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Abstract

A drawing of a directed acyclic planar graph is called upward planar if all edges are
represented by monotonically increasing non-intersecting curves. A directed acyclic
planar graph is called level planar if it has an upward planar drawing such that all
vertices that are assigned to the same level have the same y-coordinate. In this thesis
we study level planar drawings with two fixed slopes of the edges and call them
LP2-drawings. We present an algorithm that, given a level planar graph, decides
whether it has an LP2-drawing with an additional requirement of rectangular inner
faces. After that, we drop the requirement of rectangular inner faces and provide an
algorithm that decides whether a general LP2-drawing exists. Both algorithms have
polynomial running time. In the conclusion of the thesis, we give an outlook how to
extend the latter algorithm to work on multiple fixed slopes.

Deutsche Zusammenfassung

Eine Zeichnung eines gerichten azyklischen planaren Graphen heißt aufwärts-planar,
wenn alle Kanten durch monoton steigende, sich nicht schneidende, Kurven dargestellt
werden. So ein gerichteter azyklischer planarer Graph wird level-planar genannt,
wenn er eine aufwärts-planare Zeichnung hat, in der alle Knoten, die dem selben
Level zugewiesen wurden, die gleiche y-Koordinate haben. In dieser Arbeit werden
wir uns mit level-planaren Zeichnungen mit zwei festgelegten Steigungen beschäftigen.
Diese nennen wir LP2-Zeichnungen. Wir stellen einen Algorithmus vor, der gegeben
einen level-planaren Graphen entscheidet, ob es eine LP2-Zeichnung gibt, in der
wir uns auf rechteckige innere Facetten beschränken. Danach heben wir diese
Einschränkung wieder auf und präsentieren einen Algorithmus, welcher entscheidet, ob
eine LP2-Zeichnung existiert. Beide Algorithmen haben polynomielle Laufzeit. In der
Zusammenfassung der Arbeit geben wir einen Ausblick, wie der zweite Algorithmus
erweitert werden kann, sodass er mit mehreren festgelegten Steigungen arbeitet.
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1. Introduction

Directed acyclic graphs appear often in practice, for instance in models like PERT-diagrams,
business process models, text-variant graphs or phylogenetic networks. Text-variant graphs
for example work on different translations of sentences. Here, vertices represent words
or subsentences, and edges are between vertices that represent words that belong to the
same translation and are consecutive in the sentence. In phylogenetic networks, vertices
represent different species. Edges represent non-transitive ancestry relations between
species. Sometimes the vertices can be grouped by some parameters. In text-variant graphs,
the vertices that represent words with the same meaning can be grouped together. In
phylogenetic networks, species of the same time period can be put into one group.
When representing the graphs from these domains, it is common to place the vertices of the
same group on the same horizontal (or vertical) line, to emphasize there similarity. Those
lines are also called levels. Levels representing different groups are usually represented by
parallel lines. If the graph is planar and every vertex is assigned to a level, we call this
graph level planar graph. Level planar graphs that have only edges between consecutive
levels are called proper. For the drawing of level planar graphs the y-coordinate of the
vertices are already fixed by the level that the vertex is assigned to.
We want to restrict the drawings of level planar graphs to those that only use straight line
for the edges. This restriction is often used to make drawings simpler to read. Also, if
the maximum degree of a graph is bounded, then the graph can be drawn with only few
slopes. For instance, in phylogenetic graphs we normally have only small maximum degree,
therefore we want to restrict the slopes used in the drawings of the level planar graphs.
We now want to find algorithms that, given a proper level planar graph, decide whether a
drawing with previously fixed slopes exists, and then also provide one. In this thesis we
restrict our attention to the slopes -1 and 1.
In Chapter 2, we give necessary definitions that are used afterwards. We also state some
simple observations. In Chapter 3, we give an algorithm to decide whether there is a
level planar drawing with two slopes and rectangular inner faces of an st-graph. The
algorithm constructs such a drawing if it exists. The algorithm is based on 2-SAT and
works in polynomial time. In Chapter 4, we provide an algorithm that does not restrict
the shape of the faces to rectangles. This algorithm is based on flow networks. In the
conclusion we observe that the algorithm of Chapter 4 can be extended to an algorithm
that finds drawings with a different number of fixed equidistant slopes. We also discuss
how our approaches can be applied to the extension of partial level planar drawings and
simultaneous level planar drawings with few slopes.
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1. Introduction

1.1 Related Work
In general, every planar graph can be drawn with only straight lines [F4́8]. As the slope
number of a graph we define the minimum number of slopes that are necessary to draw the
graph in the plane. If the maximum degree of a graph is ∆ ≥ 5, then graphs with slope
number n1− 8+ε

∆+4 can be found [DSW07]. Also, there exists no upper bound for the slope
number [BMW06]. Graphs that have maximum degree 3 can be drawn with a maximum
number of five slopes [KPPT08]. If the maximum degree of a planar graph is bounded,
then the graph can be drawn with only few slopes [KPP10]. For planar graphs Dujmović
et al. [DESW07] proved many bounds for the slope number of different types of graphs, as
trees, outerplanar graphs and 2- or 3-connected graphs. For example, let n be the number
of vertices of a graph G and ∆ be the maximum degree. If G is a tree, the slope number is⌈

∆
2

⌉
. For a planar 3-connected graph G, they proved the slope number to be greater than

n and less than 2n.

In an upward planar drawing, directed acyclic planar graphs are drawn such that all edges
are represented by monotonically increasing curves. The problem of testing whether a
graph has such an upward planar drawing is considered in [GT95]. Finding those drawings
is topic of papers like [BT88] and [FRA08]. In Hasse diagrams, upward drawings of directed
acyclic graphs that are transitively reduced are used to draw a partial order. Drawings of
orders are considered in [CPR90] and [Riv93].

The height of a vertex in upward drawings is usually interpreted as the importance of
that vertex. Sometimes vertices of the same importance are combined to layers or levels
of the graphs. Then, we speak of level graphs, as they were already introduced in the
previous section. Drawings of level graphs such that the levels are represented as parallel
horizontal lines and the hierarchical structure is preserved is topic of papers like [ELT96].
In [ELT96] the Degree Weighted Barycentre (DWB) algorithm was presented, which focuses
on drawing the graph in such a way that not only the hierarchy is preserved, but that the
drawing is also planar, convex and symmetric if possible.

In [STT81] and [HN13] the Sugiyama Framework is presented. This framework consists
of multiple algorithms to construct a layered graph drawing out of a directed graph. It
takes several steps to construct this drawing. First possible cycles are eliminated such that
the smallest number of edges has to be changed. Then the vertices are placed on levels
with some criteria as to find the least number of necessary levels. Next the ordering of
the vertices on one level is chosen. This ordering should result in a small number of edges
crossing. At last the vertices are assigned to coordinates on there level. Healy and Kuusik
published algorithms for choosing the order of the vertices on one level in [HK04].

Comparing the Sugiyama Framework to the work in this thesis, the graphs that we consider
are already acyclic. Also the assignment of the vertices to layers and the ordering of the
vertices on one level is given as an input.

When fixing slopes in general graphs, often orthogonal drawings are considered. Those
drawings restrict the slopes to horizontal and vertical lines, but also allow bends of the edges.
If the edges must have zero bends those drawings are also called rectlinear drawings. In this
thesis we mostly consider drawings with only slopes -1 and 1. The resulting drawings can be
compared to rectlinear drawings. In [TTV91] and [PT95] some bounds and algorithms for
orthogonal drawings were presented. Tamassia et al. [Tam87] described such an algorithm.
Given a planar embedding of a graph G with maximum degree ≤ 4 the algorithm finds a
planar representation of G on a grid with a minimum number of bends. This representation
then can be transformed into a grid drawing. They did this by constructing a flow network,
where they had a node for each vertex and each face of G. Two face-nodes have an arc
connecting them, if the faces are adjacent. A vertex-node is connected to a face-node, if
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1.1. Related Work

the vertex is incident to that face. The flow over the arcs between two adjacent face-nodes
then corresponds to the number of bends at the edge separating the faces. The flow over
the arcs between a vertex-node and a face-node corresponds to the angle between the two
edges, that are both incident to the face and the vertex.

Some algorithms for drawing on a grid, like the one described above, first give a represen-
tation of the graph, that can later be transformed into a drawing of the graph. In contrast
to a drawing, in a representation of a graph only the slopes of the edges are considered.
The length of the edges and by that the positions or even the distances between two nodes
are not fixed. In a level planar graph, on the other hand, the positions of the vertices
are restricted to the level that the vertex is assigned to. Even more, fixing the slopes
results in a drawing of the graph up to horizontal translation. Therefore, the flow network
technique employed by Tamassia [Tam87] can not be adapted in a straight-forward way to
level planar graphs with slopes -1 and 1.
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2. Preliminaries

A level planar graph (G, `) is a planar graph G = (V,E) together with a level assignment
` : V → L, where L = {l1, . . . , ln} is the set of levels and n is the number of levels.

For all levels l ∈ L we define an ordering τl of the vertices on l from left to right. Let Vl be the
set of vertices x with `(x) = l, that is Vl = {x ∈ V | `(x) = l}, then τl : Vl → {1, . . . , | Vl |}
is a bijection. For a level planar graph (G, `) this ordering τ = {τi | i ∈ L} gives us a level
planar embedding of this graph. A level planar graph (G, `) with a fixed embedding is
called a level plane graph.

Considering τ , we map vertices to coordinates with ΓV : V → R×Z, v 7→ (xv, yv) such that
yv = `(v) for all v ∈ V and such that xu < xv for all vertices u, v ∈ V with `(u) = `(v) and
u <τ v. Each edge uv is mapped by ΓE to the line segment between ΓV (u) and ΓV (v). A
level drawing of (G, `) consists of an ordering τ and the mapping Γ = (ΓV ,ΓE).

An internal crossing of two different edges is an intersection of the corresponding line
segments without the start and end points. A level drawing is planar, if the edges are drawn
without internal crossings and distinct vertices have distinct positions. Such a drawing is
called level planar drawing. We only consider proper graphs in this thesis, thus graphs that
have edges only between vertices on adjacent levels.

A level planar 2-slope drawing (LP2-drawing for short) is a level planar drawing, where
every edge has either slope 1 or slope -1.

In contrast to orthogonal representations of planar graphs with maximum degree ≤ 4 we
do not distinguish between an LP2-drawing and an LP2-representation (see Section 1.1).
The distances between vertices are already fixed by the fixed distance between levels, the
fixed level assignment and the slope assignment for each edge.

Let (G, `) be a level planar graph with an LP2-drawing and N(x) := {y ∈ V (G) | xy ∈
E(G)} the neighborhood of a vertex x. The following observation can be made:

Observation 2.1. Every vertex x ∈ V (G) has at most four neighbors. Also the following
inequalities hold for every vertex x ∈ V (G):

#{v ∈ V (G) | v ∈ N(x) ∧ L(v) = L(x)− 1} ≤ 2
#{v ∈ V (G) | v ∈ N(x) ∧ L(v) = L(x) + 1} ≤ 2,

We will only consider graphs that fulfill those necessary conditions for having an LP2-
drawing.
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2. Preliminaries

In a level plane graph (G, `) each edge is incident to two not necessarily distinct faces f1
and f2. We always orientate an edge from the lower to the upper level. With that, we
define the left face (right face, respectively) of an edge e as the face, that lies to the left
(right, respectively) of e when traversing e in the direction of its orientation.

For each inner face f the boundary of f is a set of edges, that have f either as there left or
as there right face, but not as both, and a set of vertices, that are incident to those edges.
We denote this boundary by Bf .

A source is a vertex with only outgoing edges and a sink a vertex with only incoming
edges. An st-graph is a directed acyclic graph with a single source and a single sink. The
orientation of a level planar graph is acyclic, where each edge is directed from the lower
to the upper level. If a level planar graph with this orientation has a single source and a
single sink, we call this graph level planar st-graph.

Let (G, `) be a level planar st-graph. Note that G has a unique vertex s with `(s) < `(v),
for all v ∈ V (G), v 6= s and a unique vertex t with `(t) > `(v), for all v ∈ V (G), v 6= t. Also
for every v there is a path Pv from s over v to t, where all edges of P are directed from a
lower to a higher level.

Further each face f of G has exactly one vertex a, such that the level `(a) < `(v),∀v ∈
f, v 6= a, otherwise the graph is not a level planar st-graph by definition. Denote this
vertex as a =: sf , the source of f . Also there is exactly one vertex b, such that the level
`(b) > `(v), for all v ∈ f, v 6= b. Denote it as b =: tf , the sink of f .

In an st-graph we call the boundaries of a face st-boundaries. Those st-boundaries can
be described further. For a face f all edges of f are within Bf and the boundary consists
of two independent paths going from sf to tf . Two paths are independent, if they share
only the first and the last vertex. We call the vertices that are on only one path internal
vertices. Denote one path as P l(f) and the other as P r(f), so Bf = P l(f) ∪ P r(f). For
each path there is exactly one vertex on each level between `(sf ) and `(tf ), because G is
proper. By planarity of the graph, every internal vertex of path P l(f) lies to the left of the
vertex of P r(f) that is on the same level.

The length of a path P is defined by the number of edges in it. We denote it with |P |.
For a face f we define the length of f by len(f) = |P l(f)| = |P r(f)|. Let P l(f) =
[e1, e2, . . . , elen(f)] and P r(f) = [g1, g2, . . . , glen(f)] with e1 and g1 the lowest edges on P l(f)
and P r(f). The edges ei and glen(f)−i+1 are called twin edges for i ∈ {1, . . . , len(f)}.
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3. LP2-Drawings with Rectangular Faces

Let (G, `) be a level planar graph with G = (V,E) and a given fixed embedding. We want
to provide an LP2-drawing of the graph or declare that there is none. Note that for an
LP2-drawing the level distant is equidistant and that the only possible slopes for an edge
are 1 and -1. Also recall that we only consider proper level planar graphs, so graphs where
the edges are only between adjacent levels. A restriction of the stated problem is the
question whether there is a rectangular LP2-drawing. That is an LP2-drawing where each
inner faces is a rectangle. For the outer face we make no restriction.

In the following section we show some conditions that are satisfied for rectangular LP2-
drawings. After that we present an algorithm based on 2-SAT that provides an answer to
the question if we can find a rectangular LP2-drawing for a level planar st-graph.

3.1 Rectangular LP2-Drawings
In this section we study the question whether a given level planar st-graph has a rectangular
LP2-drawing.

In a rectangular LP2-drawing the following two conditions are satisfied:

1. Fork: For every vertex u with two neighbors v and w on the same level, the slopes of
uv and uw are fixed. Thus, for instance if v lies to the left of w and both v and w
are on the level above u, then uv has slope -1 and uw has slope 1.

2. Twin edge: Twin edges have the same slope.

Figure 3.1 illustrates a drawing of a graph, where the way it has to be drawn is determined
by the fork and the twin edge condition. Orange edges are edges where the slope is fixed by
the fork condition and green edges those that are directly fixed by the twin edge condition.
The dotted line connects two twin edges, that are fixed by the fork condition, but have
different slopes and contradict thus the twin edge condition. There is no possibility to draw
the graph of Figure 3.1 as a rectangular LP2-drawing.

An example of a second graph, that has an rectangular LP2-drawing and fulfills both
conditions is given in Figure 3.2. Again orange edges are edges, that are fixed by the fork
condition and green edges are fixed by the twin edge condition.

In the preliminaries we have already mentioned, that in an st-graph each inner face f is
bounded by two paths P l(f) and P r(f). For rectangular faces we can further restrict these
paths.

7



3. LP2-Drawings with Rectangular Faces

Figure 3.1: Example of a graph, that has no rectangular LP2-drawing

Figure 3.2: Example of an rectangular LP2-drawing of a graph
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3.1. Rectangular LP2-Drawings

Lemma 3.1. In an LP2-drawing of an st-graph an inner face is rectangular iff the left
path consists of some edges with slope -1 followed by some edges with slope 1 and their
twin edges have the same slope. Thus each path has exactly one bend and a left path has as
many edges with slope 1 as the right path.

Proof. A rectangle consists of four bends of 90 degrees. Two of those bends are fixed at the
highest and lowest vertex of a face f . Those bends are diagonally opposite in the rectangle.
Therefore there is exactly one change of slopes at each path of f . The fork condition
already implies, that the first edge of a left path has slope -1 and the last edge has slope 1.
Therefore on a left path, we first have some edges with slope -1 and the some edges with
slope 1. The symmetry of a rectangle implies that twin edges have the same slope.

For the other direction of the equivalence we look at a face, with the left path consisting of
some edges with slope -1 first and then of some edges with slope 1, and where twin edges
have the same slope. We want to show, that this face is rectangular. We can divide the
boundary of this face into four straight lines: two lines at the left path, the first having
slope -1 and the second slope 1, and two lines at the right path, the first with slope 1
and the second with slope -1. Those lines form a quadrangle. Also all four bends have 90
degrees because we always change from slope 1 to -1 or from slope -1 to 1. Therefore the
face is a rectangle.

9



3. LP2-Drawings with Rectangular Faces

3.2 2-SAT for Rectangular LP2-Drawings
In this section we present an algorithm based on 2-SAT formulations that decides whether
there exists a rectangular LP2-drawing and constructs one if it exists. Let (G, `) be a
level plane st-graph. So we already have given the level assignment and an embedding
τ that fixes the ordering of the vertices on one level. The only thing that needs to be
considered for a drawing is therefore the x-coordinate of every vertex. Instead of choosing
the x-coordinates individually for every vertex, we will choose the slopes of every edge.
Then a drawing is fixed up to translation along the x-axis. For choosing the slopes we
use the fork and the twin edge condition as defined in the previous section. They restrict
possible slopes for edges. Also some slopes influence each other. We will represent this
dependencies through clauses. The resulting Boolean formula will be proved to be satisfiable
if and only if there exists an rectangular LP2-drawing.

For each inner face f of G and each edge e ∈ f we add a Boolean variable s(f, e). Intuitively
this variables can be identified with the slope that e has with respect to a face f by the
following rule:

s(f, e) = 0⇔ slope(e) = -1
s(f, e) = 1⇔ slope(e) = 1

Thus each edge is represented by two variables corresponding to the two faces the edge
bounds.

Next for all inner faces f of G there is a list of clauses that will be added to the 2-SAT
instance. These clauses ensure that each face is rectangular and because of that, opposite
sides of this rectangle have the same length. Let P l(f) = [e1, e2, . . . , elen(f)] be the edges
of the left path of f . We now construct a set of clauses as follows:

Cl.1 s(f, ei)→ s(f, ei+1) with i ∈ {1, . . . , len(f)− 1}1

Cl.2 ∀e ∈ P l(f) and the twin edge g of e in terms of f : s(f, e)↔ s(f, g)2

Cl.3 s(f, e1)↔ 0

Cl.4 s(f, elen(f))↔ 1

Because of the twin edges the clauses for the left path restrict the slopes for the right path,
too.

Lemma 3.2. Let f be an inner face of G and ϕ an assignment of the variables. If Clauses
Cl.1 to Cl.4 are satisfied for f then ϕ corresponds to a rectangular drawing of f .

Proof. The Clause Cl.3 and Cl.4 ensure, that there is at least one bend on each path.
Without loss of generality we only look at the left path. There are two consecutive edges
ei and ei+1 along the path, where s(f, ei) = 0 and s(f, ei+1) = 1. That means that ei is
below and ei+1 above a bend and thus, there is a bend at the vertex v, that is incident to
both ei and ei+1.

Also there cannot be two bends at one path. Suppose there is a path with two bends.
Then there is an edge ej , directly above the lowest bend with s(f, ej) = 1, and an edge ek
directly below the next bend. Edge ek needs to have s(f, ek) = 0, otherwise there was no
bend. But then j < k and Clause Cl.1 s(f, ei) → s(f, ei+1) cannot be satisfied for some
i ∈ {l, . . . , k − 1}, which is a contradiction. Thus, each path has exactly one bend, and
that means the face is a quadrangle.

1An implication (→) can be transformed in a 2-literal clause: a → b = ¬a ∨ b.
2An equivalency (↔) can be transformed into a ↔ b = (a → b) ∧ (b → a).
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3.2. 2-SAT for Rectangular LP2-Drawings

Opposite sides of a face have the same length because twin edges have the same slope
by Clause Cl.2 and the distances between levels are the same. Therefore by assigning
each edge e the slope that is implied by s(f, e) and fixing the coordinates of one vertex
arbitrarily, the drawing of the inner face f is a rectangle.

Let f and h be two inner faces that share an edge e. The following clause makes sure that
the assignment of the slope of e at f and h are consistent. For every two inner faces f, h
and every edge e with e ∈ f, h we add the clause:

Cl.5 s(f, e)↔ s(h, e)

That completes the Boolean formula to describe a rectangular LP2-drawing, as proven
in the following theorem. Given a level plane st-graph (G, `), let S(G, `) be the 2-SAT
instance that is formed by Clause Cl.1 to Clause Cl.4 for all faces of G and Clause Cl.5 for
all edges of G.

Theorem 3.3. Let (G, `) be a level plane st-graph and S = S(G, `). Every assignment of
the variables, that satisfies S corresponds bijectively to a rectangular LP2-drawing.

Proof. Let (G, `) be a level plane st-graph and let S = S(G, `) be the 2-SAT instance.

”⇐ ” We show, that if there is a rectangular LP2-drawing Γ, then there is an assignment,
that satisfies S. For each edge e ∈ G and each face f that e is incident to, we set

s(e, f) =
{

0 if slope(e) = -1
1 if slope(e) = 1

and get an assignment ϕ of S. We can show that ϕ satisfies S, by proving that ϕ
satisfies each clause.

Let f be some inner face, P l(f) the left path from sf to tf and P r(f) the right path.
Vertex sf has two neighbors on the level above, say u and w. Let u be to the left of
w by τ without loss of generality. Because Γ is an LP2-drawing, the edge sfu has
slope -1 and sfw slope 1, otherwise w would be drawn to the left of v. Therefore
Clause Cl.3 is satisfied. The same proof can be made for Clause Cl.4.

Clause Cl.1 is fulfilled, because of Lemma 3.1 there is exactly one bend at each path
and edges on P l(f) first go to the left and after the bend to the right. With that
Clause Cl.1 is satisfied for each edge on a left path. Clause Cl.2 is satisfied, because
in a rectangle the two opposite sides have the same length. Because every edge has
the same fixed length, twin edges have the same slope. That every edge has only one
slope, regardless the face we look at, is given by Clause Cl.5.

”⇒ ” It must be shown that an assignment ϕ of the variables that satisfies S can be
converted into a rectangular LP2-drawing of G. So let ϕ be a satisfiable assignment.
We give every edge e the slope that the assignment implies and fix the x-coordinates
of s, the lowest vertex of G, arbitrarily. The y-coordinate is already fixed by the level
that s is on. Thus the slopes of the edges of G give us a complete drawing. Now
show that the resulting drawing Γ is a rectangular LP2-drawing of G.

By Lemma 3.2 each inner face is a rectangle. Because (G, `) is an st-graph, there is
a vertex s with `(s) < `(v), for every v ∈ V (G), v 6= s. We will now construct the
drawing level by level, starting at `(s), and ensure the following invariants, where l
denotes the considered level.

I.1 From left to right l first cuts the outer face, then some inner faces and at last
the outer face again.

11



3. LP2-Drawings with Rectangular Faces

v w v w

x 6= y x = y

or

Figure 3.3: Different possibilities for the neighbors of v and w in Case 1 of Theorem 3.3

I.2 Edges have no internal crossings.

I.3 Distinct vertices on the same level have distinct x-coordinates.

Let all invariants be true for every level below the currently considered level l. We
now need to prove that the invariants hold for l, too. The first invariant I.3 is true for
every level because we only look at st-graphs. If the outer face was between two inner
faces, then there would be at least two sources or two sinks. The last two invariants
I.2 and I.3 will ensure, that the drawing of the graph up to l is planar.

In an st-graph the distance between two vertices v and w on a level is even. That is
true because we can find an s-v-path and an s-w-path. Each vertex on such a path
cannot lie at the same x-coordinate as the vertex before it but lies one unit to the left
or to the right. Because both paths start at the same point s, the distance between
v and w is even. If edges have an internal crossing, then the distance between the
vertices on both levels is 1, because there are only edges between two adjacent levels.
Thus Invariant I.2 is true.

To prove Invariant I.3, we make a proof by contradiction. Consider two different
vertices v and w occupying the same space at l. Each of the vertices has at most one
neighbor on the level below, because of the st-graph. Next we make a case distinction
whether v and w have two or one lower neighbors:

In Case 1 at least one vertex has two lower neighbors, without loss of generality v.
One of this neighbors x of v occupies the same space as the lower neighbor of w, call
it y. In Figure 3.3 the different possibilities for x and y are shown. If x 6= y, there is
a contradiction of the third invariant at the level before. If x = y, then both v and w
are upper neighbors of x, and thus they form the lower part of an inner face. Then
the clauses ensure that v and w occupy different places at l, because this face is a
rectangle. Therefore this case can never happen.

In Case 2 both v and w have exactly one lower neighbor, say v has x and w has y as
lower neighbor. We know that the distance between x and y is 2, and that there in
no other vertex between those two. Therefore x and y and thus v and w share a face
f . Face f is an inner face, but it can not be a rectangle, if v 6= w because either both
v and w are tf or there is more then one bend on both paths from sf to tf . But
then ϕ is not a proper assignment of S, because Lemma 3.2 already ensures, that
each inner face is a rectangle. Therefore there are no two different vertices occupying
the same space at a level. Thus every invariant holds for every level and results in a
rectangular LP2-drawing of the graph.

Now we have proven that determining whether a level plane graph has a rectangular
LP2-drawing can be encoded as a 2-SAT instance. An assignment of a 2-SAT instance can
be found in polynomial time, so with the here presented method a rectangular LP2-drawing
can also be found in polynomial time.
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4. General LP2-Drawings

In this chapter we describe algorithms that given a level plane graph decide if it has an
LP2-drawing. For those algorithms we use flow networks. In comparison to the previous
chapter we drop the restriction of rectangular inner faces.

4.1 LP2-Drawings of st-Graphs
We first consider only st-graphs and discuss non-st-graph in the next section. So let
(G, `) be a level plane st-graph. With that restriction the boundary of every face is an
st-boundary, too. Since the considered graphs are always proper, there are exactly two
vertices of one face at every level between the highest and the lowest level of a face.

For each inner face f and a drawing Γf we define the width of f at a level li as the distance
between the two vertices of level li. We define widthi(f) = xw − xv, where xv, xw are the
x-coordinates of v ∈ P l(f) and w ∈ P r(f) and `(v) = `(w) = li. For the highest and lowest
level of f we define the width to be 0. The distance between two vertices at the same level
is even, because we only allow slopes -1 and 1.

Given a drawing of an inner face f with slopes -1 and 1, we denote by nli(f) and nri (f) the
number of edges with slope 1 in f that are below the level li and lie on P l(f) and P r(f),
respectively.

Lemma 4.1. Let G be a level plane st-graph, f an inner face of G and Γf an LP2-drawing
of f . For every level li with vertices of f on li the following equation holds:

widthi(f) = 2 · (nri (f)− nli(f)).

Proof. Let Γf be a drawing of f . If li = `(sf ), then we have widthi(f) = 0 by definition.
We also have nli(f) = nri (f) = 0, because we have no edges below level li, that are incident
to f .

Now consider level li with `(sf ) < li < `(tf ). Let v and w be the two vertices on li that
are incident to f . Without loss of generality we have v ∈ P l(f) and w ∈ P r(f). Let xv be
the x-coordinate of v and xw the x-coordinate of w. Then widthi(f) = xw − xv.

Through the sf -v-path P1 ( P l(f) and the sf -w-path P2 ( P r(f) the coordinates xv and
xw are fixed with respect to the x-coordinate xs of sf . We have

xv = xs + nli(f)− (`(v)− `(sf )− nli(f)) = xs + 2 · nli(f) + `(sf )− i and

13



4. General LP2-Drawings

xw = xs + nri (f) + (`(w)− `(sf )− nri (f)) = xs + 2 · nri (f) + `(sf )− i,

because the distance between two adjacent levels is always 1 and we only allow slopes -1
and 1. Thus we have

widthi(f) = xw−xv = (xs+2·nri (f)+`(sf )−i)−(xs+2·nli(f)+`(sf )−i) = 2·(nri (f)−nli(f)).

For level li = `(tf ) we have defined the width as widthi(f) = 0 We also need the x-coordinate
xt of tf to be the same whether we look at P l(f) or P r(f). So xt = xs + 2 · nli(f) +
`(sf ) − `(tf ) = xs + 2 · nri (f) + `(sf ) − `(tf ) and thus nli(f) = nri (f). But then we have
2 · (nri (f)− nli(f)) = 0.

Observe that since |P l(f)| = |P r(f)|, f has an equal number of edges with slope -1 on
P l(f) and P r(f). For a drawing of a face to be planar, we need that we have no internal
crossings of edges and no two distinct vertices to be assigned to the same coordinates. It is
easy to see that this is equivalent to the width of the face to be strictly greater than zero
for every level that is not the highest or the lowest. The following Lemma follows from
Lemma 4.1.

Lemma 4.2. Let G be a level plane st-graph and f an inner face of G. For a drawing Γf
of f with slopes -1 and 1 the following statements are equivalent:

(i) Γf is an LP2-drawing,

(ii) widthi(f) > 0 for every level li with `(sf ) < li < `(tf ),

(iii) for level li ∈ {`(sf ), `(tf )} we have nli(f) = nri (f) and for level `(sf ) < lj < `(tf ) we
have nlj(f) < nrj(f).

Next, we define a flow network, motivated by the definitions used by Tamassia in [Tam87].
A network N consists of a set N of nodes, and a set A of arcs. Every arc (u, v) has a lower
bound 0 ≤ λ(u, v) and a capacity (upper bound) µ(u, v). A flow Φ of N = (N,A) is a
function Φ: A→ N0 that assigns an integer Φ(u, v) to every arc (u, v). The flow Φ is valid
if the following holds:

1. For every arc (u, v) the value Φ(u, v) satisfies λ(u, v) ≤ Φ(u, v) ≤ µ(u, v).

2. For every node, that is not a source or a sink, the sum of the flows of incoming and
outgoing arcs is equal.

Observe that then sum of the outgoing flow of all sources is equal to the sum of the incoming
flow of all sinks.

Now we construct such a network NG that corresponds to a level planar st-graph (G, `)
with a fixed embedding. For every edge e in G the network NG has a dual arc e∗ going from
a left node r[e∗] to a right node l[e∗]. In Figure 4.1 these are the blue edges. Intuitively,
flow of value 1 going through those arcs corresponds to a slope of 1 for the corresponding
primal edge and a flow of 0 to a slope of -1. Therefore we set the lower bound λ(e∗) = 0
and the capacity µ(e∗) = 1 for a dual arc e∗ of an edge e. For a drawing that is induced by
a valid flow and an edge e, we set:

slope(e) =
{
-1 if Φ(e∗) = 0
1 if Φ(e∗) = 1

Next, for every inner face f we add arcs between the right nodes of edges on P l(f) and the left
nodes of edges on P r(f). For this let P l(f) = [e1, . . . , elen(f)] and P r(f) = [g1, . . . , glen(f)].
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4.1. LP2-Drawings of st-Graphs
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(b) Same face with different flows

Figure 4.1: Network and flows for one face

We add arcs (l[g∗i ], r[e∗i ]) for every i ∈ {1, . . . , len(f)}. These are the red arcs in Figure 4.1.
Also we add arcs (r[e∗j ], l[g∗j+1]), the green arcs, for every j ∈ {1, . . . , len(f)−1}. For the sake
of brevity we refer to those arcs by (gi, ei) = (l[g∗i ], r[e∗i ]) and by (ej , gj+1) = (r[e∗j ], l[g∗j+1]).
If we have an arc (u, v) of one of these types, then we set λ(u, v) = 1 and µ(u, v) = ∞.
The flow over those arcs corresponds to the width of a face and thus the lower bound 1
ensures, that the distance between two distinct vertices is nonzero. We call them internal
arcs since they are always in exactly one face.

At last, we add one source s∗ and arcs (s∗, r[g∗]) for every edge g that has the outer face as
right face. Also we add one sink t∗ and arcs (l[e∗], t∗) for every edge e that has the outer
face as left face. All those arcs (u, v) have λ(u, v) = 0 and µ(u, v) = 1, as they are dual
arcs and the flow over them corresponds to the slope of their primal edge, as described
above. Observe that the constructed network has exactly one source and one sink.

Now we fix an arbitrarily face f of G. For f let P l(f) = [e1, . . . , elen(f)] and P r(f) =
[g1, . . . , glen(f)]. A valid flow Φ of NG induces a drawing Γf of f as follows. Consider a
fixed position of sf , the lowest vertex of f . The slopes of the edges of P l(f) and P r(f)
corresponding to the flow on their dual edges, determine the position of the vertices of f .
The next lemmas prove an equivalence between the flow Φ and the induced drawing Γf .

For a fixed inner face f we denote with li for i ∈ {0, . . . , len(f)} the levels which contain
vertices of f. With l0 we denote the lowest level and with llen(f) the highest level of f. We
say an arc (u, v) in the face f crosses a level li for i ∈ {1, . . . , len(f)− 1}, if u = r[ei] and
v = l[gi+1].

Lemma 4.3. Let G be a level plane st-graph, f an inner face of G, Φ is a valid flow of
NG and Γf an induced drawing of f . For every level li with i ∈ {1, . . . , len(f) − 1} the
following equation holds for an arc (u, v) that crosses li:

Φ(u, v) = nri (f)− nli(f).

Proof. By construction of Γf , an edge has slope 1 if and only if the flow going through
the dual arc is 1. The flow conservation gives us that every unit of flow incoming to f
through an arc g∗j with j ≤ i either goes out through an arc e∗k with k ≤ i or will be passed
upwards through the arc (u, v) = (ei, gi+1), that crosses li. Thus the flow value of (u, v) is:

Φ(u, v) =
i∑

j=1
Φ(g∗j )−

i∑
k=1

Φ(e∗k).
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4. General LP2-Drawings

Since Φ(g∗j ) and Φ(e∗k) take values in {0, 1} instead of the sum of the flows we can count
the number of arcs with with flow 1 beneath level li. Those arcs then correspond to edges
with slope 1 that are beneath level li. Thus we have:

Φ(u, v) = #{gj | Φ(g∗j ) = 1 and j ≤ i} −#{ek | Φ(e∗k) = 1 and k ≤ i} ⇔

Φ(u, v) = #{gj | slope(gj) = 1 and j ≤ i} −#{ek | slope(ek) = 1 and k ≤ i} ⇔

Φ(u, v) = nri (f)− nli(f).

Therefore for every level li with i ∈ {1, . . . , len(f) − 1} and the arc (u, v) that crosses li
the equation Φ(u, v) = nri (f)− nli(f) holds for every flow Φ and the induced by it drawing
Γf of a face f .

Now, we show that Γf is an LP2-drawing of f , if Γf is induced by a valid flow Φ. For this
let the incoming flow of f (outgoing flow of f , respectively) be the sum of flow that goes
through arcs g∗i (e∗i , respectively) for i ∈ {1, . . . , len(f)}.

Lemma 4.4. A valid flow Φ of NG induces an LP2-drawing of f .

Proof. Let Φ be a valid flow of NG and Γf the induced drawing of f . We prove that Γf is
an LP2-drawing. For this we prove that for level li ∈ {`(sf ), `(tf )} we have nli(f) = nri (f)
and for level `(sf ) < lj < `(tf ) we have nlj(f) < nrj(f).

For li = `(sf ) we have nli(f) = nri (f) = 0. So consider a level li with `(sf ) < li < `(tf ).
We know that the arc (u, v) = (ei, gi+1) that crosses li has lower bound λ(u, v) = 1 and
that Φ(u, v) = nri (f) − nli(f), because of Lemma 4.3. Thus 1 ≤ nri (f) − nli(f) and with
that nli(f) < nri (f). For li = `(tf ) let a = nri (f) and b = nli(f) be the number of edges on
P r(f) and P l(f) respectively with slope 1. The flow that goes through the dual arc of one
of those edges is 1. Note that the whole incoming flow of f goes through the k arcs that
are dual to the a edges on P r(f). So the value of the incoming flow of f is a. Also the
whole outgoing flow of f goes through the b arcs that are dual to the b edges on P l(f) and
thus the value of the outgoing flow of f is b. Because the flow conservation is satisfied, we
have a = b.

Then by Lemma 4.2 Γf is an LP2-drawing.

In the following, we aim to generalize the statement of Lemma 4.4 to the whole graph G.
In analogy to a by Φ induced drawing of a single face f , we define an induced drawing of
the whole graph (G, `). Assume s, the lowest vertex of G, has a fixed coordinate. Again,
let the slope of an edge e correspond to the flow Φ over edge e∗. Every vertex v in G is
assigned to the coordinates, that are fixed by the coordinates of s and the slopes on a
s-v-path. First, we show that Γ is well defined if Φ is valid, so that every vertex gets the
same coordinates regardless what s-v-path we choose. For this we use that every edge
e ∈ G has the same slope slope(e), regardless whether we look from the left or the right face
of e. Thus drawings of faces can be added to one another to create the induced drawing
of (G, `). Recall that the coordinates of the vertices are unique for each face. Thus the
coordinates of one vertex are unique in Γ, too, and hence Γ is well-defined.

Next we show that a valid flow over NG gives us an LP2-drawing of (G, `) and that for
every LP2-drawing of (G, `) there is a valid flow over NG.

Theorem 4.5. Let (G, `) be a level plane st-graph and NG the corresponding flow network.
Every flow Φ of NG corresponds bijectively to an LP2-drawing Γ of (G, `).

Proof. Let (G, `) be a level plane st-graph and let NG be the corresponding flow network.
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4.1. LP2-Drawings of st-Graphs
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Figure 4.2: Illustration for assigning the correct flow to an arc (gi, ei)

“⇐ ” We show, that if there is an LP2-drawing Γ of (G, `), then there is a valid flow over
NG. So we need to give each arc (u, v) a flow value Φ(u, v) such that the resulting
flow Φ is a valid flow of NG. First set the flow at dual arcs as follows.

Φ(e∗) =
{

0 if slope(e) = -1
1 if slope(e) = 1.

Next, we consider the internal arcs. For this we fix an arbitrary face f . By Lemma 4.2,
we have nli(f) = nri (f) for level li = `(tf ) and every inner face f . Thus we have as
many right nodes with incoming flow 1 corresponding to edges on P r(f) as we have
left nodes with outgoing flow 1 corresponding to edges on P l(f). Recall that the
arc between nodes l[g∗i ] and r[e∗i ] (or r[e∗j ] and l[g∗j+1]) is denoted (gi, ei) ((ej , gj+1),
resp.), for i ∈ {1, . . . , len(f)} (j ∈ {1, . . . , len(f)− 1}, resp.).

First we set Φ(g1, e1) = 1 and Φ(e1, g2) = 1. This is fixed for every drawing of every
face, because slope(g1) = 1 and slope(e1) = -1 and thus the flow conservation at r[e∗1]
and l[g∗1] is satisfied.

Next we set Φ(ej , gj+1) = nrj(f)− nlj(f). Then we have Φ(ej , gj+1) ≥ λ(ej , gj+1) = 1
because nlj(f) < nrj(f) by Lemma 4.2.

For every other arc (gi, ei) for i ∈ {2, . . . , len(f)− 1} we set the flow such that the
flow conservation is fulfilled. The arc (gi, ei) is the only outgoing arc of a left node
l[g∗i ] and the only incoming arc of of a right node r[e∗i ], as illustrated in Figure 4.2.
We need to prove that

Φ(ei−1, gi) + Φ(g∗i ) = Φ(e∗i ) + Φ(ei, gi+1). (4.1)

Then we can set Φ(gi, ei) = Φ(ei−1, gi) + Φ(g∗i ) and the flow conservation at l[g∗i ] and
r[e∗i ] is fulfilled.

To prove equation (4.1) we make a case analysis on the slopes of ei and gi.

Case 1: slope(ei) = slope(gi): Then also nri (f)−nli(f) = nri+1(f)−nli+1(f) and thus
Φ(ei−1, gi) = Φ(ei, gi+1). Thus, the statement is true for this case.

Case 2: slope(ei) = -1 and slope(gi) = 1: Then

nri (f)− nli(f) + 1 = nri+1(f)− nli+1(f)⇔
Φ(ei−1, gi) + 1 = Φ(ei, gi+1)⇔

Φ(ei−1, gi) + Φ(g∗i ) = Φ(ei, gi+1) + Φ(e∗i ).
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4. General LP2-Drawings

Case 3: slope(ei) = 1 and slope(gi) = -1: In this case we have

nri (f)− nli(f) = nri+1(f)− nli+1(f) + 1⇔
Φ(ei−1, gi) = Φ(ei, gi+1) + 1⇔

Φ(ei−1, gi) + Φ(g∗i ) = Φ(ei, gi+1) + Φ(e∗i ).

Thus, the flow conservation holds.

Finally, we have Φ(elen(f), glen(f)) = 1, because otherwise the number of edges with
slope 1 on the left and the right path differs. Thus the flow conservation holds for
l[e∗len(f)], too.

Now, within an inner face the flow conservations are satisfied. Next, we consider an
edge e with its incident faces f1 and f2. Edge e has the same slope whether you look
at it from f1 or f2 and thus the duel arc e∗ has the same flow in both faces, too.
Thus, the flow is well-defined.

Last, we need to give the arcs flow 1, that go from the source to an edge with slope 1.
Arcs from an edge with slope 1 to the sink also get flow 1. The other arcs have flow
0. Thus we have constructed a valid flow of NG.

“⇒” For the other direction let Φ be a valid flow of NG. Let Γ be the by Φ induced
drawing of (G, `). Now we need to show, that Γ is an LP2-drawing.

Like in Theorem 3.3 we show that the three invariants I.1, I.2 and I.3 hold for every
level and prove it from the lowest to the highest level. Let l be a level of G and the
invariants be true for all levels below l. Invariants I.1 and I.2 are true because again
we only consider st-graphs. The proof is the same as in Theorem 3.3.

Now we prove the third invariant I.3, that for every distinct vertices v and w on the
same level, v and w have distinct x-coordinates. We distinguish the two cases if v
and w share an inner face or not.

For Case 1 v and w share a common inner face f . Then Invariant I.3 is true, because
we have an arc in Φ that is in f and cuts level l. Thus by Lemma 4.3 and Lemma 4.1
the distance between v and w is greater than 0.

For Case 2 v and w lie on the same level l but have no common inner face. Without
loss of generality in the ordering τ , that is given by the embedding, τ(v) < τ(w).
Then there are vertices x and y on l with τ(x) = τ(v) + 1 and τ(y) = τ(w) − 1.
Vertices v and x a common inner face and thus by Case 1 the distance between v
and x is greater than 0. The same is true for y and w. If x = y or if x and y share
an inner face, then the distance between x and y is at least 0. Then the distance
between v and w is greater than 0. Otherwise x and y do not share an inner face.
Then we can make the same procedure that we have done for v and w now for x and
y. We repeat this recursively until some vertices share the same inner face. Then the
distance between v and w is greater than 0, too.

Thus in each case the distance between distinct vertices on the same level is greater
than 0 and therefore Invariant I.3 holds. Because we used only slopes -1 and 1 in the
construction of Γ, we know that Γ is an LP2-drawing.
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Figure 4.3: A graph with left and right boundary and corresponding flow network

4.2 Flow Network for LP2-Drawings

In the previous section we described an algorithm that can, given an level planar st-graph,
decide if there is an LP2-drawing of the graph. In this section we present a similar algorithm,
that can operate on every level planar graph. We assume that the graph is connected.
Otherwise we apply the algorithm to each component individually.

By expanding the problem, we lose some restriction we could make before. But some
conditions like the following, clearly still are satisfied in an LP2-drawing.

Fork: For every vertex u with two neighbors v and w on the same level, the slopes of uv
and uw are fixed. Thus, for instance if v lies left of w and both v and w are on the
level above u, then uv has slope -1 and uw slope 1.

The algorithm of this section is again based on a flow network. However, before constructing
the flow network we transform the level plane graph (G, `) to a level plane graph (G′, `′) by
adding vertices and edges to G. So G ⊂ G′ and for every vertex x ∈ G we have `′(x) = `(x)
and τ ′(x) = τ(x). Let l1, l2, . . . , ln be the levels of G that contain vertices, with l1 the
lowest and ln the highest level. For every level li with i ∈ {1, . . . , n} we add one vertex ai
with `′(ai) = li and τ ′(ai) < τ ′(x) for every vertex x with `′(x) = li. Similarly, for every
level li with i ∈ {1, . . . , n} we add one vertex bi with `′(bi) = li and τ ′(bi) > τ ′(x) for every
vertex x with `′(x) = li. Next we add edges aiai+1 as left boundary and edges bibi+1 as
right boundary for i ∈ {1, . . . , n− 1}. For the following paragraphs we refer to (G′, `′) just
by (G, `). So we assume that G has left and right boundary edges as described above.
In Figure 4.3 the black graph is such a graph with left and right boundary. The added
vertices are explicitly labeled.

For an edge e = xy let right(e) = uv be the edge with e 6= uv, `(x) = `(u), τ(u) ≥ τ(x),
`(y) = `(v), τ(v) ≥ τ(y), and where τ(u)+τ(v) is minimal. We call this edge right edge of e.
Intuitively it is the nearest edge of e to the right between the same two levels. Similarly let
left(e) = wz be the edge with e 6= wz, `(x) = `(w), τ(w) ≤ τ(x), `(y) = `(z), τ(z) ≤ τ(y),
and where τ(w) + τ(z) is maximal. This edge will be called left edge of e and is intuitively
the nearest edge of e to the left between the same two levels. In Figure 4.3 the edge g is
the right edge of e (and also e is the left edge of g). Because (G, `) is planar, this edges are
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Figure 4.4: An example for placing the green arcs

unique. Edges that are on the left boundary only have a right edge but no left edge and
edges on the right boundary only have a left edge but no right edge.

In Section 4.1 we define the width of an st-face on one level l as the distance between the
two vertices on l. Here the width of a face at l cannot be defined that way, because f could
have more then two vertices at l. Therefore we introduce some new notations. For each
edge e we refer to the lower vertex (upper vertex, respectively) of e as the source of the
edge, s(e), (sink of the edge, t(e), respectively). Now for two edges e, g connecting the same
two levels we define the distance of the sinks of the edges ∆up(e, g) and the distance of the
sources of the edges ∆low(e, g).

The definition of a flow network N = (N,A) is the same as in Section 4.1. The construction
of the network NG corresponding to a given level plane graph (G, `) with a left and right
boundary is slightly different. An example is shown in Figure 4.3. First we add a dual
arc e∗ for each edge e in G that is not a left or right boundary edge. Those are the blue
edges in Figure 4.3. Those arcs go from a right node r[e∗] to a left node l[e∗]. As before,
we identify the flow Φ over those arcs with the slope of the inducing edge e: Φ(e∗) = 1
(Φ(e∗) = 0, respectively) if and only if e has slope 1 (-1, respectively). We set the lower
bound and capacity for those edges as λ(u, v) = 0 and µ(u, v) = 1. A left boundary edge
has only the right node and a right boundary edge has only the left node.

Next we add arcs between a left node of an edge g1 to a right node of an edge e1, where
e1 is the left edge of g1, so left(g1) = e1. These are the red arcs is Figure 4.3. For the
sake of brevity, we refer to the edges by (g1, e1) = (l[g1], r[e1]). We set λ(g1, e1) = 1 and
µ(g1, e1) =∞.

Next let e1 be an edge that is not a right boundary edge and let be g1 = right(e1). We
look at the edges that are one level above e1 and g1. The only edges that we consider
are edges g2 with τ(s(g2)) > τ(t(e1)) and where e2 = left(g2) has τ(s(e2)) < τ(t(g1)) and
where s(e2) 6= s(g2). An example of three such edges denoted as g2,1, g2,2 and g2,3 is given
in Figure 4.4. Now we add arcs (r[e1], l[g2]) from e1 to every such edge g2. These arcs are
the green ones in Figure 4.3. We refer to those arcs by (e1, g2) and give them λ(e1, g2) = 1
and µ(e1, g2) =∞, too. Note that an arc of one of the last two types always lies in exactly
one face. In Figure 4.5 a drawing of one face with the corresponding flow is pictured.

At last we add a source node s∗ with arcs (s∗, l[g]) for every edge g that is between the
levels l1 and l2 and where s(g) 6= s(e) for e = left(g). Additionally we add a sink node
t∗ with arcs (r[e], t∗) for every edge e that is between the levels ln−1 and ln and where
t(e) 6= t(g) for g = right(e). Those arcs (u, v) get λ(u, v) = 1 and µ(u, v) =∞.

For a flow Φ of NG, let Φout(ue) denote the outgoing flow of a node ue corresponding to
an edge e without the flow through e∗. So Φout(ue) =

∑
(ue,v)∈A\{e∗}Φ(ue, v). Let Φin(ve)

be the incoming flow of a node ve corresponding to the edge e without the flow that goes
over e∗. Then Φin(ve) =

∑
(u,ve)∈A\{e∗}Φ(u, ve). Note that for an edge e and its right edge
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Figure 4.5: One face with network arcs

g = right(e) we have Φout(r[e]) = 0 (Φin(l[g]) = 0, respectively) if and only if t(e) = t(g)
(s(e) = s(g), respectively).

Next let (G, `) be a level planar graph with a left and right boundary. We show, that for a
flow of NG we can construct an LP2-drawing of (G, `) and also that every LP2-drawing
where the boundary edges have slope -1 can be described by a flow of NG. For this we first
show a minor statement that will be used later in the proof.

Lemma 4.6. Let (G, `) be a level plane graph with a left and right boundary and N the
corresponding network. Let Φ be a valid flow of N and let e and g = right(e) be two edges
of G. Assume a drawing Γ of (G, `) that identifies the slopes and dual arcs as usual. If we
have 2 · Φin(l[g∗]) = ∆low(e, g) for Γ then also 2 · Φout(r[e∗]) = ∆up(e, g).

Proof. Let (G, `), N and Φ be as stated above. Additionally let e be an edge of G and
g = right(e). Assume a drawing Γ where the coordinates of s(e) and s(g) are fixed such
that 2 ·Φin(l[g∗]) = ∆low(e, g). Then the coordinates of t(e) and t(g) are fixed by the slopes
and we have:

t(e) = s(e) + slope(e)
t(g) = s(g) + slope(g).

Note that s(g) − s(e) = ∆low(e, g) and thus ∆up(e, g) = ∆low(e, g) − slope(e) + slope(g).
Furthermore observe that we have Φout(l[g∗]) = Φin(r[e∗]) for every such pair e, g. We
can now make a case analysis on the flows over e∗ and g∗ to proof the lemma. The case
distinction is also pictured in Figure 4.6.

Case 1: Φ(e∗) = 0 and Φ(g∗) = 0: Then

Φout(r[e∗]) = Φin(r[e∗]) = Φout(l[g∗]) = Φin(l[g∗]).

Additionally ∆up(e, g) = ∆low(e, g), because the edges e and g have the same slope.
Therefore we have 2 · Φout(r[e∗]) = ∆up(e, g).

Case 2: Φ(e∗) = 0 and Φ(g∗) = 1: Then we have

Φout(r[e∗]) = Φin(r[e∗]) = Φout(l[g∗]) = Φin(l[g∗]) + 1.

Also ∆up = ∆low + 2 because slope(e) = -1 and slope(g) = 1. Then 2 · Φout(r[e∗]) =
2 · Φin(l[g∗]) + 2 = ∆low(e, g) + 2 = ∆up(e, g).
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Figure 4.6: Case analysis for flows over e∗ and g∗ to prove correlation of flows and distances

Case 3: Φ(e∗) = 1 and Φ(g∗) = 1: In this case we have

Φout(r[e∗]) = Φin(r[e∗])− 1 = Φout(l[g∗])− 1 = Φin(l[g∗]).

Similarly to the first case, ∆up(e, g) = ∆low(e, g), because again slope(e) = slope(g).
Then we have 2 · Φout(r[e∗]) = ∆up(e, g).

Case 4: Φ(e∗) = 1 and Φ(g∗) = 0: Similar to the second case we have

Φout(r[e∗]) = Φin(r[e∗])− 1 = Φout(l[g∗])− 1 = Φin(l[g∗])− 1.

Because of the flow of the dual arcs we have slope(e) = 1 and slope(g) = -1 and
thus ∆up(e, g) = ∆low(e, g)− 2. Then we see that for the last case 2 · Φout(r[e∗]) =
2 · Φin(l[g∗])− 2 = ∆low(e, g)− 2 = ∆up(e, g).

Now we prove the duality between a valid flow and an LP2-drawing as requested.

Lemma 4.7. Let (G, `) be a level plane graph with a left and a right boundary and NG
the resulting network. Every flow Φ of NG corresponds bijectively to an LP2-drawing Γ of
(G, `) with slope -1 for all boundary edges.

Proof. Let (G, `) be a level plane graph with a left and a right boundary. Furthermore let
NG be the corresponding network.
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Figure 4.7: Example of a graph G at level li+1

“⇒ ” Let Φ be a valid flow of NG. We give a schema how to construct an LP2-drawing of
(G, `) from it. First we construct an LP2-drawing of (G, `).

For this we start at level l1. We chose the x-coordinates of the leftmost vertex, that
is a1, arbitrarily. Now we place the other vertices on l1. For this let be v ∈ l1 \ {a1}
and let g be the leftmost edge that is incident to v. Out of construction this edge
has an arc (s∗, l[g∗]). Consider the vertex u with τ(v) = τ(u) + 1. Then we choose
the x-coordinates xv as xv = xu + 2 · Φ(s∗, l[g∗]), where xu is the x-coordinate
of u. Since Φ(s∗, l[g∗]) > 0 we do not place two distinct vertices at the same
coordinates. For e = left(g) we see that e is incident to u because G is connected.
Thus 2 · Φin(l[g∗]) = ∆low(e, g).

Next, we assume that we already have placed the vertices up to level li with i < n− 2
such that

C.1 The drawing of G up to level li is an LP2-drawing and

C.2 For every two edges e and g = right(e) between level li and li+1 we have
2 · Φin(l[g∗]) = ∆low(e, g).

Now we want to place the vertices on level li+1 in such a way that Condition C.1
and Condition C.2 are satisfied for li+1, too. For this we first assign the slopes to the
edges that are between level li and li+1. If d is an edge between level li and li+1 we
set

slope(d) =
{
-1 if Φ(d∗) = 0 or d ∈ {aiai+1, bibi+1}
1 if Φ(d∗) = 1

For the vertices on level li+1 that have neighbors on level li the slopes of the connecting
edges imply their coordinates. Because Condition C.2 holds for level li and by
Lemma 4.6 we have 2 · Φout(r[e∗]) = ∆up(e, g) for all edges e 6= bibi+1 between the
levels li and li+1 and g = right(e). Thus the sinks of e and g are assigned to distinct
coordinates if t(e) 6= t(g), because we have Φout(r[e∗]) > 0.

There may be vertices on level li+1 that do not have neighbors on li. In the following
we assign coordinates to them. Let e and g be edges between li and li+1 with
g = right(e). An example of that scenario is pictured in Figure 4.7. Let v1, . . . , vk−1
be vertices between t(e) and t(g) in the order they are embedded on li+1. Those
vertices cannot be incident to edges between the levels li and li+1, because otherwise
g would not be the right edge of e. So because G is connected we know that they are
connected to edges between the levels li+1 and li+2. Let gj denote the leftmost edge
with s(gj) = vj for j ∈ {1, . . . , k − 1}. Those edges have an arc (e, gj). We refer to
the left edge of gj as ej = left(gj). Observe that every edge gj has such a left edge,
because τ(t(e)) < τ(vj) and thus gj 6= aiai+1. Moreover observe that the source of
ej is always s(ej) = vj−1 for 1 < j < k. For j = 1 denote the source of ej with v0.
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Figure 4.8: Example of a graph G at level li+1 for placing v1

Denote by ek the right most edge incident to vk−1, by gk = right(ek) the right edge
of ek and with vk its source. Either τ(vk) = τ(t(g)) or τ(vk) > τ(t(g)), but always
τ(vk) > τ(t(e)) holds. Also τ(vk−1) < τ(t(g)) and thus by construction of NG there
exists an arc (e, gk). With that we have denoted all outgoing arcs from e.

Now, while placing the remaining vertices, we show that Condition C.2 holds for
level li+1. By the definition of the incoming flow of a node and Lemma 4.6 we
have 2 ·

∑k
j=1 Φ(e, gj) = 2 · Φout(r[e∗]) = ∆up(e, g). For 1 < j < k we place the

x-coordinates at xvj = xt(e) + 2 ·
∑j
m=1 Φ(e, gm). We have Φin(r[g∗j ]) = Φ(e, gj) for

1 < j < k, because for the source vj−1 of the left edge of gj we have τ(t(e)) < τ(vj−1)
and τ(vj) < τ(t(g)) and thus there is no other arc going to gj . Thus, for every edge
gj with 1 < j < k we have 2 · Φin(r[g∗j ]) = ∆low(ej , gj).

For j = k we distinguish two cases. If τ(vk) = τ(t(g)) then also vk = t(g) and the
x-coordinate of vk is already set. Then again 2 ·Φin(r[g∗k]) = ∆low(ek, gk). Otherwise,
we have τ(vk) > τ(t(g)). Then there exists an edge d with upper vertex t(d) = t(g)
and (d, gk). We place vk depending on d, because τ(vk) > τ(t(d)). Note that the
distance of max{t(e), vk−1} and t(g) is 2 · Φ(e, gk).

For j = 1 and k 6= 1 we set xv1 = xup(e) + 2 · Φ(e, g1). For j = 1 = k the previous
case can be applied. To show that 2 ·Φin(r[g∗1]) = ∆low(e1, g1) holds, we make a case
analysis.

Case 1: τ(v0) = τ(t(e)): Then Φin(r[g∗1]) = Φ(e, g1) and thus 2 · Φin(r[g∗1]) = 2 ·
Φ(e, g1) = ∆low(e1, g1).

Case 2: τ(v0) < τ(t(e)): An example of this case is shown in Figure 4.8. We have
edges d1 to dp between the levels li and li+1 that are left of e and have an arc
(dq, g1) for q ∈ {1, . . . , p}. Because τ(t(e)) < τ(v1), the arc (dq, g1) is the last
arc for the edge dq. It follows that 2 ·

∑p
q=1 Φ(dq, g1) = xt(e) − xv0 . Hence, we

have 2 · Φ(e, g1) = xv1 − xt(e). Then it holds 2 · Φin(r[g∗1]) = ∆low(e1, g1).

So we have proved Condition C.2. With this procedure we place the vertices at
level li+1 in the same order as in the embedding and always place them to distinct
coordinates if they are disjunct. Thus the drawing of (G, `) up to level li+1 is an
LP2-drawing and so Condition C.1 holds, too.

After placing all vertices up to level ln−1, we only need to place the vertices at ln.
Let e be an edge between the levels ln−1 and ln. If xs(e) is the x-coordinate of the
source of e, then we assign the x-coordinate of the sink of e to xt(e) = xs(e) + slope(e).
For any two edges e and g = right(e) between the levels ln−1 and ln we have
2 ·Φout(r[e∗]) = ∆up(e, g). We have Φout(r[e∗]) = 0 if and only if the sinks of e and g
are the same vertex. Thus this placing of the vertices results into an LP2-drawing of
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4.2. Flow Network for LP2-Drawings

(G, `), because the vertices are sill assigned to distinct coordinates if they are disjunct.
There is no other vertex on ln except for the sinks of some edge d between the levels
ln−1 and ln, because G is connected. That way we have constructed an LP2-drawing
of (G, `) from a flow Φ of NG.

“⇐ ” Now we have an LP2-drawing Γ of (G, `) and find a valid flow over NG. For all
arcs (s∗, l[g∗]) we set Φ(s∗, l[g∗]) = ∆low(left(g),g)

2 . Because we only placed arcs when
∆low(left(g), g) > 0, we know that Φ(s∗, l[g∗]) ≥ λ(s∗, l[g∗]) = 1. Moreover we have
2 · Φin(l[g∗]) = ∆low(left(g), g).

Now let level li be a level of (G, `) with i < n − 1. We next consider all arcs that
go from a node corresponding to an edge e with e between the levels li−1 and li or
below. As an induction hypothesis assume that we have assigned flows to all these
arcs such that from s∗ to them Φ is a valid flow. Furthermore assume that for every
edge g 6= aiai+1 between the levels li and li+1 we have 2 ·Φin(l[g∗]) = ∆low(left(g), g).
For each edge d between li and li+1 we identify the flow value of the dual arc d∗ with
the slope of d as usual. Now we have assigned the incoming flow of each left node
corresponding to an edge between the now considered two levels li and li+1.

The only outgoing arc for one of these left nodes l[g∗] is to the right nodes r[e∗] of
the left edge of g, so e = left(g). We assign the incoming flow Φin(l[g∗]) plus the flow
through g∗ to the arc (g, e). That means we have Φ(g, e) = Φin(l[g∗]) + Φ(g∗). Thus
the flow conservation at l[g∗] is fulfilled.

Next, let e be an edge between the levels li and li+1 and let g = right(e). The only
flow that still needs to be assigned for e is the flow over arcs (e, g′) with g′ an edge
between the levels li+1 and li+2. So let g′ be an edge between li+1 and li+2 where an
arc (e, g′) exists. We set

Φ(e, g′) = min(s(g′), t(g))−max(s(left(g′)), t(e))
2 .

Again we have only placed arcs when ∆low(left(g′), g′) > 0 and ∆up(e, g) > 0. Also
τ(s(left(g′))) < τ(t(g)) and τ(s(g′)) > τ(t(e)). Thus we know that Φ(e, g′) ≥
λ(e, g′) = 1.

In the following we prove the flow conservation at r[e∗]. By induction hypothesis,
we know that 2 · Φin(l[g∗]) = ∆low(e, g). By a similar claim as made in Lemma 4.6
we see that 2 · Φout(r[e∗]) = ∆up(e, g). However, Φout(r[e∗]) is the sum of flow values
Φ(e, g′). Additionally ∆up(e, g) can be displayed as sum over the distances

min(low(g′), up(g))−max(low(left(g′)), up(e))

for edges g′ with an arc (e, g′). So the flow conservation at r[e∗] is satisfied.

Now we have assigned flow to every arc of NG except of the arcs (g, e) and arcs d∗
with g, e, d between the levels ln−1 and ln and arcs (r[e∗], t∗). For the first two types
of arcs, (g, e) and d∗, we do the same as for the other levels, so the flow conservation
at l[g∗] is satisfied. Now we only need the flow through arcs (r[e∗], t∗). For this we
assign the flow value in such a way that the flow conservation at r[e∗] is satisfied. We
know that Φ(r[e∗], t∗) ≥ λ(r[e∗], t∗) = 1 because again we only have arcs (r[e∗], t∗) if
∆up(e, right(e)) > 0 and this distance corresponds directly to the flow that needs to
go out of r[e∗].

Since the flow conservation is fulfilled at every node we have Φout(s∗) = Φin(t∗).
Therefore, the constructed flow Φ is a valid flow of NG.
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Note that if (G, `) has no left and no right boundary we can always extend it to a graph
(G′, `′) that has one. An LP2-drawing of (G, `) can then be easily constructed from an
LP2-drawing of (G′, `′). Also if we have an LP2-drawing of (G, `), it is easy to extend it
to an LP2-drawing of (G′, `′), where all boundary edges have slope -1. Furthermore note
that even if the LP2-drawing of the graph (G′, `′) is restricted to having slope -1 for the
boundary edges, the LP2-drawing of the primary graph (G, `) is not further restricted.

Algorithm 4.1 summarized the results above and given a level plane graph decides whether
it has an LP2-drawing.

Algorithm 4.1: Algorithm to construct an LP2-drawing of a level plane graph
Input : level plane graph (G, `)
Output :LP2-drawing of (G, `)

1. Extend (G, `) to (G′, `′) by adding boundary edges.

2. Construct NG′ out of (G′, `′).

3. Check whether NG′ has a valid flow Φ.

4. Construct an LP2-drawing Γ′ of (G′, `′) out of Φ as described in Lemma 4.7.

5. Delete the previously added boundary edges from Γ′ to get an LP2-drawing of (G, `).

Next we take a look at the running time of Algorithm 4.1. For this let |V | be the number
of vertices of G. Step 1. and Step 5. can be done in O(|V |), because we need to add or
delete two vertices for each level, but we can only have as many levels as we have vertices.
Step 2. can be done in O(|V |), too. To construct NG′ we need to add an arc for each edge.
For this note that the number of edges in G is in O(|V |), because the degree of each vertex
of G is limited to 4. Therefore the number of nodes in NG′ is in O(|V |), too. But since
the resulting network is planar out of construction, the number of arcs in NG′ is also in
O(|V |). To find those arcs in constant time O(1) we can use the ordering τ of the vertices
on the levels given by the plane embedding. To find the flow Φ in Step 3. there exist
many algorithms. Note that our network is st-planar and that we are only interested in
determining whether our network has a valid flow. Furthermore we can choose positive
arc costs. On the other hand our flow is bounded not only by the capacity but also by a
lower bound. Tamassia and Garg [GT97] presented a minimum cost flow algorithm that
can find such a flow in O(|V |7/4

√
log |V |) and is often used in similar drawing algorithms.

This algorithm can be used here, too, and additionally gives us the smallest drawing of
(G′, `′). At last Step 4. can be done in O(|V |), because we need to set the coordinates of
each vertex of G′ exactly once. These coordinates only depend on one previous vertex on
the same level or the slopes of the (at most 4) incident edges.

Hence, in summary the run time of Algorithm 4.1 only depends on the run time T (|V |) of
finding the flow in the network. This results in the following theorem.

Theorem 4.8. Let (G, `) be a level plane graph. An LP2-drawing of (G, `) can be con-
structed in O(|V |7/4

√
log |V |) time by Algorithm 4.1, if there exists one.

26



5. Conclusion

In this thesis we have proposed several ways for constructing drawings of level planar
graphs with fixed slopes. For this we defined level planar drawings with the two slopes
-1 and 1, which we referred to as LP2-drawings. Those drawings we restricted further to
rectangular LP2-drawings, where each inner face is a rectangle. We have shown that we
can construct a rectangular LP2-drawing of a level plane st-graph in polynomial time, if
such a drawing exists. For this we presented a 2-SAT-based algorithm.

For LP2-drawings without restriction on the shape of the faces we first presented an
algorithm that produces such drawings for level planar st-graphs if there exists one.
Afterwards we extended that algorithm to work on every level planar graph. This algorithm
first creates a flow network out of the graph and then transforms a valid flow of that
network into an LP2-drawing.

Next, we will give an outlook on problems that could be of further interest.

In Chapter 4 we have given a running time for Algorithm 4.1. This running time depends
on the time T (|V |) that is needed to be invested in finding a flow Φ. It is likely that the
given run time T (|V |) ∈ O(|V |7/4

√
log |V |) can be further improved.

In this thesis we only considered LP2-drawings, but the algorithm we used could be extended
to create level planar drawings that use n different slopes. For this consider a set S of n
slopes, that are equidistant and denote them by s0 to sn−1, where s0 < s1 < · · · < sn−1.
We call drawings that are level planar and only use slopes out of S LP-S-drawings. We
still want to use the flow network idea, to construct an LP-S-drawing out of a level plane
graph. The construction of the network stays the same as in Chapter 4.2, but we have to
adjust the capacities. We set the capacity of every dual arc e∗ of an edge e to µ(e∗) = n−1.
For constructing the drawing of the graph, we now identify the slope of an edge e by the
values of the flow through the dual arc e∗:

slope(e) = sΦ(e∗).

For the left and right boundary of the extended graph (G′, `′) we always choose slope s0.

To proof that this network can be used as requested it seems advisable to first restrict
the slope set S so that the distance between the upper vertices of two edges with slope
si and si+1 is 2, if the distance between the lower vertices is 0 for i ∈ {0, . . . , n − 2}.
Because the distance between two adjacent levels is 1 that means si+1− si = 2 or in general
si − sj = 2 · (i− j). Then the proof that a valid flow Φ of N corresponds bijectively to an
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LP-S-drawing of (G, `) is the same as in Lemma 4.7 with one exception. Lemma 4.6 needs
to be adjust to the n different slopes. For other equidistant slope sets the proof can be
adjusted easily.

It can also be considered if it is possible to adjust the flow-based algorithms in such a way
that non-equidistant slope sets are possible.

Another interesting question would be to find the minimum number of slopes that is
necessary to draw a level planar graph. Both equidistant and non-equidistant slope sets
could be considered.

Our results provide implications on partial settings of the LP2-drawings. Let G′ be the
subgraph of G, where the LP2-drawing Γ′ of G′ is already provided as a part of the input.
For the algorithm based on 2-SAT we add the clause s(f, e)↔ slope(e) for each edge e ∈ G′
incident to a face f with a slope slope(e) in Γ′. If a satisfying assignment φ of S(G, `)
plus the new clauses exists, then it can be transformed into a rectangular LP2-drawing as
described above. For the algorithms based on network flows we have to choose the lower
bound and the capacity for some edges differently. If we have an edge e ∈ G′ with slope(e)
in Γ′ and the dual arc e∗ in the network N , we set

λ(e∗) = µ(e∗) =
{

0 slope(e) = -1
1 slope(e) = 1.

Thus we fix the flow over the dual arcs. With both adjustments by fixing the slopes the
new resulting partial drawing of G′ is equivalent to Γ′ up to translation along the x-axis,
since Γ′ is connected.

For rectangular LP2-drawings an equivalent extension of the 2-SAT based algorithm can
be done to find partial simultaneous drawings of two graphs. For this we denote with
(G1, `1) the first and with (G2, `2) the second graph. Let G′ be a subgraph of both G1
and G2. We want that the drawing Γ′1 of G′ as part of the drawing Γ1 is equivalent to
the drawing Γ′2 of G′ as part of the drawing Γ2. To do that we combine the two 2-SAT
instances S(G1, `1) and S(G2, `2) and clauses as follows. For each edge e1 ∈ G1 that is in
G′ and its in G′ equivalent edge e2 ∈ G2 we add the clause s(f1, e1)↔ s(f2, e2) for some
faces f1 and f2 incident to e1 and e2, respectively. If a satisfying assignment φ of this new
2-SAT instance exists, then it can be transformed into two rectangular LP2-drawings Γ1
and Γ2 of (G1, `1) and (G2, `2), similar to Theorem 3.3. For the part of G1 and G2 that
should be drawn simultaneously we have Γ′1 = Γ′2, again up to translation along the x-axis.

Also the problem of drawing parts of two graphs simultaneously for non-rectangular
LP2-drawings or even level planar drawings with more than two slopes could be looked at.
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