
A Block-Cut-Tree-based Switching
Algorithm for Cacti

Bachelor Thesis of

Florian Krüger

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Franziska Wegner, M.Sc.
Matthias Wolf, M.Sc.

Time Period: 12th July 2018 – 11th November 2018

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 11th November 2018

iii

Abstract

The Maximum Transmission Switching Flow Problem (MTSF) focuses on
maximizing the power flow within an electrical power grid by allowing transmission
lines to be removed from the grid, where the latter procedure is referred to as
switching. MTSF is an optimization problem and known to be NP-complete, even
on strongly restricted graph classes such as cacti. Therefore the standard approach
is to solve an instance of its formulation as a Mixed Integer Linear Program
(MILP).

In this thesis, we present an algorithm of exponential complexity to solve MTSF for
unbounded cactus grids to optimality by utilizing the structure of its Block-Cut-tree.
We achieve this by solving a power flow model for subgraphs and then composing
partial solutions to an overall solution. We furthermore introduce a heuristic to gain
improvements in terms of running time.
In conclusion we evaluate the results of our algorithm in comparison to solving the
MILP on real power grid instances, that have been modified to represent cacti. We
identify the cause for the exponential running time and also assess the solution
deviation from optimality of the heuristic.

Deutsche Zusammenfassung

Bei dem Maximum Transmission Switching Flow Problem (MTSF) handelt es
sich um ein Optimierungsproblem, das den Leistungsfluss innerhalb eines Stromnetzes
maximiert. Um letzteres zu erzielen, gilt es eine Menge von Stromlinien zu ermitteln,
die dabei aus dem Stromnetz entfernt werden. Es handelt sich hierbei um ein NP-
vollständiges Problem, sogar wenn die Topologie eingeschränkt wird, wie etwa auf
die Klasse der Kaktusgraphen. Demnach beruht der klassische Ansatz auf dem Lösen
der Formulierung jenes Problems als Mixed Integer Linear Program (MILP).

In dieser Arbeit wird ein Algorithmus vorgestellt, der MTSF auf unbeschränkten
Netzen in Form von Kaktusgraphen löst und dabei eine optimale Lösung produziert.
Zur Hilfe gezogen wird dabei der Block-Cut-tree des Graphen, dessen Struktur zu
Nutzen gemacht wird. Im Zuge dessen werde partielle Leistungsflüsse berechnet und
weiterhin zu einer optimalen Gesamtlösung kombiniert werden. Desweiteren wird
eine Heuristik vorgestellt, die eine Beschleunigung der Laufzeit des Algorithmus zur
Folge hat.
Um die Qualität des Algorithmus bemessen zu können, dient das Lösen des MILP
als Referenz. Dabei werden eine Reihe von Testinstanzen durchlaufen, die durch
Modifizierung realer Stromnetzinstanzen zu Kaktusgraphen hervorgingen. Im An-
schluss wird die Ursache für den exponentiellen Aufwand ermittelt und außerdem die
Lösungsqualität der Heuristik bewertet.

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Graph Theory . 3
2.2 Mixed Integer Linear Programming . 6

3 Related Work 9

4 Model 11
4.1 Alternating Current . 11
4.2 Power Grid Models . 12

4.2.1 DC Model . 13
4.2.2 Graph Representation . 15

4.3 Model Formulation . 15
4.4 The Maximum Transmission Switching Problem 16

5 Algorithm 19
5.1 Exponential Time Algorithm for MTSF on Cacti 19
5.2 Runtime Improvements . 27

5.2.1 Label Buckets . 27
5.3 Implementation . 28

6 Evaluation 29

7 Conclusion 35
7.1 Future Work . 36

Bibliography 37

vii

1. Introduction

Fossil fuels and nuclear energy used to be the main providers globally for electricity in
power grids and increasingly disappear as an option since the energy revolution. The
demand for power, on the other hand, is still on the rise with renewable energies expected
to fill this gap. Furthermore, the trend is towards the autonomous energy generation at
the household level. These developments lead to a congestion of the power grid due to its
topology remaining the same and an indefinite amount of concurrent energy generators.

A method to alleviate congestion is to temporarily remove transmission lines from the
power grid, which is referred to as switching. This, on the other hand, is also a means of
increasing the power flow and from this, the Maximum Transmission Switching Flow
Problem (MTSF) arises. Its goal is to find the set of lines to be switched in order to
maximize the generation of all energy producers. As it is an intractable problem, to date,
no algorithm exists to solve MTSF in an efficient manner and so approximative solutions
generated in a reasonable time are of use.

In this thesis, we are going to consider MTSF for cacti, a restricted class of graphs
representing power grids. An approximation algorithm was already formulated by Grastien
et al. [GRW+18, p. 8], on which this thesis is based on. Their algorithm takes an unbounded
power grid as input, which means that energy consumers do not have a lower demand. Here
we will also use this type of model as our basis. But in contrast, we present an algorithm
that solves MTSF to optimality with exponential complexity and subsequently, formulate
a heuristic to gain improvements in terms of running time.

The thesis is structured as follows: In Chapter 2 we cover the foundations in graph theory
and mixed integer linear programming, whereas Chapter 3 covers the related work in this
field. In Chapter 4 we describe the basics of alternating current and its simplified version,
as well as the flow model and the problem description for MTSF. Subsequently in Chapter 5
we present the algorithm and evaluate it on several test cases in Chapter 6.

1

2. Preliminaries

In this chapter, we will introduce formal basics that will be used throughout this work.
As the topic of the thesis is all about modeling power grids, it is therefore necessary to
mention the basic constructs and rules that are needed to achieve this goal. The main
topics of interest are Graph Theory and Mixed Integer Linear Programming, starting out
with the former.

2.1 Graph Theory
The most important part of graph theory forms the graph itself. It resembles a set of
objects and connections, that exist between them. Those are denoted as vertices and edges.

Definition 2.1 (Simple Graph [Rah17, p. 11]). A simple graph G = (V,E) is a 2-tuple,
that consists of a finite set of vertices V and of a finite set of edges E. An edge e ∈ E is a
pair of vertices u and v, that connects both. u and v are then said to be adjacent and e is
said to be incident to u and v. The number of incident edges of a vertex is referred to as
its degree.

We denote the set of vertices of G by V (G) and the set of edges by E(G). Furthermore
one can make the distinction, whether or not the direction of the edge is of importance. A
directed edge is associated with a direction and is denoted by (u, v), where u is the initial
and v the terminal vertex. An undirected edge is an edge directed in both ways and is
denoted by {u, v}. This implies that v can be reached from u and u can be reached from v.
In case of a directed edge, only the former is true.
If the edges of G are directed, then G is a directed graph, otherwise it is undirected.
Note that an undirected edge can be replaced by two directed edges (u, v) and (v, u) and
therefore, an undirected graph can always be transformed into a directed one. To draw a
simple graph, each vertex is represented by a small circle and an undirected edge by a line
connecting both of its vertices. In case of directed edges, we additionally draw an arrow at
the end of the line, where it meets the terminal vertex, pointing towards it. If no prefix is
given, the graphs considered in this thesis will be undirected.
Sometimes, a subset of edges of a graph is currently not of interest. Therefore, we introduce
a compact notation. Let G = (V,E) be a graph and S ⊆ E. Then we denote

G− S := (V,E \ S)

Next, the concept of reaching or making steps between vertices can be extended to result in
a path: an arrangement of vertices, one has to traverse to get to one vertex from another.

3

2. Preliminaries

Definition 2.2 (Path, Cycle [Rah17, pp. 31-32]). A path p = (v1, e1, . . . , ek−1, vk) in a
given graph G = (V,E) is an alternating sequence of vertices vi and edges ei of G, such
that:

∀ei, vi ∈ p : ei = (vi, vi+1) 1 ≤ i < k

Its length is defined by the number of its edges and is equal to k− 1. Furthermore, a simple
path can contain any vertex, except for the first and last vertex, at most once. If v1 = vk,
then p is called a simple cycle and its length is equal to k.

In the following, only simple cycles are considered. For reasons of simplification the term
simple is omitted and they are just referred to as cycles.

Definition 2.3 (Connected [Rah17, p. 32]). A graph is considered connected, if for every
pair of vertices v1 and v2, there exists a simple path from v1 to v2. If a graph is not
connected, it is called disconnected.

It is obvious, that for an undirected graph, a path from v2 to v1 always exists: it contains
the same vertices, but in reverse order.

Definition 2.4 (Biconnected [Rah17, p. 39]). A graph is biconnected, if the resulting
graph after removal of any vertex is still connected. A subgraph is denoted by maximal
biconnected, if it contains as many vertices as possible, such that it is still biconnected. A
maximal biconnected subgraph is called a biconnected component or block.

By removing a vertex, it is meant to delete the vertex from the set of vertices and also
those edges incident to that vertex. As there can be several blocks in a graph, the vertices
shared by more than one block are said to be the cut vertices. This can also be seen in
Figure 2.1b.
Next, we will introduce a class of graphs with an interesting structure. This class is of
special interest, as it is used to model a power grid later on.

Definition 2.5 (Cactus graph [Wes01, p. 160]). A cactus graph G = (V,E) is a connected
graph, in which every block is either an edge or a cycle.

As the name implies, it resembles a cactus with leaves and spikes, when its drawn planar,
that is no two edges are crossing. See Figure 2.1a for an example. Another important class
of graphs for this work are trees. They are easy to traverse, that is to visit every of its
vertex, and they will be later on used to store data, that is used during traversal.

Definition 2.6 (Tree [Rah17, p. 47]). A connected graph G = (V,E) that does not contain
cycles is called a tree. In a tree, there exists a path from any vertex u to any other vertex
v with u, v ∈ V . Vertices with a degree of 1 are called leaves.

Trees in nature are not just placed arbitrarily, they all grow out of the ground, their root.
One can apply this concept to graph theoretical trees by setting the root as one of its
vertices. It is used for traversal as the starting point, so the order, in which vertices are
visited, remains the same.

Definition 2.7 (Rooted tree [Rah17, p. 50]). A tree R = (V,E, vR) with a vertex vR ∈ V ,
declared as the root of the tree, is called a rooted tree. The vertices, that are not the
root or a leaf, are called inner vertices.

When planar drawing a rooted tree, it is common to draw it bottom up unlike real world
trees, e.g. the root is placed at the top and the leaves are placed at the bottom. An
example for a tree is given in Figure 2.2.

4

2.1. Graph Theory

18

1

7

6

5
1�

911

8 13

12

14

15

16

17

2

3

4

(a) A cactus-graph with a cycle (1, 5, 6, 7) highlighted in and a biconnected component (1, 2, 3, 4)
highlighted in .

9

8

2

�

3

4 �3

�1�� 9g

�11� 9g

�9� 8g

�8� 2g �1� 2� 3� 4g

�3� 18g

�1� 5� 6� 7g

�4� 13g �13� 14g �14� 15� 16� 17g

�13� 12g

�4

(b) The corresponding Block-Cut tree with vertices in representing blocks and vertices in
representing cut vertices.

Figure 2.1

With a given rooted tree, one would like to perform actions on its vertices, that are not
independent of each other. Therefore, an order in which vertices are processed has to be
declared at first. This is referred to as tree traversal, one of them being reverse level-order :

Algorithm 2.1: Reverse Level-Order Traversal
Input: Rooted tree R = (V,E, vR), Stack S, Queue Q
Output: Queue Q of vertices ∈ V (R)

1 Q.enqueue(vR)
2 while Q not empty do
3 current ← Q.dequeue
4 S.push(current)
5 forall v ∈ current.children do
6 Q.enqueue(v)

7 while S not empty do
8 Q.enqueue(S.pop())
9 return Q

The set children of a vertex v ∈ V (R) stores all of its j succeeding vertices wi, i ∈
{1, . . . , j}, which, in this context, are all vertices adjacent to v. After they were inserted,

5

2. Preliminaries

Figure 2.2: A rooted-tree with root , inner vertices and leaves .

we remove the adjacency of all pairs v and wi. Note that this set is only formed during
each iteration of the while-loop in Line 2 and not as an initialization routine. And since
the iteration starts at the root vertex vR, we get the desired result.
S and Q are data structures and represent a stack and queue respectively. They allow
for elements to be stored and retrieved again. The methods push and pop are used to
place/retrieve an element at/from the top of the stack. Similarly the methods enqueue
and dequeue are used to place/retrieve an element at/from the end/beginning of the
queue. This can easily be comprehended if one imagines a stack of papers on a desk or a
queue of people at a market.

A cactus graph can be transformed into a special tree, without loss of information. That
is, the original graph could be reconstructed from that tree. Later in this thesis, we want
to examine individual blocks and their contribution to power. This special tree used is the
Block-Cut-tree.

Definition 2.8 (Block-Cut-tree [Wes01, p. 156]). The set of blocks of G is denoted by B
and the set of cut vertices as C. A Block-Cut-tree BC = (B,C), shortened BC-tree, of
G is a tree of which a vertex v either represents a block b ∈ B or a cut vertex c ∈ C. There
exists an edge between b and c, if c ∈ VB (b contains v).

This implies that an edge does not exist between two blocks or two cut vertices. However,
a cut vertex can be adjacent to several blocks, since it can separate more than one block.
An example for a Block-Cut tree can be seen in Figure 2.1b. For the sake of brevity, blocks
are only labeled with their set of vertices.

2.2 Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) [NW99] is the process of maximizing an object
function, that has to be linear. It is used to solve optimization problems, where the
best solution amongst all possible/feasible solutions is to be determined and is therefore
categorized under linear optimization.
The first step is to create the actual Mixed Integer Linear Program. It consists of the object
function z, that has to satisfy certain constraints. The program is written as

max{z := ~c>~x+ ~h>~y} (2.1)

with

~x =

x1
...
xn

 ∈ Zn+, ~y =

y1
...
yp

 ∈ Rp+, ~c =

c1
...
cn

 ∈ Rn, ~h =

h1
...
hp

 ∈ Rp

6

2.2. Mixed Integer Linear Programming

~x and ~y are the unknown variables, that are to be found. The term integer derives from
the vector ~x being a member of the integer vector space. And the additional term mixed
arises, because ~y is from a different vector space. ~c and ~h are coefficients of the unknown
variables and can be seen as costs.
The constraints, z has to suffice, are of form

A~x+ G~y ≤ ~b (2.2)

with

A =

a11 . . . a1n
...

am1 . . . amn

 ∈ Rm×n, G =

 g11 . . . g1p
...

gm1 . . . gmp

 ∈ Rm×p, ~b =

 b1...
bm

 ∈ Rm

The matrices A and G denote the coefficients for the integer and real variables respectively.
~b is simply called the right-hand side.
Further, the feasible region S is defined as the set of tuples, that satisfy Equation (2.2).
More specific

S = {~x ∈ Zn+, ~y ∈ Rn+ : A~x+ G~y ≤ b}

An element of S is then considered as feasible solution. Amongst those, the optimal solution
is to be found and it is defined as

(~x0, ~y0) ∈ S : ~c> ~x0 + ~h> ~y0 ≥ ~c>~x+ ~h>~y ∀(~x, ~y) ∈ S

~c> ~x0 + ~h> ~y0 is then denoted as the optimal value of the solution.

The drawback of MILP is that it is an NP-complete problem and to date, there are no
algorithms that produce optimal solutions with polynomial complexity. However the
methods and heuristics used by modern MILP solvers produce sufficient solutions in a
reasonable amount of time.

7

3. Related Work

The situation of congested resources in a network can be found in several domains, one of
them being road networks with car traffic. Dietrich Braess has examined this very issue and
formulated the eponymous Braess’ Paradox [Bra68]. It states that given a fixed number of
users in a congested road network, adding a road to that network can cause a redistribution
of traffic flow, which can lead to an overall increase of traveling times for each participant.
This counterintuitive behavior occurs because ”users attempt to minimize their own travel
time while ignoring the effect of their decisions on other travelers” [PP97, p. 2]. It implies
in turn that removing a road from the network can improve its overall traffic flow.

Witthaut and Timme [WT12, p. 3] have shown, that the paradox also appears in oscillator
networks, which can be used to model dynamic power grids on a coarse scale. An example
for this kind of network is a network of rotating machines e.g. water turbines. They
have shown that in these networks, a phase-locked state between energy producers and
consumers can potentially be decreased or even destroyed, when adding a new link. Here
phase-locked means that the phase difference for any two machines is fixed and such a
state is considered stable. Otherwise, transmission of electrical power is inhibited and can
even lead to a ”global power outage” [WT12, p. 10].
Another manifestation can even be seen in the field of quantum physics as Pala et al.
[PBL+12] have shown, considering semiconductors on a mesoscopic level with a magnitude
of 10−6 meters. They examined a network of two conducting paths connecting electron
source and drain. Upon adding a third path to that network, they intuitively expected
an increased total current. But instead they observed a decrease in current, even when
increasing its width.

As indicated in the first paragraph, Braess’ paradox can be exploited and put to use. This
can be seen in the context of power grids, where transmission lines represent connections
in order for electrical power to be transmitted. A removal of such a line is referred to as
switching, which at first has been a practice to reduce line overloads [KM80]. But further
studies have shown that it also brings along other positive effects.

Fisher et al. [FOF08] discovered operational costs, i.e. costs of operating power generators,
to be decreased by 25% at most when performing switching on the 118-bus IEEE test
case, a simple approximation of the American electric power system. They declared the
problem of finding a subset of transmission lines to be switched, such that overall generator
costs are minimized, as the Optimal Transmission Switching Problem (OTS). Its
formulation is based on the direct current (DC) model, which is a linearization of the

9

3. Related Work

alternating current (AC) model. The former model is a result of the latter model after
performing some simplifications which are mentioned later on in this thesis. Although the
DC model is not as accurate for power grids as the AC model, it still yields acceptable
results and can be solved in a reasonable time via techniques of linear optimization [OCS04,
p. 2].
Lehmann et al. [LGH14] have proven OTS to be NP-complete. To date, there does not exist
an algorithm with a polynomial running time to solve any problem that is NP-complete.
Therefore in case of an optimization problem, simpler methods with a running time less
than exhaustive search that still produce solutions near the optimum are required, such as
heuristics or approximation algorithms.
Barrows et al.[BB11] further analyzed OTS on the RTS-96 network, which consists of three
loosely-connected 24-bus power systems. They noticed increased operational savings when
switching a small number of lines during peak periods of the grid, that is, periods of highest
utilization. Their results also hint that effects of OTS are relatively localized and that
the network could be decomposed into smaller networks, on which the switching is then
applied.
Since large-scale networks add many variables to the OTS problem, Barrows et al.[BBB13]
made an approach to formulate a heuristic that only considers specific candidates for
switching, in order to reduce the overall search space. Their idea was to pick possible
switching candidates during a pre-screening according to their Available Branch Capacity
(ABC), a measure of spare capacity for each transmission line. They limited the set of
switchable lines to those that cause an increase of ABC on congested lines, that is, lines
with no spare capacity. From that set, they switched a fixed size of lines causing the search
space to be reduced even further. The heuristic was then also validated on the RTS-96
network for a load case of 24 hours. During an hour of this case, they were able to compute
optimal cost saving within 3.6 minutes, whereas non-screened OTS took 4.3 hours.

Besides savings in operational costs, another observed benefit of switching is the possibility
to increase the power flow within the power grid. This is due to power flow ”depending
on potentials at the end of nodes of transmission lines” and this ”creates additional
(cyclic) constraints on the flow that can be eliminated by switching” [LGH15, p. 2]. As
a result, Lehmann et al. [LGH15] formulated the Maximum Power Flow Problem
and the Maximum Transmission Switching Flow. The objective of the former is to
maximize the power flow accumulated over every generator in the power grid, whereas the
latter denotes the maximum power flow when allowing transmission lines to be switched.
Furthermore they have proven MTSF to be NP-complete on planar graphs, i.e. graphs
that can be embedded in the plane without edge crossings, and on cactus graphs.
Grastien et al. [GRW+18] showed that MTSF is also NP-complete, even if the network only
contains one generator and one consumer. As a result they formulated an algorithm for
MTSF on such a network, that is further restricted. They also have given an approximation
algorithm for MTSF on cacti with a factor of 2, meaning the quality of the computed
solution is guaranteed to be at least as good as 50% of the optimal solution. Grastien et al.
achieve this by switching the line with the smallest capacity in every cycle of the network.
The overall running time of their algorithm is a function linear in the total number of
nodes of the power grid.

10

4. Model

In this chapter, we introduce the utilized power flow models, denoted by AC and DC model,
where the latter is the linearization of the former. Afterwards we present the formulation
of the Maximum Transmission Switching Flow Problem, which is the main focus of this
thesis.

4.1 Alternating Current
Alternating Current (AC) is nowadays the common form to provide electricity across a
power grid and before modeling a power grid, it is necessary to enumerate the fundamentals
to do so. The term alternating originates from the fact that the voltage has a periodic,
sinusoid waveform.

Definition 4.1 (Electric circuit [Bau13, p. 46]). An electric circuit consists of a power
source and a load. They are connected through conductors which allow for electrical power
to flow from source to load. A power source delivers and a load absorbs electric power.

Definition 4.2 (AC voltage [Bau13, p. 279]). The electrical voltage u(t) of an AC circuit
is described by

u(t) = U0 · sin(ωt+ φ),

where

t ∈ R≥0 represents a point in time,
ω := 2π · f denotes the angular frequency with frequency f in Hertz [Hz],
φ is the phase angle in radians and
U0 is the amplitude of the waveform and represents the maximum voltage.

The phase angle indicates the shift of voltage relative to the base signal sin(ωt). Applying
an AC voltage to an electrical component causes an electrical alternating current i, which
is shifted to the voltage by a varying amount, depending on which component is present.
These components are either a resistor, capacitor or inductor.

Definition 4.3 (Impedance [Sch18, p. 76-77]). Electrical impedance Z of an AC circuit is
the ratio between voltage u and current i. It is given by the complex notation

Z = u
i = R+ j ·X,

11

4. Model

+U0

0

−U0

U

t

φ

2π 3πππ
2

3π
2

5π
2

Figure 4.1: AC voltage sin(t) with f = 1
2π , ω = 1 and amplitude U0. sin(t+ π

2) in , it
is the same signal, but shifted by a phase angle φ of π2 .

where R is the electrical ohmic resistance and X is the electrical reactance, the ratio of
voltage and current for a given AC component.

Definition 4.4 (Admittance [Sch18, p. 76]). Electrical admittance is defined as the
reciprocal of the impedance, that is

Y = 1
Z = R

R2 +X2 + j · −X
R2 +X2 = G+ j ·B,

where R is the electrical resistance and X is the electrical reactance.

Admittance describes the ease at which an AC circuit allows a flow of current in contrast
to impedance. G and B are referred to as conductance and susceptance. Both are of
importance when it comes to modeling power grids, as they are used to characterize
transmission lines. In this context they are referred to as line parameters.

Definition 4.5 (AC Power [Sch18, pp. 155-156]). The electrical power S in an AC circuit
is given by the complex notation

S = P + j ·Q

P is the real power, Q the reactive power and j is the imaginary unit. The apparent power
refers to the absolute value of the power |S|.

4.2 Power Grid Models
Now we will take a closer look at power grids and its component units. As a reference, I will
be using the IEEE 14-bus test case, Figure 4.2, provided by the University of Washington
[Uni99].
The power grid consists of the following:

• branches, which represent the transmission lines

• buses, which connect multiple branches, generators and/or loads

– generator bus: a bus, that is connected to a power supplier, a generator

– load bus: a bus with a demand for power

• transformers, which transform voltage into a higher or lower one

12

4.2. Power Grid Models

Figure 4.2: Diagram of the IEEE 14-bus test case [Uni93]. The buses are the numbered,
horizontal bars and the lines between them are the branches. Note that there
can be more than one branch connecting two buses. The generators are the
buses labeled with a G and C respectively, the latter are condensers. And loads
are the buses, that have an outward pointing arrow attached to them.

4.2.1 DC Model
For an AC model, the set of equations to be solved, in order to perform the power flow study,
are of non-linear form. They are hard to solve and also require many parameters. Therefore,
we introduce simplifications to the AC model. The outcome is denoted by the DC model.
The set of equations it yields are linear and thereby solvable via mixed-integer-programs,
which in turn can be computed by the method described in Section 2.2.

To transform the AC model into the DC model, four simplifications [ZMST11] are made:
• only the real power P = Re(S) is considered
• branches can be considered lossless, so the transmission line parameters branch
resistances rs and charging capacitances bc are negligible; the series reactance is
denoted by xs

ys = 1
rs + j · xs

≈ 1
j · xs

rs, bc ≈ 0

• the differences of voltage angles Θ across branches are small enough to satisfy

sin(Θf −Θt −Θshift) ≈ Θf −Θt −Θshift

where Θf and Θt is the voltage angle of the from and to bus of a branch respectively
• all bus voltage magnitudes are close to 1 per-unit

vi ≈ ejΘi

In the per-unit system (p.u.) [GSO12, pp.108-109], power system quantities such as voltage,
current, power and impedance are given by per-unit quantities. A per-unit quantity is
given by

per-unit quantiy = actual quantity
base value of quantity

13

4. Model

where actual quantity is the value of the quantity in the actual units. The base value has
the same units, making the per-unit quantity dimensionless. It is sufficient to pick two base
values arbitrarily, which are usually the base voltage Vbase and base power Sbase. From
there, one can derive the other base values as follows

Ibase = Sbase
Vbase

,

Zbase = Vbase
Ibase

.

Considering a network of nb buses, nl branches and ng generators, the power flows at the
from ends of a branch are now given by

~Pf(~Θ) = Bf · ~Θ + ~Pf,shift. (4.1)

~Θ denotes the nb × 1 vector of voltage angles of each bus. ~Pf,shift is a vector of dimension
nl × 1 and its ith element is defined as −Θi

shift · bi with bi = 1
xi

s·τi
and τi being the tap ratio,

the ratio of turns of primary and secondary coil in a transformer. Then, each bi is store in
a nl × 1 vector ~Bff .
The matrix Bf is defined as Bf = [~Bff] · (Cf − Ct), where [~Bff] denotes the quadratic
matrix, whose (i, i)th element is bi and 0 otherwise. Connection matrices are given by Cf

and Ct, where the (i, j)th element of Cf and the (i, k)th element of Ct are 1, if branch i
connects from bus j to bus k and 0 otherwise [ZMST11, pp. 16–22]. Due to the assumption
of lossless branches, the branch flows at the to ends are given by

~Pt = − ~Pf

and thereby, the direction only defines the sign.

Any electrical circuit obeys Kirchhoff’s circuit laws. The variation for the DC model
are stated in the following two definitions:

Definition 4.6 (Kirchhoff’s current law). Kirchhoff’s current law, KCL in short, states
that at any junction in an electric circuit, the sum of all incoming currents is equal to zero.
A junction refers to a point in which multiple conductors merge. Let n be the number of
incident conductors to a given junction and Ij the electric current flowing on conductor of
index j. The KCL can then be expressed as∑

j

Ij = 0 j ∈ {1, . . . , n}

Definition 4.7 (Kirchhoff’s voltage law). Kirchhoff’s voltage law, KVL in short, states
that the sum of all voltages in any loop of an electric circuit is equal to zero. A loop is a
cycle in an electric circuit. Let m be the number of voltages contained in a given loop and
Uj one of these voltages. The KVL can then be expressed as∑

j

Uj = 0 j ∈ {1, . . . ,m}

These laws have to be considered in this work because a power grid in form of a cactus
graph can exhibit loops and multiple transmission lines can merge into each other. For an
illustration of both laws, see Figure 4.3.

14

4.3. Model Formulation

R1

R2 R3

Bus 2

Bus 1

R4

I1

I4

I2 I3

I2 I3

(a) Kirchhoff’s current law: the sum of cur-
rents at a junction is equal to 0. For Bus
1, it has to hold: I1 = I2 + I3 and for Bus
2: I2 + I3 = I4.

R1

R2 R3

Bus 2

Bus 1

R4

Us

U1

U2 U3

U4

loop1 loop2

loop3

(b) Kirchhoff’s voltage law: the sum of volt-
ages in a closed loop is equal to 0. All pos-
sible loops are drawn into the circuit. For
loop1, it has to hold: U1 + U2 + U4 = Us

and for loop2: U3 = U2.

Figure 4.3: Kirchhoff’s circuit laws illustrated.

4.2.2 Graph Representation

The representation of a power grid is straightforward, with the simplification that there
exists only one branch between two buses.
Buses are represented by vertices and branches by edges. Generator and load buses induce
the set of generators and loads. Note that a vertex can be generator and load simultaneously
in this context. The graph representation of the 14-bus power grid, Figure 4.2, can be seen
in Figure 4.4.

2

1

3

6
8

45

12

13

11

14

1�
9

7

Figure 4.4: 14-bus power grid as a graph. vertices are loads and are generators. Buses
2,3 and 6 are both generators and loads, whereas bus 7 is a transformer and
none of the prior.

4.3 Model Formulation
Let G = (V,E) be a graph with vertices V and edges E. The subset VG ⊆ V represents
the generators and the subset VC ⊆ V the producers. Unlike Figure 4.4, we set producers
to not be consumers also and vice versa, implying VG ∩ VC = ∅.

15

4. Model

Moreover, transmission lines cannot transfer an infinite amount of power, as its conductors
have a thermal limit. Surpassing those limits would lead to instability of the line, up to
even bursting. To model this constraint, a capacity function cap : E → R≥0 will be used.
We then also take into consideration the transmission line parameters electical reactance
x : E → R≥0 and its reciprocal, the susceptance b : E → R≥0 [GRW+18, pp. 3–4].

With these parameters, the power grid can be described by the 5-tupleN = (G,VG, VC , cap, b),
and N is now denoted as the network. Furthermore, for every generator and consumer in
N , we set it to be a degree 1 vertex. This means we replace the original vertex by an edge
with the generator/consumer located at the end of it. The capacity of it is set to be the
maximum generation/demand.
The next step is to look at how the transmission of electrical power can be modeled. For
this purpose, the concept of a flow is introduced. A flow is a function f that assigns a real
number to every edge in the network: f : E → R. One can think of flow as the transport
of units from a source to a sink like in a water supply system.
The net flow of a vertex u ∈ V (G), that is, the in- and outgoing flow of this vertex, is
given by fnet :=

∑
{u,v}∈E(G) f(u, v). For f to be considered a flow, it has to satisfy four

constraints:

f(u, v) = −f(v, u) ∀(u, v) ∈ E(G), (4.2)
fnet(u) = 0 ∀u ∈ V \ (VG ∪ VC), (4.3)

−∞ ≤ fnet(u) ≤ 0 ∀u ∈ VC , (4.4)
0 ≤ fnet(u) ≤ ∞ ∀u ∈ VG. (4.5)

Equation (4.2), or the skew-symmetry property, states that the direction of a flow is dictated
by its sign. Equation (4.3) states that every unit flowing into a vertex must also flow
out of it, except for generators and consumers. For the latter two, Equation (4.4) and
Equation (4.5) applies, where the former states that consumers must receive units in a
range of zero to negative infinity. The negative sign here implies an incoming flow. And
similarly, generators produce units in a range of zero to infinity. This is the same as the
previous constraint, but multiplied by a factor of −1. And since the range of production and
consumption of flow respectively, begins at zero, we refer to N as an unbounded network.
Furthermore a flow is considered to be feasible, if it does not surpass the thermal limits of
a line, that is, it holds

|f(u, v)| ≤ cap(u, v) ∀(u, v) ∈ E. (4.6)

For a feasible flow, we can then define its value F (N , f) =
∑
u∈VG

fnet(u) as the accumulated
generation for each generator. A feasible flow f on N maximizing F (N , f) is called
Maximum Flow (MF) and its value is denoted by OPTMF(N) = maxF (N , f).

4.4 The Maximum Transmission Switching Problem
A feasible flow does not take into account physical constraints. These are set by Kirchhoff’s
voltage law and have to be included into the previous definition, whereas Kirchhoff’s current
law is already covered by Equation (4.3).

Electrical voltage is defined as the difference of an electrical potential of two points u
and v. The electrical potential for an AC circuit is given by the phase angle Θ: V → R.
Phase angles are bounded by a minimum and maximum value Θmin and Θmax respectively.
Therefore, for a network it has to hold

Θmin(u) ≤ Θ(u) ≤ Θmax(u) ∀u ∈ V (G), (4.7)
b(u, v) · (Θ(u)−Θ(v)) = f(u, v) ∀(u, v) ∈ E(G). (4.8)

16

4.4. The Maximum Transmission Switching Problem

Equation (4.8) represents Equation (4.1) of the DC approximation, but here we set ~Θshift
to be 0.
For an arbitrary vertex, the phase angle is set to 0 and that vertex is then referred to
as the slack vertex. All other phase angles are then determined by using the slack as a
reference. A flow that obeys Equation (4.7) and Equation (4.8) is considered electrically
feasible. An electrically feasible flow f maximizing F (N , f) is called a Maximum Power
Flow (MPF) and is denoted by OPTMPF(N) = maxF (N , f).

Transmission lines of N can be either active or inactive, or to put it in technical terms:
switched on or switched off. This is represented by the function z : E(G)→ {0, 1}:

z(u, v) =
{

1, if the line is switched on and
0, otherwise.

The transmission lines in switched off state form the set of switched edges or switching
S := {e ∈ E(G) | z(e) = 0} of the network N , thereby inducing a second network N − S.
We have to consider these edges within the KVL, therefore Equations (4.6) and (4.8) now
become Equations (4.9) and (4.10)

|f(u, v)| ≤ z(u, v) · cap(u, v) ∀(u, v) ∈ E(G) (4.9)
b(u, v) · z(u, v) · (Θ(u)−Θ(v)) = f(u, v) ∀(u, v) ∈ E(G) (4.10)

With this, another type of flow can now be introduced: the Maximum Transmission
Switching Flow (MTSF). Its task is to maximize a power flow while allowing edges to
be switched off. This can be capsuled in a more precise formulation:

Maximum Transmission Switching Flow Problem
Instance: A network N = (G,VG, VC , cap, b).
Objective: Find a switching S ⊆ E(G), such that OPTMPF(N − S) is maximal.

Its value is given by OPTMTSF(N) := maxS⊆E(G) OPTMPF(N −S). Before discussing the
benefits of maximum transmission switching, let us first emphasize the difference between
a maximum flow and a maximum power flow by taking a look a the following network:

g c

v

/x /x

/4x
− −

−

x x

4x

OPTMF = 5x

(a)
g c

v

/x /x

/4x
0 2x

x

x x

2x

OPTMPF = 3x

(b)
g c

v

/x /x

/4x
0

0 0

4x

OPTMTSF = 4x

0

4x

(c)

Figure 4.5: A network N for which the MF, MPF and MTSF have been computed
[GRW+18, p. 3]. It consists of three vertices of which g and c are generator and
consumer respectively. The transmission lines have susceptances of 1 and are
labeled with capacities , vertices are labeled with phase angles . Successive
differences of parameters are highlighted in .

In Figure 4.5a the maximum flow is computed and it yields a value of 5x, whereas in
Figure 4.5b the maximum power flow yields a smaller value of 3x due to the KVL. Line
{g, c} cannot be congested because the voltage differences for {g, v} and {v, c} would imply

17

4. Model

a flow of 2x and therefore interfere with the capacity constraint (see Equation (4.6)).
Now if we allow for lines to be switched off, we can achieve a greater result as Figure 4.5c
shows. By switching line {v, c}, the value now increases to 4x. This is due to N not
containing a cycle anymore and the voltage angles now being less constrained. Note the
phase angle of v now is 0 and not x for example, because otherwise we would violate the
flow conservation constraint (see Equation (4.3)), as v would have to pass on a flow of x,
which is not possible due to {v, c} being switched off. Also note that MTSF(N − {v, g})
does not reach the upper limit of the maximum flow.
This example demonstrates that allowing for transmission lines to be switched off can
increase the overall maximum power flow. However, this is not always the case as we can
observe in the following example:

g c

v1

/x /x

0 2x

x

x x

OPTMPF(N) = 2x

v2

x
/xx /xx

(a)

g c

v1

/x /x

0 2x

0 0

OPTMPF(N − {g, v1}) = x

v2

x
/xx /xx

2x

(b)

Figure 4.6: A network N that consists of a cycle of symmetric paths, susceptances are
set to be 1 [GRW+18, p. 23]. It consists of one generator g, one consumer c
and vertices v1, v2 in between, for which holds: OPTMPF(N − {g, v1}) = x =
1
2OPTMPF(N).

The edges of the network in Figure 4.6a all have equal parameters and there are two
edge-disjoint paths from g to c, both of which have the same number of edges. Therefore
they are referred to as symmetric paths. Upon switching an edge in such a network, the
value of the resulting MPF decreases. Grastien et al. [GRW+18, p. 9] showed that an
electrically feasible flow exists when switching the edge with the smallest capacity in a
cactus network N , and that its value is equal to 1

2OPTMF(N).

18

5. Algorithm

In this chapter, an algorithm based on the observations of the previous chapters, as well as
the idea behind its procedures, is presented. We then mention its drawbacks and formulate
a way to improve it in terms of running time.

5.1 Exponential Time Algorithm for MTSF on Cacti
The algorithm takes as input the network N = (G,VG, VC , cap, b) and operates on the
BC-tree BC = (B,C) of graph G(N) = (V,E). Since we set generators and consumers to
be vertices of degree 1, we can make two observations:

1. Each generator/consumer resides in its own block:
∀vi, vj ∈ (VG ∪ VC), vi 6= vj , βm, βn ∈ B(BC) : vi ∈ V (βm), vj ∈ V (βn) =⇒ βm 6= βn

2. A block that contains a generator/consumer is a leaf of BC.

With Observation 1 and because a network contains at least one generator and one consumer,
both of which are set to be degree 1 vertices, a block with degree greater or equal to 2
always exists and can be set as the root. This step is visualized in Figure 5.1:

v3 v4

c1 v2

v1

g

c2

(a) Original network
with generator g
and consumers c1
and c2. Cut ver-
tices are colored in
.

v3 v4

v6

v2

v1

v5

c2

v7

g

c1

/∞

/∞

/∞

(b) Transformation
into degree 1
vertices.

{g, v5}{c1, v6}

{c2, v7}{v5, v6, v1, v2}

{v3, v1, v4, v7}

v5v6

v1 v7

Level

5

4

3

2

1

(c) Reverse level-order traversal of BC
which always starts out at the low-
est level. Squares represent blocks,
leaves are and the root is .

Figure 5.1

19

5. Algorithm

Once a root is selected, we refer to BC as the rooted BC-tree R. The next step is to define
the order in which the vertices of R are visited because we want to collect the contributions
of power flow from every block. We also want to visit the leaves first, as generators and
consumers only reside in these blocks. Therefore we traverse R in reverse level-order (see
Algorithm 2.1) and an illustration can be seen in Figure 5.1c.
Furthermore, R holds two vertex based functions parent : (B ∪ C) → (B ∪ C) and
children : (B ∪ C) → P(B ∪ C). The former represents a pointer to the parent vertex
and the latter a pointer to a set of child vertices, respectively.

Let β := (V,E, Vcv) be a block with V ⊆ V (G) being the set of its vertices, E ⊆ E(G)
being the set of its edges and Vcv := {c | c ∈ C and c is adjacent to β} being the cut
vertices, that belong to this block. To compute an MTSF of N , we have to consider all
switchings in each block. For each switching we then compute an MPF and collect the
power generation in the subtree Gsub of that block, the power flow into the parent cut
vertex, which we refer to as the port, as well as the currently considered switched edge and
store them together in a 3-tuple that we denote as a label l:

l := (gen, f, S)
gen total generation in the subtree Gsub, of which the current considered block/

cut vertex is the root,
f total flow into the port,
S set of edges that are switched in Gsub.

Note that a label stores a set of switched edges and when no edge is switched, we set S = ∅.
This is because later on, we also combine labels and then we can simply form the set union
of their switched edges. With this approach we do not have to store two separate kinds of
labels. Furthermore, let L be the finite set of all possible labels. Then we can define a
function L : V → P(L), that stores a set of labels for a given vertex of R. This means, we
store a set of labels at blocks and cut vertices.

20

5.1. Exponential Time Algorithm for MTSF on Cacti

The exponential algorithm is listed in Algorithm 5.1 and an illustration of its execution is
given in Figure 5.2. It starts by creating the rooted BC-tree R of the network N and then
invokes the ComputeMTSF procedure.

Algorithm 5.1: Exponential Algorithm
Input: Network N = (G,VG, VC , cap, b)
Output: Tuple (gen,S), where gen is the accumulated generation of N induced by

the set of switched edges S, such that: gen = MPF(N − S) =
MTSF(N).

1 BC := (G,VG, VC , cap, b,B,C)← BCTree(N)
2 R := (G,VG, VC , cap, b,B,C, vr, parent, children)← RootedBCTree(BC)
3 return ComputeMTSF(R)

Procedure ComputeMTSF
Input: Rooted BC-tree R = (G,VG, VC , cap, b,B,C, vr, parent, children)
Output: Tuple (gen, S), where gen is the accumulated generation of R induced by

the set of switched edges S, such that: gen = MPF(R− S) = MTSF(R).
1 forall β ∈ (B ∪ C) in reverse level-order do
2 L(β)← ∅ // initialize L

3 if β ∈ B then
4 (gen, S)← ComputeBlockLabels(R, β)
5 else
6 {γ1, . . . , γn} ← children(β)

7 Π←
n∏
i=1

L(γi)

8 forall (l1, . . . , ln) ∈ Π do
9 (geni, fi, Si)← li // li ∈ (l1, . . . , ln)

10 f ′ ←
∑n
i=1 fi

11 gen′ ←
∑n
i=1 geni

12 S′ ← ∪ni=1Si
13 L(β)← L(β) ∪ {(gen′, f ′, S′)}

14 return (gen,S)

This procedure iterates over the vertices of R in reverse level-order. In each iteration,
we make the distinction between blocks and cut vertices. For blocks, we invoke the
ComputeBlockLabels procedure, which is discussed in the next passage. It yields a tuple
(gen, S) of generation gen and set of switched edges S, which is the result of computing an
MTSF on R.

For cut vertices, initially, the Cartesian product Π of labels from all n children is computed.
Then, for each combination of labels (l1, . . . , ln) ∈ Π, the flow and generation from each
label li is added up into f ′ and gen′, and we form the set union S′ of switched edges Si
(Line 9 to end). Lastly, we create a new label with the latter three attributes and store
it at that cut vertex. The final step of the procedure is to return the tuple of (gen, S)
provided by the ComputeBlockLabels procedure.

21

5. Algorithm

Procedure ComputeBlockLabels
Input: Rooted BC-tree R = (G,VG, VC , cap, b,B,C, vr, parent, children),

Block β = (V,E, Vcv)
Output: A tuple containing the greatest accumulated generation gen of R and the

set of switched edges S inducing gen.
1 {γ1, . . . , γn} ← children(β)
2 if n > 0 then
3 Π←

n∏
i=1

L(γi)

4 else
5 Π← {(0, 0, ∅)} // leaves have no incoming flow and generation

6 if β 6= vr then
7 forall π ∈ Π do
8 L(β)← L(β) ∪GenerateLabel(R, β, π, ∅) // no switched edge

9 if |V (β)| > 2 then
10 forall e ∈ E(β) do
11 L(β)← L(β) ∪GenerateLabel(R, β − {e}, π, e)

12 else
13 (gen, f,S)← π // π is only one label for a bridge

14 {ebridge} ← E(β) // Set E(β) contains one edge in this case

15 f ′ ← min(f, cap(ebridge)) // adjust flow and gen of label

16 L(β)← L(β) ∪ (gen, f ′,S)

17 else
18 Solution← ∅
19 forall π ∈ Π do
20 Solution← Solution ∪RootCheck(R, β, π, ∅)
21 if |V (β)| > 2 then
22 forall e ∈ E(β) do
23 Solution← Solution ∪RootCheck(R, β − {e}, π, e)

24 if Solution 6= ∅ then
25 return arg max

gen
Solution

26 return (0, ∅) // no feasible solution found → no generation and switching

Within this procedure, the Cartesian product of labels from the children is computed and
stored in Π. Since this procedure is invoked only for blocks, children can only be cut
vertices. If the block does not have children, this means there is no incoming power flow nor
incoming generation. Then we set Π to just be a set of a single label with zero generation
and flow, as well as no switched edges, yielding {(0, 0, ∅)} (Line 4).
Next, for all non-root blocks, we consider every combination π ∈ Π. Note that here the
term π is used as we are not interested in a specific label of that combination. This means
the notation (l1, . . . , ln) and π both refer to a combination of labels.
For each π, we first generate a label for when no edge is switched (Line 7) and store it for
that block. Then we check if the current block is a bridge, i.e. a block containing only
one edge. If it is not, then we switch every edge once and generate a label, which we then
store for that block. In the other case, we know that there is only one child. Therefore, a
combination can only consist of a single label, which we can then retrieve (Line 12). We
do not switch the edge, as it would break the circuit. But we do need to adjust the flow

22

5.1. Exponential Time Algorithm for MTSF on Cacti

and generation of the label, as it could be limited by the capacity of the bridge.
For the root we iterate over every combination and initially consider the case where no edge
is switched. Here and in the following step, we do not store a label, but we invoke a separate
RootCheck procedure, that yields the MPF for a given set of switched edges. The solution
is stored in the set Solution (Line 19). Then, if the root is not a bridge, we switch every
edge once and store the possible solutions. If the set Solution is not empty, we return the
solution with the greatest generation and this is the MTSF of N . After every combination
is considered, we return the tuple (0, ∅) which means, there is no generation and no switching.

Procedure GenerateLabel
Input: Rooted BC-tree R = (G,VG, VC , cap, b,B,C, vr, parent, children),

Block β = (V,E, Vcv),
π: combination of labels,
eswitched: switched edge

Output: Set of a single label, which holds the generation gen, outgoing flow f and
switched edge of β. If no feasible flow exists, an empty set is returned.

1 if F ←MPF(N (β, π)) then
2 f, gen← 0
3 gen←

∑
(geni,fi,Si)∈π geni +

∑
(g,w)∈E(β) F (g, w) w ∈ V (β), g ∈ VG(N (β, π))

4 f +=
∑

(u,v)∈E(β) F (u, v) u ∈ V (β), v ∈ parent(β)
5 S←

⋃n
i=1 Si (geni, fi, Si) ∈ π, |π| = n // unify switched edges

6 S← S ∪ {eswitched}
7 return {(gen, f,S)}
8 else
9 return ∅

In the GenerateLabel procedure, we first compute the MPF for the block. Since an MPF is
computed on a network, we need to transform the block into one. Thereby, given a block
β and a combination π of labels, we can represent β as a network by adding a generator
for every label of that combination with positive generation and a load otherwise. The
cut vertex with that label then becomes either a generator or load. The resulting network
is denoted by N (β, π) (Line 1). If there exists no MPF, we return ∅. If it does exist, we
collect the generation gen of a block by adding up the flow of every edge incident to a
generator and add it to the overall generation in the subtree of the current block. Note
that generators and consumers reside in their own block and thereby cannot interfere with
their generation/demand.
Afterwards we collect the flow at the port f in the same way, but here we consider incident
edges to the port. Then, for each label li in the combination π, we form the set union S
of its switched edges S(li) (Line 3). Finally, we also insert the edge, that was currently
switched into that union. Then we can return a set with one tuple (gen, f, S). We need to
return a set here and not just the tuple, because we return an empty set if no MPF for
that block exists.

23

5. Algorithm

Procedure RootCheck
Input: Rooted BC-tree R = (G,VG, VC , cap, b,B,C, vr, parent, children),

Block β = (V,E, Vcv),
π: combination of labels,
eswitched: switched edge

Output: Set of a single tuple containing the accumulated generation gentotal of R
and set S of switched edges inducing gentotal. If no feasible flow exists, an
empty set is returned.

1 gentotal ← 0
2 if F ←MPF(N (β, π)) then
3 S←

⋃n
i=1 Si (geni, fi, Si) ∈ π, |π| = n

4 R′ ← R− S
5 forall vc ∈ Vcv(β) do
6 fvc ←

∑
(u,v)∈E(β) F (u, vc) u ∈ V (β) // outgoing flow at vc

7 L(vc)← (0, fvc , ∅) // associate flow to cut vertex

8 πsub ← L(vc)
9 Nsub ← N (Subtree(R′, vc)) // network of subtree rooted at vc

10 if Fsub ←MPF(Nsub, πsub) then
11 gentotal +=

∑
(g,w)∈E(Nsub) F (g, w) w ∈ V (Nsub), g ∈ VG(Nsub)

12 else
13 return ∅

14 return {(gentotal, {S ∪ eswitched})}
15 else
16 return ∅

The final procedure is RootCheck of which the purpose is to compute the MPF with a
given combination π firstly for the root and secondly for the rest of the network, given the
set of switched edges. This means that for every block a switching possibility has been
chosen and we now want to compute the total generation for the network.
Initially we compute the MPF for the root block where the given edge is switched and
unify all switchings, as specified by the given combination π, into one set S (Line 3). The
edges of S are then switched within our rooted BC-tree R and the result is assigned an
alias R′ (Line 4). Then at every cut vertex vc of the root, we determine the resulting
outgoing flow fvc (Line 6) and assign it to vc in the form of a single combination (Line 7),
which is then retrieved as an alias πsub (Line 8). Now we can also obtain the subtree Nsub
rooted at cut vertex vc (Line 9), compute the MPF for it with πsub and accumulate the
generations of Nsub into the total generation gentotal (Lines 10 and 11). If an MPF does
not exist, we can stop early by returning an empty set (Lines 13 and 16). The idea here is
that fvc determines how much power a subtree has to provide overall. And by computing
an MPF for it, we can verify if that amount can be supplied and if so, how much generation
is needed. After all cut vertices have been considered, we have accumulated the generation
for the whole network and we can return it along with the set of all switched edges in a
tuple (Line 14).
The complexity of the algorithm is exponential in the total number of block of R. This is
due to considering every combination, where at most one edge is switched within a block.
And the upper bound for the number of all possible combinations is given by

∏
β∈B
|E(β)|+ 1.

Since a switching is represented by a label, a way to decrease the number of all considered
combinations is to decrease the labels stored with each block/ cut vertex. In the next
section, we are going to pick up on this topic again.

24

5.1. Exponential Time Algorithm for MTSF on Cacti

g

�

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

Figure 5.2: Illustration of the exponential algorithm on a cactus graph with one generator
g and one load c. The line capacities and flows are written next to the edges
in and respectively. Phase angles are written into the vertices in . The
BC-tree of the graph has two blocks and one cut vertex , the upper block is
set to be the root.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

3
2
x

lrefbot
= (3x, 3x,−)

3
2
x 3

2
x

3
2
x

0x

3
2
x

3x

3
2
x

(a) Starting with the lower block when no switch-
ing occurred. The flow into u as well as the
generation at generator g is 3x and the corre-
sponding label is stored at u.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

0x 4x

4x

0x

8x

8x

4x

lrefbot
= (3x, 3x,−)

lgs = (4x, 4x, {g, s})

(b) The edge {g, s} is switched . There is no
flow on the edge {s, u} and the path (g, t, u)
exhibits a flow of 4x.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

3
2
x

0x

0x

3
2
x

0x

3
2
x 6

2
x

6
2
x

lrefbot
= (3x, 3x,−)

lgs = (4x, 4x, {g, s})
lgt = (3

2
x, 3

2
x, {g, t})

(c) The edge {g, t} is switched and the resulting
flow is 3

2x.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

0x 4x

4x

0x

0x

8x

4x

lrefbot
= (3x, 3x,−)

lgs = (4x, 4x, {g, s})
lgt = (3

2
x, 3

2
x, {g, t})

lsu = (4x, 4x, {s, u})

(d) Switching edge {s, u} yields the same result as
{g, s}.

25

5. Algorithm

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

3
2
x 0x

6
2
x

3
2
x

0x

0x

3
2
x

lrefbot
= (3x, 3x,−)

lgs = (4x, 4x, {g, s})
lgt = (3

2
x, 3

2
x, {g, t})

lsu = (4x, 4x, {s, u})
ltu = (3

2
x, 3

2
x, {t, u})

(e) Switching edge {t, u} yields the same result as
{g, t}.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

2
3
x

MTSF ({{g, s}}) = 4
3
x

lref = (− 4
3
x,− 4

3
x,−)

2
3
x

2
3
x2

3
x

0x 4
3
x

4
3
x

0x

8
3
x 4

3
x

8
3
x

4x

10
3

x 10
3

x

0x

lgs = (4x, 4x, {g, s})

(f) Now the upper block is reached, that is the
root. The label with the highest generation is
chosen, and with it, the switching is carried
out for the root. Without switching, we obtain
an MPF of 4

3x.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

6x

0x

0x

3x0x

MTSF ({{g, s}, {u,w}}) = 3x

luw = (−3x,−3x, {u,w})

3x

0x 3x

3x

6x

0x 9x

12x

lgs = (4x, 4x, {g, s}) 3x

(g) The next switched edge is {u,w}. Here we get
an increased MPF of 3x.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

4
3
x

0x

0x2
3
x

MTSF ({{g, s}, {u, v}}) = 2
3
x

0x

0x

2
3
x

4
3
x

2x 8
3
x

8
3
x

lgs = (4x, 4x, {g, s})

2
3
x

2
3
x

2
3
x

luv = (− 2
3
x,− 2

3
x, {u, v})

(h) Switching edge {u, v} decreases theMPF down
to 2

3x.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

MTSF ({{g, s}, {w, c}}) = 3x

lgs = (4x, 4x, {g, s})

0x

0x

6x

6x

0x

0x

0x

3x

3x

3x

3x

3x

6x

9x

12x

lwc = (−3x,−3x, {w, c})

(i) The MPF is the same as for {u,w}, when
switching edge {w, c}.

g

c

s t

v

u

w

/7x/ 3
2
x

/2x /4x

/3x /3x

/3x/ 2
3
x

0x

4
3
x

0x

0x2
3
x

MTSF ({{g, s}, {v, c}}) = 2
3
x

0x

0x

2
3
x

4
3
x

2x 4
3
x

8
3
x

lgs = (4x, 4x, {g, s})

2
3
x

2
3
x

2
3
x

lvc = (− 2
3
x,− 2

3
x, {v, c})

(j) Lastly, the edge {v, c} is considered. The re-
sulting MPF is not greater than the previous
ones. Now, all switchings have been considered
and the one exhibiting the highest MPF is cho-
sen. Both, {{g, s}, {w, c}} and {{g, s}, {u,w}}
yield the same MPF of 3x, therefore either one
can be used as a solution.

26

5.2. Runtime Improvements

5.2 Runtime Improvements
Here we introduce an improvement that can be made to decrease the overall running time
of the exponential algorithm. Having to iterate over every combination of labels is the
limiting factor here, as there is an exponential magnitude of labels. Therefore it seems
intuitive to work out techniques to reduce the overall amount of considered combinations.

5.2.1 Label Buckets

Now we are not taking into consideration the exact flow value of a label, instead we round
this value according to a given parameter. By doing so, we can group similar labels in
terms of flow. Then for every group, if two labels share the same generation, we can chose
one of them arbitrarily and dismiss it.
We achieve this by introducing buckets to store labels in, which means we now store a set of
buckets instead of a set of labels. A bucket is essentially a container with a key or identifier
κ, that stores labels: for our purposes the key will be the flow of a label. We also provide a
parameter ε > 0 which determines the range or interval of labels that are stored in this
bucket. More precisely, a label l = (gen, f, S) is assigned to bucket bi with i ∈ {−n, . . . , n}
and key κi, such that

κi =
{
a, f ≥ 0
b, otherwise.

a and b are defined as

a =

0, 0 ≤ f < ε

2
(2i+ 1) ε2 , (2i+ 1) ε2 ≤ f < (2i+ 3) ε2

b =

0, − ε2 < f < 0

−(2i+ 1) ε2 , −(2i+ 3) ε2 < f ≤ −(2i+ 1) ε2
Intuitively we divide the range of possible flow values into sections of size ε whereby each
label falls into the range of one section. Then the key of a bucket becomes the flow of
the labels stored in it. The key is either 0, the left interval bound in case of positive
flows or the right interval bound in case of negative flows. We use this policy because
this way, we can ensure a feasible flow after we have modified the flow values of labels.
It is also worthy to note here that we do not just start at key 0 and allocate buckets by
incrementing/decrementing by ε. If we would do so, then there would be two buckets
of range (−ε, 0] and [0, ε), both of which include 0. This means any two labels that are
assigned to either bucket end up with a flow of 0. Also these buckets would then cover a
range of 2ε in contradiction to the definition.
From this we can specify an upper bound for the index of buckets n for a given network N :

n =
⌈MF(N)

ε

⌉
The maximum flow MF is an upper bound for the MTSF of N , hence there are no labels
with a greater flow. The same holds for negative flows: in this case, there is no smaller
flow. For a visualization of this endeavour see Figure 5.4.

27

5. Algorithm

(2,−1.5, S1) (3, 0, S2) (1, 1, S3) (1, 1.5, S4)

κ

ε

b−1 b0 b1bi

-0.75 0 0.75

−2.25 −0.75 0.75−0.75 0.75 2.25

b2

2.25

2.25 3.75

Labels:

b−2

-2.25

−3.75 −2.25

(a) 5 buckets are allocated with ε = 1.5 and MF(N) = 7 for four
generated labels, that are not yet assigned. marks an included
and marks an excluded interval bound.

-0.75 0 0.75

(2,−0.75, S1) (3, 0, S2) (1, 0.75, S3)

(1, 0.75, S4)

κ

bi

−2.25 −0.75 0.75−0.75 0.75 2.25

2.25

2.25 3.75

b−1 b0 b1 b2b−2

-2.25

−3.75 −2.25

(b) Now the labels are assigned to buckets and bucket b2 is empty.
marks the adjusted flow. Note that one label in bucket b1 can be
dismissed as they are sharing the same generation of value 1.

Figure 5.4: Bucket illustration

Once a label has been placed into the appropriate bucket, the key of a bucket becomes its
flow value while the generation remains the same. So we are limiting the information of
labels, which is the consequence of rounding the labels.

Introducing buckets to the exponential algorithm requires a single adaption. We only
have to replace the set of labels at each block/cut vertex with a set of buckets and when
generating a label, we need to make sure that it gets placed into the appropriate bucket.
Other steps such as creating combinations of labels remain the same.

5.3 Implementation
The implementation of the exponential algorithm and its improvement were realized in the
programming language C++ version 14. In order to compute a solution for the MILP of
an MPF, the MILP-solver Gurobi optimizer version 8.0.1. [Gur16] has been chosen. No
optimizations as far as parallelization have been made, the algorithm was implemented as
it is.

28

6. Evaluation

In this chapter we evaluate the performance of the exponential algorithm (ExA). We start
by evaluating the plain algorithm as it is and then we do the same, but with the runtime
improvement added from the previous section.

In order to evaluate the performance we have considered six test cases representing power
grids as cacti. These are modified IEEE test cases from which edges were manually deleted
until the resulting graph was a cactus. There existed vertices, being both generator and
consumer, in the original cases. As this would have contradicted our model, we proceeded
to remove its load. Each case was then further transformed in a way that generators and
consumers are placed at degree 1 vertices, as is described in Section 4.3. This was also done,
even when generators and consumers already were degree 1 vertices. The specifications for
each case after this transformation can be seen in Table 6.1 below.

IEEE Case Nr. |V| |E| |VC | |VG|

4 8 8 2 2
9 15 15 3 3
14 23 23 6 5
30 50 53 16 6
39 65 69 19 9
57 89 94 32 5

Table 6.1: Specifications for the modified IEEE cases as cacti after generators and consumers
have been placed at degree 1 vertices. The total number of vertices, edges,
consumers and generators are listed from left to right.

With these cases at hand we could then conduct performance tests. The hardware used
consisted of an Intel i5, four core processor operating at a clock of 2.53 GHz and 8 GB of
physical RAM. We then successively executed the algorithm with every test grid as input
and different key figures were determined. The first remark to be made here is that the
MILP results of both MPF and MTSF, as well as the ExA, were identical. This means
that for every case, switching was not beneficial, which is a bit of an unsatisfying result.
But these were the only available test cases and therefore we can already mark generating
reasonable test cases for cacti as a first part of future work.
The first figure we are going to examine are running times in terms of duration, where

29

6. Evaluation

we start out with the overall running time and then look at individual times for each
procedure.

4 9 14 30 39 57

10−3

10−2

10−1

100

101

102

0.0015

0.0043

0.0013

0.0053
0.0117

0.0029

0.05
0.09

0.18

3.27

48.42
18.57

IEEE Case Nr.

R
un

ni
ng

tim
e
in

se
co
nd

s

MTSF MILP
Exponential Algorithm

Figure 6.1: Running times plotted of the exponential algorithm and the MTSF MILP for
every modified IEEE case.

In Figure 6.1 the total running times of the MTSF MILP, as well as the ExA are plotted
for every test case and we can observe that the latter runs slower than the former. Both
running times reach their maximum at case 39, whereas their difference is greatest for case
57 with an order of magnitude 103 seconds. We also notice a non linear increase for the
ExA with every case up until case 39, where it decreases. The MILP does not quite follow
the same pattern, e.g at case 14 it drops to its minimum and at case 57 it is less than at
case 30, whereas the running time of the ExA is greater at case 57 than at case 30.

Now we are going to take a look at the overall amount of processed labels along with the
specifications of each BC-tree, in order to draw a conclusion on the structure of the test
cases and to make sense of the progressions of the plot.

IEEE Case Nr. |B| No. of Bridges |C| Total No. of Labels

4 5 4 4 10
9 10 9 9 38
14 19 17 12 85
30 44 40 26 561
39 51 46 36 15673
57 79 74 47 6167

Table 6.2: Specifications for the BC-trees of modified IEEE cases as cacti after generators
and consumers have been placed at degree 1 vertices. The total number of
blocks, bridges, cut vertices and labels are listed from left to right. Note that
the number of bridges is also contained in the total number of blocks.

30

In Table 6.2 the specifications of the BC-trees, along with the total number of labels
generated are listed. We can immediately observe a correlation between the total running
time and the number of labels. The progression of the latter is remarkable, as it roughly
increases fourfold at case 9 and then doubles at case 14. From there, it increases fivefold at
case 30 and at case 39 by close to thirty times, where it reaches its maximum.
Since the number of combination is roughly given by the product of edges in a block plus
one over every block, we can explain the drop in number of labels from case 39 to case
57, although the number of blocks, that are non bridges, stays the same. The number of
labels then tells us, that the blocks in case 57 must be smaller in terms of number of edges,
overall.

For the next part, we are going to examine the running times of each individual procedure,
listed in Figure 6.2. Note that these running times do not sum up exactly to those of
Figure 6.1 because instructions such as retrieving labels from BC-tree vertices are invoked
by every procedure and were not considered here. However, the margin is negligible and
the following remarks are still valid.

4 9 14 30 39 57

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

IEEE Case Nr.

R
un

ni
ng

tim
e
in

se
co
nd

s

Cut Vertices
Blocks

Root Check

Figure 6.2: Individual running times plotted for every procedure of the exponential al-
gorithm and for every modified IEEE case. The bars and refer to the
statements executed in the case differentiation of procedure ComputeMTSF
(Line 3, Line 5).

We notice right away that procedure RootCheck is the most time consuming one and
is the main cause for the overall running time, which is due to the large amount of
combinations/labels considered within the root. This suggests that a decrease in labels to
store is promising.
Furthermore, the second most time is spent within blocks, which is not true for case 4. The
reason for that, is that there is only one non-bridge block of four edges, whereas there are
also four cut vertices. For this block, we only iterate over the edges, but for cut vertices,
we compute a Cartesian product with more overhead. From Figure 6.2 we observe that

31

6. Evaluation

as the block count, as well as the blocks in terms of number of edges, grow, processing
a cut vertex becomes more time consuming. This also implies having to consider more
combinations within a block, which brings us to the previous conclusion for a need to
decrease the number of labels.

Now we are going to evaluate the algorithm when using buckets of varying range ε. We
begin with ε = 0.001 and then subsequently increase it to 0.1, 1 and 5. Note that these
steps are chosen arbitrarily and finding the appropriate range requires fine tuning.

4 9 14 30 39 57

0.06

0.08

0.28

0.37
0.45

IEEE Case Nr.

R
un

ni
ng

tim
e
in

se
co
nd

s ε = 0.001
ε = 0.1
ε = 1
ε = 5

Figure 6.3: Total running times of the algorithm using buckets of variable size ε plotted
for every modified IEEE case. Note that the scale for the running times is
logarithmic.

ε = 0.001 ε = 0.1 ε = 1 ε = 5

Case 4 Total No. of Labels 10 10 10 10
Solution deviation in % 0 0 0 0

Case 9 Total No. of Labels 32 32 30 28
Solution deviation in % 0 0 0 0

Case 14 Total No. of Labels 34 34 34 34
Solution deviation in % 0 0 0 0

Case 30 Total No. of Labels 117 110 84 96
Solution deviation in % 0 5.3 8.6 8.6

Case 39 Total No. of Labels 331 264 217 130
Solution deviation in % 0 0.01 0.12 3.4

Case 57 Total No. of Labels 190 134 134 134
Solution deviation in % 0 0 0 0

Figure 6.4: The total number of labels and solution deviation listed for ever modified IEEE
case and different flow ranges ε.

32

One notices that the running times in Figure 6.3 have greatly decreased although the
MTSF MILP still outperforms it. Whereas in Figure 6.1 for case 39 the algorithm finished
in 48.42 seconds, it now takes 0.45 seconds at most. This is also the greatest speedup we
have achieved amongst all test cases. Furthermore, we notice that increasing the bucket
range decreases the running time. The progression of the plot overall follows Figure 6.1,
except for ε = 5 in case 57, where we can see an increase instead of a decrease. Also the
low ranges of ε = 1 and ε = 0.1 yield the same running time and we can see in Figure 6.4
that the number of labels stays the same. An increase of ε creates new buckets, however
labels are then not assigned into other buckets and none are dismissed. With this we notice
that the most labels are dismissed, if we consider the range of flow ∆f for the most labels
with equal generation and then set ε = ∆f . However, this is just an estimation and the
effectiveness of this would have to be proven.

Lastly, we consider Figure 6.4 where we see that the correlation between running times
and the number of labels remains, except for case 30 where the number of labels increases
for ε = 5 to 96 compared to ε = 1 with 84 labels.
The solution quality also progresses significantly well. Only for cases 30 and 39 we see a
deviation, whereas in all other cases the optimal solution could be computed. With an
increasing ε the solution deviation also increases, so there is a correlation between the two.
This is due to the construction of labels, since the flow value f of a label gets rounded in
a way, such that a flow with the given switching exists. It is also important to note here
that for case 30 and ε = 1 the solution deviation of 8.6 % seems large, however its optimal
solution is at 1.5 and so the absolute solution deviation is not as large. This hints that
there is a connection between ε and OPTMTSF(N), although research on that also has to
be made.

33

7. Conclusion

In this thesis we formulated an algorithm that computes an optimal solution of MTSF
for unbounded cacti networks. We achieve this by traversing its Block-Cut-tree in reverse
level-order and solving instances of MPF in each block for every possible switching.

We introduced the idea of labels that are stored at every vertex of the BC-tree. They are
used as input for the next traversal step, as they contain information on the MPF within
a block such as flow into the parent vertex, as well as generation and switching in their
subtrees. To represent partial solutions of greater subgraphs, labels are combined at cut
vertices and the optimal solution for the whole graph is then determined at the root vertex.

We then observed that the algorithm exhibits an exponential complexity and identified
generating all possible combinations of labels as the main cause. As a countermeasure we
presented the bucket data structure to store labels with a flow range of ε. Within a bucket,
for each occurring value of generation, only one label is stored. This leads to a greater or
lesser reduction of overall labels, depending on the choice of ε, however, an optimal solution
is then not guaranteed to be found.

Finally, we evaluated the algorithm for six power grids of IEEE cases, modified to be cacti,
in comparison to solving the MILP of MTSF. We observed that the latter outperformed
our algorithm at every case and noticed the greatest difference, when our algorithm took
48.42 seconds to compute an optimal solution, whereas the MILP took less than 0.012
seconds. Upon introducing buckets to the algorithm, we were able to greatly decrease its
running time, however, we could not beat the MILP. For the same case and with a flow
range of ε = 0.001, it computed an optimal solution within 0.45 seconds and generated 331
labels, which is more than 15000 labels less. With ε = 1, the amount was further reduced
by more than 50 %, at a total of 84 labels. Here we also experienced the greatest deviation
of 8,6 % from the optimal solution, however, the absolute deviation was not as large. For
case 57, we were able to compute an optimal solution with the same flow range, hence the
optimal ε differs from case to case.

35

7. Conclusion

7.1 Future Work
We presented an algorithm of exponential complexity as a first approach to solve MTSF
on cacti using labels. A topic of future work is to look at other ways to store information
of flow and generation within a block. This could be done by storing the flow in a block as
a function of the generation in the subtree and then, every possible switching represents
such a function. In order to dismiss other switchings, a criterion of dominance needs to be
formulated here.
If the use of labels is continued, then one could investigate in ways of iterating the
combinations at the root in a smarter fashion. As of now, every combination is considered
here, however, if one solution is found, then we already know a lower bound for the
generation and therefore, combinations with a generation that falls below this lower bound
can be dismissed.

Regarding the use of buckets, research has to be made in determining the optimal flow
range ε for a given network N . For this the correlation between ε and OPTMTSF(N) has
to be investigated in, as well as the range of flow of the most labels with equal generation,
as was hinted in the evaluation part.

Another topic is to come up with a way of generating cacti from general test cases. The
test cases used in this thesis were also not very interesting in terms of solution, as it turned
out that switching was not beneficial for all of the cases. Therefore one would have to look
into generating test cases, for which switching is interesting. Also with larger scale test
cases, the bucket heuristic can be evaluated even further to gain more knowledge on how
the solution quality is affected.

Lastly, we have only considered unbounded networks in this thesis, so designing an algorithm
to solve MTSF for bounded cacti networks is also an open topic. To make this work, one
would have to consider a redistribution of generation once the root block is reached. This
is the case when only negative flows are passed into the root and as of now, this would
lead to an overall generation of 0.
In this context the generation in a label also needs to be determined in a different way
because as of now, it just represents an upper bound. It would also be interesting to see, if
our algorithm can be extended, in order to solve MTSF on general graph classes and if so,
what the necessary changes would be.

36

Bibliography

[Bau13] Heinz-Josef Bauckholt. Grundlagen und Bauelemente der Elektrotechnik. Lern-
bücher der Technik. Hanser, München, 7., aktualisierte aufl. edition, 2013.

[BB11] Clayton Barrows and Seth Blumsack. Optimal transmission switching analysis
and marginal switching results. In IEEE Power and Energy Society General
Meeting, pages 1–3, 2011.

[BBB13] Clayton Barrows, Seth Blumsack, and Russell Bent. Using network metrics
to achieve computationally efficient optimal transmission switching. In 46th
Hawaii International Conference on System Sciences (HICSS), pages 2187–2196,
2013.

[Bra68] D. Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268, 1968.

[FOF08] Emily B. Fisher, Richard P. O’Neill, and Michael C. Ferris. Optimal trans-
mission switching. IEEE Transactions on Power Systems, 23(3):1346–1355,
2008.

[GRW+18] Alban Grastien, Ignaz Rutter, Dorothea Wagner, Franziska Wegner, and
Matthias Wolf. The maximum transmission switching flow problem. In Proceed-
ings of the Ninth International Conference on Future Energy Systems, e-Energy
’18, pages 340–360, New York, NY, USA, 2018. ACM.

[GSO12] J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye. Power System
Analysis and Design. Cengage Learning, fifth edition edition, 2012.

[Gur16] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016. http:
//www.gurobi.com, Accessed: 2017-01-14.

[KM80] Hans-Jürgen Koglin and Hermann Müller. Overload reduction through correc-
tive switching actions. In International Conference on Power System Monitoring
and Control, volume 24, pages 159–164, 1980.

[LGH14] Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. The complexity
of DC-switching problems. CoRR, abs/1411.4369, 2014.

[LGH15] Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. The com-
plexity of switching and FACTS maximum-potential-flow problems. CoRR,
abs/1507.04820, 2015.

[NW99] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial opti-
mization. Wiley-interscience series in discrete mathematics and optimizationA
Wiley-interscience publication. Wiley, New York, NY, 1999.

[OCS04] Thomas J. Overbye, Xu Cheng, and Yan Sun. A comparison of the ac and dc
power flow models for lmp calculations. In Proceedings of the Proceedings of the
37th Annual Hawaii International Conference on System Sciences (HICSS’04)

37

http://www.gurobi.com
http://www.gurobi.com

Bibliography

- Track 2 - Volume 2, HICSS ’04, pages 20047.1–, Washington, DC, USA, 2004.
IEEE Computer Society.

[PBL+12] M. G. Pala, S. Baltazar, Peng Liu, Hermann Sellier, B. Hackens, F. Martins,
Vincent Bayot, X. Wallart, L. Desplanque, and Serge Huant. Transport In-
efficiency in Branched-Out Mesoscopic Networks: An Analog of the Braess
Paradox. Physical Review Letters, 108, February 2012.

[PP97] Eric I. Pas and Shari L. Principio. Braess’ paradox: Some new insights.
Transportation Research Part B: Methodological, 31(3):265–276, 1997.

[Rah17] Md. Saidur Rahman. Basic Graph Theory. Undergraduate Topics in Computer
ScienceSpringerLink : Bücher. Springer, Cham, 2017.

[Sch18] Reinhard Scholz. Grundlagen der Elektrotechnik : eine Einführung in die
Gleich- und Wechselstromtechnik. Fachbuchverlag Leipzig im Carl Hanser
Verlag, München, [2018].

[Uni93] University of Washington. 14-bus-diagram, 1993. https://www2.ee.
washington.edu/research/pstca/pf14/pg_tca14fig.htm, Accessed: 2018-
09-15.

[Uni99] University of Washington, Department of Electrical Engineering. Power sys-
tems test case archive, 1999. https://www2.ee.washington.edu/research/
pstca/, Accessed: 2017-11-14.

[Wes01] Douglas B. West. Introduction to graph theory. Prentice Hall, Upper Saddle
River, NJ, 2. ed. edition, 2001.

[WT12] Dirk Witthaut and Marc Timme. Braess’s paradox in oscillator networks,
desynchronization and power outage. New Journal of Physics, 14(8):083036,
2012.

[ZMST11] Ray D. Zimmerman, Carlos E. Murillo-Sanchez, and Robert J. Thomas. Mat-
power: Steady-state operations, planning, and analysis tools for power systems
research and education. IEEE Transactions on Power Systems, 26(1):12–19,
2011.

38

https://www2.ee.washington.edu/research/pstca/pf14/pg_tca14fig.htm
https://www2.ee.washington.edu/research/pstca/pf14/pg_tca14fig.htm
https://www2.ee.washington.edu/research/pstca/
https://www2.ee.washington.edu/research/pstca/

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Graph Theory
	2.2 Mixed Integer Linear Programming

	3 Related Work
	4 Model
	4.1 Alternating Current
	4.2 Power Grid Models
	4.2.1 DC Model
	4.2.2 Graph Representation

	4.3 Model Formulation
	4.4 The Maximum Transmission Switching Problem

	5 Algorithm
	5.1 Exponential Time Algorithm for MTSF on Cacti
	5.2 Runtime Improvements
	5.2.1 Label Buckets

	5.3 Implementation

	6 Evaluation
	7 Conclusion
	7.1 Future Work

	Bibliography

