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Abstract

A graph is k-level planar if it admits a planar drawing in which each vertex is
mapped to one of k horizontal parallel lines and the edges are drawn as non-crossing
y-monotone line segments between these lines.

It is not known whether the decision problem of a graph being k-level planar is solvable
in polynomial time complexity (in P) or not. However, if the layer assignment, i.e. the
mapping of each vertex to a line, is given, we can construct a level planar embedding
in linear time if it exists. In case there is no level planar embedding, one can try to
minimize the total number of crossings, which is known to be NP-complete.

It is easy to construct an example of a planar graph with a layer assignment that
results in a non level planar graph. Motivated by this fact we investigate the situation
where it is allowed to perform as few modifications to the layer assignments as possible
in order to obtain a level planar drawing. We give an extensive overview of the
current state of research related to level planarity and provide a heuristic for changing
the layer assignment as little as possible by swapping the layer assignments of pairs
of vertices or moving vertices to other layers (with or without introducing new layers)
in order to get a level planar result.

Deutsche Zusammenfassung

Ein Graph heißt k-level planar, falls man ihn so in der Ebene zeichnen kann, dass die
Knoten auf k horizontalen parallelen Geraden angeordnet sind. Die Kanten dürfen
sich nicht kreuzen und verlaufen als y-monotone Kurven zwischen diesen Geraden.

Die Menge aller Knoten auf der gleichen Geraden heißt Schicht. Es ist unklar, ob
die Frage, ob ein gegebener Graph k-level planar ist in P liegt oder nicht. Falls die
Zuordnungen von Knoten auf Geraden im Voraus bekannt sind, kann mit linearem
Zeitaufwand eine solche Einbettung gefunden werden, falls sie existiert. Wenn
keine solche Einbettung existiert, kann man versuchen, die Anzahl Kreuzungen zu
minimieren. Dies ist bekannterweise NP-vollständig.

In dieser Arbeit versuchen wir, möglichst wenige der vorgegebenen Schichtzuord-
nungen zu verändern, sodass wir eine level planare Zeichnung des Graphen erhalten.
Wir geben einen ausführlichen Überblick zum aktuellen Stand der Forschung zu level
planarity und entwickeln eine Heuristik, die versucht durch möglichst wenige Ver-
tauschungen oder Verschiebungen von Knoten zwischen Schichten eine level planare
Zeichnung des gegebenen Graphen zu ermöglichen.
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1. Introduction

1.1 Motivation
In many applications like VLSI-layout[Len90], UML-diagrams and network analysis, human-
readable representations of graphs are required. It is important that the main information
contained in a graph is clearly visible. Depending on the application, a drawing of a graph
has to satisfy certain properties. In order to avoid visual clutter, the drawing is often
required to contain as few crossings as possible. For directed graphs it is often required
that its drawing emphasizes its underlying hierarchical structure.

The most commonly used technique to draw graphs that represent hierarchical information
is given by Sugiyama et al.[STT81]. The method is usually applies to an directed acyclic
graph and requires that the vertices are placed in horizontal layers and the edges point
downwards. An example of a Sugiyama-style drawing is given in Figure 1.1.

Figure 1.1: A Graph showing the DC++ derivates tree, image from http://tehnick-8.
narod.ru/dc_clients/.

Ideally, one would like to have an upward planar drawing, i.e., a planar drawing of the upward planar
graph where all edges point in the same direction (without loss of generality upwards).
However, this is not always possible, even if the graph itself is planar (i.e., it admits a planar
planar drawing), as shown in Figure 1.2.

Sugiyama’s method works in four steps: First, the input graph is transformed into a directed
acyclic graph by reversing edges that cause a directed cycle. In the second step, the vertices
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1. Introduction

Figure 1.2: A planar directed acyclic graph which is not upward planar since its source b
and its sink c cannot be both in the same face.

are placed on horizontal layers, i.e., their vertical position in the resulting embedding is
fixed. Next, the number of crossings is minimized by moving the vertices horizontally, thus
fixing their horizontal placement. Afterwards, the final drawing is produced and previously
reversed edges are put back into their original orientation. Most of these steps contain
NP-complete problems, thus they are solved heuristically.

What we do in this Thesis

In this thesis, we concentrate on applications that provide the (initial) layering as part
of the input called leveled graphs. If the vertices can be permuted within levels to obtain
a planar drawing the leveled graph is called level planar. While it can happen that the
Sugiyama method produces a non-planar drawing of a planar graph, we insist on a drawing
without crossings. In order to achieve that, we allow to reassign some of the vertices
to other layers than given initially. This is a novel approach to visualize leveled graphs.
After explaining the terms needed and giving an extensive overview of related research, we
develop heuristics for changing the initial layering as little as possible in order to obtain a
level planar drawing of the input graph.

An Example for Layered Graph Drawing

Imagine the following collaboration network in a company (Figure 1.3): People working in
the same project are assigned to the same layer. Edges between people on different layers
represent further communication between them. Our target is to find a nice visualization
of this network.

Figure 1.3: Company hierarchy
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1.1. Motivation

The company’s hierarchy can be modeled as a leveled graph (G = (V,E), φ) where the
vertices represent the people and the edges represent neccessary connections between them.
The function φ : V → {1, . . . , k} maps each person to a layer. The resulting leveled graph
can be seen in Figure 1.4.

Figure 1.4: Modeling of the company’s situation

We now want to find a left-to-right order of vertices which are on the same layer. This
left-to-right order for all layers is called an embedding of (G,φ). When we draw G with
lines monotonic in y-direction such that the y-coordinates of the vertices are given by φ
and their sorting by x-coordinates on the same layer is given by the embedding, we want
that no lines cross. If there exists an embedding of (G,φ) such that the edges are drawn as
curves, monotonic in y-direction, and no edges cross, then the graph (G,φ) is called level
planar. This is a formal phrasing of the definition used earlier.

It is known that it is not always possible to obtain a planar drawing of a planar graph with
regard to a given layering of its vertices [DL11], even if the graph itself is upward planar.
An easy example is shown in Figure 1.5.

Figure 1.5: An upward planar graph G with a layering φ of G such that (G,φ) is not level
planar.

In current research one tries to keep the layering as it is and minimize the number of
crossings. However, in our situation we insist on obtaining a drawing without crossings.
Thus, we need to modify the given layering, which means that some of the people working
in the same project will not be drawn on the same horizontal line.

Since we colored the peoples’ suits by their projects, it is still visible who works in which
project after changing the layering. A possible planar drawing of the company’s situation
is shown in Figure 1.6.
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1. Introduction

Figure 1.6: A planar drawing of the company’s situation

1.2 Organization of the Thesis
In Chapter 2, we give basic terms and notions and define new and related problems. In
these new problems, we try to minimize the total number of layer reassignments, swaps
between layer assignments of pairs of vertices or moves of vertices to arbitrary layers or
newly introduced layers. The current state of related research is summed up in Chapter 3.
In Chapter 4, we try to analyze the complexity of the newly defined problems and discuss
ideas for heuristics for them. We also introduce a quartic-time heuristic that takes a planar
straight-line drawing of the graph and rotates it until it induces a layer assignment which
is similar to the one given as part of the input. We conclude the thesis in Chapter 5, where
we give a view on further work and open problems.

4



2. Preliminaries

2.1 Main Terminology
Graphs

A graph is an ordered pair G = (VG, EG) containing a set VG of vertices or nodes and a graph
set EG of edges. An edge is a pair of two vertices. If the edges are represented as ordered
pairs (u, v), the graph is directed, else the graph is undirected and edges are represented
as unordered pairs {u, v}. A directed edge (u, v) from vertex u to vertex v is an outgoing
edge of vertex u and an incoming edge of vertex v. A source is a vertex in a directed graph outgoing edge

incoming edge
source

which has no incoming edges. A sink is a vertex in a directed graph which has no outgoing

sink
edges.

If not explicitly mentioned otherwise, the following definitions will be given for undirected
graphs. The definitions can be translated to directed graphs easily.

Two vertices are adjacent if there exists an edge between them. An edge is incident to a adjacent
incidentvertex if the edge connects the vertex with another vertex in the graph. The degree of a
degreevertex v is the number of incident edges to v (i.e., the number of edges which have v as

one of their endpoints).

An undirected graph is complete if every pair of distinct vertices is connected by exactly complete
one edge. The complete graph on n vertices is denoted by Kn. An undirected graph Kn

G = (VG, EG) is bipartite if VG can be partitioned into two sets V1 and V2 every edge in bipartite
EG connects a vertex from V1 with a vertex from V2. The complete bipartite graph Kn,m complete bipartite

Kn,mon n+m vertices is a bipartite graph G = (V1∪̇V2, EG) where |V1| = n, |V2| = m and every
vertex of V1 is adjacent to every vertex of V2.

Figure 2.1: K5 and K3,3
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2. Preliminaries

A graph H = (VH , EH) is called a subgraph of a graph G = (VG, EG) if VH ⊆ VG and subgraph
EH ⊆ EG. A subgraph H of G is induced if every edge in EG connecting two vertices ininduced
VH is also contained in EH .

Figure 2.2: The blue marked subgraph is not an induced subgraph since the edge {b, c} is
missing.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there exists a bijectionisomorphic
σ : VG → VH such that {v1, v2} ∈ EG ⇔ {σ(v1), σ(v2)} ∈ EH .

An undirected graph H is called a minor of a graph G if H can be constructed out of G byminor
deleting vertices, deleting edges and contracting edges. A contraction of an edge is done bycontraction
deleting the edge and merging the two vertices connected by this edge into a new vertex.
The edges incident to one of these two vertices in the old graph will then be incident to the
newly introduced vertex in the new graph. Note that vertices incident to both contracted
vertices give rise to only one edge in the minor. An example for a minor of a graph is given
in Figure 2.3.

Figure 2.3: The graph H can be formed out of G by deleting the edge {a, b}, contracting
the edge {c, d} and deleting the vertex g. Thus, H is a minor of G.

A subdivision of an edge {u, v} is performed by introducing a new vertex w and replacingsubdivision
the edge by two new edges connecting w to u and v. A subdivision of a graph results from
performing zero or more subdivisions of its edges. Two graphs G and H are homeomorphichomeomorphic
if a subdivision of G is isomorphic to a subdivision of H.

Figure 2.4: Subdividing the edge {u, v} results in a new vertex w and two new edges {u,w}
and {w, v}.
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2.1. Main Terminology

A path Pk = (Vk, Ek) of size or length k is defined as a set Vk of k + 1 distinct vertices path
{v1, . . . , vk+1} and a set Ek of k edges {{vi, vi+1} | i = 1, . . . , k}. The vertices v1 and vk+1
are said to be connected by Pk. A path P4 is shown in Figure 2.5. connected

Figure 2.5: A path of size 4.

A cycle Ck = (Vk, Ek) of size or length k is defined as a set Vk of k distinct vertices cycle
{v1, . . . , vk} and a set Ek of k edges {v1, v2}, {v2, v3}, . . . , {vk, v1}. A cycle C6 is shown in
Figure 2.6.

Figure 2.6: A cycle of size 6.

A graph G contains a graph H if H is a subgraph of G. Especially, a graph G contains a contains
path Pk (a cycle Ck) if Pk (or Ck) is a subgraph of G.

A graph is acyclic if it does not contain a cycle. acyclic

Two vertices u and v in a graph G are connected if G contains a path that connects u and v. connected
A graph is connected if all of its vertices are pairwise connected, otherwise it is disconnected.
A graph is k-connected if the removal of any k − 1 vertices results in a connected graph. A
connected component of a graph G is a maximal connected subgraph of G. connected

component
A forest is an acyclic graph. A connected forest is called a tree. A connected subgraph of a forest

treetree is called a subtree.
subtreeA rooted tree T is a directed tree where one vertex is explicitly chosen to be the root of T .
rooted treeThe edges are oriented “away from the root”. In a rooted tree, the children of a vertex u
childrenare all vertices v that are connected by an edge (u, v) in T . A leaf node is a vertex which leaf node

has no children. In an unrooted tree, a leaf node is a vertex with degree one. An inner
leaf nodenode is a vertex which is not a leaf.
inner node

Drawings

A drawing δ of a graph is obtained by mapping its vertices to distinct points in R2 and drawing
representing its edges by simple curves connecting the respective points. If all edges are
drawn as straight-line segments, the drawing itself is called straight-line. A planar drawing planar
is a drawing where no edges intersect except for at common endpoints. A graph is called
planar if it admits a planar drawing. A triangulated graph is an edge-maximal planar triangulated
graph, i.e., adding any edge to the graph would destroy its planarity.

A n×m grid Γ is defined by a set of points p = (i, j) in the plane where i = 1, . . . , n and n×m grid
j = 1, . . . ,m are the x-, respective y-coordinates, of p. The parameter n is known as the
width of Γ and the parameter m is called the height of Γ. A k × l grid-drawing of a graph width

height
k × l grid-drawing

G is a drawing of G where its vertices are places on points of the k × l grid. The height of

height

7



2. Preliminaries

Figure 2.7: A graph drawn on the 6× 4 grid.

a k × l grid-drawing is the minimum of k and l. An example of a grid-drawing is given in
Figure 2.7.

A planar drawing of a graph splits the plane into faces which are connected regions offaces
the plane after the removal of all vertices and edges. One of these faces is unbounded
and is called the outer face, the other faces are called inner faces. An example is given inouter face

inner faces Figure 2.8.

Figure 2.8: The faces of a planar drawing of a planar graph G. The face f4 is the outer
face, the faces f1, f2, f3 are the inner faces.

A graph is outerplanar if it admits a planar drawing where all vertices lie on the outer faceouterplanar
of the drawing. For example, the graph given in Figure 2.8 is outerplanar. A drawing is
y-monotone if each edge crosses every horizontal line at most once. A drawing is weaklyy-monotone
y-monotone if each edge either crosses every horizontal line at most once or lies on aweakly

y-monotone horizontal line. See Figure 2.9a-d for examples of different drawings of the same graph.

Two drawings are equivalent if their topological properties coincide. An embedding of aequivalent
embedding graph is an equivalence class of drawings of the graph.

A rotation system, sometimes also called combinatorial embedding, of a graph is given byrotation system
the clockwise order of incident edges at each vertex.

8



2.1. Main Terminology

Figure 2.9: Several drawings of the same planar graph G. (a) A drawing of G. (b) A
y-monotone drawing of G. (c) A straight-line drawing of G. (d) A planar
straight-line drawing of G.

Level Planarity

A k-leveled graph is an ordered pair (G,φ) consisting of a graph G = (VG, EG) and a k-leveled graph
surjective function φ : VG → {1, . . . , k}. The function φ maps each vertex of G to one of k
horizontal parallel lines such that adjacent vertices are mapped to different lines (i.e., for
each edge (u, v) it holds that φ(u) 6= φ(v)). The set of vertices mapped to the same line is
then called a layer and φ is called a layering or layer assignment of G. A layering is proper layer

layering
proper

if the vertices of each edge are mapped to adjacent layers, i.e., for an edge connecting vertex
u with vertex v it holds that |φ(u)−φ(v)| = 1. The height of a layering φ : VG → {1, . . . , k}

heightof a graph G = (VG, EG) is k, i.e., the total number of layers. Its width is defined as the
widthmaximum number of vertices which are mapped to the same layer, i.e. maxi=1,...,k |φ−1(i)|.

An example of a leveled drawing of height 5 is given in Figure 2.10.

Figure 2.10: A 5-leveled drawing of a 5-leveled graph (G,φ). The layering φ has height 5
and width 4. The leveled graph (G,φ) is level planar. This especially means
that G is 5-level planar.
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2. Preliminaries

A k-leveled drawing of a k-leveled graph (G,φ) is an y-monotone drawing of G whichk-leveled drawing
respects φ, i.e. vertices on the same layer are mapped to points with the same y-coordinate
and layer i is above layer i+ 1 for all i from 1 to k − 1. When k is not essential, we talk
about leveled drawing. A k-level planar drawing of a k-leveled graph (G,φ) is a k-leveledk-level planar

drawing drawing of (G,φ) which is planar.

A k-leveled graph (G,φ) is k-level planar if there exists a k-leveled drawing of it which isk-level planar
planar. A graph G is k-level planar if there exists a layering φ of height k of G such thatk-level planar
(G,φ) is k-level planar. A k-leveled graph (G,φ) is planar if G is planar.planar

For leveled graphs, a leveled embedding is defined by the order of vertices on the sameleveled embedding
layer. A leveled embedding represents an equivalence class of leveled drawings. A leveled
embedding of a k-leveled graph is called k-level planar if there exists a k-leveled planar
drawing of G such that the order of vertices on the same layer is the same as given by the
leveled embedding.

A rotation system of a graph G does not induce an unique layering of G. An example is
shown in Figure 2.11.

(a) A leveled drawing of (G,φ). (b) A leveled drawing of (G,ψ).

Figure 2.11: Both leveled drawings have the same rotation system. Thus, a rotation system
does not fix the layering.

It is crucial to note that a leveled embedding of a graph G does not uniquely determine a
rotation system of G, as shown in Figure 2.12.

(a) A leveled drawing of (G,φ). (b) Another leveled drawing of (G,φ).

Figure 2.12: Two leveled drawings of the same leveled embedding. The clockwise order of
the edges at vertex a differs. Thus, a leveled embedding does not uniquely
determine a rotation system of G.

Bachmaier et al.[BBFH10] introduce the term extended level drawing which stands for a
leveled drawing where edges on the same layer are allowed.

An extended layering is a layering without the restriction that adjacent vertices are notextended layering
mapped to the same layer, i.e., edges whose endpoints are on the same layer are allowed.
An extended layering φ is short if all adjacent vertices u and v are mapped to the same orshort

10



2.1. Main Terminology

to adjacent layers, i.e., |φ(u)− φ(v)| ≤ 1. An extended k-leveled graph is a pair (G,φ) ofextended k-leveled
graph a graph G = (VG, EG) and an extended layering φ : VG → {1, . . . , k} of G. An extended

k-leveled drawing of an extended k-leveled graph (G,φ) is a weakly y-monotone drawing extended k-leveled
drawingof G which respects φ, i.e., the vertices of G are mapped to layers according to φ. An

extended k-level planar drawing of an extended k-leveled graph (G,φ) is an extended extended k-level
planar drawingk-leveled drawing of (G,φ) which is planar. An extended k-leveled graph (G,φ) is extended

k-level planar if there exists an extended k-leveled drawing of it which is planar. A graph extended k-level
planarG is extended k-level planar if there exists an extended layering φ of height k of G such
extended k-level
planar

that (G,φ) is extended k-level planar. An extended k-leveled graph (G,φ) is planar if

planar
G is planar. The concepts of extended level planarity and minimum height of a planar
grid-drawing of a planar graph are the same if the extended layering is not part of the
input.

A y-ordering of an n-vertex graph G = (VG, EG) is a bijective layering γ : VG → {1, . . . , n} y-ordering
of G, i.e. every layer contains exactly one vertex. As introduced by Estrella-Balderama
et al.[EBFK09a], a graph G is unlabeled level planar if (G, γ) is n-level planar for all n! unlabeled level

planarpossible y-orderings γ of G.

Treewidth, Pathwidth and Branchwidth

For a graph G, we denote by V (G) the set of vertices of G and by E(G) the set of edges of
G.

As introduced by Rudolf Halin[Hal76] and rediscovered by Robertson and Seymour[RS84], a
tree decomposition of an undirected graph G = (VG, EG) is a pair (T, τ) where T = (VT , ET ) tree

decompositionis a tree and τ is a function that maps each vertex of T to a subgraph of G such that the
following conditions hold:

1.
⋃
t∈VT

τ(t) = G.

2. For distinct t1, t2 ∈ VT , let (V1, E1) be the subgraph of T given by τ(t1) and let
(V2, E2) be the subgraph of T given by τ(t2). It holds that the graph (V1∩V2, E1∩E2)
is empty.

3. For all t1, t2, t3 ∈ VT , if t2 is on the path between t1 and t3 then V (τ(t1))∩V (τ(t3)) ⊆
V (τ(t2)) and E(τ(t1)) ∩ E(τ(t3)) ⊆ E(τ(t2)).

The width of a tree decomposition (T, τ) is the maximum of |V (τ(t))| − 1, taken over all width
t ∈ VT . The treewidth of a graph G is the minimum width over all tree decompositions of treewidth
G. The sets τ(t)t∈VT

are called bags. In some definitions, τ(t) is defined to be a subset of bags
vertices of G for t ∈ VT . In that case, we refer to τ(t) as an induced subgraph of G.

An example of a tree decomposition of a graph is given in Figure 2.13.

Figure 2.13: A graph G with a tree decomposition of width 2.
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2. Preliminaries

As introduced by Robertson and Seymour[RS83], a path decomposition of an undirected path
decompositiongraph G is a tree decomposition of G where the underlying tree is a path. The pathwidthpathwidth

of G is the minimum width over all path decompositions of G.

Let (P = (p1, . . . , pk), ρ) be a path decomposition of an undirected graph G with pathwidth
h. The path decomposition is normalized if the following two conditions hold:normalized

1. |V (ρ(pi))| =
{
h+ 1 , if i is odd,
h , if i is even.

2. V (ρ(pi−1))∩ V (ρ(pi+1)) = V (ρ(pi)) and E(ρ(pi−1))∩E(ρ(pi+1)) = E(ρ(pi)) for even
i.

Given a path decomposition of an undirected graph, a normalized path decomposition
of the graph with the same width can be computed in linear time as shown by Gupta et
al [GNPR05].

As also introduced by Robertson and Seymour [RS91], a branch decomposition of anbranch
decomposition undirected graph G = (V,E) is a pair (T, τ) where T = (VT , ET ) is a tree with vertices

of degree 1 or 3 and τ is a bijective function which maps every edge of G to a leaf of T .
Removing an edge e of T partitions T into two subtrees T1 and T2. This partition induces
a partition of the edges in E into two subsets E1 and E2. This operation is called an
e-separation of G. The width of an e-separation is the number of vertices of G which aree-separation

width incident both to an edge in E1 and to an edge in E2. The order of an edge e ∈ ET is the
order width of its corresponding e-separation.

The width of a branch-decomposition is the maximum width over all of its e-separations. Thewidth
branchwidth of an undirected graph G is the minimum width over all branch decompositionsbranchwidth
of G. If G has less than two edges, G has no branch decomposition and G is said to have
branchwidth zero. An example of a branch decomposition of a graph is given in Figure 2.14.

Figure 2.14: A graph with a branch decomposition, showing an e-separation of width 4.

Courcelle [Cou90] and Arnborg et al. [AL91] show that for graphs with bounded branch-
width, some dynamic programming algorithms require only polynomial time, even though
the problems solved by them are NP-complete for general graphs. These results were
originally shown for graphs with bounded treewidth, but Robertson and Seymour [RS91]
show that branchwidth and treewidth are closely related to each other as they differ only
by a constant factor (see Theorem 2.9). While computing the branchwidth for general
graphs is NP-complete, there exist polynomial-time algorithms if the input graph is planar
as shown by Seymour and Thomas [ST94].
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2.1. Main Terminology

PQ-Tree

A PQ-Tree is a data structure introduced by Booth and Luecker [BL76] that represents a PQ-Tree
family of permutations over a set S of n elements. PQ-Trees are used in applications that
require to find an ordering with respect to a set of constraints. A PQ-Tree T over a set
S is a rooted tree with three types of nodes: P-Nodes, Q-Nodes and leaf nodes. The leaf
nodes of T are in bijection with the elements of S whereas the P-Nodes and Q-Nodes are
inner nodes of T and have a set of possible linear orderings of their children. An example
of a PQ-Tree is given in Figure 2.15.

The children of inner nodes of T can be reordered according to the following rules.

A P-Node has at least three children. Its children can be arbitrarily reordered. P-Node

A Q-Node has at least two children. Its children can only be ordered in two ways, which Q-Node
are the reversals of one another.

Each left-to-right order of the leaves of the PQ-Tree that can be achieved by performing these
reorderings represents a permutation of the elements of S. Not every set of permutations
can be represented by a PQ-Tree since the reverse of an ordering is always represented by
the same PQ-Tree. For example, there is no PQ-Tree which represents the permutation
abc but not the permutation cba.

Figure 2.15: A PQ-Tree T over the set S = {a, b, c, d, e} that represents the permutations
abcde, cbade, dabce, dcbae, eabcd, ecbad, edabc, edcba, deabc, decba, abced
and cbaed.

There is one operation on a PQ-Tree T , namely REDUCE(T,X), which uses pattern
matching to create a new PQ-Tree that restricts the permutations represented by T such
that the elements of X ⊆ S appear in consecutive order in any permutation represented by
T . An example of a result of a REDUCE-operation is given in Figure 2.16.

Figure 2.16: This PQ-Tree results from REDUCE(T, {c, d}) where T is the PQ-Tree from
Figure 2.15. It represents the permutations abcde, dcbae, eabcd and edcba.

Since the pattern matching contains a lot of cases, working with PQ-Trees can be difficult.
Shih and Hsu [kSH99] introduce an alternative data structure, called the PC-Tree. The PC-Tree
PC-Tree is mainly the result of making the PQ-Tree unrooted which introduces symmetry
such that the aforementioned cases reduce to one case.

13



2. Preliminaries

2.2 More Mathematical Background
2.2.1 Well-Known Theorems about Planar Graphs

The following four theorems represent characterizations of planar graphs.

Theorem 2.1 (Kuratowski’s [Kur30] theorem). A graph G is planar if and only if it does
not contain a subgraph which is a subdivision of K5 or K3,3.

Theorem 2.2 (Wagner’s [Wag37] theorem). A graph G is planar if and only if it does not
contain K5 or K3,3 as a minor.

Well-written proofs of Kuratowski’s theorem and Wagner’s theorem can be found at [Ote14]
and [wag14], respectively.

Theorem 2.3 (Euler’s [Eul58] formula). Let G be a nonempty connected undirected planar
graph. Let δ be a planar drawing of G with f faces, n vertices and e edges. Then
n− e+ f = 2.

Proof. The following proof has been taken literally from [Muh14].

We do an induction on the number of edges e.

e = 0 Since G is connected, e = 0 means that n = 1 and f = 1. Thus, the formula
holds for e = 0.

e→ e+ 1 If G is a tree, then n = e + 1 and f = 1 so the formula holds. If G is
not a tree, then G must contain a cycle. Let ec be an edge on this cycle. By
induction hypothesis, we know that the formula holds for the graph G − ec
(i.e., G without the edge ec). Adding the edge ec to G − ec adds 1 edge, 0
vertices and 1 face since ec causes a cycle. Thus, the formula holds for G.

Corollary 2.4 (Number of edges in a planar graph). Let n ≥ 3. Every undirected n-vertex
planar graph G = (V,E) has at most 3n− 6 edges.

Proof. The following proof has been taken mostly literally from [Rud14].

We do an induction on the number of vertices n.

n = 3 For n = 3, the statement is clearly true since there can be at most 3 edges.

n→ n+ 1 Consider a planar graph G with a maximal number of edges. If G is not
connected, then we can add an edge which contradicts the maximality of G.
Thus, G is connected and it holds that n− e+ f = 2. Every face is bounded
by exactly 3 edges due to maximality and every edge lies on the boundary of
exactly 2 faces, thus 2e = 3f . This leads to the following equations:

n− e+ f = 2

3n− 3e+ 3f = 6

3n− 3e+ 2e = 6

e = 3n− 6

Since we constructed G with maximal number of edges, in general it holds
that e ≤ 3n− 6.
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2.2. More Mathematical Background

While by definition a planar graph can be represented on the plane with curvy edges and
no crossing, it is not immediately clear whether the same is possible with straight-line
edges. The following theorem answers the question in affirmative.

Theorem 2.5 (Fáry’s [Far48] theorem). Every planar graph has a straight-line planar
drawing.

Although Fáry’s theorem is named after István Fáry, it was proven independently by
Wagner [Wag36] in 1936, Fáry [Far48] in 1948 and Stein [Ste51] in 1951. A well-written
proof of Fáry’s theorem can be found in [CLZ10].

2.2.2 Hasse Diagrams

A weak partial order over a set S is a binary relation “≤” that is reflexive, antisymmetric weak partial order
and transitive, i.e. the following conditions hold:

Reflexivity x ≤ x for all x ∈ S

Antisymmetry x ≤ y and y ≤ x ⇒ x = y for all x, y ∈ S

Transitivity x ≤ y and y ≤ z ⇒ x ≤ z for all x, y, z ∈ S

The pair (S,≤) is called a weak partially ordered set. For example, (R,≤) (with the standard weak partially
ordered setless-than-or-equal relation) is a weak partially ordered set and for a set S, (P(S),⊆) is a

weak partially ordered set.

A strict partial order over a set S is a binary relation “<” that is irreflexive, antisymmetric strict partial
orderand transitive, i.e. the following conditions hold:

Irreflexivity not x < x for all x ∈ S

Asymmetry If x < y then not y < x for all x, y ∈ S

Transitivity x < y and y < z ⇒ x < z for all x, y, z ∈ S

The pair (S,≤) is called a strict partially ordered set. strict partially
ordered set

Every weak partial order corresponds to a strict partial order and vice versa. If “≤” is a
weak partial order, then the corresponding strict partial order “<” is given by a < b if a ≤
b and a 6= b. Similarly, if “<” is a strict partial order, then the corresponding weak partial
order “≤” is given by a ≤ b if a < b or a = b. Thus, while we consider weak partial orders
in this subsection, our definitions and considerations can easily be translated to strong
partial orders.

We notice that a weak partially ordered set (S,≤) induces a directed acyclic graph (DAG)
G where the vertices of G represent elements of S and two vertices u and v are connected
by an edge (u, v) if u ≤ v.

The transitive closure C(G) of a directed graph G is a graph which contains an edge (u, v) transitive closure
whenever there is a directed path from u to v in G (definition taken literally from [Ski90]).
An example for the transitive closure of a directed graph is given in Figure 2.17.
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2. Preliminaries

Figure 2.17: A finite directed acyclic graph G and its transitive closure C(G).

The transitive reduction T (G) of a finite directed acyclic graph (DAG) G is an edge-minimaltransitive
reduction subgraph of G such that the reachability stays the same. This means, if two vertices u

and v are connected by a path in G, then they are also connected by a path in T (G). So,
C(T (G)) = C(G). An example of a transitive reduction is shown in Figure 2.18.

Figure 2.18: A finite directed acyclic graph G and its transitive reduction T (G).

Theorem 2.6 (Moyles and Thompson [MT69]). The transitive reduction of a finite directed
acyclic graph is unique.

Proof. An edge e = (i, j) is called superfluous if there is a directed i-to-j path not using e.superfluous

Observation 2.7. For every G its subgraph H consisting of all non-superfluous
edges has the same transitive closure as G.

Observation 2.8. For every G every transitive reduction contains all non-superfluous
edges.

Every non-superfluous edge e = (u, v) has to be contained in a transitive reduction
T (G) since the removal of e destroys the property that there exists a path that
connects u to v. Hence, the unique transitive reduction of G is the graph consisting
of all non-superfluous edges.
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2.2. More Mathematical Background

The Hasse diagram H of a weak partially ordered set (S,≤) is the directed acyclic graph Hasse diagram
obtained by performing a transitive reduction on the DAG induced by (S,≤). Thus, the
vertices of H are the elements of S and we have an edge from vertex u to vertex v if u ≤ v
and there is no other vertex w such that u ≤ w ≤ v. An example of a Hasse Diagram is
given in Figure 2.19.

Figure 2.19: A Hasse diagram for (P({a, b, c}),⊆).

When it comes to visualizing a Hasse diagram, we prefer a drawing without crossings where
the elements of S appear in a hierarchical order. Sometimes, the elements of S naturally
induce a layering. For example, in Figure 2.19, we want sets of the same cardinality to be
drawn on the same layer. Thus, Hasse diagrams can become an application for level planar
drawings.

For any weak partially ordered set (S,≤), the comparability graph C(S,≤) = (VC , EC) comparability
graphis defined as VC = S and for s1, s2 ∈ S, {s1, s2} ∈ EC if s1 ≤ s2. An example of a

comparability graph is given in Figure 2.20.

Figure 2.20: (a) A Hasse diagram of a partially ordered set. (b) The corresponding
comparability graph.
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2. Preliminaries

2.2.3 Branchwidth

Recall the definitions of treewidth and branchwidth in 2.1.

Theorem 2.9 (Robertson, Seymour [RS91]). For an undirected graph with treewidth t and
branchwidth b we have b− 1 ≤ h ≤ b3

2bc - 1.

Proof. The following proof is taken mostly literally from [RS91], page 168f.

Let G = (VG, EG) be an undirected graph with treewidth h and branchwidth b. If
V = ∅, then both h and b are zero and thus the statement holds. If V 6= ∅ and
|E| ≤ 1, then b = 0 and h = 1 and thus the statement also holds. Assume that
V 6= ∅ and |E| ≥ 2. Since the removal of isolated vertices (i.e., vertices with degree
0) does not change h or b, we assume that there are no isolated vertices in G.

We show the second inequality first. Let (T = (VT , ET ), τ) be a branch decomposi-
tion of G of width b. We construct a tree decomposition (T, σ) of G of width at
most b3

2bc − 1.

For each t ∈ VT we define a subgraph σ(t) = (Vt, Et) of VG as follows:

• If t is a leaf of T , let σ(t) consist of the edge τ(t) and its ends.

• If t is not a leaf of T , let Vt consist of the vertices v of G for which there are
edges f and g both incident to v such that t lies on the path of T between
τ−1(f) and τ−1(g). Let Et be the empty set. An example of this step is shown
in Figure 2.21.

Figure 2.21: On the left: A graph G. The set Vt consists of the vertices a, d and e. On the
right: A branch decomposition of G. The path of T between τ−1({d, e}) and
τ−1({d, f}) is marked in red.

It is easy to verify that (T, σ) is a tree decomposition of G. If t is a leaf of T ,
|σ(t)| = 2. If t is not a leaf of T , let e1, e2, e3 be the edges of T incident to t. For any
v ∈ σ(t), v contributes to the order of at least two of e1, e2, e3 and so 2 · |σ(t)| ≤ 3 · b.
Thus, this tree decomposition has width ≤ b3

2bc− 1 and the second inequality holds.

Now we show the first inequality. Let (T, τ) be a tree decomposition of G of width
h. We first show that we can transform (T, τ) into a new tree decomposition of G
of width h such that the following assumptions (1)–(3) hold.

(1) We can assume that for each edge e ∈ EG, there is a leaf t of T where τ(t)
consists of edge e only and hence that τ(t) has no edges for each t ∈ VT with
degree ≥ 2.
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2.2. More Mathematical Background

If for some e ∈ EG there is no such t, we choose t′ ∈ VT such that G(τ(t′))
contains e as an edge. We add a new vertex t to T adjacent only to t′ and
define τ(t′) to consist of the ends of e. We remove e from τ(t′). This results
in a new tree decomposition of G of width h. By repeating this step, we can
construct a tree decomposition of G such that (1) holds.

(2) We can assume that |E(τ(t))| = 1 for each leaf t of T .

By (1), |E(τ(t))| ≤ 1. If τ(t) contains no edges, we construct a tree decomposi-
tion of G width h as follows. Let T ′ = (VT ′ , ET ′) be obtained by deleting t from
T , and let τ ′ be the restriction of τ to VT ′ . Since G has no isolated vertices, it
follows that (T ′, τ ′) is a tree decomposition of G of width h that satisfies (1).
By repeating this process, we can ensure that (2) holds.

(3) We can assume that every vertex of T has degree ≤ 3.

If t has degree greater than 3, we choose a tree T ′ = (VT ′ , ET ′) and an edge
f ∈ ET ′ such that T is obtained from T ′ by contracting f , and the two ends
t1, t2 both have a smaller degree than t. We define τ(t1) = τ(t) = τ(t2). The
new tree decompositiuon still has width h and satisfies (1) and (2). By repeating
this process, we can ensure that (3) holds.

Now let σ(t) be Et for each leaf t of T . Let S = (VS , ES) be the tree obtained from
T by suppressing each vertex of degree 2, i.e. contracting one of its incident edges.
Then, (S, σ) is a branch decomposition of G. For f ∈ ES , the order of f is at most
the number of vertices in τ(t), where t is an end of f , and hence the first inequality
holds.
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2. Preliminaries

2.3 Problem Definitions
In this section we introduce the problem of transforming a planar leveled graph into a level
planar graph by performing changes on the layer assignment. Before that we will give a
precise formulation of the problems known in literature which are either closely related
to the problem of level assignment or were proven to be useful when dealing with those
related problems. All of these problems will be mentioned again in Section 3 or used in the
proofs.

2.3.1 Known Problems
Planar 3-SAT

A boolean formula F is satisfiable if there exists an assignment of its variables to booleansatisfiable
values (TRUE or FALSE) such that F is TRUE. The Boolean satisfiability problem (SAT)Boolean

satisfiability
problem

is to check whether a given boolean formula is satisfiable or not. It was shown to be the
first NP-complete problem by Cook [Coo71] in 1971.

A boolean literal is either a variable or a negated variable. A clause is a disjunction ofboolean literal
clause boolean literals. A boolean formula is said to be in conjunctive normal form (CNF) if it is

conjunctive
normal form

a conjunction of clauses.

A 3-SAT formula is a boolean formula in conjunctive normal form such that each clause3-SAT formula
consists of at most three literals.

The variable-clause-graph of a 3-SAT formula consists of:variable-clause-
graph

• A vertex for each variable.

• A vertex for every clause.

• Each variable x is connected to the clauses containing x or ¬x by an edge.

An example of a variable-clause-graph is given in Figure 2.22.

Figure 2.22: The variable-clause-graph of (x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ x4). Notice that the
formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) has the same variable-clause-graph.

A planar 3-SAT formula is a 3-SAT formula whose variable-clause graph is planar.planar 3-SAT
formula

Planar 3-SAT Problem
Input: A planar 3-SAT formula F
Question: Is F satisfiable?

Lichtenstein [Lic82] shows that the Planar 3-SAT Problem is NP-complete.
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Maximum Independent Set

Given an undirected graph G = (VG, EG), an independent set of G is a set D ⊆ VG if there independent set
is no edge in EG between any two vertices in D. A maximum independent set Dmax of G maximum

independent setis an independent set of G with maximum size, i.e. there is no other independent set D′ of
G with |D′| > |Dmax|. An example of a maximum independent set is given in Figure 2.23.

Maximum Independent Set Problem
Input: An undirected graph G, an integer i
Question: Does G has a maximum independent set of size ≥ i?

As shown by Cook [Coo71], the Maximum Independent Set Problem is NP-complete.

Figure 2.23: A maximum independent set of size 4 in the Petersen [Pet98] Graph.

Level Planarity

Proper Level Planarity Problem
Input: An undirected graph G
Question: Does a proper layering φ of G exist such that (G,φ) is level planar?

Heath and Rosenberg [HR89] show via a reduction from the Planar 3-SAT Problem
that the Proper Level Planarity Problem is NP-complete.

(Extended) k-Level Planarity Problem
Input: A graph G, an integer k
Question: Does a layering φ of height k of G exist such that (G,φ) is (extended)

k-level planar?

To our knowledge, the complexity of the (Extended) k-Level Planarity Problem is
still unknown.

The Extended k-Level Planarity Problem is the same as asking whether a graph G
has a planar weakly y-monotone grid drawing of height k.
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2. Preliminaries

(Extended) Level Planarity Testing Problem
Input: An (extended) leveled graph (G,φ)
Question: Is (G,φ) (extended) level planar?

Both the Level Planarity Testing Problem and the Extended Level Planarity
Testing Problem for the class of extended leveled graphs with a bounded number of
isolated components are in P as explained below.

Jünger, Leipert and Mutzel [JLM98] provide a linear algorithm for testing whether a given
leveled graph is level planar. Hong and Nagamochi [HN09] provide an O(|E|+|V |p+1·(2/p)p)
algorithm for testing extended level planarity of an extended leveled graph (G,φ) with p
isolated components. If (G,φ) has no isolated components, their algorithm takesO(|E|+|V |)
time. More information about the testing algorithms will be given in Section 3.1.

Crossing Minimization

(Extended) Crossing Minimization Problem
Input: An (extended) leveled graph (G,φ), an integer c
Question: Does an (extended) level drawing of (G,φ) with at most c crossings

exist?

Garey and Johnson [GJ83] show that the Crossing Minimization Problem is NP-
complete. Bachmeier et al. [BBFH10] show the NP-completeness of the Extended
Crossing Minimization Problem.

Maximum Level Planar Subgraph

While an edge-maximal planar subgraph of a graph G = (VG, EG) is a graph H = (VH , EH)edge-maximal
planar subgraph such that adding an edge e ∈ EG\EH to EH would destroy planarity, an edge-maximum

planar subgraph is an edge-maximal subgraph J with the maximum number of edges, i.e.edge-maximum
planar subgraph there is no other edge-maximal planar subgraph which contains more edges than J .

Maximum (Extended) Level Planar Subgraph Problem
Input: An (extended) leveled graph (G,φ), an integer j
Question: Does an edge-maximum (extended) level planar subgraph of G contain

at least j edges?

Maximum Induced (Extended) Level Planar Subgraph Problem
Input: An (extended) leveled graph (G,φ), an integer h
Question: Does an maximum induced (extended) level planar subgraph of G

contain at least h vertices?

Eades and Whitesides [EW94] show that the Maximum Level Planar Subgraph
Problem is NP-complete. Since every k-level planar graph is also extended k-level planar,
it is easy to see that the Extended Maximum Level Planar Subgraph Problem is
also NP-complete.

To our knowledge, the complexity of the Maximum Induced (Extended) Level Planar
Subgraph Problem has not been analyzed so far.
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Straight-line Drawings of Planar Graphs

By untangling a non-planar straight-line drawing of a planar graph we understand mapping untangling
some of the vertices to other positions in the plane such that the resulting new straight-line
drawing is planar.

Untangling Planar Graph Problem
Input: An undirected planar graph G, a straight-line drawing δ of G, an integer i
Question: Can we untangle δ by moving at most i vertices in the plane?

Goaoc et al. [GKO+09] show that the Untangling a Planar Graph Problem is
NP-complete via a reduction from the Planar 3-SAT Problem.

Partial Drawing Extensibility Problem
Input: A planar undirected graph G = (VG, EG) and a mapping between a subset

V ′ of its vertices and a set of distinct points on the plane.
Question: Can coordinates be assigned to the vertices in V \V ′ such that the

resulting straight-line drawing of G is planar?

Patrignani [Pat06] shows that the Partial Drawing Extensibility Problem is NP-
complete. He shows the NP-hardness via a reduction from the Planar 3-SAT Problem.

2.3.2 Newly Defined Problems

In this thesis, we are interested in the following problems.

Reassigning Vertices

By reassigning the layer assignment of a vertex v, we mean the change of the value φ(v). reassigning
As a result, v is then mapped to another already existing layer.

(Extended) Layer Reassign Problem
Input: An (extended) planar leveled graph (G,φ), an integer r
Question: Can we get an (extended) level planar graph from (G,φ) by changing

the layer assignments of at most r vertices in φ?

Swapping Layer Assignments

By swapping the layer assignments of two vertices u and w, we understand that the vertex swapping
u gets mapped to φ(v) and the vertex v gets mapped to the former φ(u).

(Extended) Layer Swap problem
Given: An (extended) planar leveled graph (G,φ), an integer s
Question: Can we obtain an (extended) level planar graph from (G,φ) by

performing at most s swaps in φ?
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2. Preliminaries

Moving Vertices

By moving a vertex v, we understand that either the layer assignment of v is changed or a moving
new layer L is introduced and v is then assigned to L. The newly introduced layer is then
inserted above, between or below the already existing layers.

(Extended) Vertex Move Problem
Input: An (extended) planar leveled graph (G,φ), an integer m
Question: Can we get an (extended) level planar graph from (G,φ) by moving at

most m vertices in φ?

2.3.3 Complexity Overview

Table 2.1 sums up the complexity results of the problems mentioned in this thesis.
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3. Related Work

Much research has been done regarding level planarity. We divide this chapter into several
main aspects. In Section 3.1, we discuss known algorithms for testing (extended) level
planarity of a given (extended) leveled graph. Motivated by K5 and K3,3 as forbidden
patterns for planarity, there have been attempts to define forbidden patterns for level
planarity, too. The results of these attempts are summarized in Section 3.2. If an (extended)
leveled graph is not (extended) level planar, one can try to minimize crossings between the
layers. Section 3.3 is devoted to known results about (extended) crossing minimization.
Section 3.4 deals with the case when the (extended) layering is not part of the input, i.e.
it has to be computed first. We give an overview on results known about minimizing the
height of an (extended) level planar drawing.

A common framework for creating layered drawings of directed graphs is the Sugiyama
framework. In Section 3.5, we describe the idea of that framework. Section 3.6 contains
further related work which is needed in Chapter 4.

3.1 (Extended) Level Planarity Testing
3.1.1 Testing Level Planarity

The input of known level planarity testing algorithms consists of a directed graph G =
(V (G), E(G)) and a layering ϕ with the property that the source of an edge is mapped to a
lower layer than the sink of an edge, i.e. for each edge (u, v) ∈ E it holds that ϕ(u) < ϕ(v).
If we want to test an undirected graph with a given layering for level planarity, we can
direct the edges of it first and then use one of the following algorithms.

3.1.1.1 Testing with PQ-Tree

Jünger, Leipert and Mutzel [JLM98] provide a linear algorithm for testing whether a given
leveled graph for is level planar using PQ-Trees. Jünger and Leipert [JL99] extend this
algorithm to also compute a leveled embedding of a level planar graph in linear time.

The main idea of their algorithm is to perform a layer-by-layer sweep and store the set of
possible permutations of vertices on the same layer for the current layer in a PQ-Tree.

Despite its best known time complexity, there exist other approaches for testing level
planarity which are more intuitive and easier to implement.
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3. Related Work

3.1.1.2 Testing with Labeled Vertex Exchange Graph

A quadratic time testing and embedding algorithm which is easier to implement and
uses a datastructure called the labeled vertex-exchange graph was presented by Healy and
Kuusik [HK99b] [HK99a]. Healy and Kuusik require the layering φ to be proper, which
means that for each edge (u, v) ∈ E(G) it holds that |φ(u)− φ(v)| = 1. Like in their paper,
we will denote an ordered pair of vertices as [u, v].

The labeled vertex-exchange graph VE(π) = (V, E ,L) of a leveled embedding π of a directed
graph G is defined as follows. The set vertices V of the labeled vertex-exchange graph
consists of all ordered pairs of distinct vertices of G which are on the same layer. Their
ordering is induced by the given leveled embedding, i.e. the pair [u, v] is contained in V if
u and v are on the same layer and π(u) < π(v), i.e., u comes before v in the given leveled
embedding.

Two pairs [u, v] and [x, y] in V are connected by an edge in E if their vertices are not on the
same layer and either (u, x) ∈ E(G) and (v, y) ∈ E(G) or (u, y) ∈ E(G) and (v, x) ∈ E(G).
We understand by the corresponding edges of an edge {[u, v], [x, y]} ∈ E either (u, x) andcorresponding

edges (v, y) or (u, y) and (v, x). In case that both (u, x), (v, y) ∈ E(G) and (u, y), (v, x) ∈ E(G),
there are two edges {[u, v], [x, y]} in E , one that corresponds to (u, x) and (v, y) and one
that corresponds to (u, y) and (v, x).

The function L labels each edge {[a, b], [c, d]} ∈ E with ‘–’ or ‘+’, depending on whether its
two corresponding edges in the given leveled embedding of G cross or not. In Figure 3.1,
an example of a graph with corresponding labeled vertex-exchange graph is given.

Figure 3.1: (a) A leveled drawing of a leveled embedding ε of a directed graph G, (b) The
labeled vertex-exchange graph VE(ε)

Healy and Kuusik observe that a labeled vertex exchange graph has the No-3-cycles property.No-3-cycles
property The No-3-cycles property states that vertex orderings correspond to linear orderings, i.e.

for vertices x, y and z of G, the orderings [x, y], [y, z], [z, x] are invalid since this implies
π(x) < π(y) < π(z) < π(x) for a leveled embedding π.

In order to use the labeled vertex-exchange graph to test level planarity, Healy and Kuusik
give the following lemma.

Lemma 3.1 (Healy, Kuusik [HK99b],[HK99a]). If a leveled graph with a proper layering
is not level planar, then for each leveled embedding π of it it holds that VE(π) contains
’–’-labeled edges.

28



3.1. (Extended) Level Planarity Testing

Healy and Kuusik start with an arbitrary leveled embedding of the leveled graph provided
by the input. In order to deal with other leveled embeddings, they modify the labeled
vertex-exchange graph via a so-called ve-operation. A ve-operation ve([u, v]) switches the ve-operation
labels of all edges incident to [u, v] in the labeled vertex-exchange graph, i.e. ’+’ becomes
’–’ and ’–’ becomes ’+’. This corresponds to reversing the order of the two vertices in the
leveled embedding, thus [u, v] becomes [v, u].

A sequence S of ve-operations on a labeled vertex-exchange graph is valid if the labeled valid
vertex-exchange graph constructed by S still has the No-3-cycles property. I.e., a sequence
of ve-operations on a labeled vertex-exchange graph VE(π1) is valid if it transforms π1 into
a leveled embedding π2.

Theorem 3.2 (Healy, Kuusik [HK99b],[HK99a]). A leveled graph (G,φ) with a proper
layering φ is level planar if and only if for any leveled embedding π of it, there exists
some valid sequence of ve-operations that removes all ‘–’-labeled edges from LVE(π) or
equivalently, LVE(π) does not contain a cycle with an odd number of ‘–’-labeled edges.

Idea of the Proof.

“⇒:” A level planar graph has a level planar embedding, i.e. no edges
are crossing there. Thus, the labeled vertex-exchange graph of this
embedding does not contain any ’–’-labeled edges.

“⇐:” If there is a cycle with an odd number of ‘–’-labeled edges, we
cannot perform a sequence of ve-operations such that there are no ‘–
’-labeled edges afterwards. Else, there is always such a sequence. We
need to show that this sequence is also valid, at least in case that the
leveled graph is level planar.

Assume that we get a 3-cycle [a, b], [b, c] and [c, a] after performing these
ve-operations. There are several cases how this can happen, one example
is given in Figure 3.2 where [x1, x2] and [y1, y2] represent the vertex
pair on the highest or lowest layer of the paths. However, the graph
constructed in this example is not level planar. The authors claim that
for each possible configuration that leads to a 3-cycle problem, the proof
can be done in a similar way.

Figure 3.2: In this figure, paths are represented by curved edges. The label ’–’ on a path
means that there is an odd number of edges labeled with ’–’. (a) A labeled
vertex-exchange graph that leads to the 3-cycle problem. (b) An embedding of
a graph corresponding to this labeled vertex-exchange graph.
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3. Related Work

Based on this theorem, the authors give a Depth-First-Search algorithm for testing a given
directed graph with proper layering for level planarity. In order to compute a level planar
embedding, they provide an additional level-by-level traversal that has to be done after level
planarity testing since their Depth-First-Search algorithm does not necessarily compute a
valid sequence of ve-operations.

Fulek et al. [FPSS13] claim that there is no proof of Theorem 3.2 in the case that the labeled
vertex-exchange graph is not connected. Thus, the characterization of level planarity that
Healy and Kuusik give is not yet established.

3.1.1.3 Testing with Hanani-Tutte

In the definition by Fulek et al.[FPSS13], a drawing is y-monotone if every edge crossesy-monotone
each horizontal line at most once and every horizontal line contains at most one
vertex.

Fulek et al.[FPSS13] show that testing whether a leveled graph (G,φ) is level planar can
be reduced to testing y-monotonicity (in their paper they use x-monotonicity since they
regard vertical lines instead of horizontal ones), resulting in a quadratic-time algorithm.

Theorem 3.3 (Weak Monotone Hanani-Tutte, [PT02]). If G has a y-monotone drawing
in which every pair of edges crosses evenly, then G has a planar y-monotone drawing with
the same vertex locations and rotation system.

Two edges are called independent if they are not incident to the same vertex.independent

Theorem 3.4 (Monotone Hanani-Tutte, [FPSS13]). If G has a y-monotone drawing in
which every pair of independent edges crosses evenly, then G has a planar y-monotone
drawing with the same vertex locations.

Based on Theorem 3.4, Fulek et al. provide a quadratic-time algorithm for testing whether a
graph with a given placement of its vertices to points on the plane has a planar y-monotone
drawing that respects this placement.

In order to test whether a leveled graph (G,φ) is level-planar, Fulek et al. construct a
graph G′ and a placement of V (G′) to points on the plane such that (G,φ) is level planar if
and only of G′ has a planar y-monotone drawing that respects the given placement. They
add at most |V (G)| vertices and edges to G in order to construct G′. Their construction
results in the following theorem.

Theorem 3.5 (Testing Level Planarity, [FPSS13]). Testing level planarity can be reduced
to testing y-monotonicity.

3.1.1.4 Testing with 2-SAT

Randerath et al.[RSB+01] reduce the Level Planarity Testing Problem to the 2-SAT
Problem. However, Fulek et al.[FPSS13] state that there seem to be some gaps in the
reduction.

3.1.2 Testing Extended Level Planarity

Hong and Nagamochi [HN09] provide an O(|E| + |V |p+1 · (2/p)p) algorithm for testing
extended h-level planarity of an extended leveled graph (G,φ) with p isolated components.
If (G,φ) has no isolated components, their algorithm takes O(|E|+ |V |) time. They provide
a construction that converts extended leveled graphs into leveled graphs with more layers
and then test level planarity via the linear time algorithm from Mutzel et al. [JLM98].
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3.2. Characterization via Forbidden Patterns

3.2 Characterization via Forbidden Patterns

Estrella-Balderrama et al. [EBFK09a] characterize all unlabeled level planar trees by
providing two forbidden substructures which prevent unlabeled level planarity, i.e. a tree
contains a subtree homeomorphic to one of the structures, if and only if the tree is not
unlabeled level planar. Fowler et al. [FK07a] extend this characterization to unlabeled level
planar graphs by providing five more forbidden subgraphs. This set F of seven forbidden
subgraphs is shown in Figure 3.3. As an example, a y-ordering λ of Gα such that (Gα, λ)
is not level planar is given in Figure 3.4. For bad y-orderings of the other graphs of F , see
the paper from Fowler et al.

Figure 3.3: The seven forbidden subgraphs F = {T8, T9, G5, G6, Gα, Gκ, Gδ}

Figure 3.4: A y-ordering that prevents Gα from being unlabeled level planar.

There also have been attempts to characterize level planar graphs by providing minimal
level non-planar (MLNP) patterns [HKL04], [FK07b], [EBFK09a]. A leveled graph is
minimal level non-planar if the removal of any edge makes the resulting leveled graph minimal level

non-planarlevel planar. However, Estrella-Balderrama et al. [EBFK09b] show that there are infinitely
many of these MLNP-patterns for trees.

3.3 Crossing Minimization

If a graph with a given layering is not level planar, one can try to minimize the number of
crossings in a straight-line drawing of the graph by reordering the vertices on the same
layer. However, crossing-minimization is NP-hard even for 2-layered graphs [GJ83]. If you
fix the permutation of vertices on one layer, the problem remains NP-hard [EW94].

Matuszewski et al. [MSM99] provide a heuristic for k-layer crossing minimization that uses
a technique called sifting to find a good position for a vertex. In the sifting technique,
every vertex is visited once. The vertex is moved to a position on its layer such that the
current total number of crossings is minimized. Then, its position is fixed and another
previously unvisited vertex is visited.
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Mutzel [Mut01] suggests an alternative method for crossing minimization, namely k-level
planarization. This means that first, a maximal level planar subgraph is drawn and then
the previously removed edges are reinserted. A maximal planar subgraph is taken since
Eades and Whitesides [EW94] show that finding a maximum level planar subgraph is
NP-hard even if there are only two layers and the order of the vertices on one layer is
fixed.
The problem of determining whether an undirected graph can be drawn on k layers with
at most r crossings is fixed-parameter tractable (but there still remains a huge constant
factor), as shown by Dujmović et al [DFK+08]. They provide an f(k, r) · O(n) algorithm
to decide whether a graph can be drawn on k layers such that there are no more than r
crossings. Their algorithm is based on computing a path decomposition of the input graph
and their observation that a k-level planar graph has pathwidth at most k − 1.
Bachmaier et al. [BBFH10] show that minimizing the number of crossings in extended
level-drawings is NP-hard and provide a heuristic that reduces the number of crossings by
up to 30 percent compared to previous crossing minimization heuristics.

3.4 Level Planarity and k-Level Planarity Problems
Heath and Rosenberg [HR89] show that given an undirected n-vertex graph G, it is NP-
complete to determine whether there exists a proper layering φ of G such that (G,φ) is
level planar. They show NP-hardness via a reduction from the Planar 3-SAT Problem.
It seems to be still open whether determining the minimum number of layers needed
to obtain an (extended) level planar drawing of a planar graph is NP-complete or not.
Of course, every undirected n-vertex planar graph G is n-level planar since any planar
straight-line drawing of it can be rotated such that the points are mapped to distinct
y-coordinates.
Dujmović et al [DFK+08] et al. show that the problem whether an undirected graph is
k-level planar is fixed-parameter tractable (but there still remains a huge constant factor).
They provide an f(k) · O(n) algorithm to decide whether a given graph is k-level planar.
The algorithm is based on computing a path decomposition of the input graph and their
observation that a k-level planar graph has pathwidth at most k − 1.
Suderman and Matthew [Sud04] give optimal lower and upper bounds for the minimum
number of layers needed in an (extended) leveled planar drawing of a tree T with pathwidth
h and linear time drawing algorithms for them matching their upper bounds. Their results
are listed in Table 3.1.

Type of Layering Lower Bound Upper Bound
Layering h 3h/2
Proper Layering h 3h− 2
Extended Layering h− 1 3h/2
Short Extended Layering h 2h− 1

Table 3.1: Bounds on the minimum value k for any tree T with pathwidth h such that T is
(extended) k-level planar.

Given an (extended) level planar embedding of a graph, there exists a linear-time divide
and conquer straight-line drawing algorithm by Eades et al [EFLN06].
However, Lin [Lin92] shows that the area of a grid needed for any planar straight-line
drawing of a level planar graph can be exponential. Lin defines a class of level planar
graphs Hn of 10n − 6 vertices and 4n − 1 layers such that any straight-line level planar
grid-drawing of it needs a grid of at least width (2n− 2)!. Figure 3.5 shows H2.
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3.4. Level Planarity and k-Level Planarity Problems

Figure 3.5: H2

Planar Straight-Line Grid-Drawings of Planar Graphs

Since every extended level planar drawing can be straightened, minimizing k in an extended
k-level planar drawing of a graph G is the same as minimizing the height of a planar
straight-line grid drawing of G.

Mondal et al. [MA11] provide a linear-time algorithm for computing the minimum height
of a straight-line planar grid-drawing of a tree. A linear-time algorithm for computing the
minimum height of a planar straight-line grid-drawing of a planar triangulated graph with
treewidth 3 is given by Mondal et al. [MNA11]. Biedl [Bie13] gives a linear-time algorithm
that computes a straight-line planar drawing of a 2-connected outerplanar graph such that
the height of the drawing is a 4-approximation of the minimum height needed.

Schnyder [Sch90] shows that every n-vertex planar graph has a planar straight-line draw-
ing on the 2n − 4 by n − 2 grid which can be computed in linear time. Chrobak and
Nakano [CN95] show that for a triangulated n-vertex planar graph with n ≥ 3, both
dimensions of any planar straight-line grid-drawing of it are at least of size d2(n− 1)/3e.
They show that this bound is tight by providing a polynomial-time algorithm that produces
a planar straight-line grid-drawing on the d2(n− 1)/3e × 4d2(n− 1)/3e − 1 grid.

Minimum-Height Layerings with Additional Restrictions

Some applications define additional restrictions to a layering. Bastert and Matuszewski [BM99]
describe a linear-time algorithm that maps the vertices of a directed acyclic graphG = (V,E)
to a minimum number of layers via a layering φ such that φ(u) < φ(v) for all (u, v) ∈ E,
resulting in a layering with that property of minimum height.

1. A sink is a vertex with no outgoing edges. Each sink s ∈ V is mapped to φ(s) = 1. sink

2. Each vertex v which is not a sink is recursively placed by

φ(v) = max{i | w ∈ N+(v) and φ(w) = i}+ 1

where N+(v) = {w | (v, w) ∈ E}.

The height of the resulting layering φ is equal to the length of the longest path in the input
graph. The leveled graph (G,φ) is not required to be level planar. Moreover, they mention
that it is NP-complete to minimize simultaneously width (maximum number of vertices
on a layer) and height (number of layers) of a layering with the property that φ(u) < φ(v)
for all (u, v) ∈ E.
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3.5 The Sugiyama Method
The most commonly used framework to construct a layered drawing of a directed graph is
given by Sugiyama et al [STT81]. It mainly consists of four steps:

1. Cycle Removal Reverse edges in order to obtain an acyclic graph.

2. Layer Assignment Assign the vertices to layers, insert dummy vertices in order to
obtain a proper layering.

3. Crossing Minimization Minimize crossings between adjacent layers.

4. Coordinate Assignment and Drawing Assign coordinates to the vertices and con-
struct a straight-line drawing.

A visualization of the Sugiyama Layout is shown in Figure 3.6.

3.6 Further Related Work
Work related to Moving Vertices

Goaoc et al. [GKO+09] show that untangling a straight-line drawing of a planar graph isNP-
hard and the minimum number of vertices needed to be moved is impossible to approximate
if P 6= NP. They also provide a quadratic-time algorithm for untangling a nonplanar
straight-line drawing of an n-vertex planar graph that fixes at least

√
((logn)− 1)/ log logn

vertices (i.e., these vertices are not moved). If the graph is outerplanar, their algorithm fixes√
n/2 vertices. They show that for outerplanar graphs, their algorithm is asymptotically

worst-case optimal. Bose et al. [BDH+07] show that in any nonplanar straight-line drawing
of a planar graph, 4

√
(n+ 1)/2 vertices can always be fixed (i.e., not moved).

Patrignani [Pat06] shows that given a planar straight-line drawing of a subgraph of a planar
graph G, it is NP-hard to extend it to a planar straight-line drawing of G. However, if the
aforementioned subgraph is a cycle in G whose vertices are mapped to a convex polygon,
Mchedlidze et al.[MNR13] provide a linear-time testing and drawing algorithm.

Work related to Swapping Vertices

Bulteau et al. [BFR12] show that it is NP-hard to determine the minimum number of
transpositions (i.e., swaps of consecutive elements) needed to transform a given permutation
into identity.

Cicirello and Cernera [CC13] show that given two permutations, one can determine in
polynomial time how many swaps or reinsertions are needed to transform one permutation
into the other. The minimum number of moves needed can be solved via computing the
edit distance with costs 0.5 for deletion, 0.5 for insertion and ∞ for replacement. They
provide a polynomial time algorithm for computing the minimum number of swaps needed,
based on the observation from Oliver et al. [OSH87] that each crossover cycle of length k
leads to k − 1 needed swaps.
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(a) The input graph G. (b) Cycles removed.

(c) Layers assigned. (d) Crossings minimized.

(e) Edges straightened. (f) The final drawing.

Figure 3.6: The steps of the Sugiyama layout.
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4. New Considerations

In this chapter we analyze the newly defined problems from Section 2.3.2 and provide
heuristics for them.

Recall that by reassigning the layer assignment of a vertex v, we mean the change of the reassigning
value φ(v). As a result, v is then mapped to another already existing layer.

(Extended) Layer Reassign Problem
Input: An (extended) planar leveled graph (G,φ), an integer r
Question: Can we get an (extended) level planar graph from (G,φ) by changing

the layer assignments of at most r vertices in φ?

Recall that by swapping the layer assignments of two vertices u and w, we understand that swapping
the vertex u gets mapped to φ(v) and the vertex v gets mapped to the former φ(u).

(Extended) Layer Swap problem
Given: An (extended) planar leveled graph (G,φ), an integer s
Question: Can we obtain an (extended) level planar graph from (G,φ) by

performing at most s swaps in φ?

Recall that by moving a vertex v, we understand that either the layer assignment of v is moving
changed or a new layer L is introduced and v is then assigned to L. The newly introduced
layer is then inserted above, between or below the already existing layers.

(Extended) Vertex Move Problem
Input: An (extended) planar leveled graph (G,φ), an integer m
Question: Can we get an (extended) level planar graph from (G,φ) by moving at

most m vertices in φ?
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4. New Considerations

4.1 Bounds and Complexity
In this section, we show that the Extended k-Level Planarity Problem can be
reduced both to the Extended Layer Reassign Problem, and to the Extended
Layer Swap Problem. Moreover, we show that in order to solve the (Extended)
Vertex Move Problem, one cannot fix the vertices of a maximum induced (extended)
level planar subgraph of an (extended) leveled graph.

We deduce bounds for the (Extended) Vertex Move Problem from related problems
for planar graphs.

4.1.1 Changing and Swapping Layer Assignments

Lemma 4.1. If the Extended k-Level Planarity Problem is NP-complete, then
the Extended Layer Reassign Problem is also NP-complete.

Proof. The Extended Layer Reassign Problem is in NP since for a given extended
k-layered graph (G,φ), an integer r and a set R of layer reassignments on φ, one can
check in polynomial time whether |R| ≤ r and whether (G,φ′) is extended k-level
planar. The extended layering φ′ results from performing the layer reassignments
given by R on φ.

Extended k-Level Planarity Problem ∝ Extended Layer Reassign
Problem: Let I = (G, k) be an instance of the Extended k-Level Planarity
Problem. We construct an instance J = ((G′, φ), r) of the Extended Layer
Reassign Problem as follows.

• G′ = (VG′ , EG′) := G

• The integer r is set to n, i.e. the number of vertices in G.

• The extended layering φ is constructed as follows. We order the vertices of G′
arbitrarily such that VG′ = {v1, . . . , vn}. We define φ(vi) = i for i = 1, . . . , k
and φ(vj) = 1 for j = k + 1, . . . , n.

We show that an extended layering ψ of height k of G exists such that (G,ψ) is
extended k-level planar if and only if we can make (G′, φ) extended k-level planar
by reassigning at most n vertices in φ.

⇒: Assume that there is an extended layering ψ of height k of G such that (G,ψ)
is extended k-level planar. The layering φ can trivially be transformed into the
layering ψ by reassigning at most n vertices.

⇐: Assume that we can make (G′, φ) extended k-level planar by reassigning at
most n vertices in φ. Let φ2 be the extended layering obtained by performing those
reassignments. Obviously, (G,φ2) is extended k-level planar.

Thus, if the Extended k-Level Planarity Problem is NP-complete, then the
Extended Layer Reassign Problem is also NP-complete.
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4.1. Bounds and Complexity

Lemma 4.2. If the Extended k-Level Planarity Problem is NP-complete, then
the Extended Layer Swap Problem is also NP-complete.

Proof. The Extended Layer Swap Problem is in NP since for a given extended
k-layered graph (G,φ) and a sequence S of swaps on φ, one can check in polynomial
time whether |S| ≤ s and whether (G,φ′) is extended k-level planar. The extended
layering φ′ results from performing the layer swaps given by S on φ.

Extended k-Level Planarity Problem ∝ Extended Layer Swap Problem:
Let I = (G, k) be an instance of the Extended k-Level Planarity Problem.
We construct an instance J = ((G′, φ), s) of the Extended Layer Swap Problem
as follows.

• The integer s is set to n, i.e. the number of vertices in G.

• Let ϕ be the extended layering obtained by the following construction. We
order the vertices of G′ arbitrarily such that VG′ = {v1, . . . , vn}. We define
ϕ(vi) = i for i = 1, . . . , k and ϕ(vj) = 1 for j = k + 1, . . . , n.

• Add n new isolated vertices (i.e., vertices with degree zero) to each layer in ϕ,
k · n vertices in total. These extra vertices allow that each vertex can “swap”
to any layer. Since k ≤ n, this adds O(n2) new vertices. Let G′ = (VG′ , EG′)
be G combined with the newly added vertices of degree zero. Let φ be ϕ with
the new vertex mappings added.

We show that an extended layering ψ of height k of G exists such that (G,ψ) is
extended k-level planar if and only if we can make (G′, φ) extended k-level planar
by performing at most n swaps in φ.

⇒: Assume that there is an extended layering ψ of height k of G such that (G,ψ)
is extended k-level planar. By swapping at most n vertices in φ, we can reach that
that φ|VG

= ψ. This can always be done since the newly added vertices on each
layer allow each vertex to be “swapped” to any of the k layers. Since all vertices in
VG′\VG have degree zero, it is irrelevant for level planarity on which layer they are
placed. Thus, (G′, φ) can be made level planar by swapping at most n vertices in φ.

⇐: Assume that we can make (G′, φ) extended k-level planar by performing at most
n swaps in φ. Let φ2 be the extended layering obtained by performing those swaps.
Obviously, (G,φ2) is extended k-level planar.

Thus, if the Extended k-Level Planarity Problem is NP-complete, then the
Extended Layer Swap Problem is also NP-complete.

In the aforementioned reductions, we need to find an extended layering of height k in
polynomial time. We emphasize that we do not require extended level planarity here. The
minimum height of an extended layering is always one since each vertex can be mapped to
the same layer.

In order to transfer our reductions from above to the Layer Reassign Problem and
the Layer Swap Problem via a reduction from the k-Level Planarity Problem, it
is needed to construct a layering of height k of a graph G in polynomial time if it exists.
A natural approach is to compute a minimum-height layering of G and check whether its
height is less or equal k. If it is greater than k, it is clear that there is no layering φ of G
such that (G,φ) is k-level planar. Otherwise, new layers can be added to a minimum-height
layering of G and vertices can be reassigned to these layers until we obtain a layering of
height k of G. Then, we can apply the same ideas for the reduction as before.

This approach does not help as we show in the following lemma.
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Lemma 4.3. Let G = (VG, EG) be a graph. It is NP-complete to find a minimum-height
layering of G.

Proof idea. Let φ be a minimum-height layering of G. Let h be the height of φ. Since φ is
a layering, it holds that φ(u) 6= φ(v) for all adjacent vertices u, v ∈ VG. This
implies that the vertices of G can be colored with h colors such that adjacent
vertices have different colors and h is the minimum number of colors needed.
However, it is NP-complete to determine this number (known as the chromatic
number of G) [GJS74].

4.1.2 Moving Vertices

An approach that can be tried in order to analyze the complexity of the (Extended)
Vertex Move Problem is to reduce of the Maximum Induced (Extended) Level
Planar Subgraph Problem to the (Extended) Vertex Move Problem. While
it is unclear whether the Maximum Induced (Extended) Level Planar Subgraph
Problem is NP-complete or not, a reduction from it would still give some classification.

A natural approach to do this reduction is to state that the vertices of a maximum induced
(extended) level planar subgraph of an (extended) leveled graph need not to be moved in
order to make the (extended) leveled graph (extended) level planar. This attempt does not
work, as we show in the following observation. This provides some useful insight about the
(Extended) Vertex Move Problem.

Observation 4.4. Let (G,φ) be a planar (extended) leveled graph which is not (extended)
level planar. Let H be a maximum induced (extended) level planar subgraph of (G,φ). We
cannot always obtain an (extended) k-level planar drawing of G by only moving vertices of
G in φ which are not contained in H. An example is given in Figure 4.1.

(a) An extended layering of G. (b) An y-ordering of G.

Figure 4.1: In both cases, an (extended) level planar drawing of G cannot be obtained by
moving only the vertex g. The graph G has been constructed out of one of the
forbidden patterns for partially embedded graphs from Jelínek et al[JKR13]. We
have used the level planarity testing algorithm from Healy and Kuusik [HK99b]
in a brute-force approach in order to test whether the given leveled graph can
be made level planar by moving only the vertex g or not. Our implementation
did not find a way to move only g in order to make the given leveled graph
level planar.
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An upper bound for the (Extended) Vertex Move problem

It is known that for untangling a straight-line drawing of an n-vertex planar graph, no
more than 4

√
(n+ 1)/2 need to be moved [BDH+07]. The following corollary is a direct

implication from that result.

Corollary 4.5. Given an n-vertex planar graph G and an (extended) layering φ of G, no
more than 4

√
(n+ 1)/2 vertices need to be moved in φ in order to make (G,φ) (extended)

level planar.

4.2 The Rotation Heuristic
In this section, we give a heuristic that can be applied to the (Extended) Layer Change
problem, the (Extended) Layer Swap problem and the (Extended) Vertex Move
problem.

Our input consists of an (extended) leveled graph (G,φ) such that (G,φ) is not (extended)
level planar but G is planar. We perform the following steps, which are explained in detail
in the following.

1. Compute a planar straight-line drawing δ of G, for example with the linear-time
algorithm by Schnyder [Sch89].

2. Compute the set of all possible circular orderings of the points given by δ. Each circular
ordering induces a y-ordering ψ of the graph. This is explained in Section 4.2.2.

3. For each induced y-ordering ψ, compute the number of operations needed to transform
φ into ψ, as explained in Section 4.2.1.

4. Return the minimum of the distances computed in steps 2 and 3.

If a solution is found via the Rotation Heuristic, it is guaranteed that the resulting drawing
is (extended) level planar.

4.2.1 Compute the Distance

In this subsection, we consider the distance of two extended layerings since this provides a
more general result.

The distance between two extended layerings can be computed as follows, depending on the
problem which we want to find an heuristical solution for. Let φ and ψ be two extended
layerings of G = (VG, EG) (the extended layering φ is part of the input, the extended
layering ψ is induced by the current drawing).

Extended Layer Reassignment Problem

In order to transform φ into ψ by reassigning vertices to other existing layers, we need to
change the values φ(v) for all v ∈ VG where φ(v) 6= ψ(v). However, since we do not allow
inserting new layers, we have to require that the height of ψ is less than or equal to the
height of φ. We do not have to require that φ and ψ have exactly the same height since
reassigning vertices to other existing layers is allowed to produce empty layers.

Algorithm 4.1 computes the minimum number of reassignments needed to transform the
extended layering φ into the extended layering ψ.
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Algorithm 4.1: MinReassign finds the minimum number of layer reassignments.
Input: Two extended layerings φ and ψ of a graph G = (V,E)
Output: The minimum number r of reassignments needed to transform φ into ψ

1 r ← 0
2 if height(ψ) > height(φ) then
3 return false
4 else
5 foreach v ∈ V do
6 if φ(v) 6= ψ(v) then
7 r ← r + 1

8 return r

Extended Layer Swap Problem

Swapping the layer assignments of two vertices does not change the total number of vertices
on each layer (if we swap two vertices u and v, we swap u “away” from its layer but the
gap is then filled with v).

We observe that in order to be able to transform the φ into ψ by swapping vertices, the
following two conditions are necessary.

1. Since swapping vertices in φ can neither reduce the number of layers nor increase the
number of layers, the extended layerings φ and ψ must have the same height, say h.

2. Since the number of vertices on each layer stays invariant during swap operations,
it must hold that |φ−1(i)| = |ψ−1(i)| for i = 1, . . . , h, i.e., the number of vertices on
layer i is the same for both extended layerings.

We make the following observations in order to obtain the minimum number of swaps
needed to transform φ into ψ.

We say that a vertex v is correct if φ(v) = ψ(v), otherwise it is incorrect.correct
incorrect

Observation 4.6. We do not need to swap vertices that are on the same layer.

Observation 4.7. Each needed swap increases the total number of correct vertices.

Observation 4.8. We do not need to swap a correct vertex with another vertex. In other
words, each needed swap swaps two incorrect vertices.

Observation 4.9. Let u, v and w be three pairwise distinct incorrect vertices. Let φ(v) =
ψ(u) = φ(w) (i.e., both v and w are on the desired layer of u). Let ψ(v) = φ(u) and
ψ(w) 6= φ(u). Since swapping the vertices u and v makes both of them correct and swapping
the vertices u and w makes only one of them correct, it is better to swap u and v.

Based on the aforementioned observations, Algorithm 4.2 computes the minimum number
of swaps needed to transform φ into ψ. If we restrict us to y-orderings, the minimum
number of swaps needed to transform φ into ψ can also be computed by the algorithm of
Cicirello and Cernera [CC13] in polynomial time.
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Algorithm 4.2: MinSwaps finds the minimum number of swaps.
Input: Two extended layerings φ and ψ of a graph G = (V,E)
Output: The minimum number s of swaps needed to transform φ into ψ

1 s← 0
2 if height(ψ) 6= height(φ) then
3 return false
4 else if ∃i : |ψ−1(i)| 6= |φ−1(i)| then
5 return false
6 else
7 F ← {v ∈ V | φ(v) = ψ(v)} // vertices which already are on their

desired layer
8 foreach v ∈ V \F do
9 candidates ← {u ∈ (V \F ) | u ∈ φ−1(ψ(v))} // vertices which are on

the layer that v wants to be swapped to
10 if candidates = ∅ then
11 return false
12 else if ∃u ∈ candidates : ψ(u) = φ(v) then
13 swap v and u in φ
14 F ← F ∪ {v} ∪ {u}
15 s← s+ 1
16 else
17 swap v and some vertex u ∈ candidates in φ
18 F ← F ∪ {v}
19 s← s+ 1

20 return s
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Extended Vertex Move Problem

We first show that computing the minimum number of moves needed to transform φ into ψ
can be reduced to computing the maximum common subsequence (which is defined below),
then we show that it can be computed in polynomial time.

For two vertices u, v ∈ V and an extended layering ` of G = (V,E), we define

relation(u, v, `) =


−1, if `(u) < `(v)
0, if `(u) = `(v)
1, if `(u) > `(v)

A common subsequence of the extended layerings φ and ψ is a set S ⊆ V such that for allcommon
subsequence vertices u, v ∈ S it holds that relation(u, v, φ) = relation(u, v, ψ). A maximum common

subsequence of the extended layerings φ and ψ is a common subsequence Smax of φ and ψmaximum
common

subsequence
with maximum size, i.e. there is no common subsequence S′ of φ and ψ with |S′| > |Smax|.

Lemma 4.10. Let (G,φ) be an extended leveled graph. Let ψ be an extended layering of
G. Let Smax be a maximum common subsequence of φ and ψ. Let mmin be the minimum
number of moves needed to transform φ into ψ. It holds that mmin = |V | − |Smax|.

Proof idea. A maximum common subsequence Smax of φ and ψ contains the maximum
number of vertices that can be fixed in φ since they appear already in the correct
order, i.e. they do not need to be moved. Thus, |V | − |Smax| = mmin.

Given two extended layerings φ and ψ of a graph G = (V,E) and a vertex v ∈ V , we
define Forbidden(v) := {w ∈ V | relation(v, w, φ) 6= relation(v, w, ψ)}. We can then define
the conflict graph K = (VK , EK) of φ and ψ as VK := V and {u, v} ∈ EK if and only ifconflict graph
v ∈ Forbidden(u). An example of a conflict graph is given in Figure 4.2.

Figure 4.2: (a) A layering φ of G. (b) A layering ψ of G. (c) The conflict graph K of φ
and ψ. A maximum common subsequence of φ and ψ is marked in blue. Notice
that it is also a maximum independent set of K. In this example, at least 3
vertices need to be moved.
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We observe that a maximum common subsequence of φ and ψ is a maximum independent
set in the conflict graph of φ an ψ.

While the Maximum Independent Set Problem isNP-complete for general graphs [Coo71],
there are polynomial-time algorithms for it if the graph belongs to a special class of graphs,
the so-called perfect graphs [GLS88]. We show that the conflict graph K of φ and ψ is a
comparability graph, which is a member of the class of perfect graphs [Dil90].

Lemma 4.11. Let φ and ψ be two extended layerings of a graph G = (VG, EG). The
conflict graph K = (VK , EK) of φ and ψ is a comparability graph.

Proof. We define the strong partially ordered set (S,<S) as follows.

• S := VG

• u <S v if and only if relation(u, v, φ) < relation(u, v, ψ)

In order to show that (S,<S) is a strong partially ordered set, we have to show
that “<S” is irreflexive, transitive and asymmetric.

Irreflexivity We have to show that not x <S x for all x ∈ S.

Let x ∈ S. Since relation(x, x, φ) = 0 and relation(x, x, ψ) = 0, it holds that
not x <S x.

Transitivity We have to show that if x <S y and y <S z then x <S z for all
x, y, z ∈ S.

Let x, y, z ∈ S and let x <S y and y <S z. It holds that

x <S y ⇔ relation(x, y, φ) < relation(x, y, ψ)

⇔
(
φ(x) < φ(y) and ψ(x) ≥ ψ(y)

)
or
(
φ(x) = φ(y) and ψ(x) > ψ(y)

)
.

Similarly, it holds that

y <S z ⇔
(
φ(y) < φ(z) and ψ(y) ≥ ψ(z)

)
or
(
φ(y) = φ(z) and ψ(y) > ψ(z)

)
.

This gives us four cases.

1. φ(x) < φ(y) < φ(z) and ψ(x) ≥ ψ(y) ≥ ψ(z)

2. φ(x) < φ(y) = φ(z) and ψ(x) ≥ ψ(y) > ψ(z)

3. φ(x) = φ(y) < φ(z) and ψ(x) > ψ(y) ≥ ψ(z)

4. φ(x) = φ(y) = φ(z) and ψ(x) > ψ(y) > ψ(z)

In each of the four cases, it holds that relation(x, z, φ) < relation(x, z, ψ).
Hence, it holds that x <S z.

Asymmetry We have to show that if x <S y then not y <S x for all x, y ∈ S.

Let x, y ∈ S. Assume that x <S y and y <S x. By the transitivity of “<S”, it
follows that x <S x. This cannot be since “<S” is irreflexive. Thus, “<S” is
asymmetric.
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Thus, (S,<S) is a strong partially ordered set.

We show that the comparability graph C = (VC , EC) of (S,<S) and K are isomor-
phic. Since both VC = VG and VK = VG, it suffices to show that {u, v} ∈ EC ⇔
{u, v} ∈ EK .

{u, v} ∈ EC
⇔ u <S v or v <S u

⇔ relation(u, v, φ) < relation(u, v, ψ) or relation(u, v, φ) > relation(u, v, ψ)

⇔ relation(u, v, φ) 6= relation(u, v, ψ)

⇔ u ∈ Forbidden(v) or v ∈ Forbidden(u)

⇔ {u, v} ∈ EK .

Thus, C and K are isomorphic.

Maximum Common Subsequence for y-Orderings

If φ and ψ are y-orderings, the maximum common subsequence of φ and ψ can be reduced
to computing the longest common subsequence of two sequences, both of size |V |, as we
show in the next paragraph. This can be done via a dynamic programming algorithm in
O(|V |2) time [Hir75].

Observation 4.12. Let φ and ψ the two y-orderings of a graph G = ({v1, . . . , vn}, E).
Let σ1 and σ2 be two sequences of size n such that σ1(i) = φ(vi) and σ2(i) = ψ(vi) for
i = 1, . . . , n. The maximum common subsequence of φ and ψ is the same as the longest
common subsequence of σ1 and σ2.

Our results lead to the following theorem.

Theorem 4.13. Let φ and ψ be two extended layerings of a graph. The minimum number
of moves needed to transform φ into ψ can be computed in polynomial time.

4.2.2 Rotate the Drawing

A circular ordering of a point set P is a vertical ordering of the points in P that can becircular ordering
obtained by rotating the point set around its center such that no two points have the same
y-coordinate. (It is a well-known fact that by rotating the point set slightly around its
center, we can always ensure this.)

As shown by Goodman and Pollak [Goo80], there are Θ(n2) possible circular orderings of
a point set. As shown by Biery and Schmidt [BS96], the set of circular orderings of a point
set of size n can be computed in O(n4) time.

Let δ be the planar straight-line drawing of G which we obtained in Step 1. The vertex
locations of G in δ induce a point set P . Each circular ordering of P represents a y-ordering
of the vertices of G.

In this step, we use the quartic-time algorithm from Biery and Schmidt to compute all
y-orderings of G induced by rotations of δ.

Further Improvements

It remains open whether we can find parts of the drawing which we can rotate independently
without destroying planarity in order to obtain more (extended) layerings. Moreover, since
our current approach does only produce y-orderings, it remains further work to investigate
ways to “compress” them into (extended) layerings of smaller height.
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4.2.3 Time Complexity

Let (G = (VG, EG), φ) be the (extended) leveled graph provided by the input. Let n = |VG|.
We compute all possible circular orderings of the points given by the drawing in O(n4) time.
There are O(n2) many possible circular orderings of a point set. Each circular ordering
induces a y-ordering of the graph. For each induced y-ordering δ, we compute the distance
of φ to δ.

We need O(n) time to find the minimum number of reassignments needed to transform an
extended layering φ into an extended layering ψ. We need O(n2) time to find the minimum
number of swaps needed to transform an extended layering φ into an extended layering
ψ. If φ and ψ are y-orderings, we need O(n2) time to find the minimum number of moves
needed to transform φ into ψ. Otherwise, this can also be done in polynomial time.

All in all, the Rotation Heuristic takes O(n4) time for the (Extended) Layer Reassign
Problem and the (Extended) Layer Swap Problem. If φ is an y-ordering, the Rotation
Heuristic for the (Extended) Vertex Move Problem takes also O(n4) time. Depending
on the algorithm chosen for computing a maximum independent set in a comparability
graph, the Rotation Heuristic for the (Extended) Vertex Move Problem for arbitrary
(extended) layerings still takes polynomial time.

4.3 More Ideas for Heuristics
In this section, we shortly discuss further ideas for heuristics.

Greedy Heuristics After starting with some intial (extended) leveled embedding and
applying a heuristic for the (Extended) Crossing Minimization Problem, we
can greedily try to reassign/ swap/ move vertices between layers as long as we can
reduce the total number of crossings by one single reassignment/ move/ swap.

Untangling Drawings Since testing whether a graph is planar can be done in linear
time [HT74] and planarity is a necessary condition for level planarity, we can restrict us
to planar graphs. We can combine a heuristic for the Untangling a Planar Graph
Problem, for example the quadratic-time heuristic from Goaoc et al. [GKO+09],
with a heuristic for the (Extended) Crossing Minimization Problem in order
to obtain a heuristic for the (Extended) Vertex Move Problem as follows.

Given an (extended) leveled graph (G,φ), we choose some initial (extended) leveled
embedding ε ofG with respect to φ. We reorder the vertices within each layer according
to a heuristic for the (Extended) Crossing Minimization Problem, resulting in
an (extended) leveled embedding ε′. We construct a straight-line (extended) leveled
drawing of G out of ε′. Then, we apply a heuristic for the Untangling a Planar
Graph Problem and return the total number of vertices moved by this heuristic.
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5. Conclusion

We have given an extensive overview on current research concerning level planarity, intro-
duced and analyzed some new optimization problems and provided a heuristic for them.
Table 5.1 sums up the complexity results of all problems mentioned in this thesis.

We have shown that if the Extended k-Level Planarity Problem is NP-complete,
then it is also NP-complete to determine the minimum number of layer reassignments or
swaps needed in order to make an extended leveled graph extended level planar.

We have given a polynomial-time heuristic that we call the Rotation Heuristic. This
heuristic can be applied to the new problems we defined in this thesis, namely the (Ex-
tended) Layer Reassign Problem, the (Extended) Layer Swap Problem and the
(Extended) Vertex Move Problem.

We have shown that finding the minimum number of vertices needed to move in order
to transform one extended layering into another can be reduced to finding a maximum
independent set in a comparability graph which is in P. If we restrict us to y-orderings
(i.e., each vertex is mapped to a different layer), we have observed that the problem can be
reduced to finding a longest common subsequence of the permutations that are given by
the y-orderings.

5.1 Open Problems and Further Work
To our knowledge, it still remains open whether the (Extended) k-Level Planarity
problem is NP-complete or not. Since the NP-completeness of most of the related prob-
lems (proper level planarity, crossing minimization and untangling straight-line nonplanar
drawings of planar graphs) is shown via a reduction from the Planar 3-SAT Problem,
the Planar 3-SAT Problem seems to be a promising candidate for the reduction in an
NP-hardness proof.

It also remains open whether the (Extended) Layer Change problem, the (Extended)
Layer Swap problem and the (Extended) Vertex Move problem are NP-complete in
the case that we restrict us to y-orderings instead of general (extended) layerings. It remains
further work to analyze the complexity of the open problems mentioned above. Also, the
quality of the rotation heuristic can still be improved, as explained in Section 4.2.2.
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