
Leiden-Based Parallel Community
Detection

Bachelor Thesis of

Fabian Nguyen

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
Prof. Dr. Peter Sanders

Advisors: Dr. Michael Hamann
Lars Gottesbüren, M.Sc.

Time Period: 1st of June 2021 – 30th of September 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, October 12, 2021

iii

Abstract

Leiden is a community detection algorithm, that seeks to maximize modularity by
dividing a graph into densely connected disjoint sets of nodes. It is an improvement
of the widely known Louvain algorithm and can be split up into three main phases.
The local moving and coarsening phases which are almost the same as in the Louvain
algorithm, and the refinement phase which was introduced as an improvement.
Considering that graphs can contain billions of edges nowadays using a sequential
algorithm is unreasonable. We therefore consider an existing parallelization of the
local moving phase and explain how it can be improved by incorporating the active-
nodes queue introcuded in the Leiden algorithm, then analyze how the refinement
phase can be efficiently implemented and parallelized and which performance gains
are to be expected. The coarsening phase wont be covered here as a parallelized
function for it is already provided by the used framework. The provided parallel
implementation of the Leiden algorithm was written in C++. We show that our
implementation achieves speedups up to 15.8 on the largest tested graph with 64
threads. More specifically, our parallel refinement achieves speedups up to 28 with
128 threads whereas local moving only scales up to about 32 threads with a maximum
speed up of 12.5.

Deutsche Zusammenfassung

Leiden ist ein sogenannter Community Detection Algorithmus, der durch Optimierung
der Modularity einen Graphen in möglichst dicht verbundene Teilmengen von Knoten
zu unterteilen versucht. Er stellt eine Verbesserung des bekannten Louvain Al-
gorithmus dar und kann in drei wesentliche Phasen aufgeteilt werden. Die Local
Moving- und die Coarsening Phase, im wesentlichen identisch zu Louvain, und die
neu eingeführte Refinement Phase die den Louvain Algorithmus weiter verbessert. Da
Graphen heutzutage Milliarden an Kanten haben können scheint die Nutzung eines
sequentiellen Algorithmus allerdings ungünstig. Wir werfen daher einen Blick auf
eine bestehende Parallelisierung der Local Moving Phase und erklären dann wie diese
durch kombination mit der active-nodes queue des Leiden Algorithmus verbessert
werden kann. Dann analysieren wir, wie die Refinement Phase effizient implementiert
und parallelisiert werden kann und welches Ausmaß an Leistungsgewinn gegenüber
der sequentiellen Version zu erwarten ist. Die Coarsening Phase wird nicht weiter
betrachtet, da dafür vom genutzten Framework bereits eine parallelisierte Funktion
bereitgestellt wird. Die hier vorgestellte parallele Implementierung des Leiden Algo-
rithmus wurde in C++ geschrieben. Auf dem größten getesteten Graphen ist unsere
parallele Implementierung mit 64 threads bis zu 15.8 mal schneller. Dabei erreicht
die Refinement Phase Speedups bis zu 28 mit 128 threads, während die Local Moving
Phase lediglich bis ungefähr 32 Threads skaliert, mit einem maximalen Speedup von
12.5.

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Graphs . 3
2.2 Partition & Community . 4
2.3 Modularity . 4

3 Related Work 7
3.1 Louvain Algorithm . 7
3.2 Parallel Louvain Method . 9
3.3 Leiden Algorithm . 10
3.4 NetworKit . 11

4 Parallel Leiden Algorithm 13
4.0.1 Terminology . 13

4.1 Parallel Local Moving . 13
4.2 Parallel Refinement . 17

4.2.1 Cluster-wise parallelization . 17
4.2.2 Full parallelization . 18

5 Experimental Evaluation 21
5.1 Sequential Implementations . 22
5.2 Parallel . 24

6 Conclusion 31

Bibliography 33

vii

1. Introduction

As the usage and consumption of digital services increases so does the amount of associated
data that needs to be processed. One important example of this is the analysis of large
graphs that are built from real world data like customer shopping behavior, street networks,
social media communities or even associations between different parts of the brain.

These graphs can quickly grow to enormous sizes, containing hundreds of millions of nodes
and billions of edges and therefore pose significant challenges. How do we analyze specific
properties of actual data in its graph representation and how do we do it efficiently?
Nowadays efficiency on such a scale usually comes hand in hand with parallelism since
performance increases in CPU cores have declined whereas the number of cores on a CPU
still increases significantly. Therefore, the question “how do we do it efficiently” can often
be rephrased to “how can we do it in parallel”.

We take a look at community detection, which is used to to divide a network into densely
connected subsets of nodes in order to reveal natural divisions and relationships in the
network. A possible use case of this is to find well-connected social communities within
large data sets of social media websites/applications like Facebook, i.e. to find communities
in which two arbitrary people within the community are very likely to be friends of (or at
least know) each other but are unlikely to be friends of anyone outside this community.

More specifically, we discuss the Leiden algorithm presented by Traag et. al. [TWvE19],
explain how it can be parallelized and how much of a performance gain one can expect.

The Leiden algorithm is not a completely new algorithm per se but rather an improvement
of another widely known algorithm, the Louvain algorithm [BGLL08]. The Louvain
algorithm aims to divide a graph into communities (also called clusters) by maximizing
modularity [NG04]. While this was the initial proposal by Blondel et al., the algorithm
can also be adapted to use other quality measures like the map equation [RAB09].

As Traag et al. show in their paper the Louvain algorithm can find badly connected or even
disconnected communities. The Leiden algorithm fixes this flaw by extending the Louvain
algorithm with a so called refinement phase, which guarantees (among other things) that
communities will never become disconnected. They also show a way to drastically increase
the performance of the local moving phase. This phase will attempt to move all nodes to a
different community to increase modularity and repeats if changes have been made. It can
be improved by only re-considering relevant (so called active-) nodes instead of all nodes.

1

1. Introduction

The main contributions of this thesis are two versions of parallelized refinement and two
(similar) parallel versions of local moving, followed by an overall evaluation. Local moving
was parallelized by combining an existing approach (from PLM) with the active-nodes
queue from the Leiden algorithm. In contrast, we have no knowledge of other parallel
approaches to the refinement phase. The source code can be found on Github [Ngu].

While a master thesis titled ”Faster Community Detection Without Loss of Quality:
Parallelizing the Leiden Algorithm“ exists [Ver20], this thesis actually only considers
parallelizations of the local moving phase and promises only negligible speedups (speedups
significantly lower than 2 with 8 threads)

We show that our implementation, which we call Parallel Leiden, consistently achieves
significant speedups up to at least 8 threads. The largest tested graph, the web graph
uk2007, finishes 15.8 times faster with 64 threads, though using more than 32 threads
(which already achieves a speedup of 14.7) is not recommended as speedups diminish at this
point. These results may still be drastically improved by further optimizing local moving,
which shows significantly worse scaling than refinement in our tests (maximum speedups of
12.5 and 28 respectively).

We start by introducing the basic concepts we will need in chapter 2 and then explain how
the Louvain and Leiden algorithm work in chapter 3. Additionally, we briefly describe
the main idea of a parallel version of the Louvain algorithm which we will extend for our
own work and introduce the framework NetworKit that we use. In chapter 4 we will then
explain our approaches to parallelizing both an improved version of the local moving phase
and the refinement phase. Lastly, we evaluate our implementation in terms of speedups
and impact of aspects like randomization and the amount of intra-community edges.

2

2. Preliminaries

2.1 Graphs
A graph G = (V, E) consists of a set V of n nodes and a set E ⊆ {{u, v} | u, v ∈ V } of m
edges. Nodes are identified by their node ID (consecutive integers from 0 to |V | − 1), edges
are identified by the two nodes they connect.

We call an edge e incident to a node v if v is one of the two nodes that e connects.
Furthermore, we call an edge e a bridge of a node-subset (in our case communities) if the
removal of e causes the subset to become disconnected, i.e there is at least one pair of
nodes that is not connected through a series of edges within the subset.

Every edge can also be attributed a certain weight, in this case the weight function can be
denoted as w : E → R+. Unweighted graphs can be interpreted as weighted graphs with
weight 1 for all edges.

In the following we assume a graph is undirected (i.e. edges can be used in both directions)
and weighted. Loops, i.e. edges from a node to itself, are also allowed.

The degree of a node is equal to the number of neighbors it has:

deg(v) = |{e | e ∈ E, v ∈ e}|

The weighted degree instead sums the weight of all incident edges

degw(v) =
∑

e∈E|v∈e

w(e) + Lv

where Lv is the weight of the loop on v if one exists or 0 otherwise.

This means that loops are counted twice like they would be in directed graphs.

The weighted volume of a set of nodes S is the sum of the nodes’ weighted degrees:

volw(S) =
∑
v∈S

degw(v)

For node subsets A, B ⊂ V, A ∩B = ∅ the weighted cut is the summed weight of all edges
between A and B:

3

2. Preliminaries

cutw(A, B) =
∑

{u,v}|{u,v}∈E,u∈A,v∈B

w({u, v})

The cut is symmetric: cutw(A, B) = cutw(B, A).

We use cutw(A) as a shorthand for the cut of a set to the rest of the Graph, i.e cutw(A, V \A).
Likewise, we write cutw(v, A) instead of cutw({v}, A)

2.2 Partition & Community
Community detection is frequently used in network science to divide a network into
disjoint sets of nodes. We call such a division a Partition P = {C1, ..., Ci} that consists of
communities (also called clusters) Ci ⊂ V,

⋃
Ci = V, Ci ∩ Cj = ∅.

While communities can be overlapping (which is a realistic assumption for social media
communities for example), the Leiden algorithm requires communities to be disjoint, so
overlapping communities are not be considered here.

2.3 Modularity
Modularity is a measure of how strongly a graph has been divided into community structures,
proposed by Newman and Girvan in 2004 [NG04]. Highly modular graphs are characterized
by densely (innerly) connected communities with few connections between them [NG04].

Modularity can range between −1
2 (worst) and 1 (best) [BDG+08].

As mentioned by [Ham21] modularity can be written as:

∑
C∈P

volw(C)− cutw(C)
volw(V) − volw(C)2

volw(V)2

Modularity can be changed by moving nodes between communities. A move is the act
of removing a node from its current community and adding it to another community (so
essentially assigning it a new community ID).

We denote the move of a node v to a community C by v → C.

For the purposes of community detection algorithms we are more interested in a formula
that describes the change in modularity for one particular move since we do not want to
recalculate the modularity of the entire graph for every move.

Let C be v’s current community, D the community we want to move v to and C−/D− C
and D without v respectively. The modularity difference ∆v→D that results from one such
move is then given by [Ham21]:

∆v→D = 2 ∗
(

cutw(v, D−)− cutw(v, C−)
volw(V) − degw(V) ∗ volw(D−)− volw(C−)

volw(V)2

)

In essence modularity compares the number of edges within a community to the number of
edges one would expect in a random network with the same number of nodes and edges.
The more edges within and the less edges between communities, the higher the graph’s
modularity. However, assumptions made in its underlying model introduce a non-trivial
bias to the sizes of communities that can be found by any algorithm using modularity, as

4

2.3. Modularity

the expected number of edges between two small communities can become smaller than one
in large graphs, resulting in them being merged if even a single edge connects them [FB07].

This is known as resolution limit, causing algorithms that use modularity to find larger
communities as the graph size increases. This can cause small communities to be merged
in large graphs, whereas they would not have been merged in a small graph [FB07].
This problem in itself can not be avoided completely when using modularity but can be
attenuated by introducing a resolution parameter γ [KSKK07]. It is unclear how this
parameter should be chosen prior to analyzing the graph however.

It should also be noted that modularity tends to increase the larger a graph becomes [GdMC10].
This means that modularity values of different graphs can not be simply compared to
determine which one has a higher ”degree of community structure“.

5

3. Related Work

In this chapter, we discuss relevant algorithms and the framework that was used to
implement the parallel version of the Leiden algorithm.
Community detection is often used to reveal relations between nodes of the network in order
to get a better understanding of the subject of interest. It can be used in virtually every
field that can represent its data in a graph, from social media networks to road maps or even
interactions within the brain. Considering the scope of these applications and how important
it is to get accurate data for some of them, it is of utmost importance to have community
detection algorithms that reliably find communities which truly represent a relation between
nodes of these communities. Errors may implicate incorrect associations between unrelated
nodes, causing wrong conclusions to be drawn and wasting the researchers’ resources.
Over the years many approaches to solve this problem have been proposed, like spectral
clustering and hierarchical clustering [For10], the most popular approach is to maximize a
quality function. One of these algorithms is the Louvain algorithm proposed by Blondel
et al. in 2008 [BGLL08]. The authors decided to use modularity as the quality function
to be maximized, which is also the most popular quality function, but other ones can be
used in its place as well, e.g. the Constant-Potts-Model (CPM) [TVDN11] or the map
equation [RAB09]. In the following, we only consider modularity as the quality function.
Pseudocode for Louvain and Leiden can be found at the end of the respective sections.

3.1 Louvain Algorithm
The Louvain algorithm uses a relatively straight forward approach to maximizing modularity
for a given graph, which is basically a multi-level greedy algorithm. It starts by assigning
each node its own community. We call such nodes that are alone in their community
singletons and a partition in which all nodes are singletons a singleton partition. As we
identify each node by its node ID (an integer), we can assign such a community to every
node by assigning it its own node ID as community ID. The algorithm then consists of
repeating two phases, local moving and coarsening, until each community consists of one
node only after a local moving (meaning no changes have been made). A visual example is
given in figure 3.1 and pseudocode in algorithm 3.1.

Local Moving:

This phase tries to maximize modularity by greedily choosing moves. For each node v ∈ V
consider all communities v is connected to and move v to the community yielding the

7

3. Related Work

largest modularity increase. Additionally, consider moving v to an empty community (i.e.
making it a singleton).

If no such move is possible (i.e. all moves would result in a modularity decrease or an equal
modularity), ignore the node and continue with the next one.

If at least one node has been moved (hence modularity has increased), consider all nodes
once again until no more changes are made.

Coarsening:

Build a new graph in which for every community one node is inserted. For every edge in
the initial graph, insert one edge with the same weight between the corresponding nodes
of their communities into the coarse graph. Note that edges between nodes of the same
community become loops this way, which is why we count loops twice as mentioned before.

In general, this results in multiple edges between some nodes. This can be avoided by
adding an edge’s weight to an already existing one instead of inserting a new one.

The coarsening phase itself does not change the modularity of the graph since the volume
of each community and the sum of the weight of all edges between communities stay the
same. However, it effectively grants the local moving phase the ability to move multiple
nodes at once since every node in the coarse graph (possibly) represents a multitude of
nodes in the initial graph.

a) b)

c) d)

Move nodes

Aggregate

Move nodes

Level 1

Level 2

Figure 3.1: Schematic view of the Louvain algorithm taken from [TWvE19]. a) Starting
from singleton partition. b) Local moving identified communities. c) Coarsened
graph. d) Repeat b and c until no more changes occur.

Pseudocode of Louvain (for the most part as described in [TWvE19], mainly different
notation). Note: flatten(P) basically reverses all coarsenings on P, by unfolding every
node back to the (possibly multiple) nodes that were aggregated into it (while keeping
the associated community). This requires us to save a mapping between coarse nodes and
nodes in the initial graph, which has been omitted for the sake of clarity.

8

3.2. Parallel Louvain Method

Algorithm 3.1: Louvain
Input : Graph G, Partition P

1 function Louvain(Graph G, Partition P)
2 do
3 P ← LocalMoving(G, P)
4 done← |P | == |V (G)| // Every community consists of one node
5 if not done then
6 G← Coarsen(G, P)
7 P ← SingletonPartition(G)
8 while not done
9 return flatten(P)

10 function LovalMoving(Graph G, Partition P)
11 changed← false
12 do
13 for v ∈ V (G) do
14 Cnew ←argmaxC∈P ∪∅ ∆v→C

15 if ∆v→Cnew > 0 then
16 v → Cnew // Move v to Community Cnew

17 changed← true

18 while changed
19 return P

20 function Coarsen(Graph G, Partition P)
21 V ← P // One node in V for every Community in P
22 E ← {{C, D} | {u, v} ∈ E(G), u ∈ C ∈ P, v ∈ D ∈ P}
23 return Graph(V, E)

3.2 Parallel Louvain Method
As the name already suggests, the Parallel Louvain Method (PLM) is a parallel version of
the Louvain algorithm. We use the same strategy to parallelize the local moving phase in
our parallel implementation of the Leiden algorithm as PLM. It is a rather easy approach
to parallelism in that it simply turns the main for-loop in the Louvain algorithm into a
parallel for-loop. This requires us to make all writes to shared data atomic, though in
our implementation there is only one shared data structure, which is a vector saving the
volumes of all communities as recalculating them every time would drastically decrease
performance. While this can still lead to threads reading outdated data (and subsequently
calculating wrong modularity deltas) it will never cause longterm errors as no changes will
be lost due to the atomic writes (and no write is based off an incorrect value, all writes
are additions or subtractions of a node’s degree, which does not change, to the current
value in the vector). Short term errors can lead to incorrect moves, though it is rather
unlikely that threads will cause each other to make a lot of incorrect moves in sufficiently
large graphs. In practice, no significant decreases in modularity can be observed (compared
to the sequential Louvain algorithm) as shown in [SM16]. The parallel execution of this
phase also implicitly randomizes the order in which the nodes are considered, an explicit
randomization is not done.

9

3. Related Work

3.3 Leiden Algorithm

As shown by Traag, Waltman and van Eck in 2018, Louvain has a flaw that causes it to
find badly connected communities or even disconnected communities [TWvE19]. They fix
this flaw by introducing another phase to the algorithm, the so-called refinement phase,
which greatly reduces the number of badly connected communities and guarantees that
communities never become disconnected.

The refinement phase goes in between local moving and coarsening and aims to improve
the partition found by the local moving phase. It may split a community into multiple
subcommunities which can then be moved in the following local moving independently,
providing more opportunities for beneficial moves. While the coarse graph in the Leiden
algorithm is based on this refined partition, the initial partition of the coarse graph is
still the one found by the local moving phase. This means that the coarse graph can now
contain multiple nodes belonging to the same community instead of every community being
represented by exactly one node like in the Louvain algorithm.

The authors also show a minor change to the local moving phase that significantly improves
its performance. While the local moving phase of the Louvain algorithm re-considers all
nodes in the next loop if changes have been made, the Leiden algorithm only considers
some of them. Local moving starts by filling a queue with all nodes so that all nodes
are considered at least once, like in the Louvain algorithm. When a node v is moved to
a community C all neighbors of v that are not in C are added to the queue unless they
are already in it. This gives neighbors of a node the chance to “follow” that node into
the new community and prevents the algorithm from repeatedly considering nodes whose
neighborhoods have not changed as they are unlikely to be moved (note that it is not
impossible, even if a nodes’ neighborhood has not changed its optimal community might
have [BDG+08]).

a) b) c)

d) e) f)

Move nodes Refine

Aggregate

Move nodes Refine

Level 1

Level 2

Figure 3.2: Schematic view of the Leiden algorithm, taken from [TWvE19]. The refinment
seperates the red and green communities into two subcommunities respectively

10

3.4. NetworKit

In the refined partition every node starts as a singleton and is considered at most once.
Nodes can only be moved if they are still a singleton, this guarantees that communities
can not be disconnected since edges incident to singleton nodes can never be bridges of
a community. Additionally, only nodes that are well connected within their community
(the one in the not-refined partition) can be moved. If both of these requirements are met
we calculate the modularity deltas for all well-connected neighboring communities in the
refined partition.

Instead of taking a greedy approach and moving a node to the community yielding the
highest modularity increase the authors instead recommend introducing randomness to
the selection of the community with a parameter. However, in their published Leidenalg
package [V.T] this approach is not implemented and it did not have any noticable effect
on our implementation either so it was not included.

Additionally, while the Louvain algorithm is only run once, the Leiden algorithm can and
should be used multiple times with the partition found in the last iteration as the base
partition for the next iteration. The authors show that Leiden consistently improves its
found partition with every iteration (until no more changes occur) while Louvain may
worsen its result by producing more badly connected or even disconnected communities.

3.4 NetworKit
NetworKit describes itself as a "growing open-source toolkit for large-scale network anal-
ysis" [SSh16]. While NetworKit is a Python module, its algorithms and data structures
are written in C++ for the sake of efficiency and parallelism and then exposed to Python.
It provides many parallel implementations of network algorithms and tools that aid in
contributing own algorithms. In our implementation, we used many of the classes provided
by NetworKit, most notably Graph, Partition and ParallelPartitionCoarsening, as well as
Timer and PLM (for testing).

11

3. Related Work

Algorithm 3.2: Leiden
Input : Graph G, Partition P

1 function Leiden(Graph G, Partition P)
2 do
3 P ← FastLocalMoving(G, P)
4 done← |P | == |V (G)| // Every community consists of one node
5 if not done then
6 Prefined ←RefinePartition(G, P)
7 G←Coarsen(G, Prefined)
8 P ←SingletonPartition(G)
9 while not done

10 return flatten(P)

11 function FastLovalMoving(Graph G, Partition P)
12 Q← Queue(V (G)) // Insert nodes in random order
13 do
14 v ← Q.pop()
15 Cnew ←argmaxC∈P ∪∅ ∆v→C

16 if ∆v→Cnew > 0 then
17 v → Cnew // Move v to Community Cnew

18 Neighbours← {u | {v, u} ∈ E(G), u /∈ Cnew}
19 Q.push(Neighbours \Q)
20 while Q ̸= ∅
21 return P

22 function RefinePartition(Graph G, Partition P)
23 Prefined ← SingletonPartition(G)
24 for C ∈ P do
25 Prefined ← MergeNodesSubset(G, Prefined, C)
26 return Prefined

27 function MergeNodesSubset(Graph G, Partition P , Subset S)
28 R← {v | v ∈ S, cutw(v, S − v) ≥ degw(v)[volw(S)− degw(v)]}
29 for v ∈ R do
30 if v is singleton then
31 T ← {C | C ∈ P, C ⊆ S, cutw(C, S−C) ≥ volw(C)[volw(S)−volw(C)]}
32 Cnew ←argmaxC∈T ∆v→C

33 v → Cnew

12

4. Parallel Leiden Algorithm

We now discuss how the local moving phase and the refinement phase have been parallelized.
While other parallel sections exist, like necessary precalculations and shuffling, these are
rather trivial to implement and are therefore not discussed. Lastly, parallel coarsening was
already implemented in NetworKit and was used with only a minor change as described
in [PR]. Pseudocode can be found at the end of each section (4.1 and 4.2).

4.0.1 Terminology

As our implementation mainly uses C++ vectors we refer to them as such, though any
form of dynamically resizable data structure with random access could be used instead.
Specifically, we refer to the vector that saves cuts from nodes to communities as cutWeights,
the vector that saves the volumes of all communities is called communityVolumes. These
are used to avoid recalculating the respective terms in the modularity delta and refinement
conditions from scratch every time, since we can continuously update them. Note that
communityVolumes is a global vector that is shared among threads, while cutWeights
is a thread-local vector that only exists within one phase at a time. Likewise, we use
activeNodes for the active-nodes queue introduced in the Leiden algorithm to speed up
local moving.

4.1 Parallel Local Moving
Our approach to a parallel Local Moving implementation is to combine the strategy of
PLM with the active-nodes queue of the Leiden algorithm.

There are multiple challenges and questions that arise when trying to implement a parallel
local moving like this:

• How do we make sure that no duplicates are inserted to the activeNodes queue?

• Similarly, how do we make sure that a node is only assigned to one thread?

• Which data updates need to be protected from race conditions?

• How do we achieve load-balancing?

• And lastly, how do we deal with increasing community ID’s from local moving, since
there is a shared vector?

13

4. Parallel Leiden Algorithm

No duplicates

The first issue is solved by keeping track of the nodes that were already inserted into
the queue. We do this by using a vector<atomic_bool>, from now on referred to as
inQueue. Whenever a thread finds a neighbor node and wants to add it to the queue, it
will first check whether this node is already in the queue (lines 11 to 18 in 3.1). However,
threads may simultaneously read a boolean to be false, then set the boolean to true
and erroneously insert the node multiple times. We therefore use a compare-and-swap
function 1 to differentiate between whether a thread set the boolean to true, meaning the
node is not in the queue already, or whether it was already true to begin with, meaning
the node should be ignored. If a thread is done with a node, it needs to set the respective
boolean to false again (line 19).

Shared or private queue?

The second issue depends on the approach that is taken to implement the active-nodes
queue. One approach is to have each thread maintain its own queue which it works off until
it is empty. This version does not need any synchronization except for the inQueue vector
to avoid duplicates. A major problem with this is that one thread may find a significantly
larger number of nodes to work through, meaning that it will take a much longer time to
finish while other threads are waiting (and doing nothing). Load balancing can not be
easily done with this approach either since the queues are entirely separate and we would
therefore need some kind of explicit work stealing. (An implementation of this approach
without work stealing has been included as Experimental)

We therefore use a shared queue with locking to prevent race conditions. A lock-free
implementation of a thread-safe queue was also tested briefly, namely Cameron Desrocher’s
ConcurrentQueue [Des], but was found to be slower than the implementation with explicit
locking and an std::queue.

Thread-safe updates

In the case of a shared queue with locking, we can guarantee the integrity of the queue
by only pushing or popping the queue while holding the respective lock. To reduce the
overhead of locking and unlocking, each thread collects the nodes it wants to insert in a
local vector first until a certain number of nodes has been found. If the threshold has been
reached, we push the entire vector into the queue (which is an O(1) operation in C++).
Per default this threshold is set to 1000 nodes.

Note that threads will not try to push their remaining nodes to the queue if they finished
their current working set of nodes but will instead directly work through the remaining
collected nodes. While this reduces the number of locking and push/pop operations needed
it also alters the order in which the nodes are considered. Considering that this only
affects a small number of nodes at a time (which will in turn typically only cause a small
number of new nodes to be added) this should not have a significant impact, especially since
we actually want the order to be somewhat random. By “somewhat random” we mean
small-scale randomization (except for the initial random assignment) since we explicitly
do not want nodes to starve in the queue. The parallelization in itself also introduces
randomness since it can not be guaranteed that a set of nodes taken from the queue will
be worked through faster than one taken after it, though in large graphs it is unlikely that
nodes from separate sets would have influenced each other anyway.

1CAS functions are used to write values while simultaneously checking whether a usly assumed value is
still present. This enables us to differentiate between a write that did not change data and one that
did. Note that a simple previous read of the value does not solve this problem in a multithreaded
environment as simultaneous reads and writes cause race conditions.

14

4.1. Parallel Local Moving

Load-balancing

For load-balancing we use a condition variable on which threads can wait if they have
finished their nodes and the queue was empty when they checked. A thread that pushes a
vector of nodes to the queue will call notify on this condition variable (which will wake
all threads waiting on this condition variable), ensuring that threads only sleep when no
work is available. Since a thread can only be assigned 1000 nodes at a time, this minimizes
the time one thread may take longer than the others. The number of sleeping threads is
monitored with a simple atomic integer so the last thread to finish can detect this and
wake all threads to conclude the local moving (lines 20 to 25).

Increasing community IDs

Apart from the queue there is one more data structure that is shared by threads, the
communityVolumes vector. While modifying these values can be done atomically it is
unclear how large the vector is supposed to be at the start. This is because nodes may be
moved to new singleton communities whose ID’s increase and unlike in the sequential version
the vector can not thoughtlessly be resized. Reusing ID’s of empty communities would
require us to keep track of all empty communities and would introduce many edge cases
which may still force us to resize the vector after all. Consequently, the volume-vector’s
initial size and that of the thread-local cut-vectors are set to be 10000 larger than the
highest community ID currently assigned. This is sufficient for most graphs as moves to
singleton communities are rare and costs a negligible amount of memory (for reference,
assuming a double is 8 bytes, 128 threads will in total require an extra 10000 * (8+1) *
128 = 11,520,000 bytes, or ~11.5MB.).

Nevertheless, to be able to guarantee correctness we need a way to resize the vector in a
thread-safe manner. This is done by blocking all threads except the one that first detected
a too large community ID (i.e. it is equal to or greater than the vector’s current sizes). The
first thread then increases the communityVolumes vector’s capacity by another 10000 as
soon as all threads have been blocked, while each thread individually increases the capacity
of its cutWeights vector. Considering that this occurs extremely rarely and only on very
very large graphs (in fact, this has not happened even a single time during our tests), this
overhead is negligible and should never occur for typical use-cases.

Randomization

Additionally, we explicitly randomize the node order in the beginning. To avoid the
overhead of sequentially shuffling all nodes, this is done on a per-thread basis. More
specifically, we equally split the nodes into n parts when there are n threads and randomly
assign each thread one of the parts. Each thread then shuffles its own nodes.

While this method covers significantly less permutations, it introduces a reasonable degree of
randomness combined with the inherent randomness stemming from the parallel execution
for minimal overhead.

Avoid unnecessary calculations

Lastly, we also make a small change to how the modularity difference 2.3 is calculated,
because we are only interested in the maximum delta, regardless of its actual value. The
volume of the entire graph volw(V) does not change since the actual graph is not changed,
only the association of nodes to communities is. Hence, we multiply by volw(V) once to
get rid of the denominator in the first term. Additionally, we can drop the factor 2, leaving
us with:

cutw(v, D−)− cutw(v, C−)− degw(v) ∗ volw(D−)− volw(C−)
volw(V)

15

4. Parallel Leiden Algorithm

Then, we remove both terms containing C−. These terms are not dependent on the choice
of D, we therefore avoid adding these terms multiple times by using them as a threshold
instead. Since we are only interested in modularity differences greater than 0 (yielding a
modularity increase), we are therefore looking for:

arg max
D∈P

cutw(v, D−)− degw(w) ∗ volw(D−)
volw(V)︸ ︷︷ ︸

modularitydelta δv→D

!
> cutw(v, C−)− degw(v) ∗ volw(C−)

volw(V)︸ ︷︷ ︸
modularitythreshold δT h

In the following, we call the left hand side of this inequality the modularity delta δv→D and
the right hand side the modularity threshold δT h.

The general idea of doing this, and a simple interpretation of these terms was mentioned
by Blondel et al. [BGLL08] (with different notation): The modularity threshold is the
change in modularity that results from removing the node v from its community and the
modularity delta is the change in modularity that results from then moving the node v into
the new community. Hence, we will only move v when the benefit is larger than the loss.

Algorithm 4.1: Parallel Local Moving
Input : Graph G, Partition P

1 Q← Queue of vector of nodes
2 inQueue ← empty vector
3 – Open parallel region – // OpenMP SPMD style
4 currentNodes ← V(G)/#threads // Split nodes among threads
5 while currentNodes ̸= ∅ do
6 newNodes ← empty vector
7 for v ∈ currentNodes do
8 Cnew ←argmaxC∈P ∪∅ δv→C

9 if δv→Cnew ≤ δT h then
10 Continue
11 P [v]← Cnew // Move v to Community Cnew

12 for nb ∈ Neighbours(v) do
13 if not inQueue[nb] and P [nb] ̸= Cnew then
14 inQueue[nb] ← true
15 newNodes.push(nb)
16 if newNodes.size() = 1000 then
17 Q.safePush(newNodes) // lock Q, push, unlock Q
18 wakeAllThreads() // wake sleeping/waiting threads
19 newNodes ← empty vector
20 inQueue[v] ← false
21 if newNodes ̸= ∅ then
22 currentNodes = newNodes
23 Continue
24 currentNodes ← empty vector
25 while not Q.trySafePop(currentNodes) and not all threads finished do
26 sleep()
27 – Close parallel region –
28 return P

16

4.2. Parallel Refinement

4.2 Parallel Refinement

Before diving into the specifics of how we approach the parallelization of the refinement
phase it is important to understand which guarantees and properties we need to uphold.

Remember that the refinement phase was explicitly introduced to guarantee the absence of
disconnected communities and to increase connectivity within communities overall. This
was achieved by restricting the considered nodes to those that are still singletons since
these can never act as bridges in a community, so this is the main guarantee to watch out
for.

Additionally, there are two more conditions that need to be met (imposed by the T and
R sets as shown in algorithm 3.2), only nodes that are well connected within their initial
community and the one created by the refinement phase will be moved. Note that we do
not explicitly construct these sets and instead verify that the conditions are met for each
node individually, we use this representation for ease of notation and clarity only. Both of
these conditions contain cuts and volumes of which all except one may change during the
refinement (cutw(v, S − v) can not change since S is static, just as v is).

4.2.1 Cluster-wise parallelization

Looking at the way the pseudocode provided in algorithm 3.2 is written, there is an
“easy” way to parallelize the refinement phase that should spring to mind. Notice that no
conditions or calculations ever depend on nodes outside of the community of the node we
are currently trying to move. This means that all communities can be worked in parallel
without the need for any synchronization at all, which means we should be able to simply
replace the for loop with a parallel-for loop. However, there are several problems with this.

Firstly, the for loop assumes we have saved the affiliation of nodes to communities to begin
with. And while this is true, after all we know the community of each node, we only
know this for individual nodes, i.e. we have a node → community mapping. The loop
assumes a community → node mapping however. We solve this by sorting all nodes by
their community IDs and then saving the intervals in which nodes of the same community
lie. We then sort the intervals by their size in descending order to minimize load imbalances
instead of randomizing. A shared counter is used to indicate which interval should be used
next. (Of course we could also save the mapping in the reverse way to begin with as well,
but that would introduce a massive overhead to the local moving as nodes would have to
be inserted and removed numerous times.)

The efficiency of this approach depends on the sizes of the individual communities, the
larger the smallest communities are the higher load imbalances may become. In the worst
case, all threads finish their current communities at the same time with one community left
over. This results in all threads except one being inactive for as long as the last community
takes to be worked through. If intervals are not sorted by size, this may end up being the
largest community.

Additionally, if the thread count is higher than the number of communities this results in
sleeping threads right from the beginning, though this should not occur for typical graphs
that are large enough to warrant the use of a parallel algorithm.

We therefore give up the restriction that only one thread can work on a community at a
time and turn to a “truly” parallel version (though once again, this version has also been
included as EXPERIMENTAL).

17

4. Parallel Leiden Algorithm

4.2.2 Full parallelization

Unlike in the local moving phase, we now need 4 shared data structures. One of them
is a simple vector<bool>2, used to mark whether a node is still a singleton. Two are
vector<double> and save the volumes of the communities in the (now to be built) refined
partition, and the cut of a refined partition C to the initial subset S (the respective term is
E(C, S − C) in the T set as described in algorithm 3.2). Lastly, we need a vector to hold
locks, one for each community.

Initializations

While the singleton and lock vectors can simply be initialized (singleton to true) for all
nodes, the two double vectors have to be precalculated. These can be filled during a single
parallel loop over all nodes and do not require any synchronization or atomic updates as
all nodes are singletons in the beginning, which means that every community will only
have their value updated once.

Finding the best community

To determine the optimal community for a node v, we need to calculate several things.
The degree of v, all communities Ci to which v is connected (or worded differently, all its
neighbor communities) and the cut from v to its initial community S. We can calculate
all of these things in a single loop over all of v’s neighbors. Once again, this can be done
without synchronization as none of this data is shared. Additionally, we save the ID of
all neighbors of v that are still singletons. We will need these later to ensure that the
community has not changed in a way that causes us to write wrong data to the shared
vectors.

Restrictions

There are three conditions that need to be met in order to move a node v:

• v needs to be well-connected to its initial community S

• The target (refined) community C needs to be well-connected.

• v has to be a singleton at the time of the move.

The main issue here is that it is possible for all of them to be met while we determine
the best community, but not anymore when we want to move v. We solve this by using
locks for every community. Before making a move, we lock the community of v and the
target community C we want to move v to, locking the lower community ID first to prevent
deadlocks (line 13). When both locks are held, we can verify that v is still a singleton by
reading from the singleton vector (line 14). The fact that v is well-connected to S can not
change during refinement as both v and S are static, but it may be that the the target
community C is not well-connected anymore. There are two reasons as to why this could
happen.

Firstly, the target community might have been a singleton community and the node in it
was moved. We can verify this has not happened by making sure the node with the same
ID as the community is still in that community (or equivalently, that the target community
is not empty, as shown in line 15). Since we are holding the lock for this community, it
can not change anymore. If the community is in fact now empty, we ignore it and choose

2Note: We actually use a vector<uint8_t> instead because vector<bool> is a specialized container in
C++ that does not guarantee thread-safe modification of different elements. This prevents us from
atomically updating a single boolean efficiently.

18

4.2. Parallel Refinement

a new one (lines 16 to 23). Note that we may need to unlock v in case the new chosen
community (if one even exists, otherwise we ignore the node) has a lower ID than v to
prevent deadlocks. This means that we need to confirm that v is still a singleton after
reacquiring the locks.

Secondly, communities might have had nodes moved into them in the meantime, which also
means that a different community may now be preferable over the one we have determined
to be the best community before, even if it is still well-connected. Since locking all possible
target communities is infeasible we accept this risk. In our tests, this had no noticeable
impact on the quality of the partition (in terms of modularity). We assume that erroneous
moves happen rarely and generally still choose a community among the best ones (remember
that the Leiden paper even recommended not choosing the best one deterministically).
Additionally, they might be corrected in subsequent local moving and refinement phases or
the next iteration of the Leiden algorithm.

Nevertheless, we still need to guarantee the correctness of updates to shared data. This is
why we remembered singleton neighbors of v earlier. The only shared data that is updated
upon a move is the cut of the refined community to its initial subset S and the volume of
the community (combined into line 25). The volume can be updated regardless of what
happened to the community in the mean time, since we only need to atomically add the
degree of v to it. The cuts from communities to their initial subsets are influenced by
moves however, as this example demonstrates:

1
2 3

4

5

Figure 4.1: Updating cuts from communities to their initial subset

When we move a node v to a new community Cnew, we need to subtract all edges from v
to nodes of Cnew (edges in red) and add edges from v to nodes outside of Cnew but still in
S (edge in green). The red edges make up the cut from v to Cnew which we have already
calculated, and the green edge is the cut from v to the community of node 5 which was
also calculated already. In case node 5 is moved into Cnew after these calculations however,
the cut from v to Cnew will no longer be correct. We therefore need to update the cut
from v to Cnew (line 24) before moving v and subsequently updating the cut from Cnew to
S − Cnew (line 25). Additionally, we update the cut to all changed neighbor communities
before selecting a new community (see lines 17 to 19). While this does not guarantee
correct values (as neighborhoods may change during this update) it increases the chance
that the best community is chosen.

19

4. Parallel Leiden Algorithm

Randomization

As in the local moving phase we shuffle nodes per-part in the beginning. Unlike in the
local moving phase however we do not split the entire vector of nodes. The fact that this
may introduce load imbalances was offset by the existence of the active-nodes queue which
provided work for threads that finished their initial share of nodes early. As no nodes are
re-inserted in the refinement phase each thread is continuously given a certain amount of
nodes (also 1000 per default) until no more remain.

Algorithm 4.2: Parallel Refinement
Input : Graph G, Partition P

1 Prefined ← SingletonPartition(G)
2 // Initializations // in parallel
3 parallel for v ∈ V (G)
4 S ← P[v]
5 if v not singleton or cutw(v, S − v) < degw(v)[volw(S)− degw(v)] then
6 continue
7 criticalNodes ← empty vector
8 for nb ∈ Neighbors(v) do
9 if nb ̸= v and P [nb] = S and nb is singleton then

10 criticalNodes.add(nb)
11 T ← {C ∈ Prefined | C ⊆ S, cutw(C, S − C) ≥ volw(C)[volw(S)− volw(C)]}
12 Cnew ←argmaxC∈T δv→C

13 if δv→Cnew ≤ δT h then
14 Continue
15 lockLowerFirst(v, Cnew)
16 if v is singleton then
17 while Cnew = ∅ do
18 unlock(v, Cnew)
19 updateCut(criticalNodes) // due to moved neighbors
20 update T // cut values may be outdated by now
21 Cnew ←argmaxC∈T δv→C

22 if v is singleton and δv→Cnew > δT h then
23 lockLowerFirst(v, Cnew)
24 else
25 Break
26 updateCut(criticalNodes) // Cnew is locked
27 v → Cnew // cut values are guaranteed to be correct
28 unlock(v, Cnew)
29 return Prefined

20

5. Experimental Evaluation

The following graphs from the DIMACS [DIM] and SNAP [SNA] websites have been used:

Graph Nodes Edges Avg. Degree Source
as365 7,013,978 11,368,076 1,62 [CLA12]
uk2002 18,520,486 261,787,258 14,14 [BRSV11]
uk2007 105,896,555 3,301,876,564 31,18 [BCSV04]
PGP 10,680 24,316 2,28 [BnPSDGA04]
italy 6,686,493 7,013,978 1,05 [GEO]
lux 114,599 119,666 1,04 [GEO]
europe 50,912,018 54,054,660 1,06 [GEO]
belgium 1,441,295 1,549,970 1,08 [GEO]
amazon 334,863 925,872 2,76 [YL12]
livejournal 3,997,962 34,681,189 8,67 [YL12]
orkut 3,072,441 6,288,363 2,05 [YL12]
google 875,713 5,105,039 5,83 [LLDM08]
LFR varying varying - Generated

The tested algorithms/implementations are as follows:

• The leidenalg package by V.Traag [V.T] (version 0.8.7). It should be noted that this
implementation focuses on flexibility over performance. It is written in C++ but
only accessible through python and depends on Igraph.

• The Leiden and Louvain algorithms implemented in Igraph [CN06] (not to be confused
with jgraph which used to also go by the name Igraph). While these are implemented
in C we use the provided python interface (version 0.9.6).

• Our parallel and sequential implementations of the Leiden algorithm in C++ [Ngu]
which depend on NetworKit [SSh16] 1 The parallel implementation is denoted by PL
(Parallel Leiden), the sequential version by PL SQ.

• The Parallel Louvain Method (PLM) as implemented in NetworKit.
1Note: The results presented here will not be reproducible unless NetworKit is built from source as we

made a change to the coarsening function which is not included in any release of NetworKit as of the
writing of this thesis. We refer to the pull request on Github for more information [PR]. Additionally,
the environment variable OMP_PROC_BIND should be set to true if a multi-cpu system is used.

21

5. Experimental Evaluation

Unless otherwise noted, all Leiden-tests were performed with a maximum iteration count of
three (Louvain is only run once, as described in 3.3), repeated five times and then averaged
to reduce deviations caused by inherent randomness. All measured values were rounded to
have at most four decimal digits. All tests were performed on a dual-cpu system with 2x64
cores and 1024GB (16x64GB) DDR4-3200MHz(ECC) memory.

5.1 Sequential Implementations
We start by comparing all sequential algorithms. The parallel version run with only one
thread has been included as well, to rule out significant inherent performance differences.

105 106 107 108

Number of Edges

10 1

100

101

102

103

104

Ti
m

e
in

 se
co

nd
s

Algorithm
PL SQ
PL 1Thread
Igraph-Leiden
Leidenalg
Igraph-Louvain

Figure 5.1: Comparison of single threaded performance. PL SQ has been given a different
shape to avoid exact overlaps.

AS3
65 Ita

ly Lux PG
P

Amazo
n

Belg
ium

Uk2
00

2
Eu

rop
e

Orku
t

Liv
ejo

urn
al

Goo
gle

Graph

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
od

ul
ar

ity

PL SQ
PL 1Thread
Igraph-Leiden
Leidenalg
Igraph-Louvain

Figure 5.2: Achieved modularity of sequential algorithms grouped by graph

22

5.2. Parallel

In figure 5.1 we can see that Louvain consistently takes the longest time to finish by far,being
up to 20 times slower than PL. While Leidenalg is already considerably faster than Louvain
it still falls behind Igraph by a significant amount. Our parallel implementation and
Igraph-Leiden run at roughly the same speed in most cases, the parallel version being
marginally slower than the sequential one for the most part. The sequential implementation
is the fastest on every graph except one, where the parallel version beats it slightly. The
margin between Igraph-Leiden and our implementations varies a lot by graph with Igraph
being slower by up to 200% than our sequential Leiden, though usually much less.

The achieved modularity is virtually the same for all Leiden-implementations as can be
seen in figure 5.2. The largest differences occur on the orkut and livejournal graphs, though
for both of them the general deviation is also the highest. For example, for the orkut graph
we measured a minimum modularity of 0.6813 and a maximum of 0.6944 with similar
deviations for all implementations. Louvain is slightly worse on some graphs with a deficit
of at most 3%.

AS3
65 Ita

ly Lux PG
P

Amazo
n

Belg
ium

Eu
rop

e
Orku

t

Liv
ejo

urn
al

Goo
gle

Graph

102

103

Nu
m

be
r o

f C
om

m
un

iti
es

Algorithm
PL SQ
PL 1Thread
Igraph-Leiden
Leidenalg
Igraph-Louvain

Figure 5.3: Number of communities found by the sequential algorithms grouped by graph

The number of communities found is also similar among the leiden implementations, with
average differences of about 2-3%. Louvain is the exception here again and tends to find less
communities, e.g. about 37% (150) fewer communities on the amazon graph and roughly
12% fewer on the journal graph.

Note that no data for the Igraph-based implementations is given for the uk graphs. This is
because the community count is likely to be incorrect due to issues with integer overflows on
large graphs. As the issue has not been completely resolved yet we are unable to circumvent
this issue as of the writing of this thesis, see [Igra].

It is unclear whether the modularity and time measurements are reliable, but considering
that they fit well compared to our own implementation we assume that they are. Note
that Igraph seems to have different limits for different data structures, so it might very
well just be the community count that is incorrect, see [Igrb]. The PLM implementation in
NetworKit has also been tested on the graph to verify our results and gave similar numbers
(roughly 6000, while Igraph-based implementations gave 40000+).

23

5. Experimental Evaluation

1 2 4 8 16 32 64 128
Number of threads

0

2

4

6

8

10
Ti

m
e

in
 se

co
nd

s
Graph
amazon
belgium
google
lux
PGP
smallworld

1 2 4 8 16 32 64 128
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
in

 se
co

nd
s

amazon graph
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

10

20

30

40

50

Ti
m

e
in

 se
co

nd
s

Graph
as365
italy
livejournal

1 2 4 8 16 32 64 128
Number of threads

0

5

10

15

Ti
m

e
in

 se
co

nd
s

italy graph
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

0

100

200

300

400

Ti
m

e
in

 se
co

nd
s

Graph
europe
orkut
uk2002

1 2 4 8 16 32 64 128
Number of threads

0

50

100

Ti
m

e
in

 se
co

nd
s

europe graph
Phase

Local Moving
Refinement
Coarsening
Other

Figure 5.4: Scaling and share of different Phases in the Parallel Leiden algorithm

5.2 Parallel

Continuing with the parallel implementation, the total running time and shares of the
different phases (averaged since there are multiple graphs) are given in figure 5.4. Other
is the total time minus the summed times of the three main phases. For better visibility,
graphs with similar running times have been grouped. The uk2007 and big LFR graphs
are shown separately for the same reason. Modularity values remained virtually the same
in all cases (no differences larger than the typical deviations as in the sequential tests due
to randomness) so they will not be addressed separately.

As one would expect, for small graphs the parallelization does not influence the total time
significantly. High thread counts (64/128) do not carry heavy impacts as the speedup only
decreases slightly or not at all.

For medium to large sized graphs results are similar with 2 threads achieving a speedup
of about 1.7 to 1.8 and 4 threads achieving speedups between 2.5 and 3.2. The highest

24

5.2. Parallel

speedup, up to 6.5, is typically achieved with 64 threads, though the gains past 16 threads
are very insignificant.

1 2 4 8 16 32 64 128
Number of threads

0

200

400

600

800

1000

1200

1400

Ti
m

e
in

 se
co

nd
s

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

25

Sp
ee

du
p

Local Moving
Refinement
Coarsening
Other
Total

Figure 5.5: Scaling and shares on the largest graph uk2007

The graphs with the highest total time show a significantly better scaling with europe
showing a speedup close to 1.8, 3.5 and 5.8 for 2/4 and 8 threads respectively and a
maximum speedup of 10.

While the refinement phase initially takes the most time in virtually all graphs it also
has the best scaling by far, often beating the local moving phase (in terms of total time)
past 16 threads. Figure 5.5 shows this for the largest tested graph uk2007 specifically.
The refinement phase shows a maximum speedup of 28 with 128 threads, and efficient
speedups up to 16 threads. In contrast, local moving only scales well up to 8 threads and
only moderately up to 32 threads, giving a maximum speedup of 12.5. Past 32 threads,
speedup even decreases down to 10.3 with 128 threads.

Coarsening shows the worst scaling by far though it also takes up barely any time in
comparison to the other phases. ”Other“ contains a lot of sequential code and also takes
up very little time, even when compared to coarsening, no significant speedups should be
expected here.

The exact speedups are as follows:

Threads 1 2 4 8 16 32 64 128
Total 1 1.90 3.55 6.24 10.37 14.69 15.76 15.49
Local Moving 1 1.92 3.63 6.19 9.94 12.50 10.58 10.28
Refinement 1 1.95 3.8 6.98 12.54 20.29 27.55 27.96
Coarsening 1 1.72 2.51 4.29 6.45 9.16 11.45 12.9

Table 5.1: Speedups uk2007 graph

The last large graph that was tested is a generated LFR graph with 100 million nodes and
980 million edges. The parameter mu was chosen as 0.5 which means that roughly half of
all edges are inter-community edges. More details on the LFR algorithm are specified in
the next paragraph.

In this example, local moving and refinement have similar speedups until 16 threads. From
there on up to 64 threads refinement takes a slight lead before falling behind local moving
again with 128 threads. While local moving again only scales up to 32 threads at most
(and then slows down) refinement speeds up to 64 threads before then also slowing down.

25

5. Experimental Evaluation

1 2 4 8 16 32 64 128
Number of threads

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
in

 se
co

nd
s

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

Local Moving
Refinement
Coarsening
Other
Total

Figure 5.6: Scaling on big LFR graph.

Compared to the uk2007 graph differences vary. While local moving sees an increase in
speedup, the refinement phase sees a decrease. This is also true for the absolute time
needed however. This is the only tested graph in which local moving takes longer than the
refinement phase, which is likely because of the high number of inter-community edges.
Coarsening stays roughly the same, though on very high thread counts the speedup also
increases slightly.

PLM

We also briefly tested PLM on the uk2007 graph. PLM shows a slightly better overall
scaling with a maximum total speedup of 18.7 (PL had a maximum speedup of 15.8).
However, unlike our implementation PLM has a maximum count of iterations for the local
moving phase (standard Louvain and Leiden repeat until no more changes are made).

Additionally, while the first local moving in our implementation makes up roughly 60% of
the total time spent on local moving (with 1 thread, roughly 50% else), PLM spends more
than 95% of its total time on the first local moving phase. Note also that PLM was only
run once, unlike all other Leiden implementations which were run 3 times.

1 2 4 8 16 32 64 128
Number of threads

0

200

400

600

800

1000

Ti
m

e
in

 se
co

nd
s

Local Moving
Coarsening
Other

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

Sp
ee

du
p

Local Moving
Coarsening
Other
Total

Figure 5.7: PLM scaling on uk2007 graph

26

5.2. Parallel

1 2 4 8 16 32 64 128
Number of threads

0

200

400

600

800

1000
Ti

m
e

in
 se

co
nd

s

First local moving
Algr

Parallel Louvain Method
Parallel Leiden

1 2 4 8 16 32 64 128
Number of threads

0

5

10

15

20

Sp
ee

du
p

First mocal moving
Parallel Louvain Method
Parallel Leiden

Figure 5.8: Scaling of first local moving phase on uk2007 graph

Randomization

In general (i.e in the sequential Louvain and Leiden algorithms), randomization can help
lower the total running time in graphs that have community structure [Tra15]. The reverse
effect is also possible however, especially when graphs are saved with a certain node order
already present. In most of the graphs used here locality in the order in which nodes
are saved usually also implies a high probability that these nodes stem from the same
community. This poses a contrast to the fact that we would prefer an order of nodes that
are not in the same community in a parallel environment, since this allows us to move
nodes more freely (that is, without waiting for locks to be free). It is unclear which of
these effects dominates or whether this can even be said in general.

Regarding modularity our results confirm observations made in [BGLL08] by showing
virtually no changes, whereas our parallel Leiden implementation takes about 5-20% longer
to finish when run on the pre-randomized (i.e node ID’s have been shuffled before running
the algorithm) europe graph depending on the number of threads. While the speedup
also increases slightly for the pre-randomized graph (as can be seen in figure 5.9) this is
probably due to the longer running time.

1 2 4 8 16 32 64 128
Number of Threads

0

2

4

6

8

10

12

Sp
ee

du
p

Europe
Local Moving
Refinement
Coarsening
Other
Total

1 2 4 8 16 32 64 128
Number of Threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

Pre-randomized Europe
Local Moving
Refinement
Coarsening
Other
Total

Figure 5.9: Scaling of unrandomized and pre-randomized europe graph in comparison

However, we could not determine any performance gains through randomization in code
in any case, regardless of whether the graph was randomized beforehand or not. On the
contrary, performance often significantly decreased. For example, the europe graph took
53 seconds to finish when randomized (again, in code) compared to 36 seconds when it
was not. Note that we always shuffle nodes in parts only, which influences the number of
permutations that can result from that shuffle. However, this saves a significant amount of

27

5. Experimental Evaluation

time compared to sequentially shuffling as this took up to 10 seconds in total for the europe
graph in our tests (and consequently resulted in being slower than a per-parts shuffle).

It is unclear whether this is specific to our implementation or whether the effect of
randomization generally does not show in a parallel context like this. Further study of this
should definitely be considered if one wishes to use this algorithm.

Number of edges between communities

Both modularity and the time needed scale with the number of inter-community edges in
the graph. For modularity a higher number of such edges naturally means a lower score,
since the graph can not be partitioned as easily. Likewise, since the communities are less
clearly separated it takes more time for the algorithm to identify and separate communities.
To show this effect, we compare graphs that were generated by the LFR algorithm [LFR08]
implemented in NetworKit with 1 million nodes and roughly 10 million edges. The LFR
algorithm is used to generate benchmark graphs for community detection. It generates a
graph in which node degrees and community sizes are chosen according to a power law. The
mixing parameter mu specifies the share of edges that are between different communities.
For this test, we chose a minimum of 20, maximum of 50 and an exponent of -1 for the
community size power law and 20,50 and -2 respectively for the degree power law.

0.1 0.3 0.5 0.7 0.9
Mu

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
in

 se
co

nd
s

Local Moving
Refinement
Coarsening

0.1 0.3 0.5 0.7 0.9
Mu

0.0

0.2

0.4

0.6

0.8

1.0

M
od

ul
ar

ity

Modularity

Figure 5.10: Effect of number of edges between communities (32 cores)

While refinement shows a slight increase in time needed when mu is low (which results
mainly from more refinement phases happening, as local moving takes more iterations to
find a stable partition), no changes can be observed past a mu of 0.3. Considering that
the refinement phase only ever considers a node once, this is to be expected. On the other
hand, the local moving phase sees a drastic increase up to a mu of 0.7.

For modularity, the achieved values decrease up to a mu of 0.7 as well.

28

5.2. Parallel

Alternative approaches to parallelization

Both local moving and refinement phase have been implemented in two different ways. The
ones we call experimental are local moving with thread-local queues and refinement with
parallelization on a per-cluster basis only.

We tested these on two graphs to show a brief impression of the differences.

1 2 4 8 16 32 64 128
Number of threads

0

50

100

Ti
m

e
in

 se
co

nd
s

Standard Parallel
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

25

50

75

100

Ti
m

e
in

 se
co

nd
s

Move & Refine Experimental
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

0

50

100

150

Ti
m

e
in

 se
co

nd
s

Local Moving Experimental
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

0

50

100

150

Ti
m

e
in

 se
co

nd
s

Refinement Experimental
Phase

Local Moving
Refinement
Coarsening
Other

Figure 5.11: Scaling and shares of phases with Experimental methods (europe graph)

For the europe graph, using the experimental local moving results in a slightly higher
total time for both local moving and refinement with low thread counts, whereas on high
thread counts (8 or more in this case) refinement is slightly faster. Using the experimental
refinement results in a significantly faster refinement phase but also slows down all other
phases. This is likely a result of the difference in randomization (remember that the
per-cluster refinement contains no randomization). Notably, using both experimental
versions together results in a lower total time. Since the two local moving versions also
have different randomization behaviour (or rather, the order in which nodes are considered)
the two experimental versions may be complementing each other in regards to the order in
which nodes are considered.

29

5. Experimental Evaluation

1 2 4 8 16 32 64 128
Number of threads

5

10

15

20

25
Ti

m
e

in
 se

co
nd

s

Standard Parallel
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

5

10

15

Ti
m

e
in

 se
co

nd
s

Move & Refine Experimental
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

0

5

10

15

20

25

Ti
m

e
in

 se
co

nd
s

Local Moving Experimental
Phase

Local Moving
Refinement
Coarsening
Other

1 2 4 8 16 32 64 128
Number of threads

5

10

15

Ti
m

e
in

 se
co

nd
s

Refinement Experimental
Phase

Local Moving
Refinement
Coarsening
Other

Figure 5.12: Scaling and shares of phases with Experimental methods (livejournal graph)

The second graph we tested, the livejournal graph, shows a different behaviour. For
this graph, the experimental local moving version results in virtually no difference, while
experimental refinement significantly reduces the total time needed, even if used on its
own. Using both of them together is practically identical to using standard local moving
with experimental refinement.

These results indicate that it may be preferable to use the experimental versions when only
few threads are used, though the differences between the main and experimental versions
diminish as the number of threads increases.

It is also unclear to what extent these differences result from randomization (or lack
thereof).

30

6. Conclusion

In this thesis, we introduced a parallelized version of the Leiden algorithm which we call
Parallel Leiden and evaluated an implementation in C++.

We implemented local moving by combining the active-nodes queue introduced by the
Leiden algorithm with the parallelization strategy of PLM. The main ideas here were to
use compare-and-swap to determine whether nodes have already been inserted to the queue
or not and to use a lock for the queue to avoid race conditions when inserting or removing
nodes from the queue.

As for refinement, we initially proceed like in the sequential version and use locks for
communities to prevent race conditions while moving the node. This enables us to uphold
the main guarantee of the refinement phase, to never produce disconnected communities.
While it can not be guaranteed that the move will be optimal, it will generally be among
the best ones.

Coarsening has been used as implemented in NetworKit.

We evaluated our implementation by testing twelve graphs, the smallest one having 24000
edges and the biggest one 3.3 billion. Among other application backgrounds, these include
real life street networks, web graphs as well as social media networks and generated
benchmark graphs. Our implementation achieves modularity scores virtually identical to
those of the sequential leiden algorithm. The refinement phase achieves speedups up to 28
with 128 threads while local moving achieves speedups up to 12.5 with 32 threads, with a
maximum total speedup of about 15.8 which is achieved with 64 threads.

More than 32 threads eventually lead to a decrease in performance for local moving, it is
unclear whether this stems from an inefficient implementation or from a general limitation
of the approach. Considering that PLM (as implemented in NetworKit) shows similar
speedups, this may also be a limitation of NetworKit or parallel community detection in
general. Further analysis of this issue may significantly improve local moving performance,
as its speedups fall far behind those of the refinement phase.

The algorithm may also be improved by finding less restrictive solutions for race conditions
as we need to fully lock communities during moves in the refinement phase and check
multiple times that the considered node is still a singleton. A possible approach to this is
to use colorings which restrict which nodes of the graph may be moved simultaneously as
mentioned in [LHK15].

31

Bibliography

[BCSV04] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.
Ubicrawler: A scalable fully distributed web crawler. Software: Practice &
Experience, 34(8):711–726, 2004.

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin
Hoefer, Zoran Nikoloski, and Dorothea Wagner. On modularity clustering.
IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188,
2008. doi:10.1109/TKDE.2007.190689.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large its. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, Oct 2008. doi:
10.1088/1742-5468/2008/10/p10008.

[BnPSDGA04] Marián Boguñá, Romualdo Pastor-Satorras, Albert Díaz-Guilera, and Alex
Arenas. Models of social networks based on social distance attachment.
Phys. Rev. E, 70:056122, Nov 2004. doi:10.1103/PhysRevE.70.056122.

[BRSV11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered
label propagation: A multiresolution coordinate-free ordering for compress-
ing social networks. In Proceedings of the 20th international conference on
World Wide Web. ACM Press, 2011.

[CLA12] Siew Yin Chan, Teck Chaw Ling, and Eric Aubanel. The impact of
heterogeneous multi-core clusters on graph partitioning: An empirical study.
Cluster Computing, 15(3), 2012. doi:10.1007/s10586-012-0229-4.

[CN06] Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695, 2006. URL: https:
//igraph.org.

[Des] Cameron Desrocher. A fast general purpose lock-free queue for c++. URL:
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock
-free-queue-for-c++.htm.

[DIM] 10th dimacs implementation challenge - graph partitioning and graph
clustering. URL: https://www.cc.gatech.edu/dimacs10/downloads.s
html.

[FB07] Santo Fortunato and Marc Barthélemy. Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1):36–41,
2007. doi:10.1073/pnas.0605965104.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75–174, Feb 2010. doi:10.1016/j.physrep.2009.11.002.

33

https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1007/s10586-012-0229-4
https://igraph.org
https://igraph.org
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++.htm
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++.htm
https://www.cc.gatech.edu/dimacs10/downloads.shtml
https://www.cc.gatech.edu/dimacs10/downloads.shtml
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.physrep.2009.11.002

Bibliography

[GdMC10] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset.
Performance of modularity maximization in practical contexts. Physical
Review E, 81(4), Apr 2010. doi:10.1103/physreve.81.046106.

[GEO] Geofabrik.de europe street networks. URL: http://download.geofabrik
.de/europe.html.

[Ham21] Michael Alexander Hamann. Scalable Community Detection. PhD thesis,
Karlsruher Institut für Technologie (KIT), 2021. doi:10.5445/IR/10001
33317.

[Igra] Igraph fix integer type issue. URL: https://github.com/igraph/igraph
/pull/1626#issuecomment-856873159.

[Igrb] Igraph put integer types into order issue. URL: https://github.com/igr
aph/igraph/issues/1450#issuecomment-667711046.

[KSKK07] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész. Limited resolution
in complex network community detection with potts model approach. The
European Physical Journal B, 56(1):41–45, March 2007. doi:10.1140/ep
jb/e2007-00088-4.

[LFR08] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark
graphs for testing community detection algorithms. Physical Review E,
78(4), Oct 2008. doi:10.1103/physreve.78.046110.

[LHK15] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. Parallel
heuristics for scalable community detection. Parallel Computing, 47:19–37,
August 2015. doi:10.1016/j.parco.2015.03.003.

[LLDM08] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters, 2008. arXiv:0810.1355.

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113, Feb 2004. doi:10.1103/
PhysRevE.69.026113.

[Ngu] Fabian Nguyen. Parallel leiden github repo. URL: https://github.com
/CxVercility/ParallelLeiden.

[PR] Networkit pull request. URL: https://github.com/networkit/network
it/pull/802.

[RAB09] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The
European Physical Journal Special Topics, 178(1):13–23, Nov 2009. doi:
10.1140/epjst/e2010-01179-1.

[SM16] Christian L. Staudt and Henning Meyerhenke. Engineering parallel al-
gorithms for community detection in massive networks. IEEE Trans-
actions on Parallel and Distributed Systems, 27(1):171–184, 2016. doi:
10.1109/TPDS.2015.2390633.

[SNA] Stanford large network dataset collection. URL: https://snap.stanford.
edu/data/index.html#communities.

[SSh16] Christian L. Staudt, Aleksejs Sazonovs, and Henning henke. Networkit:
A tool suite for large-scale complex network analysis. Network Science,
4(4):508–530, December 2016. doi:10.1017/nws.2016.20.

34

https://doi.org/10.1103/physreve.81.046106
http://download.geofabrik.de/europe.html
http://download.geofabrik.de/europe.html
https://doi.org/10.5445/IR/1000133317
https://doi.org/10.5445/IR/1000133317
https://github.com/igraph/igraph/pull/1626#issuecomment-856873159
https://github.com/igraph/igraph/pull/1626#issuecomment-856873159
https://github.com/igraph/igraph/issues/1450#issuecomment-667711046
https://github.com/igraph/igraph/issues/1450#issuecomment-667711046
https://doi.org/10.1140/epjb/e2007-00088-4
https://doi.org/10.1140/epjb/e2007-00088-4
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1016/j.parco.2015.03.003
http://arxiv.org/abs/0810.1355
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://github.com/CxVercility/ParallelLeiden
https://github.com/CxVercility/ParallelLeiden
https://github.com/networkit/networkit/pull/802
https://github.com/networkit/networkit/pull/802
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1109/TPDS.2015.2390633
https://snap.stanford.edu/data/index.html#communities
https://snap.stanford.edu/data/index.html#communities
https://doi.org/10.1017/nws.2016.20

Bibliography

[Tra15] V. A. Traag. Faster unfolding of communities: Speeding up the louvain
algorithm. Physical Review E, 92(3), Sep 2015. doi:10.1103/physreve.9
2.032801.

[TVDN11] V. A. Traag, P. Van Dooren, and Y. Nesterov. Narrow scope for resolution-
limit-free community detection. Physical Review E, 84(1), Jul 2011. doi:
10.1103/physreve.84.016114.

[TWvE19] V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden:
guaranteeing well-connected communities. Scientific Reports, 9(1), March
2019. doi:10.1038/s41598-019-41695-z.

[Ver20] G. Verweij. Faster community detection without loss of quality: Parallelizing
the leiden algorithm. 2020.

[V.T] V.Traag. Leidenalg. URL: https://github.com/vtraag/leidenalg.

[YL12] Jaewon Yang and Jure Leskovec. Defining and evaluating network commu-
nities based on ground-truth, 2012. arXiv:1205.6233.

35

https://doi.org/10.1103/physreve.92.032801
https://doi.org/10.1103/physreve.92.032801
https://doi.org/10.1103/physreve.84.016114
https://doi.org/10.1103/physreve.84.016114
https://doi.org/10.1038/s41598-019-41695-z
https://github.com/vtraag/leidenalg
http://arxiv.org/abs/1205.6233

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Partition & Community
	2.3 Modularity

	3 Related Work
	3.1 Louvain Algorithm
	3.2 Parallel Louvain Method
	3.3 Leiden Algorithm
	3.4 NetworKit

	4 Parallel Leiden Algorithm
	4.0.1 Terminology
	4.1 Parallel Local Moving
	4.2 Parallel Refinement
	4.2.1 Cluster-wise parallelization
	4.2.2 Full parallelization

	5 Experimental Evaluation
	5.1 Sequential Implementations
	5.2 Parallel

	6 Conclusion
	Bibliography

