instance
with m ports and n sites.

4.2. Solution 23

Proof. We have to prove that I has a solution if and only if I can be partitioned into two
solvable 2CRB instances I12 and I34 as described at the beginning of Section 4.2. This is
then equivalent to the satisfiability of the equations, since I12 and I34 are 2CRB instances
if and only if 4.1, 4.2 are satisfiable, and they have a solution if and only if 4.7 through
4.10 are satisfiable.

“⇒” Suppose we have a solution S for I. The leaders of sites in Q23 and Q41 induce parti-
tions Q2

23, Q
3
23, Q

4
41 and Q1

41 of these two sets via Qk
ij = {p ∈ Qij |λ(p, s) ∈ S, s lies on rk}

for k ∈ {i, j}. These partitions lead to two 2CRB instances I12 and I34, and a solution for
these two instances is induced by S.

“⇐” Suppose we can partition I into two solvable 2CRB instances I12 and I34 as described
above. Let S12 and S34 be the respective solutions. Merging S12 and S34 yields a labeling S
for I in which crossings may occur between leaders of sites in Q23 and Q41. In other words,
the partitions of Q23 and Q41 induced by S need not be crossing-free. We now partition
Q23 and Q41 using crossing-free partitions of the same size as the partitions induced by S.
This leads to two 2CRB instances I ′12 and I ′34 with the same number of sites and ports
as I12 and I34. By Theorem 3.2.5, the solvability of 2CRB instances depends only on
the number of sites and ports, so I ′12 and I ′23 are solvable. Merging their solutions yields
a solution for I which is now crossing-free because our partitions of Q23 and Q41 were
crossing-free.

To prove the running time, first note that the satisfiability of (4.8) and (4.10) can be
checked in O(1) since these depend only on I. We can check the satisfiability of the other
inequations in O(m) by inserting every value X between 0 and m2− |P2| for |Q2

23|. Those
are the values for which inequation (4.7) is satisfied. We are then left with the following
system of inequations for y := |Q4

41|:

y ≥ 0

X + y ≤ m1 +m2 − |P1| − |P2| − |Q12| from (4.1)

(|Q23| −X) + (|Q41| − y) ≤ m3 +m4 − |P3| − |P4| − |Q34| from (4.2)

y ≤ m4 − |P4| from (4.9)

or equivalently

y ≥ 0

y ≤ m1 +m2 − |P1| − |P2| − |Q12| −X
y ≥ −m3 −m4 + |P3|+ |P4|+ |Q34|+ |Q23| −X + |Q41|
y ≤ m4 − |P4|

whose satisfiability can be checked in O(1) time, including a satisfying value for y if one
exists.

Computing the crossing-free partitions of Q34 and Q41 with the given partition sizes can
be done in O(n log n) time, and we are left with computing a solution for I1 and I2, which
takes 2 · γ(m,n) time.

This also provides a solution for the length minimization variant of the problem:

Theorem 4.2.2. Let I be a Length-minimal Rectangular area labeling instance.
I can be solved in O(n log n+m2 ·β(m,n)) time, where β(m,n) is the time needed to solve
a Length-minimal 2CRB labeling instance with m ports and n sites.

24 4. External po labelings with rectangular labeling area

Proof. The following algorithm called LengthMinimalRectLabeling computes a minimum-
length solution: We conduct one step of the algorithm for each possible pair of partition
sizes forQ23 andQ41. As we saw in the proof of the previous theorem, there arem2−|P2|+1
possible values for |Q2

23|. Because of inequation (4.9), there are m4−|P4|+1 possible values
for |Q4

41|. Together we have O(m2) possible combinations of partition sizes.

In each step, we select crossing-free partitions T23 = (Q2
23, Q

3
23) and T41 = (Q4

41, Q
1
41) of

Q23 and Q41 with the partition sizes given for this step. Partitioning takes O(1) time if
the sites are sorted in advance (taking O(n log n) time), e.g. by storing the sorted sites in
an array and partitioning them by specifying two slices of the array. We solve the resulting
Length-minimal 2CRB labeling instances I12 and I34 in β(m,n) time and select the
solution with minimum total leader length for each instance. Merging the two solutions
yields a crossing-free solution for I because the partitions of Q23 and Q41 are crossing-free.

We output a solution S with minimum total leader length among all the steps’ solutions.

To see that S has minimum length, let S′ be a minimum-length solution for I. S′ induces
crossing-free partitions (Q1′

12, Q
2′
12) of Q12 and (Q3′

34, Q
4′
34) of Q34. This in turn induces two

independent Length-minimal 2CRB labeling instances I ′23 (with the sites from Q2′
12,

Q2, Q3 and Q3′
34 and the ports from r2 and r3) and I41 (with the rest of sites and ports),

as well as minimum-length solutions S′
23 and S′

41 for these instances.

These solutions induce crossing-free partitions T ′
23 and T ′

41 of Q23 and Q41. As LengthMin-
imalRectLabeling tries all possible partition sizes, it will in one step choose partitions T23
and T41 with sizes |T ′

23| and |T ′
41|, respectively. Let S̃ be the solution for I computed in

this step. We have length(S̃) ≥ length(S), as S has minimum length among all computed
solutions.

From Lemma 3.3.8, we know that the minimum leader length of a Length-minimal 2CRB
labeling instance depends only on the partition size used and not on the partition itself.
Using T23 instead of T ′

23 and T41 instead of T ′
41 to partition the instances I23 and I41 yields

a solution S′′ for I with length(S′′) = length(S′).

As S′′ now uses the same partitions for Q23 and Q41 as S̃, it also induces the same Length-
minimal 2CRB labeling instances I12 and I34, and induces minimum-length solutions
for these instances. Because LengthMinimalRectLabeling also computes a minimum-length
solution for both of these instances, it follows that length(S′′) = length(S̃). Together with
length(S̃) ≥ length(S) and the minimality of S′, it follows that S is a minimum-length
solution for I.

4.3 Outlook on labeling with more than one rectangle

As seen for example in Figure 1.3, it may be useful to have not only one, but several
rectangular labeling areas inside the map. We give a definition of this labeling problem:

Problem 4.3.1 (k-rectangle boundary labeling). Let R1, . . . , Rk for k ∈ N be non-
intersecting axis-parallel rectangles. Let `1, . . . , `m be m ports that lie on the sides of
R1, . . . , Rk and let s1, . . . , sn be n sites (n ≤ m) that lie in the complement of R1∪· · ·∪Rk.

The problem is to connect the sites s1, . . . , sn to the ports using crossing-free po leaders
that do not intersect any of the rectangles.

Some work on labeling with two rectangular labeling areas has already been done, but had
to be left out of this thesis due to time constraints. This work has however shown that
labeling with two rectangles is likely to be solvable in polynomial time.

4.3. Outlook on labeling with more than one rectangle 25

Figure 4.2: Transforming a k-sided boundary labeling instance into a k-rectangle
boundary labeling instance

r1

r2

r3

r4R

R4

R3

R1

R2

We show that the k-rectangle boundary labeling for 2 ≤ k ≤ 4 is as least as hard as
the k-sided boundary labeling problem studied in [KNR+13]. In this problem, fixed ports
lie on k adjacent sides of a rectangle R and all sites lie within R. The solutions obtained
in the paper are:

• n = 2: solvable in O(n2) time and O(n) space; the leader length minimization variant
of the problem can be solved in O(n8 log n) time and O(n6) space.

• n = 3: solvable in O(n4) time and O(n) space.

• n = 4: solvable in O(n10) time and O(n) space.

These are not necessarily lower bounds for the k-sided problems, but give a general idea
of how hard the problem might be.

Theorem 4.3.2. Let I = (R,P, S) with rectangle R, ports P and sites S be an instance of
the k-sided boundary labeling problem defined in [KNR+13] for k ∈ {2, 3, 4}. Then there
exists a polynomial transformation from I into an instance I ′ of k-rectangle boundary
labeling which has a solution if and only if I has a solution.

Proof. We first create four non-intersecting rectangles R1, . . . , R4 that each share one
side with R, as shown in Figure 4.2. We create the k-rectangle boundary labeling
instance I ′ by keeping the sites and ports from I. For each rectangle side ri in I that
contains ports, we add the rectangle Ri to I ′, so that each port lies on the side of a
rectangle.

This is obviously a polynomial-time transformation. Each solution of I is a solution for
I ′ because all leaders lie in R and none of the rectangles Ri intersects R, thus no leader
intersects a rectangle. Conversely, a solution of I ′ is also a solution for I.

5. Conclusion

In this thesis, we presented an introduction to the problem area of labeling maps with
free spaces. We first presented an algorithm for external labeling with opo leaders and a
rectilinear labeling area. The labels can be placed anywhere inside the labeling area and
can even be placed next to each other vertically and horizontally. This allows optimal
utilization of the available space at the boundary of a map.

We then solved the labeling problem for po leaders and fixed ports on two adjacent sides
of a rectangle R, where the sites lie outside of R. We considered the variant with and
without leader length minimization. A solution can be constructed by partitioning the set
of sites using crossing-free partitions and solving the resulting instances using one-sided
boundary labeling.

Lastly, we presented an algorithm for solving the labeling problem with fixed ports and
a free space consisting of one rectangle. We again considered leader length minimization
as an additional objective. We observed that the variants with as many sites as ports are
solvable considerably faster than the variants with more ports than sites. We gave a short
outlook on labeling problems with more than one free space.

The presented algorithms all run in polynomial time. The theoretical boundary of the
running time can nevertheless be quite large, even if only corner cases are considered.

For real-world implementation purposes, these algorithms – apart from the most basic
ones – are therefore most likely not directly suited. In this case, generic methods from Al-
gorithm Engineering could be applied: Heuristics based on Genetic Algorithms, Simulated
Annealing and the like could tackle the problems more easily.

This is especially the case because for some difficult instances, a solution conforming to a
hard criterion like the absence of leader crossings might not even exist. With these kinds
of algorithms, we could easily reduce the problem to minimizing the number of crossings
instead of avoiding them. The same goes for the leader length: A viewer might not even
be able to distinguish between a minimum length solution and one that is slightly longer.

Other interesting open topics in this problem area would therefore include

• labeling with more than one rectangular free space (see Section 4.3)

• allowing other shapes as free spaces on the map,

• the combination of internal and boundary labeling (ex. [LN10], [BKPS11]),

28 5. Conclusion

• the combination of free spaces inside a map and boundary labeling outside the map,

• dynamic labeling, e. g. for zooming in and out of a map (ex. [NPS10]).

However, the results from this thesis and from other papers on related topics suggest
that exact solutions of these problems, even if computable in polynomial time, might
nevertheless be only of theoretical interest.

Therefore, the application of Algorithm Engineering methods on these problems, perhaps
in the form of a generic labeling framework, would certainly be a valuable contribution.
Experimental evaluation of the exact and heuristic methods might provide more insight
into the hardness of these problems in general.

Bibliography

[BHKN08] M. Benkert, H. Haverkort, M. Kroll, and M. Nöllenburg, “Algorithms for
multi-criteria one-sided boundary labeling,” in Graph Drawing, ser. Lecture
Notes in Computer Science, S.-H. Hong, T. Nishizeki, and W. Quan, Eds.
Springer Berlin Heidelberg, 2008, vol. 4875, pp. 243–254. Available online:
http://dx.doi.org/10.1007/978-3-540-77537-9_25

[BKPS11] M. Bekos, M. Kaufmann, D. Papadopoulos, and A. Symvonis, “Combining
traditional map labeling with boundary labeling,” in SOFSEM 2011: Theory
and Practice of Computer Science, ser. Lecture Notes in Computer Science,
I. Černá, T. Gyimóthy, J. Hromkovič, K. Jefferey, R. Králović, M. Vukolić,
and S. Wolf, Eds. Springer Berlin Heidelberg, 2011, vol. 6543, pp. 111–122.
Available online: http://dx.doi.org/10.1007/978-3-642-18381-2_9

[CR98] W. Cook and A. Rohe, “Computing minimum-weight perfect matchings,”
INFORMS Journal on Computing, vol. 11, pp. 138–148, 1998. Available
online: www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf

[FW91] M. Formann and F. Wagner, “A packing problem with applications to lettering
of maps,” in Proceedings of the seventh annual symposium on Computational
geometry, ser. SCG ’91. New York, NY, USA: ACM, 1991, pp. 281–288.
Available online: http://doi.acm.org/10.1145/109648.109680

[Imh75] E. Imhof, “Positioning names on maps,” The American Cartographer, vol. 2,
no. 2, pp. 128–144, 1975. Available online: http://www.mapgraphics.net/

downloads/Positioning_Names_on_Maps.pdf

[Jam12] N. Jami, “Point labeling with leaders for convex boundaries,” 2012, diploma
thesis. Available online: http://i11www.iti.uni-karlsruhe.de/_media/

teaching/theses/da-jami-12.pdf

[Kau09] M. Kaufmann, “On map labeling with leaders,” in Efficient Algorithms.
Springer, 2009, pp. 290–304.

[KNR+13] P. Kindermann, B. Niedermann, I. Rutter, M. Schaefer, A. Schulz, and
A. Wolff, “Multi-sided boundary labeling,” CoRR, vol. abs/1305.0750, 2013.
Available online: http://arxiv.org/pdf/1305.0750v1.pdf

[LN10] M. Löffler and M. Nöllenburg, “Shooting bricks with orthogonal laser beams:
A first step towards internal/external map labeling.” in CCCG, 2010, pp. 203–
206. Available online: http://cccg.ca/proceedings/2010/paper54.pdf

[Nie12] B. Niedermann, “Consistent labeling of dynamic maps using smooth
trajectories,” 2012, diploma thesis. Available online: http://i11www.iti.

uni-karlsruhe.de/_media/teaching/theses/da-jami-12.pdf

[NPS10] M. Nöllenburg, V. Polishchuk, and M. Sysikaski, “Dynamic one-sided
boundary labeling,” in Proceedings of the 18th SIGSPATIAL International

http://dx.doi.org/10.1007/978-3-540-77537-9_25
http://dx.doi.org/10.1007/978-3-642-18381-2_9
www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf
http://doi.acm.org/10.1145/109648.109680
http://www.mapgraphics.net/downloads/Positioning_Names_on_Maps.pdf
http://www.mapgraphics.net/downloads/Positioning_Names_on_Maps.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/da-jami-12.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/da-jami-12.pdf
http://arxiv.org/pdf/1305.0750v1.pdf
http://cccg.ca/proceedings/2010/paper54.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/da-jami-12.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/da-jami-12.pdf

30 Bibliography

Conference on Advances in Geographic Information Systems, ser. GIS
’10. New York, NY, USA: ACM, 2010, pp. 310–319. Available online:
http://doi.acm.org/10.1145/1869790.1869834

[WS09] A. Wolff and T. Strijk, “The map-labeling bibliography,” 2009. Available
online: http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/

bibliography/

http://doi.acm.org/10.1145/1869790.1869834
http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/bibliography/
http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/bibliography/

	Contents
	1 Introduction
	1.1 Definitions

	2 External opo labelings with rectilinear labeling area
	2.1 Problem definition
	2.2 A dynamic programming algorithm

	3 External po labelings on adjacent sides of a rectangle
	3.1 Problem definition
	3.2 Solution for the basic problem
	3.3 Leader length minimization

	4 External po labelings with rectangular labeling area
	4.1 Problem definition
	4.2 Solution
	4.3 Outlook on labeling with more than one rectangle

	5 Conclusion
	Bibliography

