
Defining the Discrete Real Polynomial
Hierarchy with Oracle Machines

Bachelor’s Thesis of

Illia Minkin

At the Department of Computer Science
Institute of Theoretical Computer Science

Karlsruhe Institute of Technology

Reviewer: PD Dr. Torsten Ueckerdt
Second reviewer: T.T.-Prof. Dr. Thomas Bläsius
Advisor: Paul Jungeblut

November 1, 2023 – March 1, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Statutory Declaration

I hereby declare that I have developed and written the enclosed thesis completely
by myself. I have not used any other than the aids that I have mentioned. I have
marked all parts of the thesis that I have included from referenced literature, either in
their original wording or paraphrasing their contents. I have followed the by-laws to
implement scientific integrity at KIT.

Karlsruhe, March 1, 2024

. .
(Illia Minkin)

Abstract
The importance of the recently introduced complexity class ∃R has increased significantly
because of its relevance in computational geometry. The discrete real polynomial
hierarchy DRPH is a generalization of ∃R — similarly to the classical polynomial
hierarchy, which is usually defined with oracle Turing machines. Conversely, the discrete
real polynomial hierarchy is typically defined through complete problems.

We would like to use the oracle notation for the DRPH as well, as not only is
it convenient, but also reflects the intuition behind the structure of the problems
contained in the corresponding complexity classes. However, to do so, we need a
suitable computational model. The goal of this thesis is to find a computational model
that can be equipped with suitable oracle sets and to define the DRPH using it.

We review relevant results from classical complexity theory, followed by an introduc-
tion to BSS and real random access (oracle) machines. Then, we familiarize the reader
with the existential theory of the reals and the corresponding class ∃R, as well as its
definition via the BSS and the real RAM models. Finally, we bring the (discrete) real
polynomial hierarchy in and define it using BSS oracle machines, which is a central
result of the thesis. Furthermore, we show how DRPH can be defined with the (oracle)
real RAM. Additionally, we provide some discussion on the definition of the zeroth
level of DRPH.

Zusammenfassung
Die kürzlich eingeführte Komplexitätsklasse ∃R spielt eine wichtige Rolle in der al-
gorithmischen Geometrie. Diese Klasse kann ähnlich zur polynomiellen Hierarchie
verallgemeinert werden – dadurch erhält man die sogenannte diskrete reelle polyno-
mielle Hierarchie DRPH. Im Gegensatz zur klassischen Polynomialzeithierarchie,
die üblicherweise mithilfe von Orakel-Turingmaschinen definiert wird, wird DRPH
klassischerweise über vollständige Probleme eingeführt.

Die „Orakel-Notation“ ist nicht nur intuitiv, sondern spiegelt die Struktur von
Problemen in den entsprechenden Komplexitätsklassen wider. Es ist erstrebenswert,
diese Notation auch für DRPH zu verwenden, allerdings ist solch eine Notation ohne
ein passendes Berechnungsmodell nicht wohldefiniert. Das Ziel dieser Arbeit ist es, ein
passendes Orakel-Berechnungsmodell zu finden und DRPH damit zu definieren.

Wir fassen relevante Ergebnisse aus der klassischen Komplexitätstheorie zusammen
und führen die BSS sowie die reellen RA (random access) Maschinen ein. Danach stellen
wir die existentielle Theorie der reellen Zahlen sowie die entsprechende Komplexitäts-
klasse ∃R vor. Schlussendlich führen wir die diskrete reelle polynomielle Hierarchie
ein und definieren diese mithilfe von Orakel BSS und reellen RA Maschinen – dies ist
ein zentrales Ergebnis der Thesis. Überdies diskutieren wir, wie die nullte Stufe von
DRPH definiert werden kann.

i

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Outline . 3

2 Preliminaries 5
2.1 The Classes NP and coNP . 5
2.2 The Classes Σp

2 and Πp
2 . 6

2.3 The Polynomial Hierarchy . 8
2.4 Alternative Definitions of PH . 10

2.4.1 Complete Problems for Σp
i and Πp

i 10
2.4.2 Oracle Machines . 11

2.5 The Blum–Shub–Smale Model . 15
2.6 The Real RAM Model . 17

2.6.1 Definition of the Real RAM . 17
2.6.2 Equipping the Real RAM with Oracles and Nondeterminism . . 20

3 The Existential Theory of the Reals and the Class ∃R 21
3.1 The Existential Theory of the Reals . 21
3.2 The Class ∃R and ∃R-completeness . 22
3.3 Special Cases of ETR . 23
3.4 Definition via BSS machines . 26

3.4.1 Complexity Classes Over R . 26
3.4.2 An Analog of the Cook–Levin Theorem for NPR 27
3.4.3 Defining ∃R . 32

3.5 Definition via Real RAM . 32

4 The (Discrete) Real Polynomial Hierarchy 35
4.1 The Universal Theory of the Reals and the Class ∀R 35
4.2 Extensions of ETR and UTR as Complete Problems 36
4.3 Properties of DRPH . 36
4.4 Generalization of the Feasibility Problem 38
4.5 The Real Polynomial Hierarchy . 40
4.6 Corresponding Versions of the Real (In-)Feasibility Problem 41
4.7 Definition of (D)RPH Using Oracle BSS Machines 43
4.8 Definition of DRPH with the (Oracle) Real RAM 46
4.9 The Zeroth Level of the Hierarchy . 47

5 Conclusion 51
5.1 Future Work . 51

Bibliography 53

iii

1. Introduction

About a decade ago, Schaefer and Štefankovič [SŠ17] introduced a new complexity class
∃R (pronounced “exists R” or “ER”), which has recently received extensive publicity
because a lot of known problems from computational geometry — and even training
neural networks — turned out to be ∃R-complete. A known complete problem for ∃R
is the existential theory of the reals (ETR for short), a problem where a system of
polynomial equations and inequalities with bounded integer coefficients and real-valued
variables is given. The question is whether the given system is solvable, that is to
say, whether there exists an assignment for the variables satisfying the constraints. In
fact, the complexity class ∃R is conventionally defined by making ETR a complete
problem. The existential theory of the reals can be thought of as the real analog of
the Boolean satisfiability problem Sat: the problem structure remains the same, but
the real variables and more connectives and operators are allowed. Similarly, the class
∃R can be thought of as the real analog of NP — NP is even denoted as ∃P in some
literature [ODo17].

The classical complexity classes P, NP, and coNP have been studied widely [AB06].
The polynomial hierarchy, which is a generalization of these classes, has been extensively
explored as well [AB06]. Similarly to the “classical” polynomial hierarchy, the complexity
class ∃R can be generalized by adding alternating quantifiers to obtain the discrete real
polynomial hierarchy DRPH. For instance, the canonical complete problem EUTR
(existential-universal theory of the reals) for the class ∃∀R from the second level of
DRPH has the following form. Just like in ETR, we are given a system of polynomial
equations and inequalities; but now there are two blocks of variables: the first one is
quantified existentially and the second one universally. This means that we need to find
an assignment for the variables from the existential block such that the given system
holds for any assignment of the variables from the universal block.

The “classical” polynomial hierarchy PH can be defined via canonical complete
problems, which are analogous modifications of the Sat problem. However, the usual
way to define PH is using so-called oracle Turing machines. An oracle Turing machine is
a Turing machine with an extra “power”: it has an additional oracle tape and an oracle
instruction. An oracle is an efficient — that is, working in constant (!) time — black-box
solver for some decision problem, e.g., the Boolean satisfiability problem. The machine
can write a Sat instance onto the oracle tape and, when the oracle instruction is called,
the oracle gives an answer whether it is a yes-instance in constant time.

When defining complexity classes with an oracle computational model, one usually
uses the superscript notation. For instance, the second level of the polynomial hierarchy
Σp

2 becomes NPNP (or NPSat because Sat is NP-complete and can technically be
replaced by any other NP-complete problem since they are computationally equivalent
up to a polynomial-time reduction). NPNP is the complexity class containing all

1

1 Introduction

languages (or decision problems) decidable in polynomial time by a nondeterministic
Turing machine with access to an NP-complete oracle. It is crucial to note that adding
oracles is an operation on machines, not on languages.

We would like to write something like ∃R∀R, in particular, because some problems lie
in so-called hybrid complexity classes, where some quantifiers are Boolean [SŠ23]. For
example, a problem from evolutionary game theory lies in ∃∀R, but we do not need real
variables in the existential quantifier block — to indicate this, one could write NP∀R

[BH22]. There is another example of a problem lying in ∃∀∃R, but the second quantifier
is actually Boolean, meaning that we could write ∃RcoNP∃R [SŠ23]. However, without
a suitable oracle model for ∃R, this notation is not well-defined, and “the details of
[such model] would still need to be worked out” [SŠ23]. The primary goal of this thesis
is to develop a suitable oracle model for defining the discrete real polynomial hierarchy.

Furthermore, developing such a model might be relevant for the relativization barrier
of the P vs. NP question, or rather its real counterpart. Baker, Gill and Solovay showed
the existence of oracle sets A and B such that PA = NPA and PB ̸= NPB [BGS75].
This means that a diagonalization argument would not be enough for proving P ̸= NP,
as it would also be applicable to the relativized problem PC ̸= NPC for an arbitrary
oracle set C [BGS75]. Blum, Shub and Smale introduced complexity classes PR and
NPR over the real numbers; the question PR

?= NPR remains open [BSS89]. Having
such an oracle model would allow for transferring the relativization argument to such
questions as NP ?= ∃R, ∃R ?= PSPACE or ∃∀R ?= PSPACE.

1.1. Related Work

In 1989, Blum, Shub and Smale introduced an extension of classical Turing machines
able to perform computations over an arbitrary field [BSS89]. They define complexity
classes PR and NPR over the reals using this computational model and extend them
to an “unrestricted” real polynomial hierarchy. Yet, the BSS model is too powerful
because it is allowed to work with real-valued constants, which are forbidden in the
theory of the reals (e.g., it is clear that ∃R ⊆ NPR, the reverse is not the case). Hence,
to be able to define the discrete real polynomial hierarchy, one needs to restrict the
BSS model additionally.

In their further work with Felipe Cucker from 1998 [BCSS98], they introduce an
oracle model for additive machines — BSS machines that are only allowed to perform
addition and subtraction. Furthermore, they define the additive hierarchy using these
restricted machines and even provide its definition using oracle additive machines. They
note that the proof can be applied to the unrestricted real polynomial hierarchy as
well. What is more, they show the existence of complete problems for the levels of
the unrestricted hierarchy, however, the proof is only roughly sketched. Nevertheless,
to define the discrete real polynomial hierarchy, one would still need to transfer the
proof to the unrestricted hierarchy first and then discretize this oracle model, so that it
defines the desired complexity classes.

Oracle BSS machines are used in some later papers, but rather for algebraic and
number theoretic results [MZ05] or studying the real halting problem [CKM10] — no
further work in developing this computational model for the definition of DRPH has
been done.

2

1.2 Outline

Erickson, van der Hoog and Miltzow study the real RAM model and show that a
decision problem is in ∃R if and only if there is a polynomial-time verification algorithm
on a real RAM [EvM19]. However, it is not mentioned whether this model can be used
for higher levels of DRPH; moreover, it is not straightforward how the real RAM can
be equipped with an oracle.

1.2. Outline
We begin by summarizing relevant results from classical complexity theory in Chapter 2,
such as the polynomial hierarchy and its definition via oracle Turing machines. Then
we introduce the BSS model, an extension of classical Turing machines performing
computations with real numbers. Furthermore, we make the reader acquainted with
the real RAM model — another suited candidate for computations with real numbers,
which is an extension of the word RAM.

Chapter 3 introduces the existential theory of the reals (ETR), which can be thought
of as a real analog of Sat. The corresponding complexity class ∃R is introduced; we
also provide its alternative definitions using the BSS and the real RAM model.

In Chapter 4, we generalize the complexity class ∃R to obtain the (discrete) real
polynomial hierarchy — the “discreteness” depends on whether one allows or forbids
real-valued constants. Moreover, we define these hierarchies using BSS machines and
the real RAM. At long last, we define the (discrete) real polynomial hierarchy with
oracle BSS and real random access machines, which is a central result of the thesis.
Additionally, we discuss how the zeroth level of the discrete real polynomial hierarchy
can be reasonably defined.

3

2. Preliminaries

To define the real polynomial hierarchy, we first need to get acquainted with its discrete
cousin, which is an extension of the well-known complexity classes P, NP, and coNP.
In this chapter, we recall a couple of definitions from classical complexity theory and
introduce the polynomial hierarchy using various definitions. We follow the notation
of [AB06], as it is considered to be the standard work on theory of computation. As
for prerequisites, the reader is expected to be familiar with basic notions of theoretical
computer science, such as Turing machines and formal languages.

2.1. The Classes NP and coNP
The class NP is defined as the set of all problems with an efficiently — that is, in
polynomial time — verifiable solution. This can be formalized in the following definition.

Definition 2.1 (Complexity class NP). Let L ⊆ {0, 1}∗. Then L ∈ NP if there exists
a polynomial time Turing machine M and a polynomial p, such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) : M(x, u) = 1.

In that case, u is said to be a certificate (or a witness) for x (with respect to the
language L and machine M). Formulated in words, this means that for every word x in
the language L, there must exist a certificate u (one can think of it as a solution to the
instance x of the problem L), such that Turing machine M accepts the tuple (x, u).

An equivalent definition can be given using nondeterministic Turing Machines.

Definition 2.2 (Complexity class NP, alternative definition). NP is the set of all
languages decidable by a nondeterministic Turing Machine (NTM) in polynomial time.

The equivalence follows since a solution can be guessed using the nondeterminism
and then verified by the deterministic part. In fact, it was the original definition — NP
stands for nondeterministic polynomial time.

Another way to define this class is via a well-known NP-complete problem, the
Boolean satisfiability problem (Sat).

Definition 2.3 (Complexity class NP, second alternative definition). NP is the set
of all problems reducible to Sat in polynomial time.

NP := {L ⊆ {0, 1}∗ | L ≤p Sat}.

A problem is said to be NP-hard if every problem in NP can be reduced to it in
polynomial time. NP-complete problems are the hardest ones in NP — they are the
intersection of NP-hard problems and of those in NP. The Cook–Levin theorem states
that Sat is NP-complete. This is a central result in the complexity theory, which

5

2 Preliminaries

facilitates showing the NP-completeness of other problems, since we only need to
reduce a Sat-instance to an instance of the given problem. It is thus not hard to see
that NP can be defined as the set of all problems reducible to Sat in polynomial time.
This definition is rather unusual but is quite handy when working with the polynomial
hierarchy.

Definition 2.4 (Complexity class coNP). The class coNP is defined as the set of all
languages having their complement in NP.

coNP := {L ⊆ {0, 1}∗ | L ∈ NP}.

Alternatively, this class can be defined analogously to NP, using Turing machines.

Definition 2.5 (Complexity class coNP, alternative definition). Let L ⊆ {0, 1}∗. Then
L ∈ coNP if there exists a polynomial time Turing machine M and a polynomial p,
such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∀u ∈ {0, 1}p(|x|) : M(x, u) = 1.

The only difference is that the universal quantifier replaced the existential one. The
latter definition is often preferred because it is less prone to the misconception of
Sat = {φ | φ is not satisfiable} being in NP, which is presumably not the case. It
is also important to note that coNP is not the complement of NP — in fact, the
intersection of the both classes is non-empty since it contains P.

P

NP coNP

NPC coNPC
Sat coSat

Figure 2.1: The connection between P, NP, coNP, NP- and coNP-complete classes.

2.2. The Classes Σp
2 and Πp

2

It is intuitively clear that some NP-hard problems are more complex than others.
Recall the Clique problem:

Clique = {⟨G, k⟩ | graph G has a clique of size at least k}.

This problem is known to be NP-complete. Now, let us enlarge upon a slightly
modified version of this problem, called ExactClique.

ExactClique = {⟨G, k⟩ | G is graph with the largest clique of size exactly k}.

As the name suggests, the clique size must now be exactly k. To grasp that this
version is indeed harder, we formulate it in a slightly different way:

6

2.2 The Classes Σp
2 and Πp

2

⟨G, k⟩ ∈ ExactClique
⇐⇒ ∃S ⊆ VG, |S| = k : S is clique and ∀S′ ⊆ VG, |S′| = k + 1 : S′ is not a clique.

Now there is no short certificate for NP-membership, since we would not only need
to check that S is a clique of size k, but also to make sure that any other vertex subset
S′ of larger cardinality is not a clique. Checking the subsets of size k + 1 is sufficient
because a subset of a clique is again a clique, so the check would imply that there are
no larger cliques.

The polynomial hierarchy tries to distinguish between the hardness of the problems.
The introduced classes NP and coNP form the first level of the hierarchy. We now
generalize those classes, beginning with the second level.

Definition 2.6 (Complexity class Σp
2). Let L ⊆ {0, 1}∗. Then L ∈ Σp

2 if there exists a
polynomial time Turing machine M and a polynomial p, such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|) : M(x, u1, u2) = 1.

Definition 2.7 (Complexity class Πp
2). Let L ⊆ {0, 1}∗. Then L ∈ Πp

2 if there exists a
polynomial time Turing machine M and a polynomial p, such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∀u1 ∈ {0, 1}p(|x|) ∃u2 ∈ {0, 1}p(|x|) : M(x, u1, u2) = 1.

Observation 2.8. Πp
2 = coΣp

2.

The observation follows because the definition of Πp
2 is the negation of the Σp

2
definition statement (strictly speaking, one would need to redefine the acceptance
behavior of the TM in the definition of Πp

2). The only difference in the definitions is
therefore the order of the quantifiers. Furthermore, if one compares the definitions to
those of NP and coNP, one can notice that a universal and an existential quantifier
were added, respectively. This suggests that adding quantifiers means going up one
level in the hierarchy, thereby making problems harder.

Claim 2.9. ExactClique ∈ Σp
2.

Proof sketch. We need TM M and polynomial p satisfying the definition of Σp
2.

Choose p(n) = n. Let x ∈ {0, 1}∗. Define M as follows.

Algorithm 2.1: Turing machine for ExactClique [ODo17].
Input: x ∈ {0, 1}∗; encodings of G subgraphs u1, u2 ∈ {0, 1}p(|x|).
Output: 1 if M accepts, 0 otherwise.

1 if x ̸= ⟨G, k⟩, reject
2 if u1 is not a k-clique in G, reject
3 if u2 corresponds to a (k + 1)-clique in G, reject
4 accept

If x ∈ L, then M accepts for all u2, when u1 corresponds to a k-clique — and such
u1 exists because x is a yes-instance. If x /∈ L, we consider three possible cases.

Case 1: x ̸= ⟨G, k⟩, that is, x is not a valid encoding of an ExactClique-instance.
Then the algorithm always rejects in line 1, independently from u1 and u2.

Case 2: The size of the largest clique is greater than k. Then for all u1, there exists
an encoding of a (k + 1)-clique u2, which leads to rejection in the third step.

7

2 Preliminaries

Case 3: The size of the largest clique is less than k. Then independently from the
choice of u1, it cannot be an encoding of a k-clique. Hence, the Turing machine rejects
in the second step.

Now consider the circuit minimization problem

SmallestCircuit = {⟨C⟩ | C is the smallest circuit computing Cf},

where Cf denotes the function that C computes. Similarly, the problem can be
reformulated using quantifiers:

⟨C⟩ ∈ SmallestCircuit ⇐⇒ ∀C ′, size(C ′) < size(C) : ∃x : Cf (x) ̸= C ′
f (x),

where the size of a circuit is the number of (non-input) gates it contains. There is
now a “∀∃”-pattern, suggesting that the problem lies in Πp

2. One can indeed construct
a Turing machine satisfying the definition of this complexity class, — following the
idea of Algorithm 2.1 — thereby showing that SmallestCircuit ∈ Πp

2.
To show that the intersection of Σp

2 and Πp
2 is non-empty, let us consider another

decision problem from graph theory.

ExactIndSet = {⟨G, k⟩ | the largest independent set in G has size exactly k}.

On the one hand, it is clear that

⟨G, k⟩ ∈ ExactIndSet ⇐⇒ ∃S ⊆ VG, |S| = k : S is an independent set and
∀S′ ⊆ VG, |S′| = k + 1 : S′ is not an independent set.

Hence, ExactIndSet ∈ Σp
2. On the other hand, a pair ⟨G, k⟩ is in ExactIndSet if

and only if

∀S′ ⊆ VG, |S′| ≥ k + 1 : S′ is not an independent set, but ∃S ⊆ VG, |S| = k : S is an
independent set.

I.e., we can change the order of the quantifiers. This formulation implies that
ExactIndSet lies in Πp

2.

2.3. The Polynomial Hierarchy
The introduced classes can be generalized to an arbitrary (but finite) number of
quantifiers and a polynomial-time computable predicate. The number of quantifiers
defines the hierarchy level.

Definition 2.10 (Polynomial hierarchy). Let i ∈ N, L ⊆ {0, 1}∗. L ∈ Σp
i if there exists

a polynomial time TM M and a polynomial p such that:

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|) : M(x, u1, . . . , ui) = 1,

where Qi =
{
∀, i is even,
∃, i is odd.

Similarly, L ∈ Πp
i if there exists a polynomial time TM M and a polynomial p such

that:

8

2.3 The Polynomial Hierarchy

x ∈ L⇔ ∀u1 ∈ {0, 1}p(|x|) ∃u2 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|) : M(x, u1, . . . , ui) = 1,

where Qi =
{
∃, i is even,
∀, i is odd.

The polynomial hierarchy is the union over the hierarchy levels (Σp
0 = Πp

0 = P):

PH := ⋃
i∈N0 Σp

i .

Observation 2.11. Note that for i ∈ N:

(i) Σp
1 = NP and Πp

1 = coNP,

(ii) Πp
i = coΣp

i ,

(iii) Σp
i ⊆ Σp

i+1 and Σp
i ⊆ Πp

i+1,

(iv) Πp
i ⊆ Πp

i+1 and Πp
i ⊆ Σp

i+1,

(v) PH = ⋃
i∈N0 Πp

i = ⋃
i∈N0 Σp

i .

We introduce some notation that reflects the intuition behind the definitions of the
hierarchy levels, as well as behind the proofs of some properties of PH.

Notation [ODo17].

Σp
0 = Πp

0 = P;

Σp
1 = NP = ∃P, Πp

1 = coNP = ∀P;

Σp
2 = ∃∀P, Πp

2 = ∀∃P;

Σp
3 = ∃∀∃P, Πp

3 = ∀∃∀P;
.
Σp

i = ∃Πp
i−1, Πp

i = ∀Σp
i−1.

The notation will be useful when establishing the connection to the real polynomial
hierarchy. It also helps to understand Observation 2.11 (iii) and (iv) better. Adding more
quantifiers gives us more power since one can always ignore one “dummy” quantifier,
thereby going down one level in the hierarchy.

Figure 2.2 illustrates the structure of the polynomial hierarchy. Note that the hierarchy
resides within PSPACE, since one can reuse the space for “verifying the quantifiers”
and we are dealing with a finite number thereof.

9

2 Preliminaries

P

NP = Σ
p
1 Π

p
1 = coNP

Σ
p
2 Π

p
2

Σ
p
3 Π

p
3

PH

PSPACE

Figure 2.2: The polynomial hierarchy. The arrows denote inclusion.

2.4. Alternative Definitions of PH
In this section, we consider two alternative possibilities to define the polynomial
hierarchy. It can be done with the help of complete problems for each level or using
so-called oracle Turing machines — the latter option is a quite common way to define
PH.

2.4.1. Complete Problems for Σp
i and Πp

i

Similarly to NP-completeness, one can define the completeness for each level of the
hierarchy. For i ∈ N, a language L is Σp

i -complete if it lies in Σp
i and every problem in

Σp
i can be reduced to L in polynomial time. Πp

i - and PH-completeness are defined in
the same way.

To obtain complete problems for the levels of the polynomial hierarchy, one can
generalize the well-known Sat problem.

Definition 2.12 (Σi-Sat). Let φ(y1, . . . , yi) be a Boolean formula, where each yj is a
vector of Boolean variables: yj ∈ {0, 1}nj (j ∈ [i], nj ∈ N).

Σi-Sat := {⟨φ(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : φ(z1, . . . , zi) ≡ True},

where Qi =
{
∀, i is even,
∃, i is odd.

Lemma 2.13. Σi-Sat is Σp
i -complete for i ∈ N.

It is not hard to see that the problem has the corresponding quantifier structure. To
reduce any problem in Σp

i to Σi-Sat, one can use the proof idea of the Cook–Levin
theorem, with slight modifications. The problem Πi-Sat is defined analogously (starting
with a universal quantifier) and is Πp

i -complete.
Conversely, it is believed that PH itself does not have complete problems, as it would

imply that the hierarchy collapses to the ith level for some constant i ∈ N0.
The polynomial hierarchy levels can be defined similarly to Definition 2.3, as the set

of all languages reducible to the corresponding complete problem in polynomial time.

10

2.4 Alternative Definitions of PH

Definition 2.14 (Polynomial hierarchy, alternative definition via complete problems).
For i ∈ N, Σp

i = {L ⊆ {0, 1}∗ | L ≤p Σi-Sat}, Πp
i = {L ⊆ {0, 1}∗ | L ≤p Πi-Sat}.

The equivalence follows immediately from Lemma 2.13.

2.4.2. Oracle Machines

We have already seen that nondeterminism does not always suffice, which means we
need a more powerful computational model to be able to solve some problems. Now
imagine that we have an efficient black box Sat-solver. This would not only allow us
to efficiently solve NP-complete problems such as — clearly — Sat, HamiltonPath,
4col or 3col, but also Sat, 3col and, in fact, all of coNP problems: we can simply
return the negation of the Sat-solver result. Moreover, this would also allow us to solve
problems that are believed to be neither in NP nor in coNP classes.

Consider the problem of deciding whether a given graph has chromatic number 4:

ChromNo4 := 4col ∩ 3col,

i.e., whether the graph is 4-colorable and not 3-colorable. We can solve this problem as
follows.

Algorithm 2.2: Solving ChromNo4 with a Sat-solver [ODo17].
Input: Graph G.
Output: 1 if χ(G) = 4, 0 otherwise.

1 φ3 = R3col→Sat(G) // reduce the 3col-instance of G to a Sat-instance
2 φ4 = R4col→Sat(G) // reduce the 4col-instance of G to a Sat-instance
3 b3 = satSolver(φ3)
4 b4 = satSolver(φ4)
5 return b4 ∧ ¬b3

However, such a black box does not seem to help much if we were to solve the
SmallestCircuit problem — or any problem in the second level of PH. This means
that having a black box solving a problem is not as good as having the actual algorithm
for it.

One can formalize this approach with so-called oracle machines, where such a black-
box is called an oracle and is able to solve the corresponding problem in constant
time.

Definition 2.15. A Sat-oracle Turing machine is a Turing machine with an extra
“oracle tape” and an extra oracle instruction. Whenever the oracle instruction is
called, the content y of the oracle tape is replaced by 1 if y ∈ Sat and by 0 otherwise.
This takes time in O(1).

Remark 2.16. More generally, one can define a B-oracle TM for any language B.
The set of all languages accepted by a deterministic (nondeterministic) B-oracle TM is
denoted by PB (NPB).

It is important to note that this notation makes sense only in combination with the
corresponding computational model — in our case this is a (non-)deterministic Turing
machine.

11

2 Preliminaries

The polynomial hierarchy can be defined using this computational model. We first
take a look at an intermediate level of the hierarchy.

PSat := {L | L is decidable in polynomial time by a (deterministic) Sat-oracle TM}.

Note that PB ⊆ PSat if B ∈ NP and PB = PSat if B is NP- or coNP-complete.
The class PSat is therefore denoted as PNP in some literature.

Observation 2.17. (i) NP ⊆ PNP and coNP ⊆ PNP,

(ii) ChromNo4 ∈ PNP,

(iii) SmallestCircuit /∈ PNP (under the assumption P ̸= NP).

It can be shown that PNP ⊆ Σp
2 and, since coPNP = PNP, it follows that PNP ⊆ Πp

2.
For a detailed proof, we refer the reader to [Sto76].

Definition 2.18 (Polynomial hierarchy, alternative definition via oracle machines).
Having ∆p

0 = ∆p
1 = Σp

0 = Πp
0 = P, we define for i ∈ N:

∆p
i+1 = PΣp

i ,

Σp
i+1 = NPΣp

i ,

Πp
i+1 = coNPΣp

i .

The following theorem shows the equivalence of the definitions.

Theorem 2.19. For i ≥ 2, Σp
i = NPΣi−1-Sat. That is, Σp

i is the set of all languages
decidable by a polynomial time NTM with access to a Σi−1-Sat-oracle.

Proof. We proceed by induction on i. We could also formulate the theorem for
i ∈ N — the base case would be i = 1, which would facilitate our work. Nevertheless,
we stick to i = 2 as the base case for educational purposes, as it helps to understand
the intuition behind the induction step better.

Base case (i = 2). We need to show that Σp
2 = NPSat.

“⊆”: For the left inclusion, we follow the proof of [AB06]. Suppose L ∈ Σp
2, i.e., there

exists a polynomial time TM M and a polynomial p such that:

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|) : M(x, u1, u2) = 1.

We observe that for fixed x and u1, the remaining statement is a coNP-statement
and can thus be determined by a Sat-oracle. This means that we can construct an
NTM N with a Sat-oracle deciding L: on the input x, we guess u1 nondeterministically
and then use the oracle to check if ∀u2 ∈ {0, 1}p(|x|) : M(x, u1, u2) = 1. This works
since x ∈ L if and only if there exists such u1 that makes N accept.

“⊇”: Suppose L ∈ NPSat, meaning that L is decidable by a polynomial time NTM
with a Sat-oracle. Since the nondeterminism is used for guessing the solutions, this is
equivalent to the existence of a witness y verifiable by a deterministic TM N with a
Sat-oracle:

x ∈ L ⇐⇒ ∃y ∈ {0, 1}p(|x|) : NSat(x, y) = 1

12

2.4 Alternative Definitions of PH

for some polynomial p.
The idea is to simulate the oracle using the additional ∀ quantifier. On each query

qi, if qi ∈ Sat, then there exists a witness y′ containing a satisfying assignment for qi.
Conversely, if qi /∈ Sat, then qi is unsatisfiable for every assignment.

We construct a TM M without an oracle to simulate N . The new witness y′ contains
the original witness y and, additionally, the answers ai ∈ {0, 1} to oracle queries qi. If
the answer is positive (ai = 1), then y′ also contains a satisfying assignment si for qi. If
the answer is negative (ai = 0), then the “co-witness” z′ should contain an unsatisfiable
assignment for the query. Thus, the “co-witness” z′ represents (all) possible assignments
for the queries with a negative answer. We can now construct the Turing machine M
formally.

Algorithm 2.3: Simulating an oracle TM with a co-witness.
Input: x ∈ {0, 1}∗, witness y′, co-witness z′, encoding of N .
Output: 1 if M accepts, 0 otherwise.

1 simulate N (copy every step till an oracle query)
2 if N makes oracle query qi then
3 if ai = 1, verify that si is contained in y′ and is a satisfying assignment for qi

4 if ai = 0, reject if ui in z′ is a satisfying assignment for qi

5 continue the simulation of N (step 1)
6 if all verifications are successful and N accepts, accept
7 else reject

We have:

x ∈ L ⇐⇒ ∃y′ ∈ {0, 1}p(|x|) ∀z′ ∈ {0, 1}p(|x|) : M(x, y′, z′) = 1

for some polynomial p.
It remains to substantiate that the witness y′ and the co-witness z′ have polynomial

length with respect to |x|. Firstly, note that TIME(N) = poly(|x|), meaning that there
are at most polynomially many oracle queries qi. Secondly, an assignment contains one
value for each variable of the formula encoded in |x|, which means its length does not
exceed the input length: |si| = |ui| ≤ |x|. Since a composition of polynomials is again a
polynomial, we get |y′|, |z′| ≤ poly(|x|).

Putting everything together, we have that L ∈ Σp
2.

Induction assumption. Σp
i−1 = NPΣi−2-Sat for an arbitrary but fixed i > 2, i.e.,

any language in NPΣi−2-Sat can be written with (i− 1) alternating quantifiers, starting
with an existential one.

Induction step. We need to show that Σp
i = NPΣi−1-Sat.

“⊆”: The left inclusion is again easy. Let L be in Σp
i and recall that

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|) : M(x, u1, . . . , ui) = 1.

Just like in the base case, for fixed x and u1, the remaining statement is a coΣp
i−1-

statement and can thus be verified with a Σi−1-Sat-oracle.

13

2 Preliminaries

“⊇”: The right inclusion requires a little bit more work, but we follow the same idea
as in the base case. Suppose L ∈ NPΣi−1-Sat, that is, L is decidable by a polynomial
time Σi−1-Sat-oracle NTM, which is equivalent to the existence of a witness y verifiable
by a deterministic TM N with a Σi−1-Sat-oracle:

x ∈ L ⇐⇒ ∃y ∈ {0, 1}p(|x|) : NΣi−1-Sat(x, y) = 1

for some polynomial p.
We want to construct a TM M without an oracle for simulating N . The new witness

y′ contains the original witness y and, additionally, the answer aj ∈ {0, 1} for each
query qj . If aj = 1, — that is, qj ∈ Σi−1-Sat — then

∃y′
j,1 ∈ {0, 1}p(|x|) ∀y′

j,2 ∈ {0, 1}p(|x|) : TΣi−2-Sat
1 (qj , y

′
j,1, y

′
j,2) = 1

for some TM T1 with a Σi−2-Sat-oracle and some polynomial p.
By induction assumption, we can simulate T1 with alternating quantifiers and a

TM without an oracle, meaning we can “unfold” the above statement — we omit the
variables’ domain {0, 1}p(|x|) for better readability:

∃y′
j,1 ∀y′

j,2 . . . Qi−1y
′
j,i−1 : y′

j,1, . . . , y
′
j,i−1 is a satisfying assignment for qj .

Conversely, if aj = 0 (qj /∈ Σi−1-Sat), then

∀z′
j,2 ∈ {0, 1}p(|x|) ∃z′

j,3 ∈ {0, 1}p(|x|) : TΣi−2-Sat
2 (qj , z

′
j,2, z

′
j,3) = 1

for some TM T2 with a Σi−2-Sat-oracle and some polynomial p.
Again, by induction assumption, we can simulate T2 with an oracle-free TM and

thereby unfold the above statement (the domain is omitted):

∀z′
j,2 ∃z′

j,3 . . . Qiz
′
j,i : qj is not satisfied with the assignment z′

j,2, . . . , z
′
j,i.

Note that in the latter case we numerate the quantifiers from 2 to i — this is done
for convenience. One can merge the two statements by reformulating:

∃y′
j,1 ∀(y′

j,2, z
′
j,2) . . . Qi−1(y′

j,i−1, z
′
j,i−1) Qiz

′
j,i :

(aj = 1 AND y′
j,1, . . . , y

′
j,i−1 is a satisfying assignment for the query qj)

OR
(aj = 0 AND z′

j,2, . . . , z
′
j,i is not a satisfying assignment for the query qj).

This means that we have the desired quantifiers structure. We can now construct the
machine M for simulating the oracle formally.

14

2.5 The Blum–Shub–Smale Model

Algorithm 2.4: Simulating a Σi−1-Sat-oracle TM.
Input: x ∈ {0, 1}∗, (co-)witnesses y′ and z′, encoding of N .
Output: 1 if M accepts, 0 otherwise.

1 simulate N (copy every step till an oracle query)
2 if N makes oracle query qj then
3 if aj = 1, verify that y′

j,1, . . . , y
′
j,i−1 in y′ is a satisfying assignment for qj

4 if aj = 0, reject if z′
j,2, . . . , z

′
j,i in z′ is a satisfying assignment for qj

5 continue the simulation of N (step 1)
6 if all verifications are successful and N accepts, accept
7 else reject

This gives us

x ∈ L ⇐⇒ ∃y′
1 ∀(y′

2, z
′
2) . . . Qi−1(y′

i−1, z
′
i−1) Qiz

′
i : M(x, y′

1, . . . , z
′
i) = 1.

The argumentation for the polynomial length of the (co-)witnesses is the same as in
the base case. We thus get L ∈ Σp

i , which finishes the proof.

Figure 2.3 summarizes the introduced definitions of the polynomial hierarchy with
various notations and shows the placement of the intermediate levels ∆p

i .

∆
p
0 = Σ

p
0 = P = Π

p
0 = ∆

p
1

NP = Σ
p
1 Π

p
1 = coNP

Σ
p
2 Π

p
2

Σ
p
3 Π

p
3

PH

PSPACE

PNP = ∆p
2

∆p
3

NPNP =

NPNPNP
= = coNPNPNP

= coNPNP

Figure 2.3: The polynomial hierarchy. The arrows denote inclusion.

2.5. The Blum–Shub–Smale Model
In order to deal not only with discrete problems, but also with problems containing
real numbers, we need a more powerful computational model. In 1989, Blum, Shub and
Smale introduced a generalization of Turing machines that performs computations over
some arbitrary field K [BSS89]. Classical Turing machines usually operate over the
residue class ring Z2 (but can operate over any finite alphabet). We are particularly

15

2 Preliminaries

interested in such BSS machines over the reals, that is, K = R (the band alphabet is
not finite anymore). It is hard to find a “standard” definition of a BSS machine. Our
definition is based on the original paper, with slight modifications introduced by Meer
and Ziegler [MZ05].
Definition 2.20 (BSS machine, [BSS89], [MZ05]). Let Y ⊆ R∞ := ⋃

k∈NRk, i.e., the
set of all finite sequences over the real numbers.

(i) A BSS machine M over R with admissible input set Y is given by a finite
set I of instructions (nodes) labeled by 1, . . . , N . Y is also called the input space,
O ⊆ R∞ is the output space.

The state space is given by S = R∞ := {(. . . , x−1, x0, x1, . . .) | xi ∈ R∪ {⊔}, i ∈ Z}.
It models the tape of a classical Turing machine and has infinitely many registers, with
x0 being the analogy of the position of the head. The first instruction is called the input
node and is a linear map from the input to the state space (in : Y → S), which takes
the input y ∈ Y and places it on the tape such that the first entry is located under the
machine’s head (in the registry x0); all other registers are initialized with the blank
symbol. The N th instruction is called the output node and is a linear map from the
state space to the output space (out : S → O), which takes the tape content x ∈ R∞ and
removes the blank symbols.

A configuration of M is a quadruple (n, i, j, x) ∈ I × Z× Z×R∞. Here, n denotes
the currently executed instruction, i and j are used as addresses (copy-registers), and x
is the tape content of M . The initial configuration of M ’s computation on input y ∈ Y
is (1, 0, 0, in(y)). If n = N and the actual configuration is (N, i, j, x), the computation
stops with output out(x).

The instructions M is allowed to perform (except for the input and the output nodes)
are of the following types:

• computation: apply a rational function g : R∞ → R∞, which depends on and
changes a finite number of registers. The nth instruction is x0 ← xi ◦n xj, where
◦n ∈ {+,−,×,÷}, or x0 ← c for some constant c ∈ R. The register x0 will get
the value xi ◦n xj (i and j are the addresses from the current configuration) or c,
respectively. All other register entries remain unchanged. The next instruction
will be n+ 1; moreover, the copy-register i is either incremented by one, replaced
by 0, or remains unchanged. The same holds for copy-register j.

• shift: shift the contents of the tape one register to the left or to the right (one
can think of it as of moving the head of a TM).

• branch: compute a polynomial p : R∞ → R (depending on a finite number of
registers) and branch to different nodes depending on the result. The polynomial p
is fixed (it is not part of the corresponding branch-instruction, but is rather part
of the BSS machine), meaning that it depends only on the current tape content.

• copy: xi ← xj, i.e., the content of the register j is copied into the register i. The
next instruction is n+ 1; all other registers remain unchanged.

(ii) The size of an x ∈ Rk is sizeR(x) = k. The cost of any of the above operations is 1.
The cost of a computation is the number of operations performed until the machine halts.

16

2.6 The Real RAM Model

(iii) A set A ⊆ R∞ is called a decision problem or a language over R∞. We
call a function f : A→ R∞ (BSS-)computable if it is realized by a BSS machine over
admissible input set A. Similarly, a set A ⊆ R∞ is decidable in R∞ if its characteristic
function is computable.

Recall that the characteristic function of A is defined as

1A : R∞ → {0, 1}; 1A(x) =
{

1, x ∈ A,
0, x /∈ A.

A is said to be semi-decidable if there is a BSS machine that takes inputs from
R∞ and accepts precisely the elements belonging to A — on the elements not in A, the
machine either rejects or does not halt.

(iv) A BSS oracle machine using an oracle set B ⊆ R∞ is a BSS machine with an
additional type of node called an oracle node. Entering such a node, the machine can
ask the oracle whether the current tape content out(x) ∈ R∞ belongs to B. The oracle
gives the correct answer at unit cost.

In contrast to classical Turing machines, different instructions (e.g., computation and
head movements) are not performed simultaneously. There is no particular reason for it
in terms of computational power, but it allows for a more refined complexity analysis
and helps to distinguish between the “real” and discrete worlds.

Complexity classes, polynomial-time reductions, and universal machines can be
defined analogously to Turing machines.

Additionally, we are going to need a notion of a nondeterministic BSS machine.
We do not go into details of the formal definition of such a machine, but it works
similarly to the nondeterministic Turing machines. The nondeterminism can be used
for guessing the certificates y ∈ R∞ before a BSS machine starts its deterministic
computational process. This means that guessing the witnesses can be “outsorced” to
the nondeterministic mode: similarly to Turing machines, if there is a possibility for
a nondeterministic machine to accept, it will be used — i.e., if there exists a valid
solution y ∈ R∞ for a given problem instance, it will be written on the band in the
nondeterministic mode.

2.6. The Real RAM Model
Another suited computational model for dealing with real numbers is the real RAM
model, which is an extension of the word RAM model that can store real values and
perform (infinite precision) computations on them in constant space and time [EvM19].
The word RAM is a more realistic computational model resembling actual computers:
the memory is divided into blocks (registers) of a fixed size, it has a finite set of
instructions and an integer program counter [Mou02]. Moreover, computations take
more time on longer inputs [EvM19].

2.6.1. Definition of the Real RAM

The real RAM — or random access machine — has been the standard model in
computational geometry since late 1970s, however, the first formal definition of it was
given by Erickson, van der Hoog and Miltzow — our definition is thus strongly based
on it [EvM19].

17

2 Preliminaries

The memory of a real RAM consists of two sets of registers W [0..2w − 1] and
R[0..2w − 1], which are arrays with index access. The parameter w is called the word
size — it determines the number of registers and the maximum integer size (integers
are represented as sequences of w bits and are stored in the word registers W [i]):

W [i] ∈ {0, . . . , 2w − 1}, i ∈ {0, . . . , 2w − 1}.

The real registers R[i] can store real numbers with infinite precision: R[i] ∈ R.
A real RAM algorithm consists of a finite set of instructions. Furthermore, the real RA

machine has an integer program counter storing the number of the current instruction,
which is initially set to 1.

There is a central processing unit (CPU) performing operations on registers in
constant time. We differentiate between the instructions on the word and real registers.
The instructions such a machine is allowed to perform are of the following types
(each instruction can be parameterized by integers of valid size i, j, k ∈ N and a valid
instruction number l ∈ N).

Table 2.1: Allowed constant-time instructions for the real RAM model.
Table taken from [EvM19].

Type Word Real
Constants W [i]← j R[i] ← {0, 1}
Memory W [i]←W [j] R[i]← R[j]

W [W [i]]←W [j] R[W [i]]← R[j]
W [i]←W [W [j]] R[i]← R[W [j]]

Casting — R[i]← j
— R[i]←W [j]

Arithmetic and Boolean W [i]←W [j] ⊞W [k] R[i]← R[j]⊕R[k]
Comparisons if W [i] = W [j] goto l if R[i] = 0 goto l

if W [i] < W [j] goto l if R[i] > 0 goto l
Control flow goto l / halt / accept / reject

A key difference to the BSS model is indirect memory access (cf. memory instructions),
which facilitates the construction of some algorithms.

The model supports following arithmetic and Boolean operations ⊞ on the word
registers (x, y, z ∈W):

• addition:
x← y + z mod 2w;

• subtraction:
x← y − z mod 2w;

• lower multiplication:
x← y · z mod 2w;

• upper multiplication:
x←

⌊
yz

2w

⌋
;

18

2.6 The Real RAM Model

• rounded division:
x←

⌊
y

z

⌋
, where z ̸= 0;

• remainder:
x← y mod z, where z ̸= 0;

• bitwise NAND:

x← y ∧ z (i.e., xi ← yi ∧ zi for every bit-index i).

The real RAM model supports following exact operations ⊕ with real numbers
(x, y, z ∈ R):

• addition:
x← y + z;

• subtraction:
x← y − z;

• multiplication:
x← y · z;

• exact division:
x← y

z
, where z ̸= 0;

• (optional) exact square root:

x← √y, where y ≥ 0.

It is important to note that including rounding operations on real registers would
allow constant-time integer arithmetic with infinite precision. This, in turn, would
allow solving any problem from PSPACE in polynomial time — the model would be
too powerful [Sch79]. To avoid this, we explicitly forbid rounding (⌊·⌋), ceiling (⌈·⌉),
trigonometric and logarithmic functions.

The input of a real RAM has the form (a, b) ∈ Zm × Rn for some m,n ∈ N; we
require that the integer part of the input consists of the words of size w: ai ≤ 2w − 1
for i ∈ [m]. The input is encoded into the memory registers before the machine starts
its computation. Furthermore, we assume that there are enough registers to hold the
input: w ≥ log2(n+m) — this is so-called transdichotomous assumption. However, to
preserve uniformity, we need to require that the input sizes n and m, and the word size
w are not known to any algorithm at “compile time”.

The output is the memory content when the program executes the halt instruction.
The running time of a real RAM is the number of executed instructions before the
program halts.

19

2 Preliminaries

Figure 2.4: The real RAM model. Figure taken from [EvM19].

2.6.2. Equipping the Real RAM with Oracles and Nondeterminism

When it comes to extending the real RAM with oracles and nondeterminism, the most
straightforward way to do it would be analogously to the word RAM model. The
problem is, we are unaware of any published formal definition of such a model that
would suit our interests. The reason for that might be that the word RAM model is
more “realistic” — adding oracles and nondeterministic computation are abstract and
theoretical concepts.

Some papers implicitly use these concepts in the context of a word RAM, without
explicitly defining it [Cou23]. McKay and Williams [MW19] give a definition of a word
RAM with a random oracle, but their model has an oracle tape, an oracle head, and a
write-once output tape, which does not really fit into the concept of this computational
model. We therefore give our own definition of an oracle real RAM.

Definition 2.21 (Oracle real RAM). Let O be a language (or decision problem) over
{0, 1}∗. An oracle real RAM is a real RAM with an additional oracle instruction
and a Boolean register. An algorithm can query the oracle set O with the current content
of the word registers W by calling the oracle instruction, i.e., ask whether the word
registers’ content is contained in O. The oracle gives an answer in constant time; the
answer is written to the dedicated Boolean register.

It suffices to query the word registers’ content because the instances can be encoded
as integer vectors: real numbers are only needed for the variables’ values — variables
themselves contained in a given instance can be encoded using integers.

As for nondeterminism, we stay on a rather intuitive level and assume that it
works similarly to Turing machines. The nondeterminism can be used for guessing the
certificates y ∈ R∞ before a real RAM starts its deterministic computational process.
That is to say, a real RAM is allowed to write arbitrary real numbers into the real
registers in the nondeterministic mode. We say that the machine accepts if there is at
least one accepting execution path.

Note that if we are working with a nondeterministic real RAM, the input can be
restricted to an integer vector for encoding the instances (solutions are guessed in the
nondeterministic mode).

20

3. The Existential Theory of the Reals
and the Class ∃R

In this chapter, we introduce the existential theory of the reals (ETR for brevity) with
the corresponding complexity class ∃R, as well as provide some motivation on why
studying ∃R-complete problems is of scientific relevance. The notation used throughout
the sections mostly follows that of [Mat14].

3.1. The Existential Theory of the Reals
So far, we have dealt with discrete problems — the variables were Boolean or integers.
But what happens if we allow variables to be real numbers? The theory of the reals
tries to find an answer to this question by generalizing classical complexity theory.

The first-order theory of the reals is the set of all true sentences with polynomial
equations and inequalities as atoms (i.e., there are no free variables) over the real
numbers. It is denoted by Th(R). First-order means that we quantify over individual
elements — in our case, these are real numbers. Th(R) was proven to be decidable by
Tarski [Hen49] and was shown to lie in EXPSPACE [BKR86].

An example of such a sentence would be

∃x ∈ R ∀y ∈ R : x · x+ y · y > 0,

as the statement is true for every x ̸= 0.
The existential theory of the reals — denoted by ETR or Th∃(R) — is the existential

fragment of Th(R), that is, the set of all true existential sentences with polynomial
equations and inequalities as atoms.

Definition 3.1 (Existential theory of the reals, ETR). The problem ETR is defined as

ETR = {⟨φ(y1, . . . , yn)⟩ | ∃x1, . . . , xn ∈ R : φ(x1, . . . , xn) ≡ True},

where φ is a quantifier-free Boolean formula consisting of constants 0, 1, binary operators
+,−,×, relations <,≤,≥, >,=, ̸= and using ∧,∨,¬,↔ as connectives.

Remark 3.2. Later on, we say that a formula is from the theory of the reals if it
has the same signature as in the aforementioned definition.

In other words, ETR is a decision problem where we are given an existential sentence
on the input, and the output is yes if and only if the given sentence is true, meaning
that there exist variables satisfying φ, which is essentially a system of polynomial
equations and inequalities. Note that only constants 0 and 1 are allowed, implying that

21

3 The Existential Theory of the Reals and the Class ∃R

polynomials have integer coefficients (they can be written using the binary expansion),
although the variables range over the real numbers. One could also only allow one
direction of inequalities, e.g., < and ≤ (the expressions on the both sides can simply
be flipped), but we allow both directions for convenience.

Consider the following example of an ETR instance:

∃x, y ∈ R : x+ y ≤ 1 ∧ x ≥ 0 ∧ y ≥ 0.

The formula is satisfiable by any point within the triangle with vertices (0, 0), (0, 1), (1, 0)
in a Cartesian plane and is therefore a yes-instance.

ETR is often called a real-valued analog of Sat. It is not hard to see that the
existential theory of the reals is NP-hard because one can easily reduce a Sat-instance
to an ETR one [Sho90]. Furthermore, Canny showed the placement of ETR within
PSPACE in 1988 [Can88].

Since we are going to deal with polynomial reductions, a notion of formula size is
needed. The input size is measured by the length of the formula, i.e., the number of
symbols therein multiplied by a logarithmic factor. Although not explicitly allowed,
we write integer constants in decimal for convenience (e.g., 2 instead of 1 + 1), since it
does not increase the length crucially — one needs O(log k) bits for encoding k ∈ Z
using the binary expansion. For better readability, we use exponents as an abbreviation
for repeated multiplication, but the power operation is explicitly not allowed in the
theory of the reals. Moreover, one needs to be careful when working with polynomials.
For instance, the length of the polynomial (1 + x1) . . . (1 + xn) is linear in n, but if we
were to multiply it out, the length would become exponential

(
O(2n)

)
[Mat14].

3.2. The Class ∃R and ∃R-completeness
Just like ETR is called a real analog of Sat, the complexity class ∃R can be thought of as
a real analog of NP. In contrast to classical complexity theory, where NP-completeness
of Sat is proven, ∃R is usually defined directly by making ETR a complete problem.

Definition 3.3 (Complexity class ∃R). The complexity class ∃R is the set of all
problems reducible to ETR in polynomial time.

∃R := {L ⊆ {0, 1}∗ | L ≤p ETR}.

Note that languages in ∃R can still be encoded using the alphabet {0, 1}, which is
why this class is rather a discretized real analog of NP. The NP-hardness of ETR
gives us NP ⊆ ∃R; together with Canny’s result [Can88] we have

NP ⊆ ∃R ⊆ PSPACE.

But why are ∃R-complete problems so important? For Sat, we have “simple” expo-
nential algorithms — if instances are small enough, one can often solve problems in NP
“fast”. Conversely, the existential theory of the reals is deeply intertwined with algebraic
geometry — the best algorithms for solving this problem require knowledge from this
field of mathematics. Furthermore, we can only solve small instances of ∃R-complete
problems optimally in practice. Even exponential time algorithms are hard to find, and
they (almost) always rely on algebraic geometry.

22

3.3 Special Cases of ETR

Consider, for instance, the two-dimensional packing problem Pack, where we are
given a container, which is a square in R2, and polygonal items in R2. The question is:
can one fit the given items into the container by using rotation and translation?

Pack was shown to be ∃R-complete [AMS22]. Moreover, given an instance with
eleven (!) unit squares, we do not know how to fit them into a larger square container
optimally. Figure 3.1 illustrates the best-known solution for this instance.

Figure 3.1: The currently best-known packing of eleven unit squares [AMS22].

Euclidean distances are often irrational and require infinite precision — thus, real-
valued variables are needed and the corresponding problems are believed to be not in
NP anymore.

A lot of geometrical problems turn out to be ∃R-complete. One well-known example
is the art gallery problem [AAM17], a visibility problem from computational geometry.
It tries to minimize the number of guards (points in R2) who together can observe a
whole art gallery (a polygon in R2). A point is said to be guarded (or observed) if there
is a line segment connecting it with a guard and the segment stays within the polygon
representing the gallery.

Some other examples include various graph drawing problems [Jun23a], matrix
decomposition [Shi17], and even training neural networks. The latter result was shown
by Abrahamsen et al. [AKM21] and improved by Bertschinger et al. [Ber+22]; the
corollary being that if we could, for example, optimally solve the packing problem,
then we would also be able to optimally train neural networks since both problems are
∃R-complete.

3.3. Special Cases of ETR

To show the ∃R-completeness of other problems, we need polynomial reductions from
known ∃R-complete problems. When reducing directly from ETR, the systems of
polynomial equations and inequalities can become quite large, but we would like to
keep them in a — more or less — standard form. In this section, we take a look at some
special cases of the existential theory of the reals with additional restrictions retaining
∃R-completeness.

We begin with Ineq, a variation of ETR where φ is a conjunction of (not necessarily
strict) polynomial inequalities in standard form, i.e., written as a sum of monomials.
Since we allow non-strict inequalities, equations can be modeled as well (a = b is
equivalent to a ≤ b∧ b ≤ a). The connectives ∨,¬,↔ are not allowed. StrictIneq is a
further restriction of Ineq, where only strict inequalities are allowed; ≤,≥, and = are
forbidden.

23

3 The Existential Theory of the Reals and the Class ∃R

The feasibility problem FeasZR is another special case of Ineq asking whether a
single polynomial p ∈ Z[X1, . . . , Xn] has a zero. The Z in the superscript indicates that
the polynomial has integer coefficients; the R in the subscript that variables range over
the real numbers.

Quad is a restriction of ETR asking whether a set of quadratic polynomials has
a common zero. 4-FeasZR is a special case of FeasZR, where the degree of the given
polynomial does not exceed 4.

Another interesting variation of the existential theory of the reals is ETR-Inv. In this
problem, the question is if there exist variables x1, . . . , xn ∈ [1

2 , 2] such that constraints
C1, . . . , Cn are fulfilled. Each constraint Ci is either x+ y = z or xy = 1, where x, y, z
are some variables. The idea of proving the ∃R-completeness of this problem is to
simplify the formulae, scale the solutions, and to replace multiplication by inversion
[AM19]. This result can be used to show that Pack is ∃R-complete [AMS22]. We do
not go into details of these proofs since we do not need these problems for further work.

However, we show the ∃R-completeness of (4-)FeasZR, as this result is needed for
defining ∃R with a machine model. What is more, this fact implies that solving a
system of polynomial equations and inequalities over the real numbers is — up to a
polynomial-time reduction — computationally equivalent to solving a single polynomial
equation in many variables.

Definition 3.4 (k-feasibility problem, k-FeasZR). For k ∈ N, the k-FeasZR problem is

k-FeasZR = {⟨p(y1, . . . , yn)⟩ | ∃x1, . . . , xn ∈ R : p(x1, . . . , xn) = 0},

where p is a polynomial in n variables with integer coefficients of degree at most k:

p ∈ Z[X1, . . . , Xn], deg p ≤ k.

Definition 3.5 (Prenex normal form). A formula is in prenex normal form if it
has the following structure:

Q1x1 Q2x2 . . . Qnxn : φ(x1, . . . , xn),

where Q1, . . . , Qn are quantifiers and φ is a quantifier-free formula.

In order to convert an arbitrary formula to prenex form, one can simply push the
quantifiers outside. Additionally, one needs to “flip” the quantifier when pushing through
negation.

Theorem 3.6. 4-FeasZR and Quad are ∃R-complete.

Proof sketch. We follow the idea of [Mat14] and [SŠ17] to show the ∃R-completeness
of 4-FeasZR. We reduce from ETR and show

ETR ≤p Quad ≤p 4-FeasZR.

Let ∃x1, . . . , xn ∈ R : φ(x1, . . . , xn) be an existential sentence in prenex normal
form of length L from an ETR-instance. The goal is to transform it to an equivalent
4-FeasZR-instance of length O(L) in polynomial time. One can use the idea of the
so-called Tseitin transformation [Tse68] to construct quadratic polynomials pj with
new variables such that all of these polynomials are feasible if and only if the original
formula is satisifable:

24

3.3 Special Cases of ETR

∃x ∈ Rn : φ(x) ≡ True ⇐⇒ ∃x ∈ Rn, y ∈ Rm : ∧
j∈[k]

pj(x, y) = 0

for some m, k ∈ N.
For each subformula γ, we add a new existentially quantified real-valued variable

yγ — or multiple variables yγi , if needed — representing the value of γ. We process
the subformulae from the inner- to outermost and use various tricks to write them as
polynomial equations. As we proceed, a new equation is added for every subformula to
the constraints set Γ, which is initially empty.

We do not go into the details of the precise definition of a subformula or a subterm
and keep it on a rather intuitive level. Moreover, we index the polynomials with the
name of corresponding subformulae for convenience.

Any subterm s of φ can easily be replaced by a polynomial equation: for s = u ◦ v or
s = a, we add ps = u ◦ v − s or ps = s− a, respectively, where ◦ is any allowed binary
operation from {+,−,×}.

For a disjunction γ ≡ α∨β, the corresponding polynomial is pγ = yα + yβ − yαyβ − 1;
for a conjunction γ ≡ α∧ β, we add pγ = yαyβ − 1. The Boolean values are represented
by 1 and 0 for True and False, respectively. The negation γ ≡ ¬α is handled by
pγ = α since α = 0 is equivalent to ¬α = 1. The equivalence γ ≡ α ↔ β can be
emulated by (α ∧ β) ∨ (¬α ∧ ¬β).

For an equation γ ≡ a = b, we define pγ = ya − yb. Without loss of generality, we
consider only inequalities of the form a < b. For strict inequalities of the form a > b, one
can simply swap the sides; a non-strict inequality a ≤ b is equivalent to the disjunction
(a < b) ∨ (a = b). Let γ ≡ a < b. We define two polynomials:

pγ1 = yγ1 − y2
γ2 , (3.1)

pγ2 = (yb − ya)yγ1 − 1. (3.2)

If a < b, then yb − ya > 0 and we can choose yγ1 = y2
γ2 > 0 such that (yb − ya)yγ1 = 1,

which yields pγ1 = pγ2 = 0. Conversely, if pγ1 = pγ2 = 0, then we have:

{
yγ1 = y2

γ2 ,

(yb − ya)yγ1 = 1.
(3.3)

⇒ yb − ya = 1
yγ1

= 1
y2

γ2

> 0, (3.4)

implying that ya < yb.
Eventually, we add pφ = yφ − 1 to Γ. By construction, if φ(x) is true for a fixed x,

than there exist a variable assignment for y such that pj(x, y) = 0 for every pj ∈ Γ.
On the other hand, if pj(x, y) = 0 for all equations in Γ, then, in particular, yφ = 1,
meaning that φ(x) is true.

25

3 The Existential Theory of the Reals and the Class ∃R

The equations in Γ can be constructed in polynomial time. Furthermore, note that
we added no more than three variables and two polynomials for each subformula; the
length of the coefficients remained the same. Because φ has at most L subformulae
(the number cannot exceed the length of the formula), it follows that m ≤ 3L and
k ≤ 2L — the size of the new instance is linear in L.

Since the degree of the polynomials in Γ does not exceed two, we have constructed an
equivalent Quad instance, thereby showing that Quad is ∃R-hard. Moreover, Quad is
a special case of ETR — a Quad-instance is trivially an ETR one — and therefore
lies in ∃R. This gives us ∃R-completeness of Quad.

Finally, observe that a system of equations p = 0 ∧ q = 0 is equivalent to p2 + q2 = 0.
To obtain the desired 4-FeasZR-instance, we replace the equations in Γ by a single
polynomial equation p2

1 + · · ·+ p2
k = 0. This at most doubles the degree of polynomials

and the formula length, which means that we indeed get an equivalent 4-FeasZR-instance.
Again, 4-FeasZR is a restriction of ETR. Thus, 4-FeasZR is both ∃R-hard and lies in
∃R, meaning that this problem is ∃R-complete.

Corollary 3.7. FeasZR and Ineq are ∃R-complete.

The corollary follows immediately from Theorem 3.6. Since 4-FeasZR and Quad are
special cases of FeasZR and Ineq, respectively, the reductions in the above proof can
be used to construct the instances of the corresponding problems as well, giving us
∃R-hardness. On top of that, these problems are both restrictions of ETR, meaning
that they lie in ∃R and thus are ∃R-complete.

Remark 3.8. StrictIneq is ∃R-complete.

It suggests that solving a system of strict polynomial inequalities and a system of
arbitrary ones are computationally equivalent up to a polynomial time reduction. This
statement is not trivial and its proof requires a “reasonably difficult result” from real
algebraic geometry [Mat14].

3.4. Definition via BSS machines
Adding oracles is an operation on machines, not on languages. This means that if we
want to expand the class ∃R by giving it “oracle powers”, we need a definition using a
machine model. We begin by exploring the complexity classes defined via BSS machines.
The notation in this section is largely based on [BSS89].

3.4.1. Complexity Classes Over R

Definition 3.9 (Complexity class PR). The complexity class PR is the set of all
languages L ⊆ R∞ decidable by a deterministic BSS machine in polynomial time.

NPR contains all languages whose witness-checking problem lies in PR, that is, there
exists a certificate that can be verified by some BSS machine in polynomial time.

Definition 3.10 (Complexity class NPR). Let L ⊆ R∞. Then L ∈ NPR if there exists
a polynomial time BSS machine M and a polynomial p, such that for all x ∈ R∞:

x ∈ L ⇐⇒ ∃u ∈ Rp(|x|) : M(x, u) = 1.

26

3.4 Definition via BSS machines

Using nondeterminism, an alternative definition of NPR can be given.
Definition 3.11 (Complexity class NPR, alternative definition). The complexity class
NPR is the set of all languages decidable by a nondeterministic BSS machine in
polynomial time.

Note that the languages in NPR are over R∞, but the languages in ∃R are over
{0, 1}∗. We would like to discretize the classes defined by BSS machines in order to
obtain ∃R. This can be done in two steps.

Firstly, we allow BSS machines to work only with constants 0 and 1 (the constants
could also be bounded integers, the main restriction is that irrational or transcendental
constants are forbidden).
Definition 3.12 (Complexity classes P0

R and NP0
R). The complexity class P0

R is the
constant-free fragment of PR, that is, the set of all languages L ⊆ R∞ decidable by a
deterministic BSS machine with constants 0 and 1 in polynomial time.

Similarly, the complexity class NP0
R is the set of all languages L ⊆ R∞ whose

witnesses are verifiable by a BSS machine with constants 0 and 1 in polynomial time.
We are on a good path because the existential theory of the reals only allows constants

0 and 1 as well. Nevertheless, the languages in P0
R and NP0

R are still defined over the
infinite alphabet of the real numbers. This is where the second step comes into play:
we take the so-called Boolean part of the languages.
Definition 3.13 (Boolean part). The Boolean part of a language L ⊆ R∞ is its
intersection with the set {0, 1}∗:

BP(L) := L ∩ {0, 1}∗.
The Boolean part of a complexity class C over R consists of the Boolean parts of the

languages therein:
BP(C) := {L ∩ {0, 1}∗ | L ∈ C}.

In the context of the BSS model, this means that the admissible input set of the
corresponding BSS machine must be a subset of {0, 1}∗ × R∞. In other words, the
instances of the problems in BP(L) can be encoded in binary (or any other finite
alphabet); the witnesses are still from R∞.

When working with nondeterministic BSS machines, the admissible input set is
simply {0, 1}∗ for encoding the instances, but we need to allow access to real-valued
constants in the nondeterministic mode to be able to guess the witnesses.

One can write BP0(L) to indicate that both discretization steps are applied simulta-
neously. Now, consider the language BP(NP0

R). It seems to do the trick: it only allows
the constants 0 and 1 and is defined over the binary alphabet {0, 1}. Indeed, BP(NP0

R)
corresponds exactly to the complexity class ∃R. Nonetheless, this result is nontrivial
and will be shown in this section. First, it requires some theoretical preparation.

3.4.2. An Analog of the Cook–Levin Theorem for NPR

In their paper from 1989, where they introduced BSS machines, Blum, Shub, and Smale
also prove an analog of the Cook–Levin Theorem [BSS89]. The theorem states that
the 4-feasibility problem over R (4-FeasR), where the polynomials are allowed to have
real coefficients, is NPR-complete. The proof is quite complicated and technical; we
therefore need to take a closer look at the Blum–Shub–Smale model first.

27

3 The Existential Theory of the Reals and the Class ∃R

3.4.2.1. Under the Hood of a BSS Machine

For proving the real analog of the Cook–Levin theorem, we would like to express the
computational process of a BSS machine as a system of polynomial equations because it
allows an easier construction of a feasibility instance. For that purpose, some additional
definitions, elaborations, and technicalities are needed.

Recall Definition 2.20, where we introduced BSS machines. Let M be a BSS machine.
The Cartesian product of the instruction set with the state space I × S is called the
full state space of M . The computational process of M is described by a so-called
computational endomorphism H, defined by

H : I × S → I × S,
H(n, x) =

(
β(n, sgn x0), gn(x)

)
,

(3.5)

where β describes the next instruction and gn the next state (i.e., the tape content).
One can think of it as of the transition function of a Turing machine.

For a non-computational node n, the function gn leaves the tape content unchanged.
Otherwise, gn(x) is the computation result.

The signum function simply gives the sign of the element in the registry x0:

sgn : R→ {0,±1},

sgn y =

−1, y < 0,
0, y = 0,
1, y > 0.

(3.6)

The next instruction is defined as follows:

β : I × {0,±1} → I,

β(n, σ) =

N, n = N,

n+ 1, n < N and n is nonbranching,
β+(n), n is branching and σ ≥ 0,
β−(n), n is branching and σ < 0,

(3.7)

where (n+ 1) denotes the instruction from I with the corresponding label; β±(n) are
some nodes from the instruction set I and are specified in the corresponding branching
node n.

Yet, in our definition of a BSS machine, we say that a branching node computes
some polynomial and the branching occurs according to the result. Indeed, β can be
written as a polynomial function. For a node n ∈ I and the current instruction y, we
define an auxiliary polynomial

an(y) :=
∏

j∈I\{n}

y − j
n− j

=
{

1, y = n,

0, y ̸= n.
(3.8)

28

3.4 Definition via BSS machines

Thus, the next instruction β(y, σ) depending on the current instruction y and the
sign of the zeroth registry σ = sgn x0 is given by:

β(y, σ) =
∑

n∈I\B

an(y)(n+ 1)

+
(σ(σ + 1)

2 + (1 + σ)(1− σ)
)

︸ ︷︷ ︸
γ

∑
n∈B

an(y)β+(n)

+ σ(σ − 1)
2︸ ︷︷ ︸
δ

∑
n∈B

an(y)β−(n),

(3.9)

where B ⊆ I denotes the set of all branching nodes. Because an(y) = 0 for all nodes
distinct from y, all but one summands are equal to zero. To differentiate between β+

and β− depending on the sign of the zeroth registry x0, we introduce the terms γ and δ,
which are placed before the corresponding sums. Consider the following case distinction.

σ = 1: γ = 1 + 2 · 0 = 1,
δ = 0;

σ = 0: γ = 0 + 1 · 1 = 1,
δ = 0;

σ = −1: γ = 0 + 0 · 2 = 0,

δ = −1 · (−2)
2 = 1.

Thus, we have

γ =
{

1, σ ≥ 0,
0, σ < 0;

and δ =
{

1, σ < 0,
0, σ ≥ 0.

(3.10)

That is to say, β(y, σ) is either the next instruction (y + 1) (if y is a non-branching
node) or β±(y) depending on σ = sgn x0 otherwise. This gives us the equivalence of
(3.7) and (3.9).

To bring β into a pure polynomial form, we need to get rid of the signum function.
This can be done by introducing a new existentially quantified variable u ̸= 0 and
adding the equation

x0(x0u
2 + 1)(x0u

2 − 1) = 0. (3.11)

One can observe that x0 = 0 leads to x0u
2 = 0 and x0 > 0 (x0 < 0) enforces x0u

2 = 1
(x0u

2 = −1). Conversely, if x0u
2 = 0, then x0 must be 0 since u ̸= 0. Moreover, x0u

2 = 1
implies x0 = 1

u2 > 0. Analogously, x0u
2 = −1 enforces x0 = − 1

u2 < 0. Hence, x0u
2

corresponds to sgn x0.
For a BSS machine M , we denote the function that M computes by fM . Let nk ∈ I

denote the kth instruction of M . If nT = N for some T <∞, we call T the halting time.
More precisely, on the input y ∈ Y ⊆ R∞, we define

TM (y) := T (y) := min{T ∈ N | nT = N}

29

3 The Existential Theory of the Reals and the Class ∃R

as the halting time for M to compute fM (y).
We can now describe the computational process of BSS machines by a system of

polynomial equations. The computation of a machine M with input y ∈ Y is described
by a sequence (zk)k∈N0 , zk = (nk, x

(k)) ∈ I × S, z0 =
(
1, in(y)

)
, zk = H(zk−1), k ∈ N,

where x(k) denotes the tape content at the time point k. The system
n0 = 1,
x(0) = in(y),
(nk, x

(k)) = H(nk−1, x
(k−1)), k ∈ N;

(3.12)

is called the registry equations of M . The third equation means that the current
instruction nk and the tape content x(k) are given by the computational endomorphism
H (3.5) with the previous instruction and tape content as input.

The time T halting equations is the system
n0 = 1,
x(0) = in(y),
(nk, x

(k)) = H(nk−1, x
(k−1)), k ∈ [T],

nT = N ;

(3.13)

that is, the machine M reaches the final instruction N after T steps. In this case, the
equation

out
(
x(T)) = fM (y) (3.14)

is satisfied. Using the preparation above, one can rewrite these equations as follows:

n0 = 1,
x(0) = in(y),
nT = N,

x
(k−1)
0 (x(k−1)

0 u2
k−1 + 1)(x(k−1)

0 u2
k−1 − 1) (3.11)= 0,

nk
(3.11)= β(nk−1, x

(k−1)
0 u2

k−1),
x(k) (3.5)= gnk−1(x(k−1)), k ∈ [T].

(3.15)

We call the last three equations the transition equations of M .

3.4.2.2. The Blum–Shub–Smale Theorem

Definition 3.14 (Real k-feasibility problem, k-FeasR). For k ∈ N, the k-FeasR
problem is

k-FeasR = {⟨p(y1, . . . , yn)⟩ | ∃x1, . . . , xn ∈ R : p(x1, . . . , xn) = 0},

where p is a polynomial in n variables with real coefficients of degree at most k:
p ∈ R[X1, . . . , Xn], deg p ≤ k.

Theorem 3.15 (Blum, Shub, Smale. Analog of the Cook–Levin theorem for NPR
[BSS89]). 4-FeasR is NPR-complete.

30

3.4 Definition via BSS machines

Proof sketch. Let A ⊆ R∞ be an arbitrary decision problem in NPR. We need a
polynomial-time reduction to 4-FeasR. The idea is similar to the one in the proof
of the Cook–Levin theorem: we abstract from the concrete problem and consider the
corresponding BSS machine M that can verify solutions to A in polynomial time. Recall
that A ∈ NPR if there exists a polynomial time BSS machine M and a polynomial p,
such that for all y ∈ R∞:

y ∈ A ⇐⇒ ∃y′ ∈ Rp(|y|) : M(y, y′) = 1.

The admissible input set Y of M is YA × Rm for some m ∈ N, YA is the set of all
correctly encoded instances of A. The halting time T of M is polynomial in the input
size: T = poly(|y|).

We want to describe the computational process of M by a system of polynomial
equations, which can then be transformed to construct a 4-FeasR-instance. In the
previous subsection, we discussed some aspects of how to do it.

Consider the time T halting equations (3.15) of M (in our case, x(0) = in(y, y′)). We
extend this system by the equation

out
(
x(T)) = 1 (yes), (3.16)

which is equivalent to

x
(T)
0 − 1 = 0. (3.17)

The new system consisting of the time T halting equations of M and the equation
(3.17) has a solution if and only if M accepts the input y, i.e., y is a yes-instance of A
(y ∈ A). This system of polynomial equations is easily convertible to a single polynomial
equation of degree at most four — one can simply follow the proof idea of Theorem 3.6
and use the Tseitin transformation. We thus get an equivalent 4-FeasR-instance. We
denote the transformed instance by ψ(y):

ψ(y) ∈ 4-FeasR ⇐⇒ y ∈ A.

The original system has polynomially many equations in T , the transformed instance
is linear in the size of the original system, thus, |ψ(y)| = poly(T). Since T = poly(|y|),
we get |ψ(y)| = poly(|y|). Furthermore, the transformation ψ can be performed in
polynomial time, inferring that it is indeed a polynomial-time reduction and 4-FeasR
is NPR-hard.

It remains to show that 4-FeasR ∈ NPR. Given a solution y′ ∈ R∞, we need to test
if p(y′) = 0 for a polynomial p ∈ R[X1, . . . , Xn] of degree at most four. Since deg p ≤ 4,
we can evaluate p(y′) in polynomial time with a BSS machine. Such a polynomial
can be encoded in R∞ using the so-called power-free representation. The encoding
starts with (4, n), followed by a sequence of pairs (α, cα)α∈Λ, where α = (α1, . . . , α4),
αi ∈ {0, . . . , n}, αi ≤ αi+1, cα ∈ R, and Λ is an index set for enumerating the sequences.
The pair (α, cα) represents the monomial cαxα1xα2xα3xα4 , with cα being the coefficient,

31

3 The Existential Theory of the Reals and the Class ∃R

xαi representing one of the n variables and x0 = 1 to allow for monomials of degree
less than four. The pairs are ordered lexicographically on α. The polynomial p can be
thus written as

p(x) =
∑
α∈Λ

cαxα1xα2xα3xα4 .

The length of the encoding is polynomial in the length of p written in the standard
form.

Remark 3.16 ([Tri90]). k-FeasR ∈ PR for k ≤ 3.

In 1990, Triesch introduced a polynomial-time algorithm for solving k-FeasR for
k ≤ 3 [Tri90]. This means that the minimal degree k for the NPR-completeness of the
k-feasibility problem is four.

3.4.3. Defining ∃R

After a quite cumbersome preparation, we can finally define the complexity class ∃R
using BSS machines as the computational model. Namely, ∃R corresponds exactly to
the discretized version of NPR.

Theorem 3.17 ([BC06], [SŠ23]). ∃R = BP(NP0
R).

Proof sketch. We follow the idea of [SŠ23] and show that 4-FeasZR is a complete problem
for BP(NP0

R). Since the same problem is also ∃R-complete (Theorem 3.6), it implies
that ∃R = BP(NP0

R).
For the BP(NP0

R)-completeness of 4-FeasZR, we follow the proof of Bürgisser and
Cucker [BC06]. To obtain a polynomial-time reduction from an arbitrary problem in
BP(NP0

R) to 4-FeasZR, one can use the same idea as in the proof of the real analog of
Cook–Levin theorem (Theorem 3.15). We take the corresponding BSS machine with
constants 0 and 1 verifying the solutions to the given problem, express its computational
process with a system of polynomial equations and construct a 4-FeasZR-instance. It
works because the reduction in the mentioned proof does not use any other constants
than 0 and 1. Hence, 4-FeasZR is BP(NP0

R)-hard.
It remains to justify that 4-FeasZR ∈ BP(NP0

R). Given a solution to a 4-FeasZR-
instance, we can verify it with a BSS machine with constants 0 and 1 in polynomial time.
We can use the power-free representation to encode polynomials as in Theorem 3.15.
The computational power suffices because the polynomial coefficients are now integers:
they can be encoded with logarithmic length using binary expansion.

Putting everything together yields the BP(NP0
R)-completeness of 4-FeasZR.

3.5. Definition via Real RAM
Even though BSS machines are a decent candidate for defining ∃R with a computational
model, the ∃R-membership of the most problems from computational geometry is proven
using the real RAM model. The reason is that BSS machines do not support the integer
operations necessary to implement some simple algorithms [EvM19]. Moreover, the
BSS model — in contrast to the real RAM — does not support indirect memory access,
which complicates constructing a verification algorithm using it [EvM19].

32

3.5 Definition via Real RAM

Erickson, van der Hoog and Miltzow show an analog of the Cook–Levin theorem for
the real RAM, which allows us to give another alternative definition of the class ∃R
[EvM19].

Definition 3.18 (Real verification algorithm). Let L ⊆ {0, 1}∗ be a decision problem.
We say that L has a real verification algorithm if for every x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃ polynomial-time real RAM R, witness y ∈ Rp(|x|) : R(x, y) = 1

for some polynomial p.

Definition 3.19 (Complexity class ∃R, alternative definition with real RAM). The
complexity class ∃R is the set of all decision problems over {0, 1}∗ with a real verification
algorithm.

The equivalence of this and the previous definitions follows from the following
theorem.

Theorem 3.20 (Erickson et al. [EvM19]). Let L ⊆ {0, 1}∗ be a decision problem. Then

L ∈ ∃R ⇐⇒ L has a real verification algorithm.

Proof sketch. We follow the proof of [EvM19] and show that ETR is complete for the
complexity class containing all problems with a real verification algorithm.

“⇒”: Let L ∈ ∃R, that is, L ≤p ETR per definition. We therefore need to show
that ETR has a real verification algorithm: an instance of L can be transformed to an
ETR-instance in polynomial time and then verified using the algorithm. Let

∃x1, . . . , xn ∈ R : φ(x1, . . . , xn)

be a sentence from the existential theory of the reals. Note that such an instance
uses a finite alphabet of size n+ O(1) (n variables and a fixed amount of connectors,
operators, and constants), meaning that we can encode the instance as an integer vector
a ∈ Zm for some m ∈ N. Having a solution y = (y1, . . . , yn) ∈ Rn, we can verify that
φ(y1, . . . , yn) ≡ True in polynomial time — with respect to the formula length — on
a real RAM, e.g., by using a standard recursive-descent parser (i.e., we process the
subformulae from the outer- to innermost).

“⇐”: Let L ⊆ {0, 1}∗ be a decision problem with a real verification algorithm, that is,
for every x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃ real RAM R, witness y ∈ Rp(|x|) : R(x, y) = 1

for some polynomial p.
The idea mirrors the one from the Cook–Levin theorem: we take the real RAM R

verifying the solutions for L and express its computational process with a system of
polynomial equations and Boolean formulae. We thus obtain an ETR instance which
is a yes-instance if and only if the original instance is a yes-instance. Furthermore,
the newly constructed instance is polynomial in the length of the original one and
the construction can be performed in polynomial time on a word RAM (or a Turing
machine). For the construction details of such ETR instance, we refer the reader to
[EvM19]. This shows that L ≤p ETR, hence, L ∈ ∃R.

33

4. The (Discrete) Real Polynomial Hier-
archy

In this chapter, we introduce the real polynomial hierarchy and its discretized version.
Furthermore, we define it using oracle BSS and real random access machines, which is a
central result of the thesis. The notation used throughout the chapter is quite common,
although it does not follow any source precisely — it was rather adapted to fit the
context of the work.

Just like the Boolean satisfiability problem can be extended for the different levels of
the classical polynomial hierarchy, the existential theory of the reals can be extended to
obtain the real polynomial hierarchy. We begin by exploring the co-class of ∃R — the
complexity class ∀R.

4.1. The Universal Theory of the Reals and the Class ∀R

Recall the existential theory of the reals

ETR = {⟨φ(y1, . . . , yn)⟩ | ∃x1, . . . , xn ∈ R : φ(x1, . . . , xn) ≡ True},

containing all solvable systems of polynomial equations and inequalities with integer
coefficients. To obtain its complement — the universal theory of the reals — one simply
negates the condition.

Definition 4.1 (Universal theory of the reals, UTR). The problem UTR is defined as

UTR := {⟨φ(y1, . . . , yn)⟩ | ∀x1, . . . , xn ∈ R : φ(x1, . . . , xn) ≡ True},

where φ is a quantifier-free Boolean formula from the theory of the reals.

In other words, the universal theory of the reals consists of all systems of polynomial
equations and inequalities with integer coefficients that are true independently from
the choice of the variables.

Definition 4.2 (Complexity class ∀R). The complexity class ∀R is the set of all
problems reducible to UTR in polynomial time.

∀R := {L ⊆ {0, 1}∗ | L ≤p UTR}.

35

4 The (Discrete) Real Polynomial Hierarchy

4.2. Extensions of ETR and UTR as Complete Problems
To obtain the discretized real polynomial hierarchy, one can extend the existential and
universal theory of the reals by adding quantifiers.

Definition 4.3 (Σi-ETR, Πi-UTR). Let φ(y1, . . . , yi) be a formula from the theory
of the reals (cf. Remark 3.2). Moreover, each yk is a vector of real-valued variables:
yj ∈ Rnj (j ∈ [i], nj ∈ N).

For i ∈ N0, we define

Σi-ETR := {⟨φ(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : φ(z1, . . . , zi) ≡ True},

Πi-UTR := {⟨φ(y1, . . . , yi)⟩ | ∀z1∃z2 . . . Pizi : φ(z1, . . . , zi) ≡ True},

where Qi =
{
∀, i is even,
∃, i is odd;

and Pi =
{
∃, i is even,
∀, i is odd.

We could also define Πi-UTR as the set of all false formulae over the same quantifiers
structures as in the definition above for the sake of consistency with the Sat problem,
which is defined to contain all unsatisfiable Boolean formulae. Technically, it would not
make any difference, since one could simply define a new formula ψ ≡ ¬φ, which flips
the truth values — thus, the equivalence of the definitions follows. Nevertheless, the
universal theory of the reals is conventionally defined as the set of all true sentences.

The discrete real polynomial hierarchy is defined by making the corresponding
versions of ETR and UTR complete problems.

Definition 4.4 (Discrete real polynomial hierarchy, DRPH). For i ∈ N0, we define

(i) ΣiRZ := {L ⊆ {0, 1}∗ | L ≤p Σi-ETR},

(ii) ΠiRZ := {L ⊆ {0, 1}∗ | L ≤p Πi-UTR},

(iii) DRPH := ⋃
i∈N0 ΣiRZ.

That is to say, the discrete real polynomial hierarchy is the union over all hierarchy
levels ΣiRZ. Note that the languages therein are still defined over the binary alphabet
{0, 1} — therefore the name discrete. This is indicated by Z in the subscript.

To obtain the non-discretized version, one can allow real-valued constants in the formu-
lae, but the usual way to define the real polynomial hierarchy is via BSS machines — this
is done in further sections.

4.3. Properties of DRPH
For the lower levels of the hierarchy (i.e., for small i), it is common to use the quantifier
notation since it reflects the intuition behind the problem structure therein. Moreover,
the discrete real polynomial hierarchy can be defined recursively using this notation.

36

4.3 Properties of DRPH

Notation.

Σ0RZ = Π0RZ = ∅R;

Σ1RZ = ∃R = NPZ
R, Π1RZ = ∀R = coNPZ

R;

Σ2RZ = ∃∀R, Π2RZ = ∀∃R;

Σ3RZ = ∃∀∃R, Π3RZ = ∀∃∀R;
.
ΣiRZ = ∃Πi−1RZ, ΠiRZ = ∀Σi−1RZ.

With this notation, it is not hard to see that the properties of the classical poly-
nomial hierarchy (Observation 2.11) also hold for DRPH.

Observation 4.5. For i ∈ N:

(i) ΠiRZ = coΣiRZ,

(ii) ΣiRZ ⊆ Σi+1RZ and ΣiRZ ⊆ Πi+1RZ,

(iii) ΠiRZ ⊆ Πi+1RZ and ΠiRZ ⊆ Σi+1RZ,

(iv) DRPH = ⋃
i∈N0 ΠiRZ = ⋃

i∈N0 ΣiRZ.

The relation between the co-classes in different levels of the hierarchy is quite
interesting. For i ∈ N, the intersection ΣiRZ ∩ΠiRZ is non-empty since both classes
contain the previous level of the hierarchy. Furthermore, the polynomial identity testing
problem (PIT) was shown to lie in ∃R ∩ ∀R [Jun23b]. Conversely, it makes sense to
believe that ΣiRZ ̸= ΠiRZ, as the hierarchy would collapse to the ith level otherwise.

Claim 4.6. If ΣiRZ = ΠiRZ for some i ∈ N, then the hierarchy collapses to the ith
level, that is,

∀j > i ∈ N : ΣjRZ = ΠjRZ = ΣiRZ = ΠiRZ.

Proof. We showcase the idea by proving the claim for the first level of the hierarchy.
Suppose that ∃R = ∀R. Then, ∃∀R = ∃∃R = ∃R, as two consecutive existential

blocks can be merged into one. Similarly, ∀∃R = ∀∀R = ∀R = ∃R. To show the equality
of the higher levels, one can start by “flipping” the last quantifier and merging it with
the penultimate one. By doing this iteratively, one can eventually eliminate all but one
quantifiers, ending up in the first level. For instance:

∃ ∀ . . . ∀ ∃R︸︷︷︸
∀R︸ ︷︷ ︸

∃R

= ∃R.

The cases with different first or last quantifier are handled analogously.
If the equality ΣiRZ = ΠiRZ holds for larger i, one can use the same idea to prove

the collapsing to the ith level.

37

4 The (Discrete) Real Polynomial Hierarchy

∃R ∀R

∃∀R ∀∃R

∃∀∃R ∀∃∀R

Figure 4.1: The discrete real polynomial hierarchy. The arrows denote inclusion.

4.4. Generalization of the Feasibility Problem
To define the DRPH with BSS machines, we would like to generalize our definition of
the class ∃R (Theorem 3.17). The feasibility problem (Definition 3.4) can be generalized
to obtain a complete problem for an arbitrary level of the hierarchy.

Recall that Sat is the set of all unsatisfiable Boolean formulae. Analogously, the
complement of the feasibility problem is defined to contain all infeasible polynomials,
that is, polynomials with no zeros.

Definition 4.7 (Generalized k-(in)feasibility problem, Σi-k-(In)FeasZR). Let y1, . . . , yi

be the vectors of real-valued variables: yj ∈ Rnj (j ∈ [i], nj ∈ N).

For i, k ∈ N, the Σi-k-(In)FeasZR problem for the ith level of the hierarchy is

Σi-k-FeasZR = {⟨p(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : p(z1, . . . , zi) = 0},
Σi-k-InfeasZR = {⟨p(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : p(z1, . . . , zi) ̸= 0}.

where p is a polynomial in n := ∑i
j=1 nj variables with integer coefficients of degree at

most k:

p ∈ Z[X1, . . . , Xn], deg p ≤ k,

and Qi =
{
∀, i is even,
∃, i is odd.

One can similarly define these problems for the co-classes ΠiRZ — we start with a
universal quantifier and the whole quantifier structure is flipped.

Definition 4.8 (Πi-k-(In)FeasZR). Let y1, . . . , yi be the vectors of real-valued variables:
yj ∈ Rnj (j ∈ [i], nj ∈ N).

For i, k ∈ N, the Πi-k-(In)feasZR problem for the ith level of the hierarchy is

Πi-k-FeasZR = {⟨p(y1, . . . , yi)⟩ | ∀z1∃z2 . . . Qizi : p(z1, . . . , zi) = 0},
Πi-k-InfeasZR = {⟨p(y1, . . . , yi)⟩ | ∀z1∃z2 . . . Qizi : p(z1, . . . , zi) ̸= 0}.

where p is a polynomial in n := ∑i
j=1 nj variables with integer coefficients of degree at

most k:

p ∈ Z[X1, . . . , Xn], deg p ≤ k,

38

4.4 Generalization of the Feasibility Problem

and Qi =
{
∃, i is even,
∀, i is odd.

By drawing analogies to the classical polynomial hierarchy and the corresponding
Sat and Sat versions, one might intuitively think that the introduced versions of
the feasibility and infeasibility problems Σi-k-FeasZR and Πi-k-InfeasZR can be easily
shown to be complete for the classes ΣiRZ and ΠiRZ, respectively. Alas, it is not quite
the case.

In fact, Σi-k-Feas and Σi-k-Infeas are alternately complete for ΣiRZ, depending
on the parity of i; the same goes for the Πi-k-(In)FeasZR problem and ΠiRZ. The
reason is that the last quantifier plays a role as well, therefore a case distinction is
needed.
Definition 4.9 (Σi-PolyZ

R, Πi-PolyZ
R). For i ∈ N, we define

Σi-PolyZ
R :=

{
Σi-4-FeasZR, i is odd (Qi = ∃),
Σi-4-InfeasZR, i is even (Qi = ∀);

Πi-PolyZ
R :=

{
Πi-4-InfeasZR, i is odd (Qi = ∀),
Πi-4-FeasZR, i is even (Qi = ∃).

Theorem 4.10. Let i ∈ N. Then
(i) Σi-PolyZ

R is ΣiRZ-complete,

(ii) Πi-PolyZ
R is ΠiRZ-complete.

Proof sketch. We mainly follow the idea of Matoušek [Mat14], with slight modifications
for our case distinction.

(i): We reduce from Σi-ETR. Let

∃x1∀x2 . . . Qixi : φ(x) = φ(x1, . . . , xi)
!≡ True

be an Σi-ETR-sentence. Each xj is a real-valued vector — the domain is omitted for
better readability.

If the last quantifier is existential (Qi = ∃), we can directly use the proof idea of
Theorem 3.6: we apply the Tseitin transformation to get a feasibility instance, the
existential block with new variables can simply be merged with the last one.

If the last quantifier is universal (Qi = ∀), we doubly negate our sentence and, at
first, apply only the inner negation — thus, the last quantifier becomes existential and
φ must evaluate to False. We can then apply the Tseitin transformation, but the last
added polynomial is pφ = yφ to ensure that yφ = 0, i.e., φ ≡ False. Finally, we apply
the outer negation and get an infeasibility instance. To illustrate the idea, consider the
following example.

∃x∀y : φ(x, y) ≡ True
⇐⇒ ¬

(
¬[∃x∀y : φ(x, y) ≡ True]

)
⇐⇒ ¬

(
∀x∃y : φ(x, y) ≡ False

)
Tseitin⇐⇒ ¬

(
∀x∃y, z : p(x, y, z) = 0

)
⇐⇒ ∃x∀y, z : p(x, y, z) ̸= 0.

39

4 The (Discrete) Real Polynomial Hierarchy

The higher levels of the hierarchy (i.e., with more quantifiers), are handled analogously
since only the last quantifier block matters for the transformation.

With this case distinction, we obtain exactly a Σi-PolyZ
R-instance — the prob-

lem is thus ΣiRZ-hard. Furthermore, Σi-PolyZ
R is a special case of Σi-ETR. Hence,

Σi-PolyZ
R lies in ΣiRZ and is ΣiRZ-complete.

(ii): We reduce from Πi-UTR. Let

∀x1∃x2 . . . Qixi : φ(x) = φ(x1, . . . , xi)
!≡ True

be a Πi-UTR-sentence.
If the last quantifier is existential (Qi = ∃), we can apply the Tseitin transformation

directly and get a feasibility instance.
Conversely, if the last quantifier is universal (Qi = ∀), we use the same idea as in (i)

with double negation and the Tseitin transformation to obtain an infeasibility instance.
We thus obtain a Πi-PolyZ

R-instance. Using the same argumentation as in (i), the
problem is ΠiRZ-complete.

4.5. The Real Polynomial Hierarchy
Recall that BSS machines define “unrestricted” — that is, the real-valued constants are
allowed — complexity classes over R (Section 3.4.1). In this section, we consider the
hierarchy defined via this computational model — the (non-discretized) real polynomial
hierarchy.

We have already defined the classes PR (Def. 3.9) and NPR (Def. 3.10) — the latter
one contains all languages with the witness-checking problem in PR, but we restate the
definition here for the convenience of the reader.

A language L ⊆ R∞ is in NPR if there exists a polynomial time BSS machine M and
a polynomial p, such that for all x ∈ R∞:

x ∈ L ⇐⇒ ∃u ∈ Rp(|x|) : M(x, u) = 1.

Similarly to the classical polynomial hierarchy, one can extend this definition to an
arbitrary (but finite) number of alternating quantifiers and obtain the real polynomial
hierarchy.

Definition 4.11 (Real polynomial hierarchy, RPH). Let i ∈ N, L ⊆ R∞. L ∈ ΣiR if
there exists a polynomial time BSS machine M and a polynomial p such that:

x ∈ L ⇐⇒ ∃u1 ∈ Rp(|x|) ∀u2 ∈ Rp(|x|) . . . Qiui ∈ Rp(|x|) : M(x, u1, . . . , ui) = 1,

where |x| = sizeR(x) (Definition 2.20 (ii)), i.e., |x| is the dimensionality of the vector

x, and Qi =
{
∀, i is even,
∃, i is odd.

Similarly, L ∈ ΠiR if there exists a polynomial time BSS machine M and a poly-
nomial p such that:

x ∈ L ⇐⇒ ∀u1 ∈ Rp(|x|) ∃u2 ∈ Rp(|x|) . . . Qiui ∈ Rp(|x|) : M(x, u1, . . . , ui) = 1,

40

4.6 Corresponding Versions of the Real (In-)Feasibility Problem

where Qi =
{
∃, i is even,
∀, i is odd.

The real polynomial hierarchy is the union over the hierarchy levels (Σ0R = PR):

RPH := ⋃
i∈N0 ΣiR.

It is not hard to see that the properties of the classical PH (Observation 2.11) and
the discrete real polynomial hierarchy (Observation 4.5) also hold for the non-restricted
version of the hierarchy.

As a convention for the notation, we use the same one as in Section 4.3, but we omit
the Z in the subscript since the classes are not restricted anymore and the real-valued
constants can be used.

Notation.

Σ0R = Π0R = PR;

Σ1R = NPR, Π1R = coNPR;
.
ΣiR = ∃Πi−1R, ΠiR = ∀Σi−1R.

4.6. Corresponding Versions of the Real (In-)Feasibility
Problem

To define the DRPH with BSS machines, one can use the same idea as in Theorem 3.17.
We show that there is a problem that is complete for a class CZ in the DRPH and for
the discretized version of the corresponding complexity class in the real polynomial
hierarchy BP0(C), which implies the equality of the classes CZ = BP0(C).

We choose Σi-PolyR and Πi-PolyR as suitable problems, which are the unrestricted
versions — i.e., the polynomials are allowed to have real coefficients — of Σi-PolyZ

R
and Πi-PolyZ

R (Definition 4.13), respectively. For the convenience of the reader, we
define these problems formally in this section as well.

Definition 4.12 (Generalized real k-(in)feasibility problem, Σi-k-(In)FeasR). Let
y1, . . . , yi be the vectors of real-valued variables: yj ∈ Rnj (j ∈ [i], nj ∈ N).

For i, k ∈ N, the Σi-k-(In)FeasR problem for the ith level of the hierarchy is

Σi-k-FeasR = {⟨p(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : p(z1, . . . , zi) = 0},
Σi-k-InfeasR = {⟨p(y1, . . . , yi)⟩ | ∃z1∀z2 . . . Qizi : p(z1, . . . , zi) ̸= 0}.

where p is a polynomial in n := ∑i
j=1 nj variables with real coefficients of degree at

most k:

p ∈ R[X1, . . . , Xn], deg p ≤ k,

and Qi =
{
∀, i is even,
∃, i is odd.

41

4 The (Discrete) Real Polynomial Hierarchy

The problem Πi-k-(In)FeasR is defined analogously, but we start with a universal
quantifier and the whole quantifier structure is flipped (cf. Definition 4.8).
Definition 4.13 (Σi-PolyR, Πi-PolyR). For i ∈ N, we define

Σi-PolyR :=
{

Σi-4-FeasR, i is odd (Qi = ∃),
Σi-4-InfeasR, i is even (Qi = ∀);

Πi-PolyR :=
{

Πi-4-InfeasR, i is odd (Qi = ∀),
Πi-4-FeasR, i is even (Qi = ∃).

We have already shown that the discretized versions of these problems — Σi-PolyZ
R

and Πi-PolyZ
R — are complete for their corresponding classes ΣiRZ and ΠiRZ, re-

spectively (Theorem 4.10). To finish the definition of DRPH with BSS machines, it
remains to show that these problems are also complete for the discretized versions of the
corresponding classes of RPH. We show the completeness of Σi-PolyR and Πi-PolyR
for the unrestricted RPH first, as the idea is easily transferable to the discretized case.
Theorem 4.14. Let i ∈ N. Then

(i) Σi-PolyR is ΣiR-complete,

(ii) Πi-PolyR is ΠiR-complete.
Proof sketch. We distinguish depending on the last quantifier. If the last quantifier is ex-
istential, we simply apply the proof idea of the real Cook–Levin theorem (Theorem 3.15).
For an arbitrary problem in ΣiR (ΠiR), we take the corresponding BSS machine ver-
ifying the witnesses and co-witnesses in polynomial time, express its computational
process with a system of polynomial equations and thus obtain a Σi-FeasR (Πi-FeasR)
instance.

Now consider the case where the last quantifier is universal. Recall that L ⊆ R∞ is
in ΣiR (ΠiR) if there exists a polynomial time BSS machine M and a polynomial p
such that:

x ∈ L⇔ ∃(∀)u1 ∈ Rp(|x|) . . . ∀ui ∈ Rp(|x|) : M(x, u1, . . . , ui) = 1.

We use the same idea as in Theorem 4.14. Firstly, doubly negate the statement and
apply the inner negation to convert the last quantifier to be existential. Note that
in the negated statement M does not accept. That is to say, we can apply the proof
idea of the real Cook–Levin theorem to express M ’s computation with a system of
polynomial equations, but the last added equation would be out(x(T)) = 0 to ensure
that M(x, u) ̸= 1. We then apply the outer negation, thereby constructing the desired
Σi-InfeasR (Πi-InfeasR) instance.

x ∈ L⇔ ¬
(
¬[∃(∀)u1 ∈ Rp(|x|) . . . ∀ui ∈ Rp(|x|) : M(x, u1, . . . , ui) = 1]

)
⇔ ¬

(
∀(∃)u1 ∈ Rp(|x|) . . . ∃ui ∈ Rp(|x|) : M(x, u1, . . . , ui) ̸= 1

)
⇔ ¬

(
∀(∃)u1 ∈ Rp(|x|) . . . ∃ui, v ∈ Rp(|x|) : p(x, u, v) = 0)

⇔ ∃(∀)u1 ∈ Rp(|x|) . . . ∀ui, v ∈ Rp(|x|) : p(x, u, v) ̸= 0.

Finally, Σi-PolyR and Πi-PolyR lie in ΣiR and ΠiR, respectively, yielding the
completeness.

42

4.7 Definition of (D)RPH Using Oracle BSS Machines

Theorem 4.15. For i ∈ N:

(i) ΣiRZ = BP0(ΣiR),

(ii) ΠiRZ = BP0(ΠiR).

Proof sketch. The idea is to show that Σi-PolyZ
R (Πi-PolyZ

R) is complete for both
ΣiRZ (ΠiRZ) and BP0(ΣiR) (BP0(ΠiR)). The first statement was already shown in
Theorem 4.10. To prove the latter claim, we simply use the reduction from the proof of
Theorem 4.14 since it does not use any other constants than 0 and 1 (cf. Thm. 3.17).

4.7. Definition of (D)RPH Using Oracle BSS Machines
Finally, all technical and formal preparations have been finished and we are ready
to define the DRPH using the BSS oracle model. Fortunately for us, the proof
will resemble the one from the oracle definition of the classical polynomial hierarchy
(cf. Theorem 2.19) — one needs to merely replace Turing machines with the BSS
model, choose the appropriate complete problems as oracle sets (that is, Σi-PolyR
and Πi-PolyR instead of corresponding versions of Sat); and the variables’ domain is
R instead of {0, 1}. Apart from that, the proof structure remains the same.

We first formulate an oracle definition of the unrestricted RPH — it can be easily
adapted for the discretized hierarchy.

Definition 4.16 (Real polynomial hierarchy, RPH. Alternative definition using oracles).
Having coNPR = Π1R, we define for i ∈ N:

Σi+1R := NPΣiR
R ,

Πi+1R := coNPΣiR
R .

The following theorem shows the equivalence of this definition to Definition 4.11.

Theorem 4.17. For i ≥ 2, ΣiR = NPΣi−1-PolyR
R . That is, ΣiR is the set of all

languages decidable by a polynomial time nondeterministic BSS machine with access to
a Σi−1-PolyR-oracle.

Proof. We proceed by induction on i.

Base case (i = 2). We need to show that Σ2R = NPΣ1-PolyR
R (= NP4-FeasR

R).
“⊆”: Suppose L ∈ Σ2R, i.e., there exists a polynomial time BSS machine M and a

polynomial p such that:

x ∈ L ⇐⇒ ∃u1 ∈ Rp(|x|) ∀u2 ∈ Rp(|x|) : M(x, u1, u2) = 1.

We observe that for fixed x and u1, the remaining statement is a coNPR-statement
and can thus be determined by a 4-FeasR-oracle. This means that we can construct a
nondeterministic BSS machine N with a 4-FeasR-oracle deciding L: on the input x,
we guess u1 nondeterministically and then use the oracle to check if

∀u2 ∈ Rp(|x|) : M(x, u1, u2) = 1.

43

4 The (Discrete) Real Polynomial Hierarchy

This works since x ∈ L if and only if there exists such u1 that makes N accept.
“⊇”: Suppose L ∈ NP4-FeasR

R , meaning that L is decidable by a nondeterministic
polynomial time 4-FeasR-oracle BSS machine. Since the nondeterminism is used for
guessing the solutions, this is equivalent to the existence of a witness y verifiable by a
deterministic BSS machine N with a 4-FeasR-oracle:

x ∈ L ⇐⇒ ∃y ∈ Rp(|x|) : N4-FeasR(x, y) = 1

for some polynomial p.
The idea is to simulate the oracle using the additional ∀ quantifier. On each query qi,

if qi ∈ 4-FeasR, then there exists a witness y′ containing a satisfying assignment for qi,
that is, an assignment that sets qi to zero. Conversely, if qi /∈ 4-FeasR, then qi ̸= 0 for
every assignment.

We construct a BSS machine M without an oracle to simulate N . The new witness
y′ contains the original witness y and, additionally, the answers ai ∈ {0, 1} to oracle
queries qi. If the answer is positive (ai = 1), then y′ also contains a satisfying assignment
si ∈ R∞ for qi, i.e., qi(si) = 0. If the answer is negative (ai = 0), then the “co-witness”
z′ should contain an unsatisfiable assignment ui for the query. Thus, the “co-witness”
z′ represents (all) possible assignments for the queries with a negative answer. We can
now construct the BSS machine M formally.

Algorithm 4.1: Simulating an oracle BSS machine with a co-witness.
Input: x ∈ R∞, witness y′, co-witness z′, encoding of N .
Output: 1 if M accepts, 0 otherwise.

1 simulate N (copy every step till an oracle query)
2 if N makes oracle query qi then
3 if ai = 1, verify that si is contained in y′ and qi(si) = 0
4 if ai = 0, reject if ui in z′ is a satisfying assignment for qi, i.e., qi(ui) = 0
5 continue the simulation of N (step 1)
6 if all verifications are successful and N accepts, accept
7 else reject

We have:

x ∈ L ⇐⇒ ∃y′ ∈ Rp(|x|) ∀z′ ∈ Rp(|x|) : M(x, y′, z′) = 1

for some polynomial p.
Note that TIME(N) = poly(|x|), meaning that there are at most polynomially many

oracle queries qi. Furthermore, an assignment contains one value for each variable of
the formula encoded in |x|, which means its length does not exceed the input length:
|si| = |ui| ≤ |x|. We thus get |y′|, |z′| ≤ poly(|x|), i.e., the witness y′ and the co-witness
z′ are polynomial in the input size.

Putting everything together yields L ∈ Σ2R.

Induction assumption. Σi−1R = NPΣi−2-PolyR
R for an arbitrary but fixed i > 2, i.e., any

language in NPΣi−2-PolyR can be written with (i− 1) alternating quantifiers, starting
with an existential one.

Induction step. We need to show that ΣiR = NPΣi−1-PolyR
R .

44

4.7 Definition of (D)RPH Using Oracle BSS Machines

“⊆”: The left inclusion is again easy. Let L be in ΣiR and recall that

x ∈ L ⇐⇒ ∃u1 ∈ Rp(|x|) ∀u2 ∈ Rp(|x|) . . . Qiui ∈ Rp(|x|) : M(x, u1, . . . , ui) = 1.

Just like in the base case, for fixed x and u1, the remaining statement is a coΣi−1R-
statement and can thus be verified with a Σi−1-PolyR-oracle.

“⊇”: The right inclusion requires a little bit more work, but we follow the same
idea as in the base case. Suppose L ∈ NPΣi−1-PolyR

R , that is, L is decidable by a
nondeterministic polynomial time Σi−1-PolyR-oracle BSS machine, which is equivalent
to the existence of a witness y verifiable by a deterministic BSS machine N with a
Σi−1-PolyR-oracle:

x ∈ L ⇐⇒ ∃y ∈ Rp(|x|) : NΣi−1-PolyR(x, y) = 1

for some polynomial p.
We want to construct a BSS machine M without an oracle for simulating N . The

new witness y′ contains the original witness y and, additionally, the answer aj ∈ {0, 1}
for each query qj . If aj = 1, — that is, qj ∈ Σi−1-PolyR — then

∃y′
j,1 ∈ Rp(|x|) ∀y′

j,2 ∈ Rp(|x|) : TΣi−2-PolyR
1 (qj , y

′
j,1, y

′
j,2) = 1

for some BSS machine T1 with access to a Σi−2-PolyR-oracle and some polynomial p.
By induction assumption, we can simulate T1 with alternating quantifiers and a BSS

machine without an oracle, meaning that we can “unfold” the above statement — we
omit the variables’ domain Rp(|x|) for better readability:

∃y′
j,1 ∀y′

j,2 . . . Qi−1y
′
j,i−1 : y′

j,1, . . . , y
′
j,i−1 is a satisfying assignment for qj .

Conversely, if aj = 0 (qj /∈ Σi−1-PolyR), then

∀z′
j,2 ∈ Rp(|x|) ∃z′

j,3 ∈ Rp(|x|) : TΣi−2-PolyR
2 (qj , z

′
j,2, z

′
j,3) = 1

for some BSS machine T2 with a Σi−2-PolyR-oracle and some polynomial p.
Again, by induction assumption, we can simulate T2 with an oracle-free BSS machine

and thereby unfold the above statement (the domain is omitted):

∀z′
j,2 ∃z′

j,3 . . . Qiz
′
j,i : z′

j,2, . . . , z
′
j,i is not a satisfying assignment for qj .

Note that in the latter case we numerate the quantifiers from 2 to i — this is done
for convenience. One can merge the two statements by reformulating:

∃y′
j,1 ∀(y′

j,2, z
′
j,2) . . . Qi−1(y′

j,i−1, z
′
j,i−1)Qiz

′
j,i :

(aj = 1 AND y′
j,1, . . . , y

′
j,i−1 is a satisfying assignment for the query qj)

OR
(aj = 0 AND z′

j,2, . . . , z
′
j,i is not a satisfying assignment for the query qj).

This means that we have the desired quantifiers structure. We can now construct the
BSS machine M for simulating the oracle formally.

45

4 The (Discrete) Real Polynomial Hierarchy

Algorithm 4.2: Simulating a Σi−1-PolyR-oracle BSS machine with an
oracle-free BSS machine.

Input: x ∈ R∞, (co-)witnesses y′ and z′, encoding of N .
Output: 1 if M accepts, 0 otherwise.

1 simulate N (copy every step till an oracle query)
2 if N makes oracle query qj then
3 if aj = 1, verify that y′

j,1, . . . , y
′
j,i−1 in y′ is a satisfying assignment for qj

4 if aj = 0, reject if z′
j,2, . . . , z

′
j,i in z′ is a satisfying assignment for qj

5 continue the simulation of N (step 1)
6 if all verifications are successful and N accepts, accept
7 else reject

This gives us

x ∈ L ⇐⇒ ∃y′
1 ∀(y′

2, z
′
2) . . . Qi−1(y′

i−1, z
′
i−1) Qiz

′
i : M(x, y′

1, . . . , z
′
i) = 1.

The argumentation for the polynomial length of the (co-)witnesses is the same as in
the base case. We thus get L ∈ ΣiR, which finishes the proof.

Note that we do not use real-valued constants (in fact, we do not use any other
constants than 0 and 1) in the above proof — it is thus can be used to define DRPH.

Corollary 4.18 (Alternative definition of DRPH using oracles). For i ∈ N, we define:

Σi+1RZ = ∃RΣiRZ ,

Πi+1RZ = ∀RΣiRZ .

To prove the corollary, one simply uses the idea of the above proof, but chooses the
discretized versions of the problems as oracle sets — that is, Σi−1-PolyZ

R instead of
the unrestricted version Σi−1-PolyR.

Alternatively, one can discretize both sides of the equations from the oracle definition
of RPH (Definition 4.16) — when discretizing a complexity class defined via an oracle
model, both the base and the oracle classes are discretized:

Σi+1RZ = BP0(Σi+1R)
= BP0(NPΣiR

R)
= BP0(NPR)ΣiRZ

= ∃RΣiRZ .

4.8. Definition of DRPH with the (Oracle) Real RAM

Since the algorithmic membership in ∃R is usually proven using the real RAM, it
makes sense to consider this model for the higher levels of DRPH as well — it might
facilitate the construction of verification algorithms. In this section, we take a look on
how DRPH can be defined with the real RAM and its oracle extension.

46

4.9 The Zeroth Level of the Hierarchy

Theorem 4.19 (Alternative definition of DRPH with real RAM). Let L ⊆ {0, 1}∗,
i ∈ N. L ∈ ΣiRZ if there exists a polynomial time real RAM R and a polynomial p such
that for every x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u1 ∈ Rp(|x|) ∀u2 ∈ Rp(|x|) . . . Qiui ∈ Rp(|x|) : R(x, u1, . . . , ui) = 1,

where Qi =
{
∀, i is even,
∃, i is odd.

Similarly, L ∈ ΠiRZ if there exists a polynomial time real RAM R and a polyno-
mial p such that for every x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∀u1 ∈ Rp(|x|) ∃u2 ∈ Rp(|x|) . . . Qiui ∈ Rp(|x|) : R(x, u1, . . . , ui) = 1,

where Qi =
{
∃, i is even,
∀, i is odd.

Proof sketch. To prove the theorem, one can simply use the analog of the Cook–Levin
theorem for the real RAM (Theorem 3.20). Note that its proof does not use any
assumptions on how the (co-)witnesses in the input are quantified. Dobbins et al.
[DKMR23] use this observation to show the validity of this definition for the class ∀∃R,
but it can easily be extended to the higher levels of DRPH. This means that we can
simply transfer the proof to an arbitrary quantifier structure, thereby showing the
completeness of Σi-ETR and Πi-UTR for the corresponding complexity classes defined
using the real RAM model and (co-)witnesses. Recall that Σi-ETR and Πi-UTR are
per definition complete for ΣiRZ and ΠiRZ, respectively — thus, the equivalence of
the definitions follows.

Having the oracle real RAM, one can prove Corollary 4.18 using it. The proof is
entirely analogous to the one of Theorem 4.17, but one can choose Σi-ETR directly
as the oracle set — without supplementary case distinctions or reductions. Note that
no further restrictions or discretization steps are needed since one obtains the result
directly for the desired classes, which is another advantage of using the oracle real
RAM model:

Σi+1RZ = ∃RΣi-ETR = ∃RΣiRZ ,

Πi+1RZ = ∀RΣi-ETR = ∀RΣiRZ .

4.9. The Zeroth Level of the Hierarchy
So far, we have considered the higher levels of DRPH. We have shown that ΣiRZ =
BP0(ΣiR) and ΠiRZ = BP0(ΠiR) for i ∈ N (Theorem 4.15). One might intuitively
think that this result also holds for the zeroth level, that is, ∅R ?= BP(P0

R). Alas, it is
presumably not the case.

In fact, there is no unique candidate for the zeroth level of DRPH — both ∅R
and BP(P0

R) are valid contenders for this “position”. In this section, we discuss the
advantages and disadvantages of choosing each class.

47

4 The (Discrete) Real Polynomial Hierarchy

The complexity class ∅R is defined by making Σ0-PolyZ
R a complete problem. Since

there are no free variables and no quantified ones, there are no real-valued variables
at all — the problem simply consists of evaluating a polynomial expression with no
variables and checking whether it is (un)equal to zero. An example of such an instance
would be

1 · 1 + 0 · 1− 1 = 0.

The problem is equivalent to the Circuit Value Problem (CVP), which deals with
evaluating the output of a given Boolean circuit on a given input — or an arithmetic
circuit since both computational models are equivalent over Q and finite fields [vS91].

A problem is said to be P-complete if it lies in P and any other problem in P
can be reduced to it. However, to define P-completeness, one needs more restrictive
reductions — polynomial time reductions do not suffice because any non-trivial problem
in P would also be P-complete.

There are two common choices for such reductions. The first one are log-space
reductions — that is, the reductions computable by a deterministic Turing machine
in polynomial time with logarithmic extra space usage [AB06]. It is important to
note that the TM is still allowed to read the input and write the output and is not
“charged space” for it. Formally, one can define a dedicated model for space-bounded
computation, which is suited for performing log-space reductions. It is called a log space
transducer (LST) and is a Turing machine with a read-only input tape, (logarithmically)
space-bounded read/write work tapes and a write-once output tape [Sze94]. Note that
it is not necessary to require the runtime to be polynomial since such a machine always
runs in polynomial time [Sze94].

Another option are so-called NC reductions (or Nick’s Class, named after Nicholas
Pippenger [Pip79]) that are computable in polylogarithmic time

(
O(logc n)

)
on poly-

nomially many processors
(
O(nk)

)
for some constants c, k ∈ R; n denotes the input

size.
The CVP was shown to be P-complete under log-space reductions, that is, it lies

in P and every other problem in P is reducible to CVP in polynomial time using
logarithmic space [Lad75]. Since the same problem is per definition ∅R-complete, it
follows that ∅R = P.

When it comes to the unrestricted class PR, the problem Σ0-PolyR becomes the
Real Circuit Value Problem (CVPR), where the circuit is allowed to have real-valued
input [BC09], which was shown to be PR-complete under NC reductions by Cucker
and Torrecillas [CT91].

Let us now consider the problem PosSLP (positive straight-line program), where
we are given an arithmetic circuit with constants {0, 1} and operations {+,−,×}
computing an integer N and we need to decide whether N > 0. Note that the are no
variables in the input.

Theorem 4.20 (Allender et al. [AKBM06]). BP(P0
R) = PPosSLP.

Proof sketch. We follow the proof of [AKBM06].

“⊇”: We simulate a classical Turing machine with a BSS machine. On a query to
the PosSLP oracle, we can evaluate the circuit using the BSS model in polynomial
time and use a branching instruction to determine whether the result is positive.

48

4.9 The Zeroth Level of the Hierarchy

“⊆”: We simulate the computational process of the BSS machine, but do not compute
the results directly. The registers’ content (state space) is stored as arithmetic circuits.
For simulating an operation on registers, we combine two corresponding circuits to a
new one. For division, we have two separate circuits for the nominator and denominator.
To simulate a branching instruction, we query the PosSLP oracle to determine whether
the content of a given register (represented by an arithmetic circuit) is positive.

The intuitive reason why restricted BSS machines are more powerful than classical
Turing machines — even if we take real numbers out — is the branching instruction
allowing to check whether the content of a given register is positive. The real RAM
possesses such branching instruction as well, meaning that one can apply the proof
idea to show the same result for the zeroth level defined with the real RAM. That is to
say, if one were to define the zeroth level using the real RAM model, the result would
still be BP(P0

R) (or PPosSLP), analogously to the BSS model.
Allender et al. [AKBM06] showed the placement of PosSLP within the counting

hierarchy CH [AW97]:

PosSLP ∈ PPPPPPP
⊆ CH.

PP stands for probabilistic polynomial time and denotes the complexity class of
all problems solvable by a probabilistic Turing machine with an error probability of
less than 1

2 [Gil77]. A probabilistic Turing machine is a TM that can choose the next
configuration based on some probability distribution [Gil77].

Furthermore, Toda showed that PH ⊆ PPP. This means that PP is “as hard as the
polynomial hierarchy”: PP does not lie in PH unless PH collapses to a finite level
[Tod91]. This implies that PPP is probably unequal to P, hence, PosSLP /∈ P and
PPosSLP ̸= P.

This gives us reason to believe that BP(P0
R) ̸= ∅R (unless the polynomial hierarchy

collapses):

BP(P0
R) = PPosSLP

?
̸= P = ∅R.

The question remains how one should define the zeroth level of DRPH. On the one
hand, if we define the hierarchy via complete problems, the consistent way to define
the predecessor of ∃R and ∀R would be to define it as ∅R. However, it does not add
any additional interest to studying this class since ∅R = P.

On the other hand, if we define DRPH using BSS machines or the real RAM, it
would be sensible to define the zeroth level as BP(P0

R) = PPosSLP — note that BP(P0
R)

is contained both in BP(NP0
R) and BP(coNP0

R); moreover, the class is presumably
more “powerful” than the classical P.

49

5. Conclusion

The thesis aimed at defining the discrete real polynomial hierarchy DRPH with an
oracle model — we have accomplished this task using both BSS machines and the real
RAM model.

We discussed how the aforementioned computational models can be extended with
an oracle: we summarized the existing results for oracle BSS machines and introduced
the oracle real RAM — this is an important contribution of this work. We then showed
how the complexity class ∃R can be defined with BSS machines and the real RAM.
This is attained with the help of real analogs of the Cook-Levin theorem, which we
have explored deeply for the BSS model. Eventually, we defined DRPH with oracle
BSS and real random access machines, which is a central result of the thesis.

While the definition with oracle BSS machines seems more natural because of the
proximity to oracle Turing machines, the definition via the oracle real RAM is more
practical since the model is considered the standard in computational geometry.

5.1. Future Work
Having these definitions, it can be easier to explore higher levels of DRPH — until
now, most research was focused on the first two levels; little research has been done for
the third and higher levels.

Furthermore, the oracle definitions allow the usage of the “oracle” superscript notation,
e.g., ∀R∃R. It facilitates the exploration of so-called hybrid classes from DRPH, where
some quantifiers are Boolean, because it allows an easier construction of verification
algorithms for membership proofs. For instance, deciding the existence of an evolutionary
stable strategy in multi-player symmetric games lies in ∃∀R, but real-valued variables
in the existential block are not needed [BH22], meaning that we could write NP∀R. It
might be interesting to investigate which problems from higher levels of DRPH may
have Boolean “intermediate stages”.

It is known that PH ⊆ DRPH ⊊ RPH, where the statement holds for each
level of the corresponding hierarchies, e.g., NP ⊆ ∃R ⊊ NPR. The interplay be-
tween different hierarchies — i.e., how similar or different are the classes from the
corresponding levels — is worth considering for future research. We have seen that
DRPH = BP0(RPH) — again, the discretization steps are applied to each level.
Another thought-provoking idea would be to examine what happens if only one dis-
cretization step is applied to RPH, that is, how powerful are BP(RPH) and RPH0.

One might also contemplate experimenting with different types of oracles, e.g., by
extending BSS machines or the real RAM with a random oracle and inspecting how
powerful such computational models would be.

51

Bibliography

[AAM17] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. “The
Art Gallery Problem is ∃R-complete”. In: CoRR Volume abs/1704.06969
(2017). arXiv: 1704.06969 .

[AB06] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2006. ISBN: 978-0-521-42426-4.

[AKBM06] E. Allender, J. Kjeldgaard-Pedersen, P. Burgisser, and P. Miltersen. “On
the complexity of numerical analysis”. In: 21st Annual IEEE Conference
on Computational Complexity (CCC’06). 2006, 9 pp.–339. DOI: 10.1109 /
CCC.2006.30 .

[AKM21] Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. “Training
Neural Networks is ER-complete”. In: CoRR Volume abs/2102.09798
(2021). arXiv: 2102.09798 .

[AM19] Mikkel Abrahamsen and Tillmann Miltzow. “Dynamic Toolbox for ETRINV”.
In: CoRR Volume abs/1912.08674 (2019). arXiv: 1912.08674 .

[AMS22] Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework
for ∃R-Completeness of Two-Dimensional Packing Problems. 2022. arXiv:
2004.07558 .

[AW97] Eric Allender and Klaus Wagner. “Counting Hierarchies: Polynomial Time
And Constant Depth Circuits”. In: Volume 40 (Nov. 1997).

[BC06] Peter Bürgisser and Felipe Cucker. “Counting complexity classes for
numeric computations II: Algebraic and semialgebraic sets”. In: Journal
of Complexity Volume 22 (2006), pp. 147–191. ISSN: 0885-064X. DOI:
https://doi.org/10.1016 /j.jco.2005.11.001 .

[BC09] Peter Bürgisser and Felipe Cucker. “Exotic Quantifiers, Complexity Classes,
and Complete Problems”. English. In: Foundations of Computational
Mathematics Volume 9 (Apr. 2009), pp. 135–170. ISSN: 1615-3375. DOI:
10.1007 /s10208-007-9006-9 .

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and real computation. Berlin, Heidelberg: Springer-Verlag, 1998. ISBN:
0387982817.

[Ber+22] Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Milt-
zow, and Simon Weber. Training Fully Connected Neural Networks is
∃R-Complete. 2022. arXiv: 2204.01368 .

53

https://arxiv.org/abs/1704.06969
https://doi.org/10.1109/CCC.2006.30
https://doi.org/10.1109/CCC.2006.30
https://arxiv.org/abs/2102.09798
https://arxiv.org/abs/1912.08674
https://arxiv.org/abs/2004.07558
https://doi.org/https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1007/s10208-007-9006-9
https://arxiv.org/abs/2204.01368

Bibliography

[BGS75] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of the
P =? NP Question”. In: SIAM Journal on Computing Volume 4 (1975),
pp. 431–442. eprint: https://doi.org/10.1137 /0204037 .

[BH22] Manon Blanc and Kristoffer Arnsfelt Hansen. Computational Complexity
of Multi-Player Evolutionarily Stable Strategies. 2022. arXiv: 2203.07407 .

[BKR86] Michael Ben-Or, Dexter Kozen, and John H. Reif. “The Complexity of
Elementary Algebra and Geometry”. In: J. Comput. Syst. Sci. Volume 32
(1986), pp. 251–264. DOI: 10.1016 /0022-0000(86)90029-2 .

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. “On a theory of computation
and complexity over the real numbers: NP-completeness, recursive func-
tions and universal machines”. In: Bulletin (New Series) of the American
Mathematical Society Volume 21 (1989), pp. 1–46.

[Can88] John Canny. “Some Algebraic and Geometric Computations in PSPACE”.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing. Chicago, Illinois, USA: Association for Computing Machinery,
1988, pp. 460–467. ISBN: 0897912640. DOI: 10.1145 /62212.62257 .

[CKM10] Wesley Calvert, Ken Kramer, and Russell G. Miller. “The Cardinality of
an Oracle in Blum-Shub-Smale Computation”. In: Proceedings Seventh
International Conference on Computability and Complexity in Analysis,
CCA 2010, Zhenjiang, China, 21-25th June 2010. Edited by Xizhong Zheng
and Ning Zhong. Vol. 24. 2010, pp. 56–66. DOI: 10.4204 /EPTCS.24.10 .

[Cou23] Michael Coulombe. You’re Too Slow! The Case for Constant-time Algo-
rithms. 2023.

[CT91] Felipe Cucker and A. Torrecillas. “Two P-Complete Problems in the
Theory of the Reals”. In: Proceedings of the 18th International Colloquium
on Automata, Languages and Programming. Berlin, Heidelberg: Springer-
Verlag, 1991, pp. 556–565. ISBN: 3540542337.

[DKMR23] Michael Gene Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł
Rzążewski. “Completeness for the Complexity Class ∀∃R and Area- Uni-
versality”. In: Discrete & Computational Geometry Volume 70 (July 2023),
pp. 154–188. ISSN: 1432-0444. DOI: 10.1007 /s00454-022-00381-0 .

[EvM19] Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. “A Frame-
work for Robust Realistic Geometric Computations”. In: CoRR Vol-
ume abs/1912.02278 (2019). arXiv: 1912.02278 .

[Gil77] John Gill. “Computational Complexity of Probabilistic Turing Machines”.
In: SIAM J. Comput. Volume 6 (Dec. 1977), pp. 675–695. ISSN: 0097-5397.
DOI: 10.1137 /0206049 .

[Hen49] Leon Henkin. “Alfred Tarski. A decision method for elementary algebra and
geometry. U. S. Air Force Project Rand, R-109. Prepared for publication by
J. C. C. McKinsey. Litho-printed. The Rand Corporation, Santa Monica,
California, 1948, iii 60 pp.” In: Journal of Symbolic Logic Volume 14
(1949), pp. 188–188. DOI: 10.2307 /2267068 .

[Jun23a] Paul Jungeblut. On the Complexity of Lombardi Graph Drawing. 2023.
arXiv: 2306.02649 .

54

https://doi.org/10.1137/0204037
https://arxiv.org/abs/2203.07407
https://doi.org/10.1016/0022-0000(86)90029-2
https://doi.org/10.1145/62212.62257
https://doi.org/10.4204/EPTCS.24.10
https://doi.org/10.1007/s00454-022-00381-0
https://arxiv.org/abs/1912.02278
https://doi.org/10.1137/0206049
https://doi.org/10.2307/2267068
https://arxiv.org/abs/2306.02649

Bibliography

[Jun23b] Tim Junginger. Robustness of the Discrete Real Polynomial Hierarchy.
2023.

[Lad75] Richard E. Ladner. “The circuit value problem is log space complete for
P”. In: SIGACT News Volume 7 (Jan. 1975), pp. 18–20. ISSN: 0163-5700.
DOI: 10.1145 /990518.990519 .

[Mat14] Jiří Matoušek. Intersection graphs of segments and ∃R. 2014. arXiv: 1406.
2636 .

[Mou02] Lucia Moura. “Introduction to the theory of NP-completeness”. In: Uni-
versity of Ottawa Lectures (2002).

[MW19] Dylan M. McKay and Richard Ryan Williams. “Quadratic Time-Space
Lower Bounds for Computing Natural Functions with a Random Oracle”.
In: 10th Innovations in Theoretical Computer Science Conference (ITCS
2019). Edited by Avrim Blum. Vol. 124. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 56:1–56:20. ISBN: 978-
3-95977-095-8. DOI: 10.4230 /LIPIcs.ITCS.2019.56 .

[MZ05] Klaus Meer and Martin Ziegler. “An Explicit Solution to Post’s Problem
over the Reals”. In: Fundamentals of Computation Theory. Edited by
Maciej Liśkiewicz and Rüdiger Reischuk. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 467–478. ISBN: 978-3-540-31873-6.

[ODo17] Ryan O’Donnell. Undergraduate Complexity Theory. Carnegie Mellon
University, 2017.

[Pip79] Nicholas Pippenger. “On simultaneous resource bounds”. In: 20th An-
nual Symposium on Foundations of Computer Science (sfcs 1979). 1979,
pp. 307–311. DOI: 10.1109 /SFCS.1979.29 .

[Sch79] Arnold Schönhage. “On the power of random access machines”. In: Au-
tomata, Languages and Programming. Edited by Hermann A. Maurer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1979, pp. 520–529. ISBN:
978-3-540-35168-9.

[Shi17] Yaroslav Shitov. “The Complexity of Positive Semidefinite Matrix Factor-
ization”. In: SIAM Journal on Optimization Volume 27 (2017), pp. 1898–
1909. eprint: https://doi.org/10.1137 /16M1080616 .

[Sho90] Peter W. Shor. “Stretchability of Pseudolines is NP-Hard.” In: Applied
Geometry And Discrete Mathematics, Proceedings of a DIMACS Workshop,
Providence, Rhode Island, USA, September 18, 1990. Edited by Peter
Gritzmann and Bernd Sturmfels. Vol. 4. DIMACS/AMS, 1990, pp. 531–
554. DOI: 10.1090 /DIMACS/004 /41 .

[SŠ17] Marcus Schaefer and Daniel Štefankovič. “Fixed Points, Nash Equilibria,
and the Existential Theory of the Reals”. In: Theory of Computing Systems
Volume 60 (Feb. 2017). DOI: 10.1007 /s00224-015-9662-0 .

[SŠ23] Marcus Schaefer and Daniel Štefankovič. Beyond the Existential Theory
of the Reals. 2023. arXiv: 2210.00571 .

[Sto76] Larry J. Stockmeyer. “The polynomial-time hierarchy”. In: Theoretical
Computer Science Volume 3 (1976), pp. 1–22. ISSN: 0304-3975.

55

https://doi.org/10.1145/990518.990519
https://arxiv.org/abs/1406.2636
https://arxiv.org/abs/1406.2636
https://doi.org/10.4230/LIPIcs.ITCS.2019.56
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.1137/16M1080616
https://doi.org/10.1090/DIMACS/004/41
https://doi.org/10.1007/s00224-015-9662-0
https://arxiv.org/abs/2210.00571

Bibliography

[Sze94] Andrzej Szepietowski. “Turing Machines with Sublogarithmic Space”. In:
Lecture Notes in Computer Science. 1994.

[Tod91] Seinosuke Toda. “PP is as Hard as the Polynomial-Time Hierarchy”. In:
SIAM Journal on Computing Volume 20 (1991), pp. 865–877. eprint:
https://doi.org/10.1137 /0220053 .

[Tri90] Eberhard Triesch. “A note on a theorem of Blum, Shub, and Smale”. In:
Journal of Complexity Volume 6 (1990), pp. 166–169. ISSN: 0885-064X.
DOI: https://doi.org/10.1016 /0885-064X(90)90004-W .

[Tse68] G. S. Tseitin. “On the complexity of derivation in the propositional
calculus”. In: Zap. Nauchn. Semin. LOMI, Leningrad: Nauka Volume 8
(1968), pp. 234–259 (in Russian).

[vS91] Joachim von zur Gathen and Gadiel Seroussi. “Boolean circuits ver-
sus arithmetic circuits”. In: Information and Computation Volume 91
(1991), pp. 142–154. ISSN: 0890-5401. DOI: https://doi.org/10.1016 /0890-
5401(91)90078-G.

56

https://doi.org/10.1137/0220053
https://doi.org/https://doi.org/10.1016/0885-064X(90)90004-W
https://doi.org/https://doi.org/10.1016/0890-5401(91)90078-G
https://doi.org/https://doi.org/10.1016/0890-5401(91)90078-G

	Introduction
	Related Work
	Outline

	Preliminaries
	The Classes NP and coNP
	The Classes p2 and p2
	The Polynomial Hierarchy
	Alternative Definitions of PH
	Complete Problems for pi and pi
	Oracle Machines

	The Blum–Shub–Smale Model
	The Real RAM Model
	Definition of the Real RAM
	Equipping the Real RAM with Oracles and Nondeterminism

	The Existential Theory of the Reals and the Class R
	The Existential Theory of the Reals
	The Class R and R-completeness
	Special Cases of ETR
	Definition via BSS machines
	Complexity Classes Over R
	An Analog of the Cook–Levin Theorem for NPR
	Defining R

	Definition via Real RAM

	The (Discrete) Real Polynomial Hierarchy
	The Universal Theory of the Reals and the Class R
	Extensions of ETR and UTR as Complete Problems
	Properties of DRPH
	Generalization of the Feasibility Problem
	The Real Polynomial Hierarchy
	Corresponding Versions of the Real (In-)Feasibility Problem
	Definition of (D)RPH Using Oracle BSS Machines
	Definition of DRPH with the (Oracle) Real RAM
	The Zeroth Level of the Hierarchy

	Conclusion
	Future Work

	Bibliography

