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Abstract

A k-local book embedding consists of a linear ordering of the vertices of a graph and
a partition of its edges into sets of edges, called pages, such that any two edges on
the same page do not cross and every vertex has incident edges on at most k pages.
Here, two edges cross if their endpoints alternate in the linear ordering. The local
page number pl(G) of a graph G is the minimum k such that there exists a k-local
book embedding for G.

Given a graph G and a vertex ordering, we prove that it is NP-complete to decide
whether there exists a k-local book embedding for G with respect to the given vertex
ordering for any fixed k ≥ 3. Additionally, we show that there is a planar graph
with local page number 3. For every k ≥ 1 there exists a k-tree with local page
number k. For complete graphs, we prove that d(n− 1)/4e ≤ pl(Kn) ≤ dn/2e − 1 for
every n ≥ 5.

Deutsche Zusammenfassung

Eine k-lokale Bucheinbettung besteht aus einer totalen Ordnung der Knoten eines
Graphen und einer Partition seiner Kanten in Mengen von Kanten, die Seiten genannt
werden, sodass sich je zwei Kanten auf der gleichen Seite nicht kreuzen, und die
zu einem Knoten inzidenten Kanten auf maximal k Seiten eingebettet sind. Dabei
kreuzen sich zwei Kanten, wenn ihre Endpunkte in der Knotenordnung alternieren.
Die lokale Seitenanzahl pl(G) eines Graphen G ist das kleinste k, sodass eine k-lokale
Bucheinbettung für G existiert.

Für einen gegebenen Graphen mit fester Knotenordnung und jedes feste k ≥ 3
zeigen wir die NP-Vollständigkeit des Entscheidungsproblems, ob eine k-lokale
Bucheinbettung mit der gegebenen Knotenordnung existiert. Zusätzlich zeigen wir
die Existenz von planaren Graphen mit lokaler Seitenanzahl 3 und von k-Bäumen
mit lokaler Seitenanzahl k für jedes k ≥ 1. Für vollständige Graphen zeigen wir für
jedes n ≥ 5 die Ungleichung d(n− 1)/4e ≤ pl(Kn) ≤ dn/2e − 1.
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1. Introduction

Since Ollmann and Taylor [OT73] have introduced the concept of book embeddings this
concept has been studied extensively. Based on this concept, we propose a local version of
book embeddings in this thesis.

A book consists of half-planes, called pages, which have a common boundary, called spine.
In a book embedding, the vertices of a graph are embedded on the spine, and each edge is
embedded in exactly one page, where two edges on the same page may not cross. While
the (global) page number of a graph G is the smallest number of pages needed for a book
embedding of G, the number of pages is not restricted for the local page number. The local
page number of a graph G is the minimum k such that there is a book embedding of G
and every vertex has incident edges on at most k pages. In this thesis we study the local
page number for special graph classes and its computational complexity.

1.1 Motivation and Application
Book embeddings have lots of motivations and applications including Very Large-Scale
Integration (VLSI) design, permutations, and biology. In VLSI design, processing elements
of an electrical circuit are modeled as vertices and connections between them as edges
[Yan89]. One approach is to place the vertices on a (conceptual) line and the connecting
wires on tracks that are parallel to this line. This setting can be interpreted as an embedding
of a graph. Consequently, optimization problems like minimizing the number of tracks
(and therefore the area needed for the wiring) can be seen as optimizing the properties of
an embedding of the respective graph.

Rosenberg [Ros83] described the Diogenes approach, which is a strategy for designing
testable fault-tolerant array of processors. Again, processing elements are modeled as
vertices of a graph which lie on a line. The processing elements are connected with bundles
of wires which function as a stack. The line can be interpreted as spine of a book embedding
and each bundle as a page. With this, the number of required bundles is the page number
of the given graph.

Furthermore, book embeddings can be used to permute elements using disjoint, parallel
stacks [CLR87]. Here, we have an initial sequence 1, . . . , n which is pushed to stacks in
ascending order. After that, the elements are popped forming a permutation. Tarjan
[Tar72] asked which permutations are possible with a fixed number of stacks. For this,
a bipartite graph G with vertices a1, . . . , an, b1, . . . , bn and edges aibi for i ∈ {1, . . . , n} is
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1. Introduction

v0 v1 v2 w0 w1 w2

(a) 3-twist

v0 v1 v2 w2 w1 w0

(b) 3-rainbow

v0 w0 v1 w1 v2 w2

(c) 3-necklace

Figure 1.1: Forbidden edge sets in book embeddings, queue layouts, and arch layouts,
respectively

constructed. Given a permutation π, the vertices are embedded on the spine in the ordering
a1, . . . , an, bπ(1), . . . , bπ(n). Forming π with k parallel stacks is equivalent to embedding G
with that fixed ordering in k pages [CLR87].

Finally, book embeddings are used to investigate RNA structures. RNA structure can
be visualized with vertices (base pairs) on a spine and each page contains a secondary
structure [CDD+12].

1.2 Related Work
The idea of local page numbers is based on the concept of (global) page numbers. Related
to this, we discuss queue numbers and arch numbers in the following section. Finally, we
consider the local covering number, which is the basis for the definition of the local page
number in the next chapter.

We start by giving an overview of some results on book embeddings which have been studied
extensively in the past. For instance, Bernhart and Kainen [BK79] give a characterization
of graphs with small page number. A graph has page number at most 1 if and only if it is
outerplanar. Additionally, a graph has page number at most 2 if and only if it is a subgraph
of a planar Hamiltonian graph. Yannakakis [Yan89] proved that every planar graph can
be embedded in a 4-page book. On the other hand, Bernhart and Kainen [BK79] showed
that there exist planar graphs with page number 3. Heath [Hea84] considered a subclass of
planar graphs and proved that stellations of a triangle can be embedded in three pages.
For a stellation of a triangle, we start with a triangle. In each iteration step we place a
vertex in every face and triangulate the resulting graph (see Definition 2.8).

Additionally, Ganley and Heath [GH01] showed that every k-tree (maximal graphs with
treewidth k, see Definition 2.7) can be embedded in a book using at most k + 1 pages.
Vandenbussche, West, and Yu [VWY09] proved that this bound is best possible by con-
structing a k-tree that does not embed in k pages for k ≥ 3. Moreover, Rengarajan and
Veni Madhavan [RVM95] proved that every 2-tree has page number at most 2. For com-
plete graphs on n vertices, Bernhart and Kainen [BK79] proved that the page number
equals dn/2e for n ≥ 4.

Regarding NP-completeness, we distinguish whether the ordering of the vertices on the
spine is fixed or not. If the vertex ordering is fixed, then determining the number of
pages needed for embedding a graph is equivalent to the circle graph coloring problem
which is NP-complete [GJMP80]. On the other hand, Wigderson [Wig82] proved that the
Hamiltonian circuit problem is NP-complete for maximal planar graphs. Hence, deciding
whether a graph without fixed vertex ordering has page number at most 2 is NP-complete.

Given a linear ordering ≺ of a vertex set, a k-twist is a set E of edges such that
E = {viwi : vi, wi ∈ V, i ∈ {0, . . . , k − 1}} and v0 ≺ · · · ≺ vk−1 ≺ w0 ≺ · · · ≺ wk−1

(see Figure 1.1a). Since two edges on the same page may not cross in any book embedding,
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1.2. Related Work

no two edges embedded on the same page form a twist. Hence, a graph with a fixed vertex
ordering that has a k-twist cannot be embedded in less than k pages. However, Kostochka
[Kos88] (see also [KK97]) proved that there are vertex orderings with no (k + 1)-twist
which cannot be embedded in less than Ω(k log k) pages.

Book embeddings are also called stack layouts [HR92]. Here, each page is seen as a stack.
When scanning the vertices on the spine from left to right, an edge is pushed to the stack
when its left endpoint is scanned. Similarly, an edge is popped from the stack when its
right endpoint is scanned. If a vertex is the left endpoint of more than one edge, then the
edges are pushed in descending order of their right endpoints. Note that edges are pushed
and popped in first-in-last-out order since edges on the same page do not cross.

In comparison to the concept of twists and book embeddings, Heath and Rosenberg [HR92]
introduced rainbows and queue layouts. For a linear ordering ≺ of a vertex set V , a
k-rainbow is a set E of edges such that E = {viwi : vi, wi ∈ V, i ∈ {0, . . . , k − 1}} and
v0 ≺ · · · ≺ vk−1 ≺ wk−1 ≺ · · · ≺ w0. See Figure 1.1b for an illustration of a 3-rainbow.
Given a linear ordering of vertices, a queue is a set of edges such that no two edges form
a 2-rainbow. When scanning the vertices from left to right, we say an edge is enqueued
when its left endpoint is scanned. Similarly, an edge is dequeued when its right endpoint
is scanned. If a vertex is the left endpoint of more than one edge, then the edges are
pushed in ascending order of their right endpoints. Observe that edges in a queue appear
in first-in-first-out order. A k-queue layout of a graph G consists of a linear ordering of the
vertex set V (G) and a partition of E(G) into k queues.

While there are vertex orderings of a graph with no (k + 1)-twist which do not admit a
k-page book embedding [Kos88], queue layouts can be characterized using rainbows. Heath
and Rosenberg [HR92] proved that there is a k-queue layout for a vertex ordering of a graph
if and only if it has no (k+1)-rainbow. Given a graph G and a linear ordering of its vertices,
they also showed that such a k-queue layout can be found in O(|E(G)| log log |V (G)|).
However, deciding whether a graph without fixed vertex ordering has queue number at
most 1 is NP-compete [HR92].

Heath and Rosenberg [HR92] conjectured that the queue number of planar graphs can be
bounded by a constant. Although the best lower bound on the queue number of planar
graphs is a constant, their conjecture remains open. However, Dujmović [Duj15] proved
that there exists a queue layout with O(logn) queues for every n-vertex planar graph.

Similar to book embeddings and queue layouts, Dujmović and Wood [DW04] discussed the
concept of arch layouts. For a linear ordering ≺ of a vertex set V , a k-necklace is a set E of
edges such that E = {viwi : vi, wi ∈ V, i ∈ {0, . . . , k − 1}} and v0 ≺ w0 ≺ v1 ≺ w1 ≺ · · · ≺
vk−1 ≺ wk−1 as shown in Figure 1.1c. Given a linear ordering of vertices, an arch is a set
of edges such that no two edges form a 2-necklace. A k-arch layout of a graph G consists
of a linear ordering of the vertex set V (G) and a partition of E(G) into k arches. The arch
number of a graph G is the minimum k such that there exists a k-arch layout of G.

There are special graph classes for which the arch number is known [DW04]. For instance, a
complete graph on n vertices has arch number bn/2c. Additionally, planar graphs require at
most three arches, and this bound is best possible. Like queue layouts can be characterized
using rainbows, a similar result can be stated for arch layouts. Dujmović and Wood [DW04]
proved that there is a k-arch layout for a vertex ordering of a graph if and only if it has
no (k + 1)-necklace. In contrast to book embeddings, the minimum number of arches
required for an arch layout and an assignment of edges to arches can be computed in
O(|V (G)|+ |E(G)|) if the vertex ordering is given [DW04]. However, determining whether
a graph has arch number at most k is NP-compete for k ≥ 2 [DW04].
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1. Introduction

For the graph parameters discussed above, local versions can be defined. Knauer and
Ueckerdt [KU16] introduced the local covering number. In a covering problem, an input
graph H and a covering class G is given. The graph H is covered by a set of graphs from
G if every covering graph is a subgraph of H and every edge of H is contained in some
covering graph. Covers are defined more formally in Section 2.1.

The (global) covering number is the minimum k such that H can be covered with k graphs
from G. In contrast, the number of covering graphs from G is not restricted for the local
covering number. The local covering number is the minimum k such that every vertex in
V (H) is contained in at most k covering graphs from G. There are different input graphs
and covering classes for which the local covering number has been studied. For instance,
complete bipartite graphs were considered by Fishburn and Hammer [FH96], and complete
graphs by Skums, Suzdal, and Tyshkevich [SST09]. Additionally, Knauer and Ueckerdt
[KU16] studied linear, star, and caterpillar forests and interval graphs as covering classes.
Based on the local covering number, we propose a local version of book embeddings in
Chapter 2.

1.3 Outline
In the second chapter we introduce notions that are necessary for the subsequent chapters.
For instance, we define the global and local page number and introduce notations for book
embeddings with fixed vertex ordering.

In Chapter 3 we give lower and upper bounds on the local page number of special graph
classes. We start with a characterization of outerplanar graphs and continue with a lower
and an upper bound for planar graphs. Even when the class of graphs is not restricted, we
can give bounds on the number of embedded edges and pages of a k-local book embedding.
Additionally, we show that the gap between global and local page number can be arbitrarily
large. Finally, lower and upper bounds on the local page number of complete graphs and
k-trees are given.

We consider the problem of finding a k-local book embedding for a given graph with fixed
vertex ordering in Chapter 4. We show NP-completeness for the case of k-local book
embeddings with fixed k ≥ 3.

In Chapter 5 we introduce the union page number and compare the local, union, and global
versions of book embeddings.
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2. Preliminaries

In the following chapter we introduce basic concepts and notations that are used throughout
this thesis. In particular, we define global and local versions of covers and book embeddings,
discuss k-trees and stellations, and introduce satisfiability problems.

If not stated otherwise, we assume graphs to be finite, simple (that is no loops nor multiple
edges), and undirected. Consider a graph G. Let V (G) denote the vertex set of G and let
E(G) denote the edge set of G. If there is an edge {v, w} ∈ E(G), then we simply write
vw ∈ E(G) and say v and w are adjacent. The degree deg(v) of a vertex v is the number of
edges that are incident to v. The outdegree and indegree of a vertex v in a directed graph
is denoted by degout(v) and degin(v), respectively.

A complete graph on n vertices, denoted by Kn or n-clique, consists of n vertices which
are pairwise adjacent. A complete graph on three vertices is also called a triangle. If
the vertex set of a graph G can be partitioned into two sets A and B with |A| = m and
|B| = n, and we have E(G) = {ab : a ∈ A, b ∈ B}, then G is called complete bipartite and
is denoted by Km,n. A graph G′ is a subgraph of G, denoted by G′ ⊆ G, if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). A subgraph is induced by a subset X of V (G) and denoted by G[X] if
E(G[X]) = {vw ∈ E(G) : v, w ∈ X}.

Next, we consider embeddings of graphs into the Euclidean plane R2. We embed the
vertices of a graph by placing them at pairwise distinct positions. Edges are represented
by Jordan curves. More precisely, an edge vw is represented by a continuous injective map
f : [0, 1] → R2 with f(0) = v and f(1) = w, where the endpoints v and w are the only
vertices lying inside the edge. If any two edges of an embedding of a graph do not cross, we
call the embedding a plane graph. After removing all vertices and edges of a plane graph,
the connected components of R2 are called faces. There is exactly one unbounded face,
which we call outer face. All other faces are called inner faces. A vertex or an edge is
incident to a face f if it is contained in the closure of f .

A planar graph is a graph G for which there exists a plane graph that is isomorphic to G. A
graph G is called outerplanar if there is a plane graph representing G such that all vertices
are incident to the outer face. A connected plane graph G is called an inner triangulation
if all inner faces are triangles and the outer face is bounded by a cycle, or if G ∼= K2. Note
that an inner triangulation on n vertices has exactly 2n− 3 edges, where n ≥ 2.

Notions that are used in this thesis but not introduced can be found in [Wes01].
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2. Preliminaries

2.1 Global and Local Covering Number
In this section we formalize the concept of global and local covering numbers, following the
definitions of Knauer and Ueckerdt [KU16].

Let G and H be graphs. A map ϕ : V (G) → V (H) is called a homomorphism if for every
edge vw ∈ E(G) there is an edge ϕ(v)ϕ(w) ∈ E(H). If for every edge xy ∈ E(H) there is
an edge vw ∈ E(G) with ϕ(v) = x and ϕ(w) = y, then we call ϕ edge-surjective.

For a cover, an input graph H and a set of graphs G, called covering class, is given. The
graph H is covered by a subset of graphs from G if every covering graph is a subgraph of
H and every edge of H is contained in some covering graph. More formally, for an input
graph H, a G-cover of size k is an edge-surjective homomorphism ϕ : G0 ∪̇ . . . ∪̇Gk−1 → H,
where Gi ∈ G for i ∈ {0, . . . , k − 1} and ∪̇ denotes the vertex disjoint union. If ϕ restricted
to Gi is injective for every i ∈ {0, . . . , k − 1}, then ϕ is called injective.

The global covering number cGg (H) is the minimum size of an injective G-cover of H. The
local covering number cGl (H) is the minimum k such that there is an injective G-cover of
H and each vertex of H is contained in at most k covering graphs. Here, the size of the
G-cover is not restricted. More precisely, we define

cGg (H) = min {size of ϕ : ϕ is an injective G-cover of H} ,

cGl (H) = min
{

max
v∈V (H)

∣∣ϕ−1(v)
∣∣ : ϕ is an injective G-cover of H

}
.

If the covering class G is the set of forests, then cGg (G) is called arboricity and is denoted
by a(G). If G is restricted to the set of star forests, then cGg (G) is called star arboricity.

2.2 Global and Local Page Number
The concepts of books, book embeddings, and page numbers were introduced by Bernhart
and Kainen [BK79]. Based on this, we propose a local version of book embeddings and
define notations used in the next chapters.

Definition 2.1. A book with k pages is a set of k half planes, called pages, in 3-dimensional
space such that they have a common boundary, called spine.

Definition 2.2. A book embedding with k pages (or k-page book embedding) embeds a
graph G in a book with k pages such that the vertices lie at pairwise distinct positions on
the spine and every edge is embedded on exactly one page, where no two edges on the same
page cross. Moreover, every page contains at least one edge.

Definition 2.3. The (global) page number p(G) of a graph G (sometimes referred to as
book thickness [BK79] or stack number [HR92]) is the minimum k ∈ N0 such that there
exists a book embedding with k pages for G.

Consider a book embedding Γ of a graph G. Let P(Γ) be the set of pages of Γ. For a
page P ∈ P(Γ) and a vertex v ∈ V (G) we denote degP (v) as the the number of edges
that are incident to v and are embedded on page P . Let V (P ) denote the vertex set
of P with V (P ) = {v ∈ V (G) : degP (v) > 0} and E(P ) the edge set of P with E(P ) =
{e ∈ E(G) : e is embedded on page P}. Note that isolated vertices are not contained in
the vertex set of any page.

While p(G) is the global page number for a graph G, pG(v) denotes the number of pages
on which a vertex v has incident edges with respect to a graph G, that is pG(v) =
|{P ∈ P(Γ) : ∃w ∈ V (P ) : vw ∈ E(P )}|.

6



2.2. Global and Local Page Number

0 1

23

4

0 1 2 3 4

0

1

2 3

4

Figure 2.1: Planar, linear, and circular layout of a graph

Here, we propose a local version of book embeddings and page numbers, following the global
concepts.

Definition 2.4. A k-local book embedding with t pages of a graph G is a book embedding
with t pages such that every vertex v ∈ V (G) has incident edges on at most k pages, that is
pG(v) ≤ k for every vertex v ∈ V (G).

Definition 2.5. The local page number pl(G) of a graph G is the minimum k ∈ N0 such
that there exists a k-local book embedding for G.

Note that a book embedding with k pages is k-local. Hence, we have pl(G) ≤ p(G) for
every graph G.

Next, we introduce definitions and notations for book embeddings of graphs with fixed
vertex ordering. For a book embedding Γ of a graph G with an ordering ≺ on the vertex
set V (G), we assume that the vertices are embedded on the spine according to ≺. For
vertices v and w, we say v is to the left of w and w is to the right of v if v ≺ w. We define
that v 4 w if v ≺ w or v = w. Moreover, we write v � w if w ≺ v, and v < w if w 4 v.
For vertex sets V and V ′, we write V ≺ V ′ or V ′ � V if for all vertices v ∈ V and v′ ∈ V ′

we have v ≺ v′. For vertices v, w, and x with v ≺ w ≺ x, we say that w is between v and
x. We say two vertices v and w lie on the spine consecutively if there is no vertex between
v and w.

For a book embedding of a graph G with an ordering ≺ on V (G) and a vertex set X ⊆ V (G),
let the span of X be sp (X) = {v ∈ V (G) : ∃x, x′ ∈ X : x 4 v 4 x′}. Intuitively, the span
contains all vertices lying between the leftmost and the rightmost vertex of X.

In Chapter 4 we investigate the problem of finding a k-local book embedding for a given
vertex ordering. For this, we define the following decision problem for any fixed integer
k ≥ 1.

Definition 2.6. k-local book embedding with fixed vertex ordering

Given a graph G with a linear ordering ≺, is there a k-local book embedding of G such that
the vertices are ordered on the spine according to ≺?

In Definition 2.1 we define a spine to be a straight line. We call this embedding linear
layout of a book embedding. However, we can restrict the spine to a line segment that
contains all vertices embedded on the spine. Identifying the endpoints of this line segment
results in a circular layout. Figure 2.1 shows a linear and the corresponding circular layout
of a book embedding.

Consider a circle with chords. A graph is called circle graph if its vertex set can be
identified with a set of chords and there is an edge between two vertices if and only if
the corresponding chords intersect. Note that chords having a common endpoint do not
intersect. A proper coloring of a circle graph can also be seen as a coloring of the chords
such that no two chords of the same color intersect. Figure 2.2 shows a coloring of a circle

7



2. Preliminaries

0 1 2

3

0
1

2

3

Figure 2.2: Coloring of a circle graph and the corresponding chords

graph and the corresponding chords. Hence, finding a book embedding for a graph with
fixed vertex ordering can be considered as coloring problem of a circle graph, which is
NP-hard [GJMP80].

In the figures of this thesis we use linear and circular layouts equivalently. When illustrating
a book embedding of a graph, the edge set of each page is indicated by a unique color.

2.3 k-Trees and Stellations
In the following section we define k-trees and stellations, following the definitions of Ganley
and Heath [GH01], and Bernhart and Kainen [BK79], respectively. We present a stellation
of a planar graph for which local and global page number differ. Stellations of a triangle
can be embedded in three pages, which is proven afterwards.

Definition 2.7. A k-tree with k ≥ 1 is a complete graph on k vertices or a graph defined
inductively as follows: If G is a k-tree and K ⊆ G is a k-clique in G, then adding a new
vertex which is incident exactly to the k vertices of K results in a k-tree. When constructing
a k-tree according to the inductive definition above, we start with a k-clique which we
call central k-clique. We remark that every k-clique of a k-tree can be chosen as central
k-clique.

Definition 2.8. A stellation ST(G) of a 2-connected plane graph G is the result of placing
a new vertex in each face of G and adding edges to each vertex around the face. A stellation
of a planar graph is also planar. For n ≥ 1 we define STn(G) as ST(STn−1(G)), where
ST0(G) ∼= G.

Note that repeated stellations of a triangle (STn(K3) for n ≥ 0) are stacked triangulations
(planar 3-trees). Bernhart and Kainen [BK79] presented ST2(K3) as a planar graph that
has global page number 3. See Figure 2.3a for a planar embedding of ST2(K3). However,
there is a 2-local book embedding with three pages for this graph, as shown in Figure 2.3b.
We present ST9(K3) as repeated stellation of a triangle with local page number 3 in
Section 3.1.

Heath [Hea84] proved that STn(K3) has global page number at most 3 not only for n = 2
but for every n ≥ 0. We follow his proof presented in [Hea84].

Proposition 2.9 (Heath [Hea84]). Every stellation of a triangle can be embedded in at
most three pages, that is p(STn(K3)) ≤ 3 for every n ≥ 0.

Proof. We prove the proposition inductively starting with ST(K3). Figure 2.4a shows a
planar embedding of ST(K3), while Figure 2.4b shows a book embedding of ST(K3) with
three pages.

8



2.3. k-Trees and Stellations
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(a) Planar embedding
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(b) 2-local book embedding with three pages

Figure 2.3: Embeddings of ST2(K3). The vertices 0, 1, and 2 are the vertices of the initial
triangle.

a

b c

d

e

(a) Planar embedding

a b d c e

(b) Book embedding satisfying Condi-
tions (i) and (ii) for d and e.

Figure 2.4: Embeddings of ST(K3)

When placing a new vertex z in a triangular face with incident vertices u, v, and w, we
maintain the following conditions:

(i) The vertex z and one of u, v, and w lie on the spine consecutively.

(ii) The edges uz, vz, and wz are embedded on three pairwise distinct pages.

Figure 2.4b shows a book embedding of ST(K3) with three pages fulfilling the two conditions
above. The vertices a, b, and c form the initial triangle. Vertex d is placed in the inner
face, and e is placed in the outer face. Note that d and c lie on the spine consecutively, also
c and e, which satisfies Condition (i). Condition (ii) is clearly met for the added vertices d
and e.

Next, we consider a copy of K4 that has a vertex of degree 3 and place new vertices in the
inner faces. Note that the copies of K4 having a vertex of degree 3 are exactly those which
are created in the previous step. Let a, b, and c be the vertices of a triangle, and let d be a
vertex placed in this triangle fulfilling Conditions (i) and (ii). We have three triangular
face in which new vertices f , g, and h are placed according to Figure 2.5. Note that c
satisfies Condition (i) for d, and f is the vertex that is not adjacent to c. The situation for
g and h is symmetric.

The new vertices are embedded on the spine as follows (see Figure 2.6). Recall that d and
c lie on the spine consecutively. Without loss of generality, d is embedded to the left of c.
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2. Preliminaries

a

b c

d
f g

h

Figure 2.5: The vertices a, b, c, and d induce a copy of K4, where d fulfills Conditions (i)
and (ii) by inductive hypothesis. The vertices f , g, and h are added in the
current induction step.

h d f g c

Figure 2.6: Recall that d and c lie on the spine consecutively, say d ≺ c. The new vertices
f , g, and h are embedded so that h ≺ d ≺ f ≺ g ≺ c and there is no vertex
between h and d.

The new vertices are embedded so that h ≺ d ≺ f ≺ g ≺ c and there is no vertex between
h and d. Note that c fulfills Condition (i) for g, and d for f and h.

Now, we embed the edges between a, b, c, and d and the new vertices f , g, and h. The
embedding is shown in Figure 2.7. For this, let Pa, Pb, and Pc be three pages on which ad,
bd, and cd are embedded, respectively. Due to Condition (ii), the three page are pairwise
distinct. For x ∈ {a, b} and y ∈ {f, g, h}, we embed xy on page Px (if xy exists). Similarly,
the edge hc is embedded on page Pc. However, we embed cg on page Pb. It remains to
embed the edges that are incident to d and to one of f , g, and h. These edges are embedded
such that Condition (ii) is met, that is each of f , g, and h has incident edges on three
pairwise distinct pages.

Below, we prove that any two edges on the same page do not cross. First, consider an
edge xy with x ∈ {a, b} and y ∈ {f, g, h}. Recall that xy and xd are embedded on the
same page Px. Every edge crossing xy but not xd is incident to d or to a vertex which is
embedded between d and y (see Figure 2.8). More precisely, every edge that crosses xy on

· · · a · · · b · · · h d f g c · · ·

Figure 2.7: Vertex d satisfies Conditions (i) and (ii). The vertices f , g, and h are added in
the current step so that Conditions (i) and (ii) are met.
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2.4. Satisfiability Problem

• • x d • y

Figure 2.8: Every edge crossing xy but not xd is incident to d or a vertex between d and y.

page Px is incident to d or f . By construction, however, all edges incident to d, f , or y
that are embedded on Px are incident to x, and thus do not cross.

Similarly, there is no edge but bd and ad crossing hc but not dc (compare Figure 2.7).
However, both edges are not embedded on Pc. Thus, the edge hc does not cross any edges
on Pc. The edges cg, dh, and df do not cross any other edges since the respective vertices
are embedded consecutively. Recall that dg is embedded on page Pc. The edge dg is crossed
only by af and bf , which are not embedded on Pc.

After embedding new vertices as described above, we show that Conditions (i) and (ii)
still hold for all other copies of K4 with a vertex of degree 3. Recall that f , g, and h are
embedded next to d or between d and c, where d and c are consecutive by Condition (i)
(see Figure 2.6). Note that each edge can fulfill Condition (i) for at most one vertex.
Additionally, each vertex occurs at most once in the role of d. Hence, we can place one
vertex in each face and embed all added edges in three pages.

2.4 Satisfiability Problem
In this section we introduce the satisfiability problems SAT and 3SAT, as defined by Garey
and Johnson [GJ79]. We use these problems in Section 4.1 for proving NP-completeness
of k-local book embedding with fixed vertex ordering.

Let U be a set of Boolean variables. For a variable u ∈ U we say u is a positive literal
and ū is a negative literal. A map t : U → {true, false} is called a truth assignment. If
t(u) = true for a variable u, then we say the literal u is true and ū is false. Similarly, the
literal u is false and ū is true if t(u) = false. A clause over U is a finite set of literals in U ,
joined together by the Boolean or. A clause C is satisfied by truth assignment t if there is
a literal in C that is true. A set of clauses C is satisfiable if there is a truth assignment
such that every clause in C is satisfied.

Definition 2.10. SAT

Given a set U of Boolean variables and a set C of clauses over U , is C satisfiable?

Definition 2.11. 3SAT

Given a set U of Boolean variables and a set C of clauses over U , where each clause C ∈ C
contains exactly three literals, is C satisfiable?

Gary and Johnson proved NP-completeness for both problems [GJ79].
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3. Bounds on the Local Page Number

In the following chapter we give bounds on the number of edges and pages in k-local book
embeddings and on the local page number of special graph classes. For instance, outerplanar
graphs, planar graphs, complete graphs, and k-trees are considered. Additionally, we
investigate the gap between global and local page number. The results of this chapter are
summarized in Table 3.1.

3.1 Planar Graphs
Bernhart and Kainen [BK79] proved that graph a can be embedded in a 1-page book if
and only if it is outerplanar. Similarly, we give a characterization of graphs with local page
number 1.

Proposition 3.1. For every graph G the following statements are equivalent:

(i) G has local page number at most 1.

(ii) G has global page number at most 1.

(iii) G is outerplanar.

Proof. Let G be a graph with local page number at most 1. We prove that G can be
embedded in a 1-page book. Consider a book embedding Γ of G. Any two adjacent edges
lie on the same page. Thus, each connected component is embedded on a single page. We
construct a book embedding Γ′ by sorting the vertices such that all vertices belonging to
the same connected component are embedded consecutively on the spine. By construction,
two edges belonging to different connected components do not cross in Γ′. Since two
connected components can be embedded independently in Γ′, all connected components
can be embedded on the same page.

Since the local page number is always less than or equal to the global page number, it
follows that (i) and (ii) are equivalent. Additionally, Bernhart and Kainen [BK79] proved
that a graph has global page number at most 1 if and only if it is outerplanar.

In contrast to outerplanar graphs, there are planar graphs that cannot be embedded in a
1-local book embedding. Yannakakis [Yan89] proved that the global page number of planar
graphs is at most 4. Although this already implies that for every planar graph there exists
a 4-local book embedding, we present a simpler prove for the local page number.
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3. Bounds on the Local Page Number

Local Page Number
Lower Bound Upper Bound

General Graphs |E(G)|
2|V (G)|−3 (Cor. 3.8) p(G)

Outerplanar 1 1 (Prop. 3.1)
Planar 3 (Prop. 3.4) 4 (Prop. 3.2)
k-Tree k (Prop. 3.21) k + 1 (Prop. 3.22)
Stellation of K3 3 (Prop. 3.4) 3 ([Hea84], Prop. 2.9)

Kn with n ≥ 5
⌈
n−1
4

⌉
(Prop. 3.11)

⌈
n
2

⌉
− 1 (Prop. 3.12)

K2,K3 1 1
K4,K5,K6 2 (Obs. 3.13 and 3.14) 2 (Obs. 3.13 and 3.14)
K7,K8,K9 3 (Obs. 3.13 and 3.15) 3 (Obs. 3.13 and 3.15)
K10,K11 4 (Cor. 3.19) 4 (Cor. 3.19)

Table 3.1: Lower and upper bounds on the local page number

Proposition 3.2. For every planar graph there exists a 4-local book embedding.

Proof. We start with a 3-orientation of a planar graph, which we use to find a 4-local book
embedding. Chrobak and Eppstein [CE91] proved that for every planar graph there exists
a 3-orientation, that is there is an orientation of the edges such that degout(v) ≤ 3 for every
vertex v.

Let G be a planar graph. Based on a 3-orientation of G we construct a 4-local book embed-
ding Γ with |V (G)| pages. Let P(Γ) be the set of pages of Γ with P(Γ) = {Pv : v ∈ V (G)}.
We embed an edge vw that is oriented from v to w on page Pw.

Next, we prove that Γ is 4-local. Consider a vertex v ∈ V (G). All edges that are oriented
towards v are embedded on the same page Pv. Since there are at most three edges that are
oriented from v to a neighbor of v, it follows that pG(v) ≤ 4. Hence, Γ is 4-local.

While for every planar graph there exists a 4-page book embedding [Yan89], it is not known
whether there is a planar graph with global page number 4. However, Bernhart and Kainen
[BK79] presented a planar graph with global page number 3. More precisely, they proved
that p(ST2(K3)) = 3. The following lemma prepares a proof for pl(ST9(K3)) = 3.

Lemma 3.3. Let G be a complete graph on four vertices, and let Γ be a 2-local book
embedding for G. Then there is an edge vw ∈ E(G) such that Pv = Pw and |Pv| = |Pw| = 2,
where Pv and Pw are the sets of pages that contain edges incident to v or w, respectively.

Proof. Let P(Γ) denote the set of pages of Γ. Since G is not outerplanar, Γ has at least two
pages. In addition, Γ has less than four pages by Lemma 3.6 as |E(G)| = 6 > 4 = 2·2·4−3·4.

Next, we consider the cases of Γ having two or three pages. If |P(Γ)| = 2, then there are
two vertices v and w having incident edges on both pages. Since G is a complete graph,
the edge vw exists.

On the other hand, any three edges form a triangle in G. Thus, we have a triangle T with
all three edges embedded on pairwise distinct pages if |P(Γ)| = 3. Let v be the fourth
vertex of G, that is v ∈ V (G) \ V (T ). We have |Pv| = 2 since the vertices in V (T ) do not
share a common page. Choose any two of the three pages containing T for v. Since the
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x

x

x

...

x

v w

Figure 3.1: By Lemma 3.3 there exists an edge vw ∈ V (G1) with Pv = Pw. There is a set
X ⊆ V (G8) of nine vertices (marked with x) incident to v and w and inducing
a path in G8.

x2
x1

x0

v

x5

x6 x7

x8

w

x4

x3

Figure 3.2: There are five vertices in X that are incident two v and w and lie in the same
part of the circle.

three edges of T are embedded on pairwise distinct pages, there is a vertex w ∈ V (T ) with
Pv = Pw, and v and w are adjacent, which proves the lemma.

Proposition 3.4. For every n ≥ 9 we have pl(STn(K3)) = 3.

Proof. Since stellations of K3 have global page number at most 3 (see Proposition 2.9), we
have pl(STn(K3)) ≤ p(STn(K3)) ≤ 3 for every n ≥ 0. We shall prove that pl(ST9(K3)) ≥ 3.
For n ≥ 9, it follows that pl(STn(K3)) ≥ 3 since ST9(K3) is a subgraph of STn(K3).

Let G0, . . . , G9 denote subgraphs of ST9(K3) such that K3 = G0 ⊆ · · · ⊆ G9 and Gi+1 is
constructed by placing a vertex in each inner face of Gi and connecting it to all vertices
around the face for i ∈ {0, . . . , 8}. Suppose there is a 2-local book embedding for ST9(K3).

First, consider G1, which is a complete graph on four vertices. By Lemma 3.3, there is
an edge vw ∈ E(G1) such that Pv = Pw and |Pv| = |Pw| = 2, where Pv and Pw are the
sets of pages that contain edges incident to v or w, respectively. We call these two pages
P and P ′, that is Pv = Pw = {P, P ′}. By construction, there is a set X of nine vertices
x0, . . . , x8 ∈ V (G8) that are incident to v and w and induce a path in G8 (see Figure 3.1).

Consider a circular book embedding of G8 as shown in Figure 3.2. Observe that the circle
is partitioned by edge vw so that at least five vertices of X lie in the same part. Without
loss of generality, we say x0, . . . , x4 are embedded in the same part. Now, consider a linear
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3. Bounds on the Local Page Number

v x0 x1 x2 x3 x4 w

P P ′

Figure 3.3: Dashed edges are embedded either on P or on P ′. The edge x1x2 is contained
in a triangle that is embedded on a single page.

v u x1 x2 x3 w

(a) u ∈ sp ({v, x0})

v x1 x2 x3 u w

(b) u ∈ sp ({x4, w})

v x1 x2 x3 w u

(c) u 6∈ sp ({v, w})

Figure 3.4: The edge x2u is embedded either on P or on P ′. If u 6∈ {x1, x3}, then x2u
crosses edges on both pages.

book embedding with v ≺ x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺ w and no other vertex of X is
embedded in sp ({x0, x4}) (see Figure 3.3).

Recall that P and P ′ are the only pages containing edges incident to v or w. Without loss
of generality, we have vx4 ∈ E(P ). Note that the edges x0w, x1w, x2w, and x3w cross vx4,
and thus are embedded on page P ′. Since x0w ∈ E(P ′), we have vx1, vx2, vx3 ∈ E(P ).

Now, we consider x2 and its neighborhood. Recall that X induces a path in G8. Hence, x2
has a neighbor u ∈ X. We prove that u ∈ {x1, x3}, and thus at least one of the edges x1x2
and x2x3 exists. Suppose u 6∈ {x1, x3}. Recall that x2 ∈ V (P ) ∩ V (P ′), which implies that
x2u is embedded on P or P ′. We distinguish the following three cases and observe that
x2u crosses edges on both pages (see Figure 3.4).

If u ∈ sp ({v, x0}), then x2u crosses vx1 and wx1. Symmetrically, x2u crosses vx3 and wx3
if u ∈ sp ({x4, w}). Finally, x2u crosses vx3 and wx1 if u 6∈ sp ({v, w}). Therefore, we have
u ∈ {x1, x3}. Without loss of generality, we assume u = x1 and thus x1x2 ∈ E(G8).

Note that x1 and x2 form two triangles with v and with w. Recall that vx1, vx2 ∈ E(P ) and
wx1, wx2 ∈ E(P ′). Hence, we have three edges embedded on a common page and forming
a triangle T . Without loss of generality, we assume x1x2 ∈ E(P ) and hence v ∈ V (T ).

Next, consider the vertex y ∈ V (G9) that is incident to all vertices of T . Note that the
vertices v, x1, and x2 have incident edges on P and P ′. Hence, we have vy, x1y, x2y ∈
E(P ) ∪ E(P ′). Recall that vx1, vx2, x1x2 ∈ E(P ) and wx1, wx2 ∈ E(P ′). Figure 3.5
illustrates the following four cases.

If y is embedded between v and x1, the edge yx2 crosses vx1 and wx1. On the other hand,
the edge vy crosses x1x2 and wx1 if y is embedded between x1 and x2. If y is embedded
between x2 and w, then the edge x1y crosses vx2 and wx2. Finally, x1y crosses vx2 and
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3.2. General Graphs

v y x1 x2 w

(a) v ≺ y ≺ x1

v x1 y x2 w

(b) x1 ≺ y ≺ x2

v x1 x2 y w

(c) x2 ≺ y ≺ w

v x0 x1 x2 w y

(d) y 6∈ sp ({v, w})

Figure 3.5: In all four cases there is an edge incident to y that cannot be embedded in a
2-local book embedding.

wx0 if y 6∈ sp ({v, w}). In all four cases, there is an edge incident to y crossing edges on P
and P ′, and thus cannot be embedded. Therefore, there is no 2-local book embedding for
ST9(K3).

Note that stellations of a triangle are planar, which leads to the following corollary.

Corollary 3.5. There are planar graphs with local page number 3.

3.2 General Graphs
Given a graph, we can find a lower bound on its local page number even when the class of
graphs is not restricted. We also give bounds on the number of embedded edges and the
number of pages of a k-local book embedding. For special graph classes, however, better
bounds are presented in the next sections.

Lemma 3.6. Let n ≥ 1. Every graph G on n vertices for which there exists a k-local book
embedding with t pages has at most 2kn− 3t edges. Moreover, we have |E(G)| = 2kn− 3t
if and only if for all pages P the subgraph embedded on P is an inner triangulation and
pG(v) = k for all vertices v ∈ V (G).

Proof. Let Γ be a k-local book embedding of a graph G with t pages, and let P(Γ) be the
set of pages of Γ. We can find an upper bound on the number of edges:

|E(G)| =
∑

P∈P(Γ)

|E(P )|
(∗)
≤

∑
P∈P(Γ)

(2 |V (P )| − 3) = 2
∑

P∈P(Γ)

|V (P )| − 3t
(∗∗)
≤ 2kn− 3t.

Inequality (∗) holds since every subgraph G′ of G that is embedded on a single page is
outerplanar and thus has at most 2 |V (G′)| − 3 edges. We have an equality in (∗) if and
only if G′ is an inner triangulation.

The book embedding Γ is k-local, so every vertex is counted at most k times in the sum∑
P∈P(Γ) |V (P )|. Hence, inequality (∗∗) holds. If pG(v) = k for all vertices v ∈ V (G), then

(∗∗) is an equality. On the other hand, if we have
∑

P∈P(Γ) |V (P )| = kn, then every vertex
has incident edges on exactly k pages since Γ is k-local.

For further usage of Lemma 3.6 it is convenient to state results not depending on a the
number of pages of a given book embedding.
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3. Bounds on the Local Page Number

Corollary 3.7. Let n ≥ 1. Every graph G on n vertices with local page number at most k
has at most (2n− 3)k edges.

Proof. Let Γ be a k-local book embedding of a graph G on n vertices with t pages.
Lemma 3.6 bounds the number of edges of G to be at most 2kn − 3t. However, every
vertex can have incident edges on at most t pages, so k ≤ t. It follows that

|E(G)| ≤ 2kn− 3t ≤ 2kn− 3k = (2n− 3)k.

Corollary 3.8. Every graph G on n vertices and m edges has local page number at least
m/(2n− 3).

Lemma 3.9. If a graph G on n vertices has a k-local book embedding Γ, then Γ has at
most kn/2 pages.

Proof. Let t be the number of pages of Γ. Since empty pages are not allowed, the number
of pages can be bounded by the number of edges with t ≤ |E(G)|. With Lemma 3.6 it
follows that t ≤ |E(G)| ≤ 2kn− 3t and thus t ≤ kn/2.

Note that there exist graphs on n vertices and an integer k for which every k-local book
embedding has less than kn/2 pages. For instance, a complete graph on six vertices can be
embedded such that pK6(v) ≤ 2 for every vertex v (see Observation 3.13). However, every
2-local book embedding of K6 has exactly three pages. At least three pages are needed
since the global page number equals 3. By Lemma 3.6, every 2-local book embedding of a
6-vertex graph with at least four pages has at most 2 · 2 · 6− 3 · 4 = 12 edges, which is less
than the number of edges of K6. Hence, at most three pages can be used.

On the other hand, there exist graphs for which the bound of Lemma 3.9 is best possible.
A k-regular graph G on n vertices can be embedded such that every edge lies on its own
page. In such an embedding we have pG(v) = k for every vertex v ∈ V (G), and the number
of pages equals the number of edges, that is t = |E(G)| = kn/2.

Next, we consider graphs for which the global and local page number differ. We show that
the gap can be arbitrarily large.

Proposition 3.10. There exist n-vertex graphs with local page number at most k but global
page number Ω

(√
kn1/2−1/k

)
.

Proof. Malitz [Mal94] proved that there exist k-regular n-vertex graphs which require
Ω(

√
kn1/2−1/k) pages. Embedding every edge on its own page results in a k-local book

embedding. Hence, the local page number of a k-regular graph is at most k.

3.3 Complete Graphs
In this section we find a lower and an upper bound on the local page number of complete
graphs. Additionally, we specify the exact local page number for complete graphs on at
most eleven vertices.

Proposition 3.11. Let n ≥ 2. The local page number of a complete graph on n vertices is
greater than d(n− 1)/4e.
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Figure 3.6: Page P0 of K10

Proof. By Corollary 3.8, the local page number of a graph on n vertices and m edges is at
least m/(2n− 3). For the local page number of a complete graph it follows

pl(Kn) ≥
|E(Kn)|
2 |V (Kn)|

=
(n2)

2n
=

n(n− 1)

4n
=

n− 1

4
.

Since the local page number is integer, it is at least d(n− 1)/4e.

Proposition 3.12. Let n ≥ 5. The local page number of a complete graph on n vertices is
at most dn/2e − 1.

Note that the global page number of a complete graph on n vertices equals dn/2e [BK79],
so the local page number is strictly smaller.

Proof. First, let n be even. We construct a (n/2− 1)-local book embedding Γ for Kn with
t pages such that t = n/2. Let P(Γ) be the set of pages with P(Γ) = {P0, . . . , Pt−1}. Let
the vertices 0, . . . , (n− 1) of Kn lie on the spine in this ordering. For the construction, all
vertices are taken modulo n.

Figure 3.6 shows how edges are embedded on page P0. The construction is rotated for
embedding on other pages.

For i ∈ {0, . . . , t− 1} we define

V (Pi) = V (Kn) \ {i, i+ t}
E(Pi) = {{i+ 1, i+ 2} , {i+ t+ 1, i+ t+ 2}}

∪ {ab : a, b ∈ {i, . . . , n+ i− 1} , a+ b ∈ {2i+ n, 2i+ 1 + n} ,
a, b 6≡ i mod t}.

Every vertex v ∈ V (Kn) has edges on at most t − 1 pages since i, i + t 6∈ V (Pi) for
i ∈ {0, . . . , t− 1}.

Every page Pi can be embedded without any intersecting edges: The edges {i+ 1, i+ 2}
and {i+ t+ 1, i+ t+ 2} do not cross any other edges since their end points lie on the spine
consecutively. Suppose there are two edges intersecting on page Pi, that is there exist edges
ac, bd ∈ E(Pi) such that a < b < c < d. By construction, a+ c ∈ {2i+ n, 2i+ 1 + n} and
b+ d ∈ {2i+ n, 2i+ 1 + n}. It follows that b+ d ≥ a+1+ c+1 ≥ 2i+2+ n > 2i+1+ n,
which is a contradiction.

The constructed graph is isomorphic to Kn: Each page has n− 1 edges. Hence, the total
number of edges equals t(n − 1), which is (n2). It remains to show that no edge occurs
twice, that is for i, j ∈ {0, . . . , t− 1} , i 6= j : E(Pi) ∩ E(Pj) = ∅. Let ab ∈ E(Pi) ∩ E(Pj).
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By construction, a+ b ∈ {2i+ n, 2i+ 1 + n} ∩ {2j + n, 2j + 1 + n}, so the intersection is
nonempty. Since n is even, 2i+ n and 2j + n are even, and 2i+ 1 + n and 2j + 1 + n are
odd. Hence, we have 2i+ n = 2j + n or 2i+ 1 + n = 2j + 1 + n. In both cases it follows
that i = j.

Now, let n be odd. By the first part, a complete graph on n+ 1 vertices has local page
number at most d(n+ 1)/2e − 1. Since Kn is a subgraph of Kn+1, we can bound the local
page number with pl(Kn) ≤ pl(Kn+1) ≤ d(n+ 1)/2e − 1 = dn/2e − 1.

After proving bounds on complete graphs with arbitrarily many vertices, we continue
with exact results for small complete graphs. Both the lower and the upper bound are
not best possible. For instance, we prove pl(K9) = 3 in Observation 3.15, so we have
d(9− 1)/4e = 2 < pl(K9) < 4 = d9/2e − 1.

Observation 3.13. Every complete graph on n vertices with 5 ≤ n ≤ 8 has local page
number dn/2e − 1.

Proof. Proposition 3.12 shows that the local page number of a complete graph Kn is at
most dn/2e − 1. Thus, for K5 and K6 the local page number is at most 2. Since both
graphs are not outerplanar, it is exactly 2 (see Proposition 3.1).

By Proposition 3.12, the local page number of complete graphs on seven or eight vertices is
at most 3. Suppose there exists a 2-local book embedding Γ of K7 with t pages. Since K7

has global page number 4 [BK79], Γ uses at least four pages. With Lemma 3.6 it follows
that at most 2 · 2 · 7− 3 · 4 = 16 edges can be embedded, which is less than the number of
edges of K7. Hence, the local page number of K7 is exactly 3. Since K7 is a subgraph of
K8, it follows that K8 has local page number 3.

Observation 3.14. The complete graph on four vertices has local page number 2.

Proof. The complete graph K4 is not outerplanar. By Proposition 3.1, its local page
number is at least 2. Since K4 is a subgraph of K5 the local page number is exactly 2.

Observation 3.15. The complete graph on nine vertices has local page number 3.

Proof. Figure 3.7 shows a 3-local book-embedding of K9. Hence, the local page number is
at most 3. However, the global page number of K9 is 5 [BK79]. By Lemma 3.6, a 9-vertex
graph for which there exists a 2-local book embedding with at least five pages has at most
2 · 2 · 9− 3 · 5 = 21 edges, which is less than the number of edges of K9. Thus, the local
page number of K9 is strictly greater than 2.

The following lemma is helpful for proving further results on graphs containing K9 as a
subgraph in this section and in the next chapter.

Lemma 3.16. Every 3-local book embedding of K9 has exactly six pages.

Note that the global page number of K9 equals 5 [BK79]. Hence, there exists no book
embedding of K9 which is optimal for local and global page number.

Proof. Let Γ be a 3-local book embedding of K9 with t pages. Let P(Γ) be the set of pages
of Γ. By Lemma 3.6, we have 36 = |E(K9)| ≤ 2 · 3 · 9− 3t = 54− 3t, which implies t ≤ 6.

Suppose t ≤ 5. Let 0, . . . , 8 denote the vertices of K9. All vertices are taken modulo 9.
Consider a partition E1, . . . , E4 of E(K9) with Ei = {{a, b} : a+ i ≡ b mod 9}. The parts
E1, E2, and E4 form 9-cycles, while E3 consists of three 3-cycles, as shown in Figure 3.8.
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Figure 3.7: 3-local book embedding of K9
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3. Bounds on the Local Page Number
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Figure 3.8: Edge sets E1, . . . , E4

To a graph embedded on a page P , edges can be added such that P embeds an inner
triangulation. Without loss of generality, we assume that for every P ∈ P(Γ) the embedded
subgraph is an inner triangulation. However, edges can be embedded on multiple pages.
We denote the number of edges that are embedded twice in Γ as d(Γ) with d(Γ) =
|E(P(Γ))| − |E(K9)|, where |E(P(Γ))| =

∑
P∈P(Γ)E(P ). By Lemma 3.6, the number of

edges in Γ is bounded by |E(P(Γ))| ≤ 2 · 3 · 9− 3 · 5 = 39. With |E(K9)| = 36, this implies
d(Γ) ≤ 3. Below, we try to embed the edge sets E1, . . . , E4 such that the vertex sets of all
pages induce inner triangulations and d(Γ) ≤ 3. We show that such an embedding does
not exist.

In E4 any two non-adjacent edges cross. Hence, at most two edges from E4 are embedded
on the same page. Since |E4| = 9, it follows that at least five pages are necessary for
embedding E4, and thus t = 5. Let P4 be the set of pages on which exactly two edges from
E4 are embedded. With t = 5, we have |P4| ≥ 4.

Consider edges e0, e1 ∈ E3 that lie on the same page P . If e0 and e1 are non-adjacent, then
all other edges from E3 cross one of e0 and e1, and thus are not embedded on the same page.
Otherwise, let e0 = vw and let e1 = vx. If wx ∈ E(P ), then no edge in E4 is embedded
on page P , which is a contradiction. Thus wx 6∈ E(P ). All edges e ∈ E3 \ {vw, vx, wx}
cross e0 or e1, and thus are not embedded on P . Hence, on every page at most two edges
from E3 are embedded. Let P3 be the set of pages on which exactly two edges from E3 are
embedded. With t = 5, we have |P3| ≥ 4.

Let P ′ be the set of pages on which two edges from E3 and two edges from E4 are embedded,
that is P ′ = P3 ∩ P4. Since P3 and P4 each contain at least four pages and t = 5, we have
|P ′| ≥ 3. Consider a page P ∈ P ′, as shown in Figure 3.9. We count the number of edges
in E1 that are embedded on P . Let e0, e1 ∈ E(P ) ∩ E3 and e2, e3 ∈ E(P ) ∩ E4.
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Figure 3.9: Possible inner triangulations on pages in P ′

First, assume that e0 and e1 are adjacent. Without loss of generality, e0 = {0, 3} and
e1 = {0, 6}. We have e2 = {0, 4} and e3 = {0, 5} since all other edges in E4 cross e0 or e1.
Hence, the edges {3, 4}, {4, 5}, and {5, 6} are embedded on P .

Now, assume that e0 and e1 are non-adjacent. Without loss of generality, e0 = {1, 4}
and e1 = {5, 8}. Thus, e2 or e3 is incident to vertex 0, as shown in Figure 3.9. Since the
subgraph embedded on P is an inner triangulation, the edges {0, 1}, {0, 8}, and {4, 5} are
embedded on P .

In both cases, every page P ∈ P ′ contains at least three edges of E1. If |P ′| ≥ 4, then∑
P∈P ′ |E1 ∩ E(P )| ≥ 12. With |E1| = 9, it follows that d(Γ) ≥ 3. If |P ′| = 3, then∑
P∈P ′ |E1 ∩ E(P )| = 9. In this case, the subgraph embedded on P3 ∈ P3 \ P ′ induces one

edge in E1, and the subgraph embedded on P4 ∈ P4 \P ′ induces another edge in E1. Thus,
we have∑
P∈P(Γ)

|E1 ∩ E(P )| =
∑
P∈P ′

|E1 ∩ E(P )|+ |E1 ∩ E(P3)|+ |E1 ∩ E(P4)| ≥ 9 + 1 + 1 = 11.

However, with |E1| = 9 this implies d(Γ) ≥ 2.

Since d(Γ) ≤ 3, at most one additional edge in E1 may be induced by the vertex set of any
page. Consider the edge set E2. Embedding an edge from E2 on a page P ∈ P ′ induces an
edge from E1 on P since there are at most two consecutive vertices v and w on the spine
with v, w 6∈ V (P ). Hence, at most one edge from E2 can be embedded on pages in P ′ and
at least eight edges from E2 are embedded on pages in P(Γ) \ P ′. Since |P(Γ) \ P ′| ≤ 2,
there is one page P ′ ∈ P(Γ) \P ′ on which at least four edges e0, . . . , e3 ∈ E2 are embedded.
The edges e0, . . . , e3 may not cross, and thus form a path on four vertices, which forbids
embedding any edge from E4. This contradicts the fact that five pages are necessary for
embedding all edges in E4. Therefore, a 3-local book embedding with five pages of K9 does
not exist.

Lemma 3.17. The local page number of K10 is at least 4.

Proof. Suppose there is a 3-local book embedding Γ with t pages of K10. By Lemma 3.6,
we have 45 = |E(K10)| ≤ 2 · 3 · 10 − 3t = 60 − 3t, which implies t ≤ 5. Thus, there is a
3-local book embedding with five pages of K9, which contradicts Lemma 3.16.

Lemma 3.18. The local page number of K11 is at most 4.

Proof. We construct a 4-local book embedding Γ with eleven pages for K11. Let P(Γ) be
the set of pages with P(Γ) = {P0, . . . , P10}. Let 0, . . . , 10 denote the vertices of K11. All
vertices are taken modulo 11.
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Figure 3.10: Page P0 of K11

Consider a partition E1, . . . , E5 of E(K11) with Ei = {{a, b} : a+ i ≡ b mod 11}. Each
part contains exactly one cycle on eleven vertices. We construct P0 such that exactly one
edge of each part is embedded on P0, as shown in Figure 3.10. The construction is rotated
for embedding on other pages so that each edge is embedded exactly once.

For i ∈ {0, . . . 10} we define

V (Pi) = {i, i+ 1, i+ 4, i+ 6} and
E(Pi) = {{i, i+ 1} , {i, i+ 4} , {i, i+ 6} , {i+ 1, i+ 4} , {i+ 4, i+ 6}} .

Since the construction is rotated exactly |V (K11)| times, there is an integer k such that for
all vertices v ∈ V (K11) we have pK11(v) = k. With |V (P )| = 4 for all pages P ∈ P(Γ), it
follows that k =

∑
P∈P(Γ) |V (P )| / |V (K11)| = 4. Hence, Γ is a 4-local book embedding of

K11.

Corollary 3.19. The local page numbers of K10 and K11 equal 4.

Proof. By Lemmas 3.17 and 3.18, we have pl(K10) ≥ 4 and pl(K11) ≤ 4. Since K10 is a
subgraph of K11, it follows that 4 ≤ pl(K10) ≤ pl(K11) ≤ 4.

3.4 k-Trees
In this section we give a lower and an upper bound on the local page number of k-trees.

Proposition 3.20. For k ∈ {1, 2} the local page number of a k-tree is at most k.

Proof. Since 1-trees are trees, they are outerplanar and have local page number 1 by
Proposition 3.1. Rengarajan and Veni Madhavan [RVM95] proved that every 2-tree can be
embedded in two pages. Hence, the global page number, and therefore also the local page
number, is at most 2.

Note that there exist k-trees with local page number 1 and 2, respectively. Trees with at
least one edge are 1-trees and have local page number 1. In addition, there are 2-trees that
are not outerplanar, and thus have local page number 2.

While the page number of k-trees is at most k for k ∈ {1, 2}, Vandenbussche, West, and Yu
[VWY09] proved that there exist k-trees with global page number k + 1 for every k ≥ 3.
We prove that there are k-trees that have local page number k. However, it remains open
whether there is a k-tree with local page number k + 1 for k ≥ 3.

Proposition 3.21. For every k ≥ 3, there is a k-tree G which has a k-page and k-local
book embedding. In particular, we have p(G) = pl(G) = k.
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3.4. k-Trees

· · · • · · · • · · · • · · ·

V V V V

Figure 3.11: 3-tree with local page number 3. All edges incident to a vertex v ∈ V (K)
(marked with •) and to a vertex in V are embedded on page Pv.

Proof. Let k ≥ 3. We construct a k-tree G that has local page number k. See Figure 3.11
for an illustration of the upcoming construction. Let K be a copy of Kk and let V be a
vertex set of size (2(k(k − 1))k)(k + 1) + 1. We construct G by adding edges between each
vertex of V and the k-clique K. For this let

V (G) = V (K) ∪ V
E(G) = E(K) ∪ {uv : u ∈ V (K), v ∈ V } .

First, we show that there is a k-local book embedding Γ with k pages for G as shown
in Figure 3.11. For this, we take one page Pv for each vertex v ∈ V (K) and embed
all edges incident to v on Pv. Let P(Γ) = {Pv : v ∈ V (K)} be the set of pages. By
construction, every edge in E(G) is incident to at least one vertex in V (K). For edges
uv ∈ E(K), we choose any page of Pu and Pv. We observe that for every page P the
subgraph embedded on P is a star, and thus any two edges on P do not cross. Additionally,
we have |P(Γ)| = |V (K)| = k, and thus Γ is k-local.

Now, we prove that there is no (k−1)-local book embedding for G. Suppose to the contrary
that there is a (k − 1)-local book embedding Γ for G with a page set P(Γ). Let ≺ be
the linear ordering of the vertices on the spine. Recall that all edges are incident to at
least one vertex in V (K). Since Γ is (k − 1)-local and K has exactly k vertices, we have
|P(Γ)| ≤ k(k − 1).

We have (2(k(k − 1))k)(k + 1) + 1 vertices in V and k vertices in V (K). By pigeon hole
principle, there is a set W ⊆ V of size 2(k(k− 1))k +1 such that v 6∈ sp (W ) for all vertices
v ∈ V (K). For v ∈ V (K) and w ∈ W , let Pw,v denote the page on which the edge vw
is embedded. We say that two vertices w and x in W have the same edge assignment if
Pw,v = Px,v for all vertices v ∈ V (K). Since |P(Γ)| ≤ k(k − 1) and deg(w) = |V (K)| = k
for w ∈ W , there are at most (k(k − 1))k vertices in W that have pairwise distinct edge
assignments. With |W | = 2(k(k − 1))k + 1, it follows that there are three vertices x, y,
and z in W having the same edge assignment. Without loss of generality, we assume that
x ≺ y ≺ z.

Next, we prove that pG(y) = k. With this, we conclude that Γ is not (k−1)-local. Consider
two distinct vertices u, v ∈ V (K). We prove that uy and vy are embedded on different
pages, that is Py,u 6= Py,v. Without loss of generality, we have u ≺ v and u ≺ x. Recall
that x ≺ y ≺ z and that u, v 6∈ sp (W ). See Figure 3.12 for an illustration. We distinguish
whether v is embedded to the left of W or to the right of W .

Recall that x, y, and z have the same edge assignment, that is Px,q = Py,q = Pz,q for every
vertex q ∈ V (K). In the first case, we have u ≺ v ≺ x. As shown in Figure 3.12a, the
edges uy and vz cross. Hence, we have Py,u 6= Pz,v = Py,v. In the second case, we have
u ≺ x ≺ y ≺ z ≺ v (see Figure 3.12b). Thus, the edges uy and xv cross. It follows that
Py,u 6= Px,v = Py,v.

We conclude that Py,u 6= Py,v for any two distinct vertices u, v ∈ V (K). With |V (K)| = k, it
follows that pG(y) = k, which contradicts the assumption that Γ is (k− 1)-local. Therefore,
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u v x y z

V (K) W

(a) Case 1: v ≺ x
The edges uy and vz cross.

u x y z v

V (K) W V (K)

(b) Case 2: z ≺ v
The edges uy and xv cross.

Figure 3.12: Constructed k-tree with a (k − 1)-local book embedding. The vertices x, y,
and z have the same edge assignment.

the local page number of G is k. Since the global page number cannot be smaller than the
local page number, it follows that p(G) = k.

Ganley and Heath [GH01] proved that every k-tree can be embedded using k + 1 pages.
Their proof for the global page number can be simplified for proving an upper bound for
the local page number.

Proposition 3.22. For k ≥ 1 every k-tree has local page number at most k + 1.

Proof. Let G be a k-tree on n vertices, where n ≥ k. Fix any k-clique as central k-clique K
and an ordering of V (G) \ V (K) in which the vertices are added to the graph in order to
construct the k-tree G. We denote the vertices of G with 0, . . . , n− 1 so that 0, . . . , k − 1
are the vertices of K and for v, w ∈ V (G) \ V (K) the vertex v is added to the graph
before w if v < w. We construct a (k + 1)-local book embedding Γ for G with an arbitrary
ordering of the vertices on the spine. For this, let P(Γ) = {P0, . . . , Pn−1} be a set of n
pages. The edges are embedded so that vw ∈ E(Pv) if and only if v < w. We observe
that every edge embedded on page Pv is incident to v for v ∈ V (G). Hence, for every page
P ∈ P(Γ) the subgraph embedded on P is a star, and thus any two edges on P do not
cross.

Next, we prove that Γ is (k + 1)-local. Consider a vertex v ∈ V (G). By construction of
a k-tree, there are at most k vertices that are adjacent to v and are embedded before v.
Thus, there are at most k pages that contain edges uv with u < v and u ∈ V (G). However,
all edges vw with v < w and w ∈ V (G) are embedded on page Pv. Therefore, there are at
most k + 1 pages that contain edges incident to v.
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4. NP-Completeness for k-Local Book
Embedding with Fixed Vertex
Ordering

In the following chapter we show that k-local book embedding with fixed vertex
ordering is NP-complete for k = 3. After that, we extend this result by proving NP-
completeness for k ≥ 3. Note that it can be tested in polynomial time whether a graph
with a given vertex ordering can be embedded in a 1-local book embedding due to the
stack structure of pages. Here, each connected component is considered independently.
However, the case k = 2 remains open.

4.1 NP-Completeness for k = 3

We start with a variation of 3SAT and reduce it to the case k = 3.

Definition 4.1. 2-3SAT

Let U be a set of Boolean variables. Let C be a set of clauses, where each clause consists of
exactly three literals, joined together by the Boolean or. In C each variable occurs exactly
once. Let C′ be a set of clauses, where each clause consists of exactly two literals. In C′

each variable occurs exactly once as positive literal and exactly once as negative literal.
Moreover, every clause in C′ contains exactly one positive and one negative literal. Given
an instance (U, C, C′) of 2-3SAT, is the corresponding SAT instance (U, C ∪ C′) satisfiable?

Proposition 4.2. 2-3SAT is NP-complete.

Proof. Since 2-3SAT is a special case of the satisfiability problem, 2-3SAT is in NP
[GJ79]. We reduce 3SAT to 2-3SAT. Let (U3, C3) be an instance of 3SAT. We construct
an instance (U, C, C′) of 2-3SAT that is satisfiable if and only if (U3, C3) is satisfiable.

Let u ∈ U3 be a variable which occurs n times in C3 with n ≥ 1. Let u0, . . . , un−1 ∈ U be n
new variables. All indices are taken modulo n. Let {(ūi ∨ ui+1) : i ∈ {0, . . . , n− 1}} ∈ C′.
For a clause C3 ∈ C3 that contains u, we have a corresponding clause C ∈ C. The new
clause C is obtained from C3 by replacing u by ui and ū by ūi for some i ∈ {0, . . . , n− 1}
such that each ui occurs exactly once in C for i ∈ {0, . . . , n− 1}.

The instance (U, C, C′) can be constructed in polynomial time since |U | = |U3|, |C| = |C3|,
and |C′| ≤ |C3|.
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4. NP-Completeness for k-Local Book Embedding with Fixed Vertex Ordering

0 1 2 3 4 5 6 7 8wv

Figure 4.1: 3-local book embedding of K9 – all edges leaving vertex 2 are embedded on the
same page

First, assume that (U3, C3) is satisfiable. Let t3 : U3 → {true, false} be a truth assignment
satisfying all clauses in C3. We construct a truth assignment t : U → {true, false} that
satisfies all clauses in C ∪ C′. For a variable u ∈ U3 that occurs n times in C3 and
i ∈ {0, . . . , n− 1}, let t(ui) = t3(u). All clauses in C′ are satisfied since each clause contains
one positive and one negative literal. All clauses in C are satisfied since each clause in C
corresponds to a clause in C3.

Now, assume that (U, C, C′) is satisfiable. Let t : U → {true, false} be a truth assignment
that satisfies all clauses in C ∪ C′. Let u ∈ U3 be a variable that occurs n times in C3.
The clause (ūi ∨ ui+1) is equivalent to the implication t(ui) ⇒ t(ui+1). Thus, the set of
clauses {(ūi ∨ ui+1) : i ∈ {0, . . . , n− 1}} implies t(u0) ⇔ · · · ⇔ t(un−1). We construct a
truth assignment t3 : U3 → {true, false} that satisfies all clauses in C3. Let t3(u) = t(ui) for
some i ∈ {0, . . . , n− 1}. Since each clause in C3 corresponds to a clause in C, all clauses in
C3 are satisfied.

We use the following lemma to prove NP-completeness of k-local book embedding
with fixed vertex ordering for k = 3.

Lemma 4.3. Let K be a copy of K9 with V (K) = {0, . . . , 8}. Let G be a graph with
V (G) = V (K) ∪ {v, w}. Let Γ be a 3-local book embedding of G with a linear ordering ≺
of V (G), where 0 ≺ · · · ≺ 8 and v, w 6∈ sp (V (K)). Then, {2, v} and {2, w} are embedded
on the same page and such an embedding Γ exists.

Proof. Let P(Γ) be the set of pages of Γ. By Lemma 3.16, the subgraph K is embedded
on exactly six pages. Let v and w be vertices with v, w 6∈ sp (V (K9)). Figure 4.1 shows
that it is possible to find a 3-local book embedding of K9 such that the edges {2, v} and
{2, w} can be embedded.

With |E(K9)| = 36 = 2 ·3 · |V (K9)|−3 |P(Γ)| and Lemma 3.6, it follows that for every page
P ∈ P(Γ) the subgraph of K embedded on P is an inner triangulation and that pG(x) = 3
for all vertices x ∈ V (K9). Recall that a single edge is an inner triangulation. Hence, there
is exactly one page P ∈ P(Γ) with 0, 1 ∈ V (P ) and a set P ′ ⊆ P(Γ) of exactly five pages
that contain all edges incident to 0 or 1.

Suppose {2, v} and {2, w} are embedded on different pages, say {2, v} ∈ E(Pv) and
{2, w} ∈ E(Pw) with Pv, Pw ∈ P(Γ). Since |P ′| = 5 and |P(Γ)| = 6, we have Pv ∈ P ′

or Pw ∈ P ′. Without loss of generality, we assume that Pv ∈ P ′. There is no vertex
x ∈ {3, . . . , 8} with x ∈ V (Pv) as triangulating a graph with vertices in {0, 1} and vertices
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4.1. NP-Completeness for k = 3

wj v̄i vi w′
l w′

m x4i x4i+1 x4i+2 x4i+3 z′l z′m zj y4i y4i+1 y4i+2 y4i+3

W V W ′ X Z ′ Z Y

Figure 4.2: Constructed graph for variable ui ∈ U and clauses Cj ∈ C and C ′
l , C

′
m ∈ C′ with

ui ∈ Cj , ui ∈ C ′
l , and ūi ∈ C ′

m. The shown vertices in X are part of the gadget
presented in Lemma 4.3, which is indicated by boxes. All edges leaving such a
vertex to vertices in V or Y are embedded on the same page.

in {3, . . . , 8} results in an edge crossing {2, v}. Thus, we have V (Pv) ⊆ {0, 1, 2} and
E(Pv) ⊆ {{0, 1} , {0, 2} , {1, 2}}. Since edges {1, x} with x ∈ {3, . . . , 8} are not embedded
on Pw, no edge embedded on Pw crosses any edge embedded on Pv. Hence, we can construct
a page P ′ with V (P ′) = V (Pv) ∪ V (Pw) and E(P ′) = E(Pv) ∪ E(Pw). Let Γ′ be a book
embedding with P(Γ′) = P(Γ) \ {Pv, Pw} ∪ {P ′}. The constructed book embedding Γ′ is
3-local and embeds K9 in five pages, which contradicts Lemma 3.16. Therefore, all edges
leaving vertex 2 to a vertex v 6∈ sp (V (K9)) are embedded on the same page.

The following theorem is the main result of this section.

Theorem 4.4. 3-local book embedding with fixed vertex ordering is NP-
complete.

Proof. Given a graph G, a linear ordering ≺, and a book embedding Γ we can check in
polynomial time whether the vertices are embedded on the spine according to ≺, whether
on every page the embedded subgraph is a plane graph, and whether pG(v) ≤ 3 for every
vertex v ∈ V (G). Hence, 3-local book embedding with fixed vertex ordering is
in NP.

We reduce 2-3SAT to 3-local book embedding with fixed vertex ordering.
Given a 2-3SAT instance (U, C, C′) we construct a graph G with a linear ordering ≺ for
which there is a 3-local book embedding if and only if C ∪ C′ is satisfiable over U . Let
V (G) = V ∪ X ∪ Y ∪W ∪W ′ ∪ Z ∪ Z ′ and E(G) = EV ∪ EX ∪ EW ∪ EW ′ ∪ EZ ∪ EZ′ .
The vertex sets and edge sets are constructed below and are illustrated in Figure 4.2.

EV

V

Let U = {u0, . . . , ur−1}. For i ∈ {0, . . . , r − 1} and a variable ui ∈ U we have
two vertices vi and v̄i and an edge viv̄i. We embed v̄i to the right of vi if there is
a clause in C which contains ūi and to the left of vi otherwise. Recall that the
variable ui is contained at most once in C, so at most one of the literals ui and ūi
is contained in C. For i, j ∈ {0, . . . , r − 1} with i < j we have {vi, v̄i} ≺ {vj , v̄j}.
Let

V = {vi, v̄i : i ∈ {0, . . . , r − 1}} and
EV = {viv̄i : i ∈ {0, . . . , r − 1}} .
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v̄i vi • • x4i • • • • • • x4i+1 x4i+2 x4i+3 y4i y4i+1 y4i+2 y4i+3

G4i
∼= K9 K9 K9 K9

V X Y

Figure 4.3: The vertex x4i is the vertex of V (G4i) which has exactly two vertices of V (G4i)
to the left. All vertices marked with boxes, like x4i, are contained in a copy of
K9. Lemma 4.3 applied to such a vertex proves that all edges to V or Y are
embedded on the same page.

EX

X,Y

We take 4r disjoint copies G0, . . . , G4r−1 of K9 with V ≺ V (G0) ≺ · · · ≺
V (G4r−1). Let X and Y be vertex sets with

X =
4r−1⋃
i=0

V (Gi) and

Y = {y0, . . . , y4r−1} .

For i ∈ {0, . . . , 4r − 1} let xi denote the vertex in V (Gi) which has exactly two
vertices of V (Gi) to the left. In the figures of this chapter, these vertices are
marked with boxes. We embed Y such that y0 ≺ · · · ≺ y4r−1 and V (G4r−1) ≺ Y .
We connect the K9-gadgets in X with vertices in V and Y as shown in Figure 4.3.
For this let

EX = {vix4i, vix4i+1, v̄ix4i+2, v̄ix4i+3 : i ∈ {0, . . . , r − 1}}
∪ {xiyi : i ∈ {0, . . . , 4r − 1}}

∪
4r−1⋃
i=0

E(Gi).

EW

W

Let C = {C0, . . . , Cs−1} be the set of clauses with three variables each. Let W
be a set of vertices with

W = {w0, . . . , ws−1} ,

w0 ≺ · · · ≺ ws−1, and W ≺ V . For i ∈ {0, . . . , r − 1} and j ∈ {0, . . . , s− 1} we
add edges viwj if ui ∈ Cj or v̄iwj if ūi ∈ Cj . For this let

EW = {viwj : ui ∈ Cj , i ∈ {0, . . . , r − 1} , j ∈ {0, . . . , s− 1}}
∪ {v̄iwj : ūi ∈ Cj , i ∈ {0, . . . , r − 1} , j ∈ {0, . . . , s− 1}} .

EW ′

W ′

Let C′ =
{
C ′
0, . . . , C

′
t−1

}
be the set of clauses with exactly two variables each.

We take t disjoint copies G′
0, . . . , G

′
t−1 of K9. For l ∈ {0, . . . , t− 1} let V (Gl) =

{al,0, . . . , al,8}. Let W ′ be a set of vertices with

W ′ =
t−1⋃
l=0

V (G′
l) ∪ {w′

l, al : l ∈ {0, . . . , t− 1}} .
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vi v̄j · · · al−1,8 al w′
l al,0 al,1 al,2 · · · al,8 al+1 · · · z′l

G′
l
∼= K9

V W ′ X Z ′

Figure 4.4: Constructed graph for clause Cl ∈ C′ with Cl = (ui ∨ ūj). Here, we have
t(ui) = true and the edges viw

′
l and w′

lz
′
l are embedded on the same page P ′

l .
By Lemma 4.3 all edges leaving vertex al,2 are embedded on the same page.

Figure 4.4 shows how W ′ is embedded into ≺. We embed W ′ on the spine
such that al ≺ w′

l ≺ al,0 ≺ · · · ≺ al,8 for l ∈ {0, . . . , t− 1}, am,8 ≺ am+1 for
m ∈ {0, . . . , t− 2}, and V ≺ W ′ ≺ V (G0). Again, we can apply Lemma 4.3 to
al,2, which is marked by boxes in the figures of this chapter. For i ∈ {0, . . . , r − 1}
and l ∈ {0, . . . , t− 1}, we add edges viw

′
l if ui ∈ C ′

l , or v̄iw
′
l if ūi ∈ C ′

l . Addition-
ally, we add edges alal,2 and w′

lal,2 for l ∈ {0, . . . , t− 1}. For this let

EW ′ = {viw′
l : ui ∈ C ′

l , i ∈ {0, . . . , r − 1} , l ∈ {0, . . . , t− 1}}
∪ {v̄iw′

l : ūi ∈ C ′
l , i ∈ {0, . . . , r − 1} , l ∈ {0, . . . , t− 1}}

∪ {alal,2, w′
lal,2 : l ∈ {0, . . . , t− 1}}

∪
t−1⋃
l=0

E(G′
l).

EZ , EZ′

Z,Z ′

Finally, we have two vertex sets Z and Z ′ with

Z = {z0, . . . , zs−1} and
Z ′ =

{
z′0, . . . , z

′
t−1

}
.

Let X ≺ Z ′ ≺ Z ≺ Y . Let z0 ≺ · · · ≺ zs−1 and z′0 ≺ · · · ≺ z′t−1. Let

EZ = {wjzj : j ∈ {0, . . . , s− 1}} and
EZ′ = {w′

lz
′
l : l ∈ {0, . . . , t− 1}} .

The graph G and a vertex ordering ≺ can be constructed in polynomial time since
|V (G)| ∈ O(|U |+ |C|+ |C′|).

Below, we prove that there is a 3-local book embedding for the constructed graph with
respect to the ordering ≺ if and only if (U, C, C′) is satisfiable.

First, assume that (U, C, C′) is satisfiable. Let t : U → {true, false} be a truth assignment
that satisfies all clauses in C ∪ C′ over U . We find a 3-local book embedding for G by
embedding all constructed edge sets. The embedding of some edge sets is illustrated in
Figure 4.2.

EX We start by taking 4r pairwise distinct pages P0, . . . , P4r−1. For i ∈ {0, . . . , r − 1}
and j ∈ {0, . . . , 3}, we embed the edges vx4i+j with v ∈ {vi, v̄i} on P4i+j . For
i ∈ {0, . . . , 4r − 1}, we embed the edges xiyi on page Pi as shown in Figure 4.3.
By Lemma 4.3, all subgraphs Gi can be embedded in a 3-local book embedding
since all edges leaving vertex xi to vertices in V or Y are embedded on the same
page Pi for i ∈ {0, . . . , 4r − 1}.

31



4. NP-Completeness for k-Local Book Embedding with Fixed Vertex Ordering

v̄i vi w′
l x4i x4i+2 z′l y4i y4i+2

V W ′ Z ′X Y

(a) We have t(ui) = true. Hence, v̄ivi is em-
bedded on page P4i (which also contains
v̄ix4i). The edge viw

′
l is embedded on page

P ′
l (which also contains w′

lz
′
l).

v̄i vi w′
l x4i x4i+2 y4i y4i+2

V W ′ X Y

(b) We have t(ui) = false. Hence, v̄ivi is em-
bedded on page P4i+2 (which also contains
v̄ix4i+2). The edge viw

′
l is embedded on

page P4i (which also contains vix4i).

Figure 4.5: Embedding of the edges v̄ivi and viw
′
l depending on the truth assignment of

the variable corresponding to vi

EV For i ∈ {0, . . . , r − 1}, we embed viv̄i on page P4i (which already contains an edge
incident to vi) if t(ui) = true. Otherwise, we embed viv̄i on page P4i+2 (which
already contains an edge incident to v̄i). Both cases are shown in Figure 4.5.
Hence, for every vertex v ∈ V we have pG[V ∪X](v) = 2 if the corresponding literal
is true, and pG[V ∪X](v) = 3 otherwise.

EW ′ , EZ′ Next, we embed all edges w′
lz

′
l ∈ EZ′ on new pages P ′

l for l ∈ {0, . . . , t− 1}.
Consider two adjacent vertices vi and w′

l. If t(ui) = true, then pG[V ∪X](vi) = 2
by construction and we can embed viw

′
l on page P ′

l , as shown in Figure 4.5a.
All edges embedded on page P ′

l are incident to w′
l, and thus do not cross. On

the other hand, if t(ui) = false, then we embed viw
′
l on page P4i which already

contains the edges vix4i and x4iy4i, as shown in Figure 4.5b. Hence, the number
of pages that contain edges incident to vi does not increase. Edges on P4i do not
cross since V ≺ W ′ ≺ X ≺ Y . Similarly, an edge v̄iw

′
l is embedded on page P ′

l if
t(ui) = false and on page P4i+2 otherwise.

Since clauses in C′ consist of exactly one positive and exactly one negative
literal, every vertex w′

l ∈ W ′ is adjacent to two vertices vi, v̄j ∈ V for some
i, j ∈ {0, . . . , r − 1} and to no other vertex in V . This corresponds to the clause
C ′
l ∈ C′ with C ′

l = (ui ∨ ūj). Recall that w′
lz

′
l is embedded on page P ′

l . Since t is
a satisfying truth assignment, we have t(ui) = true or t(uj) = false. As discussed
above, an edge vw′

l is embedded on page P ′
l if the literal corresponding to v is

true. Thus, one of viw′
l and v̄jw

′
l is embedded on P ′

l , as shown in Figure 4.4.
Hence, we have pG[V ∪

{
w′

l

}
∪Z′](w

′
l) = 2, and thus we can embed w′

lal,2 on a new
page P̂l. We also embed alal,2 on P̂l. Lemma 4.3 applied to the copy of K9

containing al,2 implies that G′
l can be embedded in a 3-local book embedding.

EW , EZ Finally, consider wj ∈ W and three vertices vi0 , vi1 , and vi2 in V that are incident
to wj . Let ui0 , ui1 , and ui2 be the corresponding variables and Cj ∈ C the clause
corresponding to wj . Without loss of generality we have Cj = (ui0 ∨ ui1 ∨ ui2).
Since all clauses in C are satisfied, at least one of ui0 , ui1 and ui2 is true. Without
loss of generality we assume that t(ui0) = true.

Let w′
l ∈ W ′ be the vertex in W ′ for which the edge vi0w

′
l exists, that is ui0 ∈ C ′

l

(see Figure 4.6). Recall that an edge vw′
l is embedded on page P ′

l if the literal
corresponding to v is true. Since ui0 is true, we have vi0w

′
l ∈ E(P ′

l ). We embed
wjzj and wjvi0 on page P ′

l . Note that edges between vertices in W and Z and
edges between vertices in W ′ and Z ′ do not cross. The edge wjvi0 does not cross
any other edge on page P ′

l since W ≺ V ≺ W ′.

Recall that P4i1 and P4i2 are the pages on which the edges vi1x4i1 and vi2x4i2 are
embedded, respectively. We embed wjvi1 on page P4i1 and wjvi2 on page P4i2 .
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wj vi0 w′
l · · · z′l zj · · ·

W V W ′ X Z ′ Z Y

Figure 4.6: We have t(ui0) = true, ui0 ∈ C ′
l , and ui0 ∈ Cj . The figure shows edges

embedded on page P ′
l .

v xi xj yi yj

V X Y

Figure 4.7: For i 6= j the edges xiyi and xjyj cross. By Lemma 4.3 all edges leaving a
vertex in X to vertices in V or Y are embedded on the same page. We observe
that any two edges between V and X are embedded on different pages.

This increases the number of pages containing edges incident to wj but leaves
pG(v) = pG[V ∪X](v) ≤ 3 for v ∈ {vi1 , vi2}. Hence, there are at most three pages
containing edges incident to wj . The embedded edges do not cross any other
edges on their pages since W ≺ V ≺ X.

Now, assume there is a 3-local book embedding Γ with the page set P(Γ) for the constructed
graph G. We find a truth assignment t : U → {true, false} that satisfies C ∪ C′ over U . Let
G′ be the subgraph of G restricted to the vertex sets V and X, that is G′ = G[V ∪X]. For
i ∈ {0, . . . , r − 1}, a variable ui ∈ U , and the corresponding vertex vi ∈ V let

t(ui) =

{
true, if pG′(vi) = 2,

false, if pG′(vi) = 3.

For any i, j ∈ {0, . . . , 4r − 1} with i 6= j the edges xiyi and xjyj cross, and thus are
embedded on different pages (see Figure 4.7). By construction, the subgraphs Gi are
isomorphic to K9 for i ∈ {0, . . . , 4r − 1}. Recall that xi is the vertex in V (Gi) that
has neighbors in V and X. By Lemma 4.3, the edges vxi and xiyi are embedded on the
same page for v ∈ V and i ∈ {0, . . . , 4r − 1}. We observe that any two edges leaving V to
vertices in X are embedded on different pages. Since vi is adjacent to x4i and x4i+1, we
have pG′(vi) ≥ 2 for i ∈ {0, . . . , r − 1}. We have pG′(vi) ≤ 3 since Γ is 3-local. Hence, the
truth assignment t is well-defined.

Next, we observe that the edges vw′
l and w′

lz
′
l are embedded on different pages if the

literal corresponding to v ∈ V is false. Let u be the literal corresponding to v. Let v̄ ∈ V
be the vertex that is corresponding to ū. Let u be false and thus pG′(v) = 3. Suppose

v̄ v w′
l x̂ x x′ z′l

V W X Z

Figure 4.8: We have t(u) = false, pG′(v) = 3, and pG′(v̄) = 2. If vw′
l and w′

lz
′
l are embedded

on the same page P , then w′
lz

′
l and v̄x̂ cross on page P for some x̂ ∈ X.
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vj v̄j vi w′
l • •

V W ′ X

Figure 4.9: Consider the case that viw
′
l and v̄jw

′
l are embedded on the same page P̂ . One

of vj and v̄j has an edge to X that is embedded on P̂ . However, vi ∈ V (P̂ ) but
there is no edge between vi and X embedded on P̂ .

there is a page P that contains vw′
l and w′

lz
′
l as shown in Figure 4.8. Recall that v is

adjacent to two vertices x and x′ in X such that vx and vx′ are embedded on different
pages. Since w′

lz
′
l crosses all edges between V and X, we have vx, vx′ 6∈ E(P ). Note that

pG′(v) = pG[V ∪X](v) = 2 if vv̄ is embedded on the same page as vx or vx′. With pG′(v) = 3,
it follows that vv̄ ∈ E(P ). However, we have pG′(v̄) = 2 and thus there is an edge from v̄
to a vertex in X that is embedded on P . This is a contradiction since the page P contains
w′
lz

′
l which crosses all edges between V and X.

Now, we prove that all clauses in C′ are satisfied. Consider a clause C ′
l ∈ C′ with C ′

l = (ui∨ūj)
for some i, j ∈ {0, . . . , r − 1} and l ∈ {0, . . . , t− 1}. Figure 4.4 shows vertex w′

l ∈ W ′ and
its neighborhood. By construction, we have viw

′
l ∈ E(G) and v̄jw

′
l ∈ E(G). The vertices

al,0, . . . , al,8 form a complete graph on nine vertices. By Lemma 4.3, the edges alal,2 and
w′
lal,2 are embedded on the same page P ∈ P(Γ). All edges leaving w′

l to vertices in V or
Z ′ cross alal,2, and thus are not embedded on P . In particular, the edge w′

lz
′
l is embedded

on a page P ′ ∈ P(Γ) with P ′ 6= P . Together, we have w′
l ∈ V (P ) and w′

l ∈ V (P ′). Since Γ
is 3-local, we can use P , P ′, and at most one new page in order to embed the edges viw

′
l

and v̄jw
′
l.

Hence, one of viw′
l and v̄jw

′
l is embedded on P ′, or viw

′
l and v̄jw

′
l are embedded on the

same page P̂ ∈ P(Γ). Without loss of generality, we assume pG′(v̄j) = 3, and t(uj) = true.
Consider the first case, that is viw

′
l ∈ E(P ′) or v̄jw

′
l ∈ E(P ′). As discussed above, the

edges v̄jw′
l and w′

lz
′
l are embedded on different pages since ūj is false (see Figure 4.4). With

w′
lz

′
l ∈ E(P ′), it follows that v̄jw′

l 6∈ E(P ′). Similarly, we have viw
′
l 6∈ E(P ′) if t(ui) = false,

which is a contradiction. Hence, we have t(ui) = true and C ′
l is satisfied.

The second case, namely if viw
′
l, v̄jw

′
l ∈ E(P̂ ), is illustrated in Figure 4.9. Recall that

G′ = G[V ∪X] and pG′(v̄j) = 3. Since Γ is 3-local and v̄jw
′
l 6∈ E(G′) but v̄j ∈ E(P̂ ), there

is an edge in G′ that is incident to v̄j and is embedded on P̂ . Thus, there is a vertex x ∈ X
such that v̄jx ∈ E(P̂ ) or vjx ∈ E(P̂ ). Since any two edges leaving V to vertices in X are
embedded on different pages, there is no vertex x′ ∈ X with vix

′ ∈ E(P̂ ). With vi ∈ V (P̂ ),
it follows that pG′(vi) = 2, and thus t(ui) = true. Therefore, C ′

l is satisfied.

Next, we prove that all clauses in C are satisfied. Consider a clause Cj ∈ C and the
corresponding vertex wj ∈ W for j ∈ {0, . . . , s− 1}. Without loss of generality, we assume
that Cj = (u0 ∨ u1 ∨ u2). Thus, the vertex wj is adjacent to v0, v1, and v2. Since Γ is
3-local, at least two of wjv0, wjv1, wjv2, and wjzj are embedded on the same page.

Suppose Cj is not satisfied, that is t(u0) = t(u1) = t(u2) = false, and pG′(v0) = pG′(v1) =
pG′(v2) = 3. See Figure 4.10 for an illustration. By construction, for i ∈ {0, 1, 2} the vertex
vi is to the right of v̄i since vi ∈ Cl. Recall that wj is embedded to the left of V . Hence
wjvi crosses every edge from v̄i to a vertex in W ′. Since pG′(v̄i) = 2, v̄ivi is embedded on
a page that contains edges between v̄i and X. With pG′(vi) = 3, it follows that wjvi is
embedded on a page which contains edges between {v̄i, vi} and X. Since there are no two
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wj v̄i vi · · · · · · · · · zj · · ·

W V W ′ X Z ′ Z Y

Figure 4.10: We have t(ui) = false and pG′(v̄i) = 2. The edge wjvi is embedded on a page
that contains an edge between vi and X.

edges between V and X that are embedded on the same page, any two of wjv0, wjv1, and
wjv2 are embedded on different pages.

Recall that all edges leaving a vertex in X to vertices in V or Z are embedded on the
same page. Hence, every page that contains an edge between V and X also contains an
edge between X and Y . However, wjzj crosses every edge between X and Y , and thus
cannot be embedded on the same page as one of wjv0, wjv1, and wjv2. Hence, we have
pG(wj) = 4, which is a contradiction since Γ is 3-local. Therefore, Cj is satisfied.

4.2 NP-Completeness for k ≥ 3

The following construction is used to reduce k-local book embedding with fixed
vertex ordering for k = 3 to the case k > 3. See Figure 4.11 for an illustration of the
upcoming construction.

Construction 4.5. We construct a graph G(k) depending on an integer k ≥ 2 and a linear
ordering ≺ of V (G(k)). Let m = k − 2 and let n = (k − 1)2. Let K be a copy of Kk−1,n+2

with parts V = {v0, . . . , vm} and W = {w0, . . . , wn, z}. Let Y be a set of n + 1 vertices
with Y = {y0, . . . , yn}. Let G(k) be a graph with

V (G(k)) = Y ∪ {x} ∪ V (K) and
E(G(k)) = E(K) ∪ {yiwi, xwi : i ∈ {0, . . . , n}} .

Let ≺ be a linear ordering of V (G(k)) with Y ≺ {x} ≺ V ≺ W . Let yn ≺ · · · ≺ y0,
v0 ≺ · · · ≺ vm, and w0 ≺ · · · ≺ wn ≺ z.

Lemma 4.6. Let k ≥ 2 and let G(k) be a graph with a linear ordering ≺ of V (G(k))
created according to Construction 4.5. Let m = k − 2 and let n = (k − 1)2. We denote the
vertices and subsets of V (G(k)) according to Construction 4.5. Then, there is a k-local book
embedding of G(k) into ≺ with pG(k)(x) = 1. In addition, for every k-local book embedding
of G(k) into ≺, there exists some i ∈ {0, . . . , n} such that the edges yiwi and xwi are
embedded on the same page.

Proof. First, we find a k-local book embedding Γ that embeds G(k) into ≺. For this let
P(Γ) =

{
P0, . . . , Pk(k−1)

}
be the set of pages. Figure 4.11 shows the constructed graph and

some page sets for k = 4. We construct Γ so that vj ∈ V (Pr) if and only if j ≡ r mod |V |,
where j ∈ {0, . . . ,m} and r ∈ {0, . . . , k(k − 1)− 1}. For i ∈ {0, . . . , n} and j ∈ {0, . . . ,m},
we embed the edge vjwi on page Pr with r = min {s ∈ N0 : s ≥ i, s ≡ j mod |V |}. For
j ∈ {0, . . . ,m}, we embed the edges vjz on page Pr with r = n+ j. Note that vwn and vz
are embedded on the same page for every v ∈ V . It remains to embed the edges between
Y and W and between x and W . For i ∈ {0, . . . , n− 1} we embed yiwi on page Pi. All
edges incident to x are embedded on Pk(k−1). Additionally, we embed ynwn on Pk(k−1).
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y9 · · · y2 y1 y0 x v0 v1 v2 w0

0, 1, 2
w1

1, 2, 3
w2

2, 3, 4
· · · w9

9, 10, 11
z

9, 10, 11

Y V W

Figure 4.11: Construction 4.5 for k = 4 and n = 9. In a book embedding as constructed
in Lemma 4.6, we have P0 = {P0, P3, P6, P9}, P1 = {P1, P4, P7, P10}, and
P2 = {P2, P5, P8, P11}. The indices below a vertex w ∈ W indicate the pages
that contain edges incident to w, for example w0 ∈ V (P0) ∩ V (P1) ∩ V (P2).
Additionally, we have w ∈ V (P12) for all vertices w ∈ W .

Next, we show that any two edges embedded on the same page do not cross. Recall that
K is a copy of Kk−1,n+2 with parts V and W , as described in Construction 4.5. Consider
Γ restricted to K. By construction, there is at most one vertex of V in the vertex set of
each page. Hence, for every page P ∈ P(Γ) the subgraph of K embedded on P is a star,
and thus any two edges do not cross.

Consider the edges between Y and W . Recall that yrwr is embedded on Pr for r ∈
{0, . . . , n− 1}. However, for a vertex wi ∈ W with i ∈ {0, . . . , n} and wi ∈ V (Pr), we have
r = min {s ∈ N0 : s ≥ i, s ≡ j mod |V |} for some j ∈ {0, . . . ,m}, and thus r ≥ i. Edges
between wn and Y and between z and V are embedded on pages Ps ∈ P(Γ) with s > r.
Hence, for all vertices w ∈ W that are embedded to the right of wr, we have w 6∈ V (Pr).
Finally, recall that all edges incident to x and the edge ynwn are embedded on page Pk(k−1).
These edges do not cross since the edges incident to x form a star and all edges crossing
ynwn are incident to z but z 6∈ V

(
Pk(k−1)

)
.

Now, we prove that for every k-local book embedding Γ of G(k) there exists some
i ∈ {0, . . . , n} such that the edges yiwi and xwi are embedded on the same page. Let
P(Γ) be the set of pages of Γ. For j ∈ {0, . . . ,m}, let Pj be the set of pages that contain
edges incident to vj , that is Pj = {P ∈ P(Γ) : vj ∈ V (P )}. Since Γ is k-local, we have
|Pj | ≤ k for j ∈ {0, . . . ,m}. For a vertex w ∈ W , a free page of w with respect to vj is a
page P ∈ Pj such that vjw can be embedded on P without crossing any other edges on
P for some j ∈ {0, . . . ,m}. We denote the number of free pages of w with respect to vj
by fj(w). Let f(w) =

∑m
j=0 fj(w) be the sum of free pages of a vertex w ∈ W over all vj .

Since |V | = k− 1 and |Pj | ≤ k for j ∈ {0, . . . ,m}, we have f(w) ≤ k(k− 1) for all vertices
w ∈ W . When embedding G(k), we need to take care that f(w) ≥ k − 1 for every vertex
w ∈ W , otherwise there are edges in E(K) that cannot be embedded.

Below, we denote z by wn+1. Recall that wi and wi+1 are embedded consecutively on the
spine and v ≺ wi ≺ wi+1 for v ∈ V as shown in Figure 4.12. Thus, every edge crossing
vwi also crosses vwi+1. However, there might be edges that cross vwi+1 but do not cross
vwi. If a page P is a free page of wi+1 with respect to v ∈ V for i ∈ {0, . . . , n}, then we
observe that P is also a free page of wi with respect to v. It follows that f(wi) ≥ f(wi+1)
for i ∈ {0, . . . , n}.

36



4.2. NP-Completeness for k ≥ 3

v wi wi+1

V W

Figure 4.12: Recall that no vertex is embedded between wi and wi+1. Every edge crossing
vwi also crosses vwi+1 but there may exist edges crossing vwi+1 but not vwi.

vr vs wi wi+1

V W

Figure 4.13: vrwi, vswi ∈ E(P ) but vswi+1 6∈ E(P ). Thus P is free for wi but not free for
wi+1 with respect to vs.

Suppose that for all i ∈ {0, . . . , n} the edges yiwi and xwi are embedded on different pages.
For a vertex wi ∈ W with i ∈ {0, . . . , n} we consider two cases: There are two edges incident
to wi and to a vertex in V that are embedded on the same page, or the edges between
V and wi are embedded on pairwise distinct pages. We prove that f(wi) > f(wi+1) in
both cases. Since a free page of wi+1 is also free for wi, it suffices to find a page that is
free for wi but not free for wi+1 with respect to some v ∈ V . In the first case, let vr and
vs be the two vertices in V for which vrwi and vswi are embedded on the same page P ,
where r, s ∈ {0, . . . ,m} and r < s (see Figure 4.13). Thus, we have P ∈ Pr ∩ Ps. Since
vrwi and vswi+1 cross, P is not a free page of wi+1 with respect to vs. It follows that
f(wi) > f(wi+1).

In the second case, we have k− 1 edges between V and wi which are embedded on pairwise
distinct pages. See Figure 4.14 for an illustration. Recall that Γ is k-local and that the
edges yiwi and xwi are embedded on different pages. Hence, there is a page P ∈ P(Γ)
on which vjwi and one of yiwi and xwi is embedded for some j ∈ {0, . . . ,m}. Note that
P ∈ Pj since vj ∈ V (P ). However, all edges between wi+1 and a vertex in V cross the edges
yiwi and xwi. Thus, P is not a free page of wi+1 with respect to vj , so f(wi) > f(wi+1).

Recall that f(w0) ≤ k(k−1) and that f(w) ≥ k−1 for every w ∈ W . With f(wi) > f(wi+1)
for i ∈ {0, . . . , n} it follows that

f(z) = f(wn+1) ≤ f(w0)− (n+ 1) ≤ k(k − 1)− ((k − 1)2 + 1) = k − 2 < k − 1,

which is a contradiction. Therefore, there is an index i ∈ {0, . . . , n} such that the edges
yiwi and xwi are embedded on the same page.

yi x vj wi wi+1

Y V W

Figure 4.14: One of yiwi and xwi is embedded on the same page as vjwi. All edges between
wi+1 and a vertex in V cross the edges yiwi and xwi.
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V (G) Yi,0 Yi,1 xi Zi,0 Zi,1 V (G)

Figure 4.15: Reduction for k = 5. By Lemma 4.6 for every l ∈ {1, 2} there is vertex w ∈ Zi,l

and a vertex y ∈ Yi,l such that yw and wxi are embedded on the same page.
All edges from xi ∈ V (G) to another vertex in V (G) cross yw, and thus are
embedded on at most three pages.

Next, we use the presented construction and Lemma 4.6 to prove the following theorem.
This extends Theorem 4.4 by proving NP-completeness for k-local book embedding
with fixed vertex ordering and k ≥ 3.

Theorem 4.7. k-local book embedding with fixed vertex ordering is NP-
complete for k ≥ 3.

Proof. k-local book embedding with fixed vertex ordering is NP-complete for
k = 3 by Theorem 4.4. Given a graph G, a linear ordering ≺, and a book embedding Γ we
can check in polynomial time whether the vertices are embedded on the spine according
to ≺, whether on every page the embedded subgraph is a plane graph, and whether
pG(v) ≤ k for every vertex v ∈ V (G). Hence, k-local book embedding with fixed
vertex ordering is in NP for every k ≥ 3.

In order to prove NP-completeness, we reduce the problem for k = 3 to the case k > 3
using Construction 4.5. Given a graph G and a linear ordering ≺G of V (G), we construct
a graph G′ and a linear ordering ≺G′ of V (G′) such that there is a 3-local book embedding
of G into ≺G if and only if there is a k-local book embedding of G′ into ≺G′ . We construct
G′ such that G ⊆ G′, and embed vertices v, w ∈ V (G) on the spine such that v ≺G′ w if
and only if v ≺G w. Below, we denote both orderings by ≺.

Let k > 3 and let n = |V (G)|. Let V (G) = {x0, . . . , xn−1}. Without loss of generality
we have x0 ≺ · · · ≺ xn−1. We use Construction 4.5 to reduce the number of pages that
can contain edges in E(G) for each vertex in V (G) as shown in Figure 4.15. For this we
take n(k − 3) copies Gi,l of the graph in Construction 4.5, where i ∈ {0, . . . , n− 1} and
l ∈ {0, . . . , k − 4}. For Gi,l we denote the vertex x in Construction 4.5 by xi,l. For i 6= j
and l,m ∈ {0, . . . , k − 4}, the graphs Gi,l and Gj,m are disjoint. For i ∈ {0, . . . , n− 1} and
l,m ∈ {0, . . . , k − 4} let xi,l = xi,m = xi and let V (Gi,l) ∩ V (Gi,m) = {xi}. Recall that
xi ∈ V (G). For constructing G′ let

V (G′) =
n−1⋃
i=0

k−4⋃
l=0

V (Gi,l)

E(G′) =
n−1⋃
i=0

k−4⋃
l=0

E(Gi,l) ∪ E(G).

For Gi,l we denote the vertex set Y in Construction 4.5 by Yi,l and the vertex set V (K) by Zi,l.
Recall that x0 ≺ · · · ≺ xn−1. For i ∈ {0, . . . , n− 1} and l ∈ {0, . . . , k − 4} we embed V (Gi,l)
as described in Construction 4.5. We embed G′ on the spine such that V (Gi,l) ≺ V (Gj,m)
if i < j or if i = j and l < m, where i, j ∈ {0, . . . , n− 1} and l,m ∈ {0, . . . , k − 4}. For
i ∈ {0, . . . , n− 1} let Yi,0 ≺ · · · ≺ Yi,k−4 ≺ {xi} ≺ Zi,0 ≺ · · · ≺ Zi,k−4.

The graph G′ can be constructed in polynomial time since |V (G′)| ∈ O(nk3).

Next, we prove that there is a 3-local book embedding of G if and only if there is a k-local
book embedding of G′. First, assume there is a 3-local book embedding Γ of G according
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4.2. NP-Completeness for k ≥ 3

to ≺. By Lemma 4.6, there is a k-local book embedding Γi,l of Gi,l such that pGi,l
(xi) = 1 for

i ∈ {0, . . . , n− 1} and l ∈ {0, . . . , k − 4}. Let P(Γ) be the set of pages of Γ and let P(Γi,l)
be the set of pages of Γi,l, where all page sets are pairwise disjoint. We construct a k-local
book embedding Γ′ with page set P(Γ′) =

⋃n−1
i=0

⋃k−4
l=0 P(Γi,l) ∪ P(Γ) by embedding each

edge on its page according to Γ or Γi,l, respectively. In Γ′ no two edges on the same page
cross since this is true for Γ and Γi,l. For all vertices v ∈ V (G′) \ {xi : i ∈ {0, . . . , n− 1}}
we have pG′(v) ≤ k since Γ and Γi,l are k-local. For i ∈ {0, . . . , n− 1} we have pG(xi) ≤ 3
and pGi,l

(xi) = 1 for each l ∈ {0, . . . , k − 4}. It follows that pG′(xi) ≤ k. Hence, Γ′ is
k-local.

Now, assume there is a k-local book embedding Γ of G′. Consider a vertex xi ∈ V (G) for
i ∈ {0, . . . , n− 1}. We prove that pG(xi) ≤ 3. By Lemma 4.6, for every l ∈ {0, . . . , k − 4}
there is vertex w ∈ Zi,l and a vertex y ∈ Yi,l such that yw and wxi are embedded on the
same page. We denote this page by Pl. Note that all edges vxi with v 6∈ sp (V (Gi,l)) cross
yw, and thus are not embedded on Pl (see Figure 4.15). Recall that Yi,0 ≺ · · · ≺ Yi,k−4 ≺
{xi} ≺ Zi,0 ≺ · · · ≺ Zi,k−4. Thus, we have Pl 6= Pm if l 6= m for l,m ∈ {0, . . . , k − 4}.
Hence, there are k − 3 pairwise distinct pages P0, . . . , Pk−4 with xi ∈ V (Pl) but v 6∈ V (Pl)
for all vertices v ∈ V (G) \ {xi} and l ∈ {0, . . . , k − 4}. Since Γ is k-local, there are at most
three pages embedding edges between vertices in V (G). Therefore, Γ restricted to G is
3-local.
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5. Union Page Number

After considering the global and local page number, we introduce another version of book
embeddings. We investigate the relations between the three versions of page numbers in
the following chapter.

Definition 5.1. A k-union book embedding embeds a graph G in a book with k pages such
that the vertices lie on the spine and every edge is embedded on exactly one page, where no
two edges belonging to the same connected component of a page cross.

Figure 5.1 shows two example situations of edges embedded on a page, one is permitted
and one is forbidden in a k-union book embedding. With this, we define the union page
number.

Definition 5.2. The union page number pu(G) of a graph G is the minimum k ∈ N0 such
that there exists a k-union book embedding for G.

First, we observe that the union page number can be considered to be between local and
global page number. Additionally, we present graphs for which the local page number is
strictly smaller than the union page number or the union page number is strictly smaller
that the global page number.

Proposition 5.3. For every graph G we have pl(G) ≤ pu(G) ≤ p(G).

Proof. Let G be a graph. Since every book embedding with k pages is also a k-union
book embedding, we have pu(G) ≤ p(G). Next, we prove that pl(G) ≤ pu(G). Let Γ be a
k-union book embedding of G. We construct a k-local book embedding Γ′. For every page
of Γ, we embed each connected component on its own page. By definition of a k-union
book embedding, no two edges that belong to the same connected component of a page

0 1 2 3
(a) permitted – the crossing edges belong to

different connected components

0 1 2 3
(b) forbidden – the crossing edges belong to

the same connected component

Figure 5.1: Permitted and forbidden situations in a 1-union book embedding
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5. Union Page Number

0

1

2 3

4

Figure 5.2: If one page has two connected components, then the other contains a subgraph
that is not outerplanar.

v0 v1 v2 w0 w1 w2

(a) 3-page book embedding

v0 w1 v2 w0 v1 w2

(b) 2-union book embedding

Figure 5.3: Embeddings of K3,3 with partite sets V = {v0, v1, v2} and W = {w0, w1, w2}

cross. Thus, the constructed embedding Γ′ is a book embedding. Since every vertex is
contained in at most one connected component of each page of Γ, it follows that Γ′ is
k-local. Hence, we have pl(G) ≤ pu(G).

There are graphs for which local and global page number coincide, for instance outerplanar
graphs (see Proposition 3.1) or graphs with global page number 2. On the other hand, we
present graphs G with pl(G) < pu(G) or pu(G) < p(G) in the following observations.

Observation 5.4. There is a graph G with pl(G) < pu(G).

Proof. In Observation 3.13 we show that the local page number of a complete graph on
five vertices equals 2. However, we shall prove that pu(K5) = 3. Since the global page
number of K5 is 3 [BK79], we have pu(K5) ≤ p(G) = 3. Suppose there is a 2-union book
embedding Γ for K5. Since there is no 2-page book embedding for K5, there is a page P in
Γ containing two connected components.

Let G be the subgraph of K5 embedded on page P . Note that G is a subgraph of the disjoint
union of an edge and a triangle, as illustrated in Figure 5.2. Hence, the subgraph G′ that is
embedded on the second page contains K2,3, and thus is connected but not outerplanar. It
follows that G′ cannot be embedded on a single page, which is a contradiction. Therefore,
we have pu(K5) = 3, and thus pl(K5) = 2 < 3 = pu(K5).

Observation 5.5. There is a graph G with pu(G) < p(G).

Proof. Since K3,3 is not planar, we have p(K3,3) > 2 and pu(K3,3) > 1. Nevertheless,
Figure 5.3 shows a 3-page and a 2-union book embedding of K3,3. Therefore, we have
pu(K3,3) = 2 < 3 = p(K3,3).

After presenting graphs for which the three versions of page numbers differ, we analyze how
large the gaps can be. We find that the gap between union and global page number can be
arbitrarily large, whereas the ratio between union and local page number is bounded by a
constant.

42



Proposition 5.6. There are n-vertex graphs with union page number k+1 but global page
number Ω

(√
kn1/2−1/k

)
.

Proof. Malitz [Mal94] proved that there exist k-regular n-vertex graphs which require
Ω(

√
kn1/2−1/k) pages. Let G be a k-regular graph on n vertices. We construct a (k+1)-union

book embedding Γ with the page set P(Γ) = {P0, . . . , Pk} for G. Vizing [Viz64] proved
that every graph with maximum degree ∆ has chromatic index at most ∆+ 1. Hence, G
has chromatic index at most k + 1. Let c : E(G) → {0, . . . , k} be a proper edge coloring
of G. We assign the edges to pages such that e ∈ E(Pi) if and only if c(e) = i for
i ∈ {0, . . . , k}. For every page, each connected component is a single edge since c is
a proper edge coloring. Therefore, the page set P(Γ) together with an arbitrary vertex
ordering forms a (k + 1)-union book embedding.

Proposition 5.7. For every graph G we have pu(G)
pl(G) ≤ 4.

Proof. Let G be a graph on n vertices with local page number k and n ≥ 1. In Corollary 3.7
we show that G has at most (2n−3)k edges. Next, we construct a 4k-union book embedding
by covering G with trees. Recall that the arboricity a(G) of G denotes the covering
number cGg , where G is the set of forests (see Section 2.1).

Nash-Williams [NW64] proved a(G) = max {|E(H)| /(|V (H)| − 1) : H ⊆ G, |V (H)| > 1}.
Note that every subgraph of G has local page number at most k, and thus Corollary 3.7
can be applied. With this, it follows that

a(G) = max
{

|E(H)|
|V (H)|−1 : H ⊆ G, |V (H)| > 1

}
≤ max

{
(2|V (H)|−3)k
|V (H)|−1 : H ⊆ G, |V (H)| > 1

}
≤ max

{
2k(|V (H)|−1)
|V (H)|−1 : H ⊆ G, |V (H)| > 1

}
= 2k.

Since every forest can be covered by two star forests [AMR92], there is a decomposition of
G into 4k star forests. We create a 4k-union book embedding by placing each star forest
on its own page and choosing an arbitrary vertex ordering. For every page, each connected
component is a star, and thus is crossing-free. Hence, it follows that

pu(G)

pl(G)
≤ 4k

k
= 4.
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6. Conclusions

Based on the concept of global book embeddings and the local covering number, we
introduced k-local book embeddings. In Chapter 3 we gave bounds on the local page
number of some graphs, namely outerplanar graphs, planar graphs, complete graphs, and
k-trees. However, there are gaps between the lower and upper bounds, which leads to the
question of the exact local page numbers. Similar problems can be formulated for the
union page number.

For instance, for every planar graph there exists a 4-local book embedding, and there is a
planar graph with local page number 3.

Question 6.1. Is there a planar graph G with pl(G) ≥ 4?

Question 6.2. Is there a planar graph G with pu(G) ≥ 4?

In contrast, there is a planar graph with global page number 3 [BK79]. While Yannakakis
[Yan89] proved that every planar graph can be embedded in a 4-page book, it is open
whether or not there exists a planar graph with global page number 4.

For complete graphs we gave a lower bound and an upper bound, which differ by a factor 2.

Question 6.3. What is the local page number of a complete graph on n vertices?

For every k ≥ 3, we proved that there is a k-tree with local page number k, but the upper
bound on the local page number of k-trees is k+1. Vandenbussche, West, and Yu [VWY09]
proved that there exist k-trees with global page number k + 1 for every k ≥ 3. For the
local page number, however, the following question remains open.

Question 6.4. Is there a k-tree G with pl(G) = k + 1 for k ≥ 3?

In Chapter 4 we proved that k-local book embedding with fixed vertex ordering
is NP-complete for any fixed k ≥ 3. However, whether a graph can be embedded in a
1-local book embedding can be tested in polynomial time. This leads to the case k = 2,
which remains open.

Question 6.5. Is 2-local book embedding with fixed vertex ordering NP-
complete?
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6. Conclusions

We have not considered the complexity of finding a k-local book embedding if there is no
vertex ordering given. Since a graph has global page number at most 2 if and only if it is
a subgraph of a planar Hamiltonian graph [BK79], it is NP-complete to test whether a
graph has global page number at most 2 [Wig82]. The same question can be asked for the
local and union page number.

Question 6.6. Given a graph G and an integer k, is it NP-complete to decide whether or
not we have pl(G) ≤ k?

Question 6.7. Given a graph G and an integer k, is it NP-complete to decide whether or
not we have pu(G) ≤ k?

In Chapter 5 we investigated the gaps between local, union, and global page numbers.
While the ratio between union and local page number is bounded by a constant, whether
the difference is bounded.

Question 6.8. Is there a constant c such that pu(G)− pl(G) < c for every graph G?
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