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1. Introduction

Outliers represent observations that differ fundamentally from all other observations and
are an indicator for human errors, mechanical defects, suspicious behaviour or just natural
deviation. There is no general definition what is considered an outlier but the most com-
monly accepted definition by Hawkins [Haw80] states that “an outlier is an observation
that deviates so much from other observations as to arouse suspicions that it was gener-
ated by a different mechanism”. Outliers can occur in a global perspective, i.e. they are
a an observation that deviates significantly from all other objects, or in a local setting.
Outliers in a local scope, called community outliers, would be considered regular in the
entire graph but deviate from their neighbouring objects in the graph. Viewed from a
local perspective, i.e. only considering the vector and its larger neighbourhood, not all
attributes in the feature vector contain relevant information in this context. Some of the
attributes just follow a random behaviour.

Objects that are not considered as an outlier can be categorised into clusters, groups that
share high similarity and are dissimilar to other objects around them. Cluster should be
densely connected inside the graph. As well as outliers, cluster members only are similar
to each other in a subset of all attributes contained in the feature vector. The clusters
of a graph give an insight which patterns are common among the stored observations.
Members of a cluster can often be treated very similar on using the extracted information.

For the detection of outliers and the grouping of all objects into clusters there are various
applications. Outliers could be removed in a preprocessing as they might have negative
effects on the output of other algorithms. Though outliers are often removed from data
sets, they can have valuable information that should be explicitly analysed. Objects of a
cluster could be treated as nearly equal objects in some processes as they share similar
information. In some other algorithms members of a clusters cannot be treated equal but
clusters can be processed in parallel to exploit current multiprocessing technology. Some of
the real world applications of these two information categories include the fraud detection
of stolen credit cards [EOZPP11] and the protein - protein interaction as a network with
folding properties as the attributes in pharmaceutical research. In online shops the outlier
information could be used to find suspicious products which affect the reputation of the
seller. Clusters in an online shop may used to create bundles or coupons that attract
customers to buy a related product or could be used as the basis of a recommender system.

A famous example for data that is represented as an attributed graph are online social
networks. In the context of a social network, an example cluster is made up of the members
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2 1. Introduction

of a youth team of a small football club. These members are connected through the
friendship relation as they all know each other. They have common attribute values in
their feature vector as they are from nearly the same age and live in the same county. As
part of the friendship relation their coach knows everybody of the team too and is likely
to have connected to everyone on the social network. Though his good integration in this
community environment, he does not fit into this group as he is significantly older than
everybody else. He can be considered as a community outlier. In contrast from a global
perspective the coach would be a normal person at a common age and likes football as a
lot other people do.

Existing traditional algorithms could identify some of these patterns in the data but would
find imprecise results as they do not take the correlation of graph structure and feature
vectors into account. Information like local outliers cannot be found by them as they only
occur in the combination of both data sources. If the algorithm only looks at the attributes
the objects in the found clusters would share high similarity but sparse connectivity as
the structure was not respected. In contrast, in a clustering generated by an algorithm
that only takes the structure into account, the objects are densely connected but do not
share similar attribute values in their feature vector. Another drawback of several existing
clustering algorithms is that are not outlier-aware, i.e. the clustering process suffers from
outlier objects that distract the found clusters.

In the recent years, algorithms that consider the combination of graph structure and
feature vectors have been developed. Though some of these algorithms can find some of
the local outliers, they are likely to suffer from the Curse of Dimensionality. As another
disadvantage, most of these algorithms require user-given parameters that are hard to
choose by a non-expert user and cannot be easily guessed. A further drawback of some of
these algorithms is that they only look at the full set of attributes, i.e. if some patterns
could only be recognised using a subset of these attributes, these algorithms fail to detect
them. Overall, these algorithms do not scale efficiently with the number of attributes or
the number of vertices. Some of the algorithms have an exponential runtime making them
unusable for large input data.

In this work, we present a quality measure for rating clusterings on attributed graphs. In
addition a scoring function that ranks objects by their outlierness w.r.t. the clustering
is introduced. For the calculation and optimisation of these functions, an parameter-free
algorithm scaffold with efficient instantiations is developed.

At the beginning of this work in Chapter 2 an overview of existing technologies and related
work that has influenced the proposed solution will be given. To measure the quality of
clustering in Chapter 3.2 a new measure for clusterings on attributed graphs is introduced.
This measure respects the fact that only a subset of all attributes have characteristic values
for a cluster. The quality is rated without any user-given parameters with the aspect that
attributes and structure should have a balanced influence on the found clusters. To rank
the clustered object by the possibility that they are an outlier, in Chapter 3.3 a scoring
function is proposed which uses the information from the clustering process to detect com-
munity outliers. To overcome the three mentioned drawbacks of the existing algorithms,
in Chapter 4 an algorithm scaffold which could be instantiated with the three methods
described in the Chapters 4.1.1, 4.1.2 and 4.1.3, is introduced. All these instantiations run
without any input than the attributed graph. Through the evaluation in Chapter 5 the
quality and efficiency of these algorithms will be shown.
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2. Related Work

The amount of data we collect and analyse today by far exceeds what can be manually
reviewed by humans as it was done in earlier times. As an example, the 1880 U.S. Census,
which was entirely manually processed, took eight years to be analysed and summed up
[Hol94]. In contrast, the 1890 U.S. Census took only about one year to sum up, despite
polling more information from an increased population. This was made possible by the
introduction of electrical tabulating machines [Hol94]. The population of the United States
of America has enormously increased since, and the amount of information captured per
person has risen with it. Most of the information is available within a single year [Cen13]
through the advance of algorithms and technology.

As the quantity of data and its structure constantly increases and changes, new techniques
and algorithms need to be developed to cope with the upcoming problems. The develop-
ment of these new techniques is part of Data Mining. There are various ways to structure
data but as graph structured and relational data are the dominant formats, a lot of re-
search is done in this area. Recently the combination of both types has come up as a new
research topic. Data represented as a graph, consists of vertices (named data point in the
context of attribute-related mining) which are connected through edges. Each edge has
been given a numerical weight to quantify the importance of its connectivity. Relational
data of the kind considered here consists of a data point to which a fixed number of at-
tributes, either numerical or categorical, is assigned. This work addresses the combination
where the data points (vertices) are connected through edges and annotated with feature
vectors.

Clustering is the process of grouping the input data so that for each group, the data
points within are similar to each other and dissimilar to all other points. The definition
of similarity is w.r.t. a given measure. Changing the similarity measure will change
the clusters even if the same input data is used. Some data points may have a rather
large effect on the objective function depending on how they are clustered. These objects
are part of the set of data points considered as outliers. Though most of the outliers
will have significant impact on the objective function, not all do. There is no general
definition of what is considered an outlier but the most commonly accepted definition by
Hawkins [Haw80] states that“an outlier is an observation that deviates so much from other
observations as to arouse suspicions that it was generated by a different mechanism”.

In the field of clustering and outlier mining of either graph structured or relational data,
years of research has already been performed. A short overview of important approaches
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4 2. Related Work

which include work that has lead to the proposed solution in this work is outlined in the
next subchapter 2.1. The following subchapter 2.2 considers methods that combine the
graph structure and the relational data to get better results. For each algorithm it is
explained why it does not solve the given problem satisfactorily.

2.1. Traditional Mining Methods

Clustering on relational data

As mentioned above, the focus of this work lies on graphs and relational data. Traditionally
most algorithms look at either of them. The first simple well-known approach to relational
data clustering is the K-Means [M+67] algorithm. Though this approach already works well
for several problems its suffers from the Curse of Dimensionality [Bel57]. The increasing
number of dimensions does not only involve a growth in runtime, Beyer et al. [BGRS99] has
shown that the minimal and maximal distance between two objects get similar the more
dimensions a dataset has. To overcome this problem there are already some solutions like
reducing the overall number of dimensions by removing redundancy (e.g. PCA [Pea01])
or by selecting only subspaces that seem to have relevant information (e.g. ENCLUS
[CFZ99] or HiCS [KMB12]). Though this reduces the problem of high dimensional input,
there are still some drawbacks like an exponential increase in runtime and disrespect of
graph structure.

One of the first algorithms that clustered data on only a subset of all dimension was
CLIQUE [AGGR98]. This grid-based approach tries to find cluster in higher dimensions
using Apriori techniques based on dense regions in lower dimensional subspaces. One
of the drawbacks of this algorithm is that results depend on the positioning of the grid
and how fine-grained the grid and the threshold is adjusted. A more efficient algorithm is
ProClus [AWY+99] which uses the K-Medoid method to cluster objects and then iteratively
refines the relevant dimensions for each cluster. Though leading to good results with short
runtimes, ProClus requires two parameters k, l set by the user. The average cluster size k
which could be guessed by the user as in most cases one has a basic assumption and the
average number of dimensions l. As the number of dimensions may vary between clusters
and in total exceed 100 in current data sets, it is not easily guessed by a user without
expertise. ProClus monitors the quality of its clustering during the cluster process but the
objective functions uses the above two parameters and cannot be applied to graphs.

One algorithm that does not need user-given parameters as input is HARP [YCN04]. It still
provides one parameter that could be used to limit the runtime but it runs without any
parametrisation by the user. HARP uses a bottom-up approach by combining clusters
starting from size-one communities. On deciding which clusters are combined, HARP
computes the relevance of each cluster and the combined relevance of the two to-be-merged
clusters which is

Rk,l = 1−
σ2k,l
σ2k

(2.1)

whereRk,l is the relevance of cluster l w.r.t dimension k, σ2k the global variance of dimension
k and σ2k,l the variance along dimension k w.r.t. the cluster l. Some features of HARP with
focus on the relevance are used in the later work as they introduce a quality measurement
on clustering w.r.t. to different subspaces for each cluster without user-given parameters.
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2.1. Traditional Mining Methods 5

Outlier detection in relational data

As not all data points fit into the clusters found by the above algorithms we need to detect
which objects should be considered as outliers. There are various ways to rank objects
by their outlierness. A basic approach described by Leroy and Rousseeuw [LR87] assumes
that the data was generated using a normal distribution and labels all objects outside of 1%
significance as outliers. This technique has the drawback that it needs a basic assumption
about the underlying distribution. Without using an underlying distribution Knox and Ng
[KN98] propose an approach that defines a data point as an outlier if a certain percentage
of all objects have a distance larger than a given value to the data point. Though there
are some distance-based methods that do not need the distance as an input, all distance-
based methods suffer from the usage of absolute distances. When using absolute distances,
outliers that are relatively far away from a dense community but with a distance less than
objects in more scattered regions are not detected. The group of density-based outlier
detection methods with its most known representative LOF [BKNS00] respect the locality
of each data point and measure its outlierness on the distances to its neighbours. Though
LOF respects the local density, it is not used in this work as it only considers attributes
and ignores the graph structure. In contrast to this the neighbourhood of an object in this
work is based on its neighbouring communities and the size of its own community.

Graph Clustering

In addition to relational data a large number of clustering and outlier mining algorithms
exist for graph structured data. In the field of graph structured data community is often
used as an interchangeable term for cluster. This is used as a synonym throughout this
work. Graph clustering started out of the problem of graph partitioning where the problem
is to split a graph into a fixed number of subgraphs so that the sum of cut edges is
minimal and all subgraphs are nearly equal in size. An early but still used algorithm is
[KL70] which splits the graph into even sized subgraphs and then tries to optimise the
partitioning by using local optimisation. One remarkable property of the algorithm is that
it makes steps that decrease the overall score but lead out of local optima for a better
final result. Despite the benefit of depth research in this field, these algorithms are fixed
to the user-given amount of clusters and do not meet the requirements to solve the given
problem. They do not work well if one needs to detect a unknown number of clusters of
hardly balanced size. Although graph-based data varies significantly from relational data
there are some approaches like Spectral Clustering that transforms graph-based data so
that it can be used with attribute oriented clustering methods. Spectral clustering uses the
Laplacian matrix of a graph which has several mathematical characteristics such as ”from
the eigenvector of the second smallest eigenvalue of the Laplacian matrix it was possible
to obtain a bipartition of the graph with very low cut size” [Fie73] which enable the use
of algorithms like K-Means on graph-based data.

In recent years the measure Modularity, which was introduced by Newman and Girvan
[New04], was used as the basic quality measure in several algorithms. Blondel et al.
[BGLL08] proposed a algorithm that optimises Modularity by local movements of vertices
and iterative coarsening of the graph. This method and some other techniques mentioned,
like merging Modularity clusters from a global perspective, in [NR09] are used in this work
as a scaffold for the proposed algorithm elements.

Another approach to Graph Clustering is the SCAN [XYFS07] algorithm which clusters
vertices based on their structural similarity. It introduces the notion of hubs, vertices that
are important connections between two or more clusters, and respects outliers. Though
SCAN introduces outlier mining to graph clustering, general outlier detection on graph
was already part of other work mainly in the area of intrusion detection. Noble and Cook
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6 2. Related Work

[NC03] present an approach to identify anomalous subgraphs by comparing subgraphs
with the most used patterns in the whole graph. This approach was optimised by Eberle
and Holder [EH07] and Davis et al. [DLMR11]. An algorithm based on their ideas is
introduced which supports numerical labels in addition to the structural properties. The
drawback of this approach is that it is assumed that the graph is created following some
globally famous patterns which makes these algorithms unsuitable to detect outliers that
only vary from their local neighbourhood.

A simple approach for clustering the combination of graph structure and attribute data
could done using existing techniques. It would be possible to use a technique from either
category e.g. mining only the graph structure to get information from the given data.
Using only one technique would only lead to good results if attributes and graph structure
are highly correlated, e.g. the connectivity of the edges could be computed out if the
attributes of a vertex. Another approach would be to run two existing concepts iteratively
using the input data of the previous one. These methods have the drawback that only
respecting one paradigm of data will lead to a loss of quality in the other. While attribute-
only clustering generates clusters that distinguish themselves very good in the attribute
space, the cluster may have sparse connectivity in the graph. In contrast graph clustering
algorithms may create clusters with dense intraconnections and sparse interconnections
but the attribute values of objects in these clusters could be very dissimilar.

2.2. Attribute-aware Graph Mining

Today, graphs such as social networks are made up of the combination of graph structure
and relational data. A data point has various numerical or categorical attributes and is
connected to other data points through (weighted) edges. In a social network a person may
have several attributes like age and education and is connected by the friendship relation
to other people. In the following this kind of structured data is called an attributed graph.

A technique to use existing algorithms is to transform the input data to either only graph-
structure or relational data. One such approach is described by Zhou, Cheng and Yu
[ZCY09] that transforms the categorizational attributes of a vertex into additional edges
that augment the graph. After the transformation, the graph is clustered using random
walks. Though this would be a possibility to reuse the pool of existing algorithms the
mentioned transformation does not respect the locality of vertices cannot work in local
subspaces of the attribute set.

As a first approach CoPaM [MCRE09] is looking for dense patterns occurring in the
combination of graph and relational data. Although it takes care of subspaces in the
attributes, the algorithm needs four user-supplied parameters which are hard to choose by
a non-expert user. In addition to the choice of the parameters, as another disadvantage
CoPaM does not always cluster all objects but leaves some objects uncategorised, i.e. not
marking them as a cluster-member or an outlier. GAMER searches the graph for quasi-
cliques in multiple subspaces. Using this technique the algorithm reveals less redundant
and very dense clusters but leaving a lot of objects undescribed if a graph contains sparse
areas. In DB-CSC [GBS11] some extension were proposed so that not only quasi-cliques
were clustered but less dense patterns too. To get a less redundant number of clusters, it
proposes the usage of density-based clustering with graph structure. Though less dense
areas are clustered now, objects may still not be categorised into any cluster. Objects
without a cluster may not always be an outlier and some objects that are clustered but
occur in a small number of clusters could be an outlier. Though these algorithms provide
a solution to the clustering problem, they need user-specified parameters and are not
efficient.
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2.2. Attribute-aware Graph Mining 7

For outlier search in the combination of relational data and graph structure, Gao et al.
[GLF+10] proposed CODA. This approach searches for outliers in graphs given a fixed
number of communities. CODA itself was only designed for one dimension but can be
easily extended to a larger number of attributes. Due to its design CODA does not take
care of subspaces which occur in the context of a community. As a result always the
full attribute is considered so that outliers hidden in subspaces may not be found and
the general analysis suffers from the curse of dimensionality and does not scale with the
number of dimensions.
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3. Quality Measures

At the beginning of this chapter basic notions which are used for the proposed measures are
introduced. Afterwards the proposed measures itself are defined. The suggested algorithm
introduces the concept of projected clustering to the field of attributed graphs. Each
vertex in the graph should be assigned to a cluster and depending on this cluster the
attributes that define this vertex, i.e. are characteristic for the cluster, are determined. As
some objects vary significantly from all other data points an outlier ranking of all points
is generated, so that those objects can be evaluated specifically.

It is assumed that a graph consists of clusters that are highlighted through the structure
and the distribution of a subset of the attributes in its local environment. In these subsets
of attributes that are characteristic for a cluster, all vertices show similar values, i.e. belong
to a certain, small range. All other attributes may show a random distribution without
any indication of structure. The vertices of a cluster are highly connected through edges
so that the cluster have a more dense connectivity between its vertices than to vertices
lying outside of the cluster. For the selection of the right clusters, a quality measure that
takes the combination of graph structure and relational data into account (so that neither
one should outweigh the other) is needed. As an example this measure should respect
that cluster that consider both types of data are neither the direct projection of a graph
or relational cluster. They may overlap or are a subset of these traditional clusters. In
addition to the cluster quality measure, a ranking function which is able to find the outliers
in the attributed graph needs to be developed. As already specified in the introduction,
these measures should not require any user-given parameters.

Subchapter 3.1 introduces basic notions which are used in the second part to propose a
quality measure for rating the clustering of a whole graph. The last subchapter introduces
a scoring function to detect objects that do not fit to their local context, i.e. can be
considered as outliers.

3.1. Basic Notions

The proposed approach only takes a graph combined with attributes as input without any
parametrisation by the user. In formal terms the input consists of a graph G = (V,E,w)
where V is the set of vertices and E ⊆ {{u, v} | u ∈ V, v ∈ V } the set of undirected edges
connecting these vertices. For each edge a positive weight w(e) = w({u, v}) = w(u, v) =
w(v, u) is defined. n = |V | and m =

∑
e∈E w(e) respectively are the sums of these two sets.

9



10 3. Quality Measures

As an alternative notation the symmetric adjacency matrix A with Aij = w(i, j) is used in
the context of Modularity . If there is no edge between two vertices they are unconnected
but one could assume an imaginary connection via an edge of weight 0. To handle graphs
without edge weight, a general default of w(e) = 1 is used. The total weighted degree of
a vertex i is a property which is often used and abbreviated by ki =

∑
u∈V w(u, i).

In addition to the graph properties each vertex has d numerical attributes. As an alter-
native to the common names u, v for vertices we use xi as a name for one vertex as it is
a data point in the world of attribute-only clustering. xi,j is the short form for using the
j-th attribute of the vertex xi. The values of these attributes may be from an arbitrary
numerical range.

The algorithm will output for each vertex xi its cluster ci. For each cluster the importance
of each attribute will ranked from 0 (no importance) to 1 (all members of this cluster have
the same value). In addition to the clustering, a score for each vertex is calculated which
reflects how well the point fits to the patterns of its neighbourhood. The higher this score,
the more an object should be considered as an outlier. The outlier score ranges from 0
(fits perfectly to its neighbourhood) to infinity, i.e. there is no predefined global limit.

Attribute based notions

The proposed quality measure and the algorithmic approaches make use of several already
existing measures and properties that provide the methods to incrementally compute the
proposed scoring functions. To indicate how scattered a set of data points is, the most
well-known measure, the variance σ2 = S/N is used. It is easily computed on a set of data
points using the so-called two-pass formula for a dataset of N objects with a mean of x:

S

N
=

1

N

N∑
i=1

(xi − x)2

This version has the drawback that if you add a data point, a scan over all data points is
needed as the mean changed. Chan, Golub and LeVeque [CGL83] outline various methods
that are able to overcome this drawback. Some of those suggestions are used later in
chapter 4 as different algorithmic approaches are discussed which incrementally compute
the variance. Another property of variance is that it is sensible to outliers, i.e. if a
object is added to a dataset that varies significantly from all others, the variance increases
dramatically. Although this is often considered as a disadvantage, this feature can be used
to detect if an outlier was added to a set of points. Alternatively if the variance is kept
small, this will prohibit the addition of outliers to data sets.

Yip, Cheung and Ng [YCN04] introduce Relevance as a measure for the importance of an
attribute for a cluster. Given the global variance σ2k of a dimension k and the local variance
of dimension k in cluster l, the relevance Rkl of this dimension w.r.t. to the cluster is:

Rkl = 1−
σ2kl
σ2k

(3.1)

A relevance of 1 indicates that all data points in this cluster have the same value. If the
data points of the local cluster have the same scattered distribution as the whole data set
in a specific dimension, the relevance for this dimension is 0 w.r.t. the cluster. Attributes
having a relevance below 0 in a cluster are more scattered than the attribute is from a
global view, i.e. the attribute is not characteristic for this cluster. Attributes which have a
global variance of 0 are not taken into account, as they do not provide any information on

10



3.2. Cluster Quality 11

how the data should be grouped into clusters. Having all the same attribute value, using
attribute-only clustering there would be only one cluster w.r.t. this dimension. Using the
relevance as a measure overcomes the problem of different ranges in different dimensions
as the relevance is only dependent on the ratio between the local and the global variance
of a dimension. For the computation of the relevance of an attribute w.r.t. a cluster
only the local variance needs to be calculated. This property enables the incremental and
numerically stable computation of the relevance using the already developed methods for
the variance.

Structural based notions

As a basis to rank the quality of the structural part of a clustering of a graph, the mea-
sure Modularity [New04] is used. This well-known measure is used because it provides a
parameter-free rating of cluster quality w.r.t. the structure. The Modularity score per
vertex is the fraction of edges that is connected to vertices of the same cluster minus the
expected fraction of edges if they were distributed according to a certain random process.
Overall the Modularity score using the adjacency matrix A, the weighted degree ki of
vertex i is given by:

Mod =
∑
i,j

(
Aij

2m
− ki ∗ kj

4m2

)
δ(ci, cj) (3.2)

Given a clustering and its modularity score, after simple transformations like merging
two clusters or moving a vertex from one cluster to another, the Modularity score can
be updated in constant time. These transformation require some preprocessing like that
the weight of the edges between two clusters has to be maintained and the total weighted
degree of each vertex needs to be computed upfront.

Though the Modularity score can be updated in a fast way after transformations of the
graph clustering, it was proven by Brandes et. al [BDG+08] that optimising Modularity
is NP-hard. Due to this fact the above mentioned properties are utilised to in various
algorithms which cluster using Modularity.

3.2. Cluster Quality

In this chapter we want to propose Attributed Modularity as a measure for determining the
quality of a graph clustering w.r.t. the vertex attributes. The structure of this measure
is motivated and an outline is given how this measure overcomes problems the problems
of existing, traditional measures. Basic properties of the proposed measure are explained
using examples that highlight these features.

One possible solution to the given problem is to either use methods that take care of
attributes or of the graph structure. Using only one information may lead to the problem
that the clusters only fit to this information, e.g. attribute-only clusters would not be
densely connected and structure only clusters may cover a subset of objects that are not
distinguishable from a random selection.

We propose to combine these measure to a single function called Attributed Modularity.
To select the dimensions that are characteristic a cluster, the Relevance score of HARP
[YCN04] is used. This is integrated with Modularity [New04] as the measurement for the
structural quality. After evaluating different measures that either respect graph structure
or relational data, the combination of both works well for attributed graph clustering.
Other measures had the drawback, that they needed user-given parameters as an input

11



12 3. Quality Measures

or that they could not be split up to be combined with another measure that evaluates
other types of data. In the proposed measured, for each vertex the fraction of edge weight
connected to its own cluster is compared to the edge weight in a random clustering. This
score is multiplied by the sum of all positive relevance scores w.r.t. to its community.

Definition 1 Given the community c(i) of a vertex i, the local variance σ2k,c(i) w.r.t. the

cluster c(i), the set of vertices V , dimensions D, clusters C, the total weighted degree ki of
a vertex i, the global variance σ2k of dimension k and the adjacency matrix A, Attributed
Modularity is calculated via:

AM =
∑
i∈V

1

d

∑
k∈D

max

(
1−

σ2kc(i)
σ2k

, 0

)∑
j∈V

((
Aij

2m
− ki ∗ kj

4m2

)
δ(c(i), c(j))

)
=
∑
c∈C

((∑
k∈D

max

(
1−

σ2kc
σ2k

, 0

))( ∑
u∈c,v∈c

(
Aij

2m
− ki ∗ kj

4m2

))) (3.3)

The range of Attributed Modularity scores is the same as the range of Modularity [-1/2, 1).
The part of equation 3.4 regarding the relevance of the attributes in a cluster has [0,1] as
boundaries so that it would only lower the absolute Modularity per cluster but does not
extend its range.

0 ≤ 1

d

∑
k∈D

max

(
1−

σ2kc(i)
σ2k

, 0

)
≤ 1 (3.4)

Though Attributed Modularity scores have a fixed range, the values of one graph are not
comparable to the values of another graph as they have other global variances and total
edge weights. It can only be used to compare clusterings of one graph where higher scores
indicate a better clustering.
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Figure 3.1.: Different clusterings of a graph depending on the paradigm used

To show some properties of Attributed Modularity in Figure 3.1 a graph and some possible
clusterings are given. In the next section, it is shown that depending on how good the
clustering reflects the model we expect, Attributed Modularity scores increase. One of the
clusterings is a combination of attribute and structure properties whereas the other two
only utilise one type of information.

The graph 3.1(a) is a simple example of a one-dimensional attributed graph clustering
problem. All edges have weight one and each vertex has one attribute having either the
value 1 or 9. The vertex attribute has a global variance of σ21 = 14.694. The expected
clustering is shown in 3.1(b) having two clusters which have high connection in the cluster
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3.2. Cluster Quality 13

itself and sparse connections between the clusters. From the attribute side each cluster
is distinguished in having exactly one attribute value which differs from that of the other
clusters. One vertex having the attribute value 9 surrounded by only vertices having
attribute value 1 is considered as an outlier as it would fit from the perspective of the
structure into the upper cluster but its attribute value separates it significantly from its
neighbours. Using the existing measures this clustering has a modularity of 0.176 and each
cluster has a relevance of 1 as all local variances are 0. Due to the relevance of 1 in all
clusters (which have more than one object) the Attributed Modularity of this clustering is
0.176, too.

If a modularity based algorithm is applied to the graph, the result would be as shown in
clustering 3.1(c). In contrast to the first clustering, two objects having the attribute value
9 are clustered in a community which mainly consists of vertices having attribute value
1. This is the effect that the taken algorithm only clusters by using the graph structure
and ignores all attribute values. Resulting of the fact that a modularity-based clustering
algorithm is used, this cluster has a score of 0.2728 in Modularity which is higher than the
previous graph. As a direct consequence of the structure-only clustering only the lower
cluster has a relevance of 1 but the upper cluster now has a local variance of σ21,u = 13.061,
so that its relevance score decreases to 1− 13.061/14.694 = 0.11113. The lower relevance
of the upper cluster acts as a penalty on the overall clustering score so that the Attributed
Modularity decreases to 0.1516.

The last graph 3.1(d) is used as an example to show how the effects of attribute-only
clustering are penalised by Attributed Modularity . Due to the fact that the clustering only
recognises the attributes values both clusters have a relevance of 1 on the attribute. A
major effect of ignoring the graph structure is visible in the fact that the cluster containing
all objects having the attribute value 9 is made up of two unconnected components. This
decreases the Modularity score to 0.1275 and following out of that Attributed Modularity
is at 0.1275, too.
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Figure 3.2.: Clustering where a Modularity based cluster would be split

As more information than in traditional graph clustering algorithms is used, it is likely
that the resulting clusters will be smaller. This will occur if a Modularity-based cluster
consists of several attribute-based which have still dense connections. The graph in Figure
3.2 would be an example where Modularity would suggest two clusters, the yellow and a
cluster containing the other colours, with an overall score of 0.206. The graph has two
dimensions and two attributes values 1 and 5 per dimension. The first dimension (the
values before the comma) has a variance of σ21 = 3.306 whereas the second has a variance
of σ22 = 4. The right Modularity-cluster has a relevance of 2, i.e. in both dimensions
the vertices have all the same values. The left Modularity-cluster has a total relevance of
0.111 as in the first dimension the variance is higher than the global variance and in the
second dimension it is only slightly smaller. Due to the relevances the overall Attributed
Modularity is 0.1204 for the Modularity-based clustering.

If the clusters as indicated by the colours in Figure 3.2 were used, the Modularity score
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14 3. Quality Measures

would decrease to 0.181. Regarding the attributes, the values in each cluster are the same
among the vertices which results in a relevance of 2 for each cluster. As all cluster have
full relevance the Attributed Modularity score is the same as the Modularity score 0.181
which is significantly higher than the Attributed Modularity score of the Modularity-based
clustering.

A computational disadvantage of Modularity is that its optimisation is an NP-hard prob-
lem [BDG+08]. This computational complexity can be transitively applied to Attributed
Modularity with the following scheme. Given a graph which would be used for Modularity
clustering. Add an arbitrary number of attributes to it such that all vertices should have
the same values. Afterwards an isolated node that has differing values in all attributes
is added so that the global variance of each attribute is greater than 0. The relevance
of all dimensions in the original graph is 1 independent of chosen clusters so that in that
part of the graph Attributed Modularity is equivalent to Modularity . If the isolated node
is added to a cluster the relevance of all attributes of this cluster less than 0. Due to this
fact and that it is not connected to another vertex, the isolated node will never be part
of another cluster. The resulting optimal clustering for Attributed Modularity will be an
optimal clustering for Modularity on the original graph without the isolated node. Hence,
optimising Attributed Modularity is an NP-hard problem, too.

3.3. Outlier Scores

Score w.r.t. a community

In the local environment of a community the relevance and variance of each dimension are
already determined by the clustering process. The knowledge of these parameters enables
the normalisation of the data along each axis which eliminates the need of techniques that
cope with different local densities, cp. LOF [BKNS00]. Let R be the set of relevances of
all relevant dimensions with positive variance σ2, so that 1/σ2 is defined. Using the mean
xd of dimension d xd from the clustering process leads to the normalised deviation of xi
in community c with size nc along dimension d given by:

xi,c,d =

∣∣∣∣xi,d − xdσc,d

∣∣∣∣ (3.5)

As the above function does not distinguish how relevant w.r.t. the community a dimension
is, this should be included on calculating the overall score w.r.t. the community. As
outlier scores should be comparable between different communities the combined score is
normalised by the total number of relevant dimensions D with each having the relevance
rd.

xi,c =
1

|D|
∑
d∈D

xi,c,d ∗ rd

Overall Combined Score

Regarding the output of the clustering process, outliers occur in two different settings. An
outlier may vary significantly in the attributes from its neighbours though it will integrate
with its structure in the community as shown in Figure 3.3(a), so that the increase in
modularity outweighs the decrease in relevance. The larger a community is the likelier
this will occur. Whereas in the other situation shown in Figure 3.3(b) it will form a
community with a very small size (including size 1) as the decrease in relevance is far
higher than the possible structural increase in modularity.
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3.3. Outlier Scores 15

To overcome the problem that outliers occur in different forms the outlierness of a vertex
should not only be computed w.r.t. its own community. If the community of a vertex is
small, the structure may be too weak to form a larger cluster.

1

43

34 . . .

. . .. . .

. . .

(a) Outlier embedded in a cluster

1

98

. . . . . .. . .

(b) Outlier in a size-one cluster

Figure 3.3.: Different settings the outlier scores has to take care of (red lines indicate
community borders)

Definition 2 Given the set of edges Exi,c which connect xi to vertices in community c,
c(xi) the community of xi and C the set of communities incident to xi excluding c(xi), the
proposed outlier score is computed via:

mxi,c =
∑

e∈Exi,c

w(e),mc(xi) =
∑

e∈c(xi)

w(e)

score(xi) = max(mc(xi)
,maxc∈C (mxi,c))

√
(xi,c)

mc(xi) +
∑

c∈C(xi,c)
mxi,c

1 + |C|

(3.6)

Though this formula seems complex, it has some simple asymptotic properties that match
the settings in Figure 3.3. Taken the assumption (see [LLDM08] for a list of average node
degrees in large social networks) that the degree of a vertex in a rather large community
is significantly smaller than the community size, the score could be approximated through

score(xi) ≈ xi,c(xi) (3.7)

This approximation is inferred through the following asymptotic behaviour under the con-
dition limmc(xi)

→∞mc(xi)/d(xi) =∞ that the score will only depend on its own community:

lim
mc(xi)

→∞
score(xi) =

limmc(xi)
→∞

mc(xi)

√
(xi,c(xi))

mc(xi) +
∑

c∈C(xi,c)
mxi,c

limmc(xi)
→∞

mc(xi)
√

1 + |C|

= lim
mc(xi)

→∞
mc(xi)

√
(xi,c(xi))

mc(xi) +
∑
c∈C

(xi,c)
mxi,c

(3.8)



≥ lim
mc(xi)

→∞
mc(xi)

√
(xi,c(xi))

mc = |xi,c(xi)|∞

≤|xi,c|∞ + lim
mc(xi)

→∞
mc(xi)

√∑
c∈C

(xi,c)
mxi,c

︸ ︷︷ ︸
→0


= xi,c
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16 3. Quality Measures

Looking at the other extreme that the viewed vertex is forming a community of size one
and it has at most one edge (with weight 1) to its neighbouring communities the score is
simplified to a rather uncomplicated average.

score(xi) =

∑
c∈C x

mxi,c

i,c

1 + |C|
(3.9)

As an example the outlier in Figure 3.3(b) is forming a size-one community so that it has
an outlier score of 0 w.r.t to its community. Under the assumption that the neighbouring
community has a mean of 8.5, a variance of 0.25 and a relevance of 0.8, the outlier has a
score of 9.5244. In contrast Figure 3.3(a) shows an outlier which is part of a community.
Taken that this community has a mean of 3, a variance of 1.2 and a relevance of 0.8 the
score for the outlier is directly its community outlier score which is 1.8257. Compared
to the outlier, the vertices with attribute 3 in this community have an outlier score of
0. Those with attribute value 4 have a score of 0.91287 which makes the outlier clearly
distinguishable from the other community members.
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4. Algorithmic Approaches

To optimise the scores presented in the previous chapter, some algorithmic approaches are
presented in the following. The proposed algorithms all optimise the Attributed Modularity
score on a heuristic basis to achieve polynomial running time. As optimising Attributed
Modularity is an NP-hard problem, in the current situation, a algorithm with exponential
runtime would be needed. All heuristics use a general scaffold which is presented as the
first part of this chapter. As the main part of this chapter, the functionality of all proposed
algorithms is outlined. For each approach the runtime in the O-calculus is provided.

Due to different available techniques the proposed algorithm is given as a scaffold in which
at one point different techniques are exchangeably used as described in Algorithm 1. The
proposed techniques either look at the local context of a vertex or at the global scope of
all vertices when deciding which change to the clustering should be made. After loading
the graph, the global variance σ2k for each dimension k is computed using the corrected
two-pass algorithm suggested by Chan, Golub and LeVeque [CGL83]:

σ2k =
1

N

N∑
i=1

(xi,k − xk)2 − 1

N2

(
N∑
i=1

(xi,k − xk)

)2

At this point the techniques that will be explained in the following subchapters can be
interchangeably integrated. To concatenate multiple approaches a common interface is
used. As shown later in Chapter 5 the combination of two techniques might lead to better
or faster results than only using one of them. Each algorithm is given the graph on which
clustering is done, the communities determined by the previous step and the precomputed
global graph properties. If there is not a previous clustering, an initial singleton clustering
where each vertex forms a cluster is set. One technique is iteratively used until it converges,
i.e. no more increase in Attributed Modularity could be obtained by applying it to the
graph.

After a combination of the techniques has run, the outlier score for each vertex is computed.
Its own community, neighbouring communities and the total weight of all edges linking the
current vertex to its neighbouring communities is collected. Using the list of communities
the outlier score of the current vertex is calculated w.r.t. each of these communities.
Having computed the outlier scores for each community using Equation 3.6 the combined
score is computed.
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18 4. Algorithmic Approaches

Algorithm 1 Algorithm Scaffold

compute all global variances
compute weighted degree k(xi) for xi ∈ V , m :=

∑
xi∈V k(xi)

c := {{v} | v ∈ V }
for technique ∈ usedTechniques do

c := runTechnique(c)

emit c
for xi ∈ V do

score := outlierScore(xi, c(xi))
mc(xi)

for nC ∈ {c(v) | {xi, v} ∈ E} do
weight :=

∑
{xi,v}∈E w({xi, v})

score += outlierScore(xi,nC)weight

score /= 1 + |{c(v) | {xi, v} ∈ E}|
emit outlierRoot(xi, score)

Regarding the optimisation of Modularity scores, Noack and Rotta [NR09] give an overview
of the currently available and used techniques. These approaches provide a template for the
fast optimisation of graph clustering and have shown their practical usability for optimising
Modularity scores. The following techniques are based on them but are modified to use
Attributed Modularity as their objective function. Though the main task was to convert
the objective function to support numerically stable incremental computation there are
some small changes to the algorithm techniques used.

For the underlying graph structure some runtime properties are assumed. The list of edges
incident to a vertex could be inserted in O(degree) into the graph and adding a edge takes
O(1). A vertex can be retrieved using its vertex id in expected constant time when using
arbitrary vertex ids. This can be a achieved using a HashMap-like structure. This runtime
could lowered to constant deterministic time if all vertex ids were moved into a continuous
integer range. Adding a vertex should take (probabilistic) constant time, too.

4.1. Clustering Approaches

To maximise the objective function in the following different techniques are presented.
The techniques vary in runtime and their approach on how to increase the Attributed
Modularity. Though most techniques already produce good results on their own, combining
them will lead to better results and sometimes a decrease in overall runtime. In Chapter
5 an evaluation how these steps perform will be given.

4.1.1. Local Move (LM)

The first proposed approach only considers the local neighbourhood of each vertex on de-
ciding which change to do. In one iteration each vertex of the graph is scanned and moved
temporally into a size-one community. Then, for all neighbouring communities, the in-
crease in Attributed Modularity when moving the vertex into this community is computed.
The vertex is moved to the community with the highest increase in its neighbourhood.
Each inner iteration of the while-loop of Algorithm 2 takes O(n + m ∗ d) time. One of
the major properties to achieve this is that the calculation of the change in the Attributed
Modularity on removing or adding a vertex v to a community c can be calculated in
O(d + degree(v)) (exactly in O(d + |Ev,c|))time. In the following paragraphs the math-
ematical details are depicted how existing equations need to be transformed for fast and
numerically stable computation.
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4.1. Clustering Approaches 19

Algorithm 2 Local Move Iteration

while increase > 0 do
increase := 0
for xi ∈ V do

curCommunity := c(xi)
decrease := AMDec(curCommunity, xi)
curCommunity − = xi
neighCommunities := {c(v) | {xi, v} ∈ E} ∪ curCommunity∪ newCommunity
for nC ∈ neighCommunities do

score(nC) := AMInc(nC, xi)
destination := maxargnC∈neighCommunities(score(nC))
assert score(destination) + decrease ≥ 0
destination + = xi

assert increase ≥ 0

Incremental Modularity computation

For Modularity increase Blondel et al. [BGLL08] already uses the ability to compute the
increase of modularity when adding a vertex to a community directly instead of recalcu-
lating it on the whole graph. The weighted degree ki of each vertex i and the total sum of
all weighted degrees dSum are precomputed and constantly updated per community. The
increase of modularity MIi,l by adding a vertex xi (without a community) to a community
l is given by (where c(j) is the community of j):

MIi,l =

∑
j Aijδ(c(j), l)

m
− ki ∗ dSuml

2m2
(4.1)

As we only sum over all edges connected to the suggested community and all other values
are already precomputed, the increase for all neighbouring communities is calculated in
O(degree(xi)) time.

Incremental Relevance computation

For the fast computation of the relevance part of Attributed Modularity , the essential part
is to compute the variance of each dimension k numerically stable in O(1). In the Local
Move algorithm the relevant operations are the addition and the removal of a data point
which change the variance. In statistical textbooks the following one-pass algorithm is
suggested for incremental computation of the variance for N data points:

Sk =

N∑
i=1

x2i,k −
1

N

(
N∑
i=1

xi,k

)2

(4.2)

σ2k =
1

N
Sk (4.3)

Though this formula could be easily used for incremental computation, it is numerically
unstable if used with double values. Chan, Golub and LeVeque [CGL83] suggest West’s
algorithm [Wes79] and the updating formulae of Youngs and Cramer [YC71] for numer-
ically stable computation of the variance. As Youngs and Cramer [YC71] support the
merging of two clusters in O(1) under stable conditions it is always used in all upcoming
situations where not a total recomputation is done. Starting with T1,1 = x1 and S1,1 = 0
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20 4. Algorithmic Approaches

using Equations 4.4 and 4.5 the variance of a set of j data points with the knowledge of
the variance for the first j − 1 data points can be computed using:

T1,j = T1,j−1 + xj (4.4)

S1,j = S1,j−1 +
1

j(j − 1)
(jxj − T1,j)2

σ2j =
S1,j
j

(4.5)

The increase in variance on adding a data point xj to a set of j − 1 data points can be
easily obtained:

σ2j − σ2j−1 =
1

j
S1,j −

1

j − 1
S1,j−1

=
1

j(j − 1)

(
1

j
((j − 1)xj − T1,j−1)2 − S1,j−1

) (4.6)

The above Equations 4.4, 4.5 and 4.6 can be transformed to calculate the decrease of
variance on removing a data point of a set of j data points.

T1,j−1 = T1,j − xj (4.7)

S1,j−1 = S1,j −
1

j(j − 1)
(jxj − T1,j)2 (4.8)

σ2j−1 − σ2j =
1

j(j − 1)

(
S1,j −

1

j − 1
(jxj − T1,j)2

)
(4.9)

Looking at a cluster l we need to calculate the relevance Rk,l|n+1 for a dimension k if we
add a vertex to this cluster. Given the current relevance Rk,l|n and the respective variance
σ2k,l|n and σ2k,l|n+1, the relevance increase is obtained using the variance increase.

Rk,l|n+1 −Rk,l|n =
(
1− σ2k,l|n+1

)
−
(
1− σ2k,l|n

)
= − 1

σ2k

(
σ2k,l|n+1 − σ2k,l|n

) (4.10)

In Attributed Modularity the relevance is capped at 0, so that only dimensions with a
positive relevance count towards the score. To respect this property in the incremental
computation, the increase of relevance RIk,l,n+1 that counts towards the global score is:

RIk,l,n+1 = Rk,l|n+1 −Rk,l|n −min(Rk,l|n+1, 0) + min(Rk,l|n, 0) (4.11)

As for each dimension the relevance increase can be computed in O(1), the overall relevance
increase is computed in O(d). Having the old Modularity Modl and Relevance Rk,l scores
the Attributed Modularity of a cluster l without and with an additional vertex is given by
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AMl = Modl ∗
d∑

k=1

max(0, Rk,l) (4.12)

AMl |n+1 = (Modl +MIi,l) ∗

(
d∑

k=1

max(0, Rk,l) +
d∑

k=1

RIk,l,n+1

)
(4.13)

Using the difference of the above two formulae the increase AMIl,i in the objective function
if moving vertex xi into community l could be computed in O(d+ deg(xi)) time using:

AMIl,i = Modl

(
d∑

k=1

RIk,l,n+1

)
+MIi,l ∗

(
d∑

k=1

max(0, Rk,l)

)
+MIi,l

(
d∑

k=1

RIk,l,n+1

)
(4.14)

Using Algorithm 2 and the above formulae, one Local Move iteration can be run. To show
the correctness of the two mentioned asserts in the pseudocode, a simple consideration how
the algorithm works should suffice. As a vertex is moved out of a community to which it
could be moved back, the highest score is at least as high as the decrease. Given this, in
all situations at least moving the vertex back into its original community will not decrease
the overall score. Because each move only adds positive scores to the total increase, the
second assert is correct, too.

A series of Local Move iterations can be considered as converged if a round is reached
where there are no vertex moves possible. As only positive increases to the score are made
and Attributed Modularity has the upper bound of 1, the algorithm always converges.

One iteration of Local Move has exactly n inner iterations of its for-loop as each vertex
is considered once for a move. Using a HashMap, in expected O(1) time the current
community of a vertex is retrieved. To calculate the decrease when moving a vertex out
a community using the above formulae, we need to look at most on all outgoing edges.
Additionally for each dimension we could determine the relevance decrease in O(1) so
that the overall decrease in Attributed Modularity is calculated in O(d + degree) time.
For selecting the new community a scan over all edges of the current vertex is needed to
determine the neighbouring communities and the total edge weight linking to them. For
the maximum of degree communities neighbouring to the vertex the increase in relevance is
computed which sums up to O(degree ∗ (d+ 1)) time for the calculation of the Attributed
Modularity scores for the move possibilities. In the end the vertex is assigned to the
community with the highest increase in Attributed Modularity. One inner iteration of the
for-loop takes O(d∗degree) time and given the fact that each vertex is looked at once, the
total runtime of an outer for-loop iteration of Local Move can be amortised to O(n+m∗d).

4.1.2. Coarsening Local Move (Coarse)

As Local Move only considers movements of the size of one vertex, it will likely end up
in a local maximum where there are no increases which could be achieved by moving one
vertex. To utilize the concept and performance of Local Move the graph is transformed so
that we could still run Local Move on it but considering “higher level” movements.

The main concept of this approach it to iteratively merge each community into a single
vertex and and run Local Move on the resulting graph. Contracting the graph structure
is simple as the sum of the edge weight of a community is added as a loop and to each
neighbouring community an edge of the total weight linking both is created. In contrast to
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22 4. Algorithmic Approaches

the structure the contraction of the attribute values is less straight-forward. As mentioned
in the previous subchapter, the variance of a community can be stored using two variables
S and T but in the contracted graph groups of vertices are moved (in contrast to a single
vertex in Local Move). To keep the runtime of O(1) in computing the increase/decrease in
variance if one vertex is moved into another community other formulae need to be used.

Using the algorithm of Youngs and Cramer [YC71], the combined variance of two sets of
data points of size n,m can be computed using:

T1,m+n = T1,m + Tm+1,m+n (4.15)

S1,m+n = S1,m + Sm+1,m+n +
m

n(m+ n)

( n
m
T1,m − Tm+1,m+n

)2
(4.16)

Using a simple transformation the above formula could be used to remove a set of n data
points given their respective S, T values from a set of m+ n data points in O(1) time. In
addition to updating the value of S and T the increase/decrease in the biased variance is
calculated through:

σ2m+n − σ2m =
Sm+1,m+n

m+ n
+

m

n(m+ n)2

( n
m
T1,m − Tm+1,m+n

)2
− n

m(m+ n)
S1,m (4.17)

σ2m − σ2m+n =
n

m(n+m)
S1,m+n −

Sm+1,m+n

m
− 1

n(m+ n)

( n
m
T1,m − Tm+1,m+n

)2
(4.18)

Algorithm 3 Coarse Iteration

gnew := newGraph
Communitiesnew = new Set
for c ∈ Communitiesold do

gnew. addVertex(v(c))
Communitiesnew . add(newCommunity({c}))
gnew. addEdge(v(c), v(c), totc)

for c ∈ Communitiesold do
neighCommunitites := {cold(v)|xi ∈ c, {xi, v}, cold(v) 6= c}
for nC ∈ neighCommunitites do

w(c,nC) := 0

for {u, v} ∈ Eold do
w(c(u), c(v)) += w({u,v})

localMove(gnew,Communitiesnew)

Algorithm shows an iteration of Coarsed Local Move where the graph is contracted.
Coarsed Local Move itself converges if a Local Move directly after contraction does not
show any more increase, i.e. there are no more movements possible even if considering
moving vertices that were contracted out of communities.

Using the mentioned formulae for handling the move of a vertex which represents a set of
data points, Local Move is used with its O(n+m∗d) runtime. In addition the contraction
of the graph adds some overhead to the algorithm. As a worst case upper bound, the
original graph may be clustered in to a maximum of n communities, i.e. each vertex still
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forms one community. The size of the newly generated graph is always at most the size of
the original graph. The creation of the new graph including the vertices could be done in
O(n) though each community needs to be copied as we instantiate new communities with
the original community as the only vertex. As the data structure of a community stores the
local variances of all attributes, it needs O(d) space so that the copy process will consume
overall O(n ∗ d) time. To get all neighbours of a community a scan over all edges of a
community is needed, taking O(

∑
v∈c degree(v)) in time. Overall an edge is only looked

at twice while determining the neighbourhoods so that the runtime of this part can be
amortised to O(m). For calculating the weights and the creation of the connecting edges
and the same amount of time is needed as we will not look at any edge more than twice.
To ensure that an edge is not added twice during the creation of the new communities,
each community is assigned an index. If a new edge should be added it is checked that
the index of the current community is smaller than that of the neighbouring community.
This check only needs O(n) extra preprocessing time which does affect the total runtime
in the O-calculus. In sum the contraction of a graph to a graph where each community is
represented by a vertex takes O(n ∗ d+m) time.

After using the Coarsed Local Move step some postprocessing is required as we need to
determine to which community one of the original data points belong. Using the map of
which vertex belongs to one of the communities of a previous run, i.e. the non-contracted
graph, based on the clustering of the contracted graph each vertex is reassigned to one
of the contracted communities. This back-transformation needs to be made after all con-
traction rounds but each round only adds O(n) time as it contributes at maximum one
layer.

4.1.3. Global Merge (Merge)

In contrast to the two already mentioned steps, this approach varies in its concept as
it joins clusters instead of moving vertices between them. Though we can determine the
overall runtime of Global Merge instead of only per inner iteration, it is significantly slower
than the other steps. The concept of this step is influenced by [New04].

During this approach, a priority queue of all possible merges of two clusters is maintained.
The head of this queue is the merge which would end up in the highest increase in Attributed
Modularity . At the beginning all possible merge scores are computed and inserted into the
queue. Merge scores are only computed for neighbouring clusters as non-connected cluster
would have worse modularity scores as well as that they disagree with the definition of the
searched clusters (high interconnection).

For the calculation of the variance Equations 4.15 and 4.16 can be used to get the combined
variance of a dimension in constant time. To compute the increase in Modularity on
merging two clusters k1 and k2 only the increase in the total inner-community degree
weight totInc needs to determined, the new modularity itself can then be calculated in
constant time.

totInc = 2 ∗
∑
v∈k1

∑
u∈k2

Avu (4.19)

Modk1∪k2 =
totInc + totk1 + totk2

2m
−
(
dSumk1 + dSumk2

2m

)2

(4.20)

As already mentioned in Chapter 4.1 the sum of all node degrees dSumk in a community
k is continuously maintained throughout all operations so that it is available in constant
time.
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After a successful merge, the neighbours of a the newly created community are obtained.
All scores which consider one of the merged clusters are removed from the priority queue.
For each neighbouring community the score is calculated and added to the priority queue.
This procedure is repeated until no more merges with a positive increase are in the priority
queue.

Algorithm 4 Global Merge

increase := 0
pq := newPriorityQueue
for c1 ∈ Communities do

for c2 ∈ Communities do
if idx(c1) ≤ idx(c2) then continue
score := mergeScore(c1, c2)
if score >0 then pq.add(score, c1, c2)

while pq.hasElement do
(score, c1, c2) = pq.pop
increase += score
c3 := merge(c1, c2)
for c4 ∈ R do

pq.remove( , c4, c1)
pq.remove( , c4, c2)
score := mergeScore(c3, c4)
pq.add(score, c3, c4)

In addition to the above pseudocode, during this step a list of the edge weight between
each pair of communities is maintained. This list is pregenerated at the beginning in
O(m) time and updated after the merge for each combination of the new community and
its neighbours. Using this list, it is possible to calculate totIncrease and so Modularity in
constant time while generating the merge scores. Overall the computation of the merge
score of two communities takes O(d) time.

For the updating of the relevance during merges, the Equations 4.15 and 4.16 can be used.
They allow updating the relevance of the combination of two communities in O(d) time.
A merge of two communities is just treated like if one community would have been moved
into another community.

At the beginning a maximum of O(m) initial merge scores need to be calculated, giving the
initialisation phase O(m ∗ d) time. After each new merge, O(n) scores need to be updated
and added to the priority queue thus this will take O(n∗ (d+ log(m))) time as the priority
queue may store up to O(m) merge candidates. The number of merges is capped at n− 1
which would end in a single community. The priority queue could be implemented as a
binary so that the initial creation would take O(m) and the update of a score O(log(m))
time. Summed up, this step will run in O(n2 ∗ (log(m) + d)) time until convergence.

4.2. Handling Communities

Throughout the whole algorithm a list of all communities is used as stateful information
and passed on by all the steps. Besides the main information, which vertices belong to a
community, several values are stored to enable fast computation of the used measures. For
computing modularity, the modularity itself is kept as a variable as well as the total weight
tot of all edges that connect two vertices in the community. As already described the sum
of the degree of all vertices of the community is stored to support the computation of the
modularity during cluster merges. In contrast to Modularity the relevance of a dimension

24



4.2. Handling Communities 25

is not stored directly but computed on demand in constant time out of the variance of
each dimension. To get the current variance of a dimension, the sum of all data points T
per attributes in a cluster and the squared distance of each data point to the mean of this
dimension S are held in memory to utilize the algorithm described by Youngs & Cramer
[YC71].

On communities only three basic operations are performed: the addition and removal
of a single data point and the merge of two communities. The first two are used (and
described) during the Local Move and Coarsening steps whereas the merging is only used
by the Merge approach.

To get the community of a vertex or handle the list of all vertices of a community hash
function based structures (e.g. HashMap and HashSet) could be used for arbitrary vertex
ids. This allows the addition and removal to the list of all vertices of a community as well
as retrieving the community of a vertex in probabilistic constant time. If one converts all
vertex ids to a continuous integer range, a simple array could be used so that some of these
operations could be run in deterministic constant time.
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5. Evaluation

In this chapter the previously introduced algorithms are tested on their practical efficiency
and quality. The algorithms will be applied to synthetic data and to real world data.
The influence of the number of vertices, the number of communities or dimensionality is
measured. In contrast to other algorithms we do not need to test the variation of the
algorithm parameters as all algorithm instantiations are parameter-free. As part of the
evaluation it will be highlighted that LM Merge is the best instantiation for optimising
Attributed Modularity as it is one of the best in quality and achieves this with good runtime
results.

As the proposed algorithm is a scaffold with three possible steps that could be run as a
combination, we need to test various instantiations. In the following LM is the instantia-
tion where only Local Move is used and Merge where only Global Merge is used. There are
the instantiations LM Merge and LM Merge LM where first Local Move is run and then
Global and in the second one another Local Move run is done afterwards. The instantiation
Coarse combines an initial Local Move step with flowing contraction using Coarsed Move.

To check the quality of the given approaches the synthetic data has known outliers and
clusters. The found clusters should be part of a apriori generated cluster to be an accept-
able clustering. Apriori known outlier objects should be among the highest ranked object
which the algorithm indicates that they show abnormal behaviour.

In the second part of this chapter the quality of the proposed algorithm is measured on
real world data. Some of the used data set have labelled outliers and an AUC score can
be computed. For the data sets that do not have pre-labelled information the result are
discussed by manual exploration of detected outliers.

As a comparison to existing solutions the attribute-only outlier detection algorithm LOF
[BKNS00] and the clustering approach SCAN [XYFS07] which clusters only w.r.t. the
graph structure are used. In addition CODA [GLF+10] serves as a third competitor that
takes graph structure and attribute space into account. An already mentioned problem is
that all the competing algorithms require user-given parameters. For each algorithm dif-
ferent parameter instantiations are used and the best result is selected. For compensating
the effects of randomisation each algorithm instantiation is run five times and the average
of the runtime is used. If there are any differences in the score due to randomisation the
best score will be listed.
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28 5. Evaluation

5.1. Synthetic Data

To evaluate the behaviour of the above mentioned instantiations a synthetically generated
data set is used. The data set varies in the number of vertices, the number of communities
and the number of dimensions. For the evaluation three sets of synthetic graphs were
generated using the proposals from [LFR08]. The first set contains graphs with a fixed
number of 40 communities and a varying quantity from 1000 to 20000 vertices and ten
attribute dimensions. The second set of graphs has a vary number of communities starting
from 5 to 30 with an average of 250 vertices per community and a fixed number of 10
dimensions. To measure the behaviour of the algorithms with a higher dimensionality the
third set has a fixed number of about 1000 vertices and eight communities but varies in
the number of dimensions from 10 to 100. Each graph contains 5% of structural outliers
which have sparse connections to other vertices and 5% of local subspace outliers which
are densely embedded in a community but deviate significantly in the relevant attributes
for this cluster. In general the synthetic graph consist of one connected component which
has more edges in communities than between them. The size of the communities as well
as the degree of the vertices is power-law distributed.

The tests were run on a Intel(R) Core(TM) i7 CPU L 640 dual-core processor with a
frequency of 2.13GHz per core. There was 8GB of RAM available to each algorithm. All
algorithms were implemented in Java or Scala and run using Java 1.7.

5.1.1. Runtime

To show the scalability we evaluate the runtimes of the proposed algorithm instantiations
and the competitors. As LOF varies in its runtime significantly depending on the param-
eters, the runtime of the fastest and of the best instantiation is listed. In this context the
best instantiation is referred to w.r.t. the AUC score.
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Figure 5.1.: Runtime w.r.t. number of vertices

For measuring the scalability w.r.t. to the number of vertices, a set of graphs with the fixed
number of 40 communities but a varying number of vertices is used. The sizes range from
1000 to 20000 vertices with an outlier ratio of 10 percent. In Figure 5.1(b) the variants
of the Attributed Modularity instantiations are compared to each other. Using the Merge
step without any preprocessing leads to the behaviour that is expected from the O-calculus
whereas if LM is used upfront, the overall runtime shows a linear behaviour as the other
variants of the proposed algorithms do.
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As LOF varies significantly in its runtime depending on the parameter values, the in-
stantiation with the best AUC score and the fastest are listed. In comparison with the
competitors, LM Merge is slower than SCAN which only clusters using the graph structure
but faster than all others. LOF needs more time as it always looks at the attribute data
from a global perspective while the Attributed Modularity variants profit from the locality
obtained by the graph structure. Though CODA respects both types of information due
to its algorithm design which scales quadratically w.r.t. the number of vertices it does not
scale as good as LM Merge.
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Figure 5.2.: Runtime w.r.t. the number of communities

In Figure 5.1 only the number of vertices is increased but the number of communities stayed
at a constant level. To analyse the effects of the number of communities, Figure 5.2 lists the
runtime with increasing number of communities. Except Merge all Attributed Modularity
instantiations show the same behaviour whereas Merge scaled better in comparisons with
the constant number of communities. This highlights that a lot of the work of Merge is done
in merging inside a community. As graph size increases but the size of each community
stays at a constant level, the number of merges still increases but due to better locality
constraints Merge has to analyse less neighbouring communities after each successful merge
of two communities.

Regarding the competitors, LOF and SCAN show the same scalability properties. In
contrast to them, the runtime of CODA dramatically increases with the increasing number
of communities. The increase in runtime of CODA is significantly larger compared to the
increase of it with a fixed number of communities.

If the number of vertices and communities are fixed and only the number of dimensions
varies, as listed in Figure 5.3, all Attributed Modularity variants increase linearly in runtime
with increasing dimensions. Though all instantiations scale linear, the variants that include
LM as first step scale with a larger factor. This effect could be explained that LM computes
a very high number of move scores which scale directly with the number of dimensions.
In contrast Merge spends more time comparing scores than computing them which is
independent of the number of dimensions.

Compared to the already mentioned competitors, LM Merge shows the same linear asymp-
totic behaviour as SCAN and LOF do. Its runtime is just a constant factor higher as it
requires more preprocessing on the graph. In contrast CODA suffers from the curse of
dimensionality and its runtime dramatically increases with the number of dimensions.
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Figure 5.3.: Runtime w.r.t. the number of dimensions

5.1.2. Quality of Outlier Detection

To analyse the quality of the outlier detection which is part of the proposed algorithm,
the set of graphs with increasing dimensionality is analysed. As a measure to compare
the different instantiations the “Area under curve” (AUC) is utilised. The AUC score is a
comparison of the outlier ranking given by an algorithm with a random ranking. Given
a score of 50, the outlier ranking is considered random and higher scores (up to 100)
indicate better quality in finding outliers. The scores of the instantiations of the proposed
algorithm are compared to the competitors which already have been used in the runtime
analysis. As a basis for the evaluation a set of graphs with dimensionality from 1 to 100
using a fixed number of vertices is used. For each dimensionality the scores were computed
on five different graphs and the average of all these score is listed in the diagrams. As an
additional info the standard deviation of the result per dimensionality is listed too.
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Figure 5.4.: Quality (AUC) w.r.t. increasing dimensionality (AM vs. Competitors)

As shown in Figure 5.4, LM Merge has a far better quality in outlier detection than the
listed competitors. SCAN only considers graph data so that it does not detect outliers
which fit from the structural pattern to their neighbourhood but deviate in the attributes
from the local environment. In contrast LOF only detects outliers from the attribute per-
spective leaving outliers which occur only in their neighbourhood w.r.t. graph structure
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undetected. Though CODA should detect the outliers better than the two other com-
petitors it suffers from the curse of dimensionality. As CODA does not distinguish which
attributes are characteristic for a cluster/an object it cannot distinguish local anomalies
and objects that fit to the local pattern.

In Figure 5.5 the different instantiations of the Attributed Modularity optimising algorithm
are shown. The main feature visible here is that all instantiations have constantly good
results independent of the dimensionality. The three instantiations which include a Merge
step are always a bit better than the other two. None of the three is significantly better
than the other two so that cannot be given specific instantiation that performs best.
Though LM Merge has the best runtime properties is it used to compare the Attributed
Modularity optimisations methods with the competitors.
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Figure 5.5.: Quality (AUC) w.r.t. increasing dimensionality (AM variants)

5.1.3. Clustering Quality

For the evaluation of the quality of the generated clusters only the Attributed Modularity
variants are compared. To highlight which of the instantiations optimises the proposed
measures best, the Attributed Modularity scores are computed in the three scenarios that
were already used for the runtime evaluation. As Attributed Modularity scores are not
comparable between two graphs, in each scenario the absolute scores and the scores relative
to the best instantiation are listed.

In the first scenario a group of graphs with an increasing amount of dimensions is evaluated.
Overall LM Merge, LM Merge LM and Merge produce the same best result as shown in
Figure 5.6. As LM Merge LM has an additional LM step its scores are slightly but
insignificantly better then those of LM Merge. The other two variants LM and Coarse
have on average about 70% of the Attributed Modularity score of better instantiations.
Depending on the graph, LM which is used as the first step for all variants except Merge
is nearly as good as the instantiations based on it. In this case the local optima which
was found by LM includes larger cluster which in similar but varied graphs may only have
been formed by a following Merge step.

As detailed in Figure 5.7, LM and Coarse produce results about a quarter worse than those
of the other instantiations independent of the number of vertices a graph contains. With
an increasing size of the graph, the scores of Coarse slightly converges against those of LM
though staying always above them. In conclusion LM suffers from its local perspective
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Figure 5.6.: Attributed Modularity scores w.r.t. the number of dimensions
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Figure 5.7.: Attributed Modularity scores w.r.t. the number of vertices

of the neighbourhood of one vertex to build some of the larger communities as it may
have to move more than one vertex into another community to increase the score. Though
Coarse is able to make movements on a higher level, it fails to pick the right movements
and end very early in a local optima. The same behaviour could be seen when the number
of communities is varied as shown in figure A.1.

As this part of the evaluation uses synthetic data, the clusters in the graph are known.
Due to the additional information considered by the algorithm, it is very likely that these
clusters are split up. To measure how good the hidden clusters were detected by the
instantiations, the cluster purity, as defined by Aggarwal [Agg04], is used. To calculate
purity, a cluster is assigned the label of a hidden cluster which is most frequent among its
objects. The score is the fraction of correctly assigned objects in all clusters. Figure 5.8
shows how pure the clusters of the Attributed Modularity instantiations are. The results
were generated using a set of graphs with an increasing number of vertices but a constant
number of 40 clusters. As the number of clusters is constant the community size rises
with the size of the graph and shall evaluate the behaviour of clustering objects w.r.t.
the community size. Overall LM does nearly always respect the bounds of the synthetic
clusters as its cluster are small and have a dense connectivity. All instantiations that
include a Merge step do add some objects of a neighbouring cluster to larger communities.
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Figure 5.8.: Purity of the clusterings w.r.t. the number of vertices

Still the bounds of the synthetic clusters are respected as only about 1% of all objects are
part of clusters that are mainly placed in another synthetic cluster. In contrast the Coarse
instantiation clusters about 15% of all objects into a neighbouring cluster as it often falls
into a local maxima that includes clusters that span between the “borders” of synthetic
clusters.

0 200 400 600 800 1,000 1,200
0

5

10

15

Vertices

R
el

ev
an

ce

LM LM Merge
LM Merge LM Merge

Coarse

Figure 5.9.: average relevance by community size (n = 10025)

To measure if specific instantiations stick more to the attributes or to the graph structure,
in figure 5.9 the relevance per community of a graph of size n = 10025 is listed. The
graph has ten dimension so that the maximal relevance is 10, too. As the pre-generated
clusters have on average about 5 relevant dimensions, in an optimal case, an algorithm
finds large cluster in the area between the two red lines. A large cluster with a relevance
of about 5 indicates that the algorithm has found the correct amount of dimensions that
are characteristic for this cluster. The size is an important aspect as the formation of
small clusters with high relevance is less complex than the formation of large clusters
with the same relevance and a higher Modularity score. The three instantiations which
include a Merge step fulfil this wanted property. In contrast Coarse trades relevance
for cluster size and builds larger Modularity based cluster ignoring most attributes. The
clusters generated by LM stay small but have a high relevance, i.e. LM fails to decrease
in relevance so that it could create larger clusters with a higher Modularity score. The
overall trend that the larger a cluster the lower its relevance is reasonable as small clusters
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only have few attribute values. Especially clusters of size one have a total relevance of 1
as only one vertex contributes to the attribute value, i.e. there is no scattering at all in
the data.

5.2. Real World Data

In the previous section only data that was generated to fit a given model was considered.
The utilised concepts of Attributed Modularity were modelled using properties discovered in
real world data. As the real world cannot be described perfectly by a formula, the proposed
algorithms are evaluated on different data sets to analyse their quality and discovered
results.

5.2.1. Outlier Experiments

The data sets covered in this section are marked with labels that either have been generated
through empirical study or by using a specific information already contained in the data as
a label for an object being an outlier. These labels are only used for the calculation of the
quality and are not considered by any of the algorithms. All the algorithm results listed
have been run with less than five minutes of runtime for each. Only those instantiations
that would have taken significantly longer are not listed.

The first experiment is done on a subgraph of the Amazon co-purchase Network [LAH07]
covering the Disney category. This subgraph consists of 124 vertices and 334 edges. The
outliers in this graph were labelled using high school students as domain experts. The
students were given each subcategory and labelled suspect objects as outliers. Objects that
were labelled by at least 50% of all students as an anamolie as considered as an outlier in the
data. Table 5.10(a) shows the AUC score of the Attributed Modularity instantiations and
the competitors which where used in the previous subchapter. As an example an outlier
ranked in the top three of each of the Attributed Modularity instantiations is “Rudyard
Kipling’s The Jungle Book (1994)”. This film has a significant higher used price and a
lower sales rank than all its neighbours. Its deviation in the attributes from its neighbours
is higher than its structural integration so that is clustered in most cases as a size-one
cluster.

Algorithm AUC

LM 65.33

LM Merge 75.46

LM Merge LM 74.01

Merge 76.59

Coarse 63.83

CODA 50.56

LOF 56.85

SCAN 52.68
(a) Disney scores

Algorithm AUC

LM 59.3

LM Merge 47.9

LM Merge LM 51.9

Merge 42.8

Coarse 43.3

CODA 53.35

LOF 29.3

SCAN 41.8
(b) Books scores

Algorithm AUC

LM 56.1

LM Merge 50

LM Merge LM 77.8

Merge -

Coarse -

CODA 45.71

LOF 61.1

SCAN 62.1
(c) Enron

As another category a subgraph out of the books section of Amazon is used. For this
graph tags provided by the users are used for the labelling. A popular tag to show the
disagreement with the manipulation of Amazon sales ranks utilised by users is amazonfail.
If a product is tagged at least of 20 users with amazonfail, it is considered as an outlier
in this data. On this dataset using Attributed Modularity outliers are not found as good
as in the previous one but with LM an instantiation exists that has a remarkable better
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score than CODA. The two competitors SCAN and LOF rank the outliers more as inlier
(as shown in table 5.10(b) than as a common inlier which makes the scores of them better
than a random ranking. Still this behaviour is not wanted as a non-expert user may only
look at the objects that are ranked high.

The last real world set with labelled outliers is data taken from the email communication
inside of Enron whose scores are found in table 5.10(c). The objects marked as outliers
are people which are considered as spammers in the communication. Due to the size of
the graph having about 13500 vertices, the instantiations Merge and Coarse did not finish
in a reasonable time. During LM Merge the algorithm found a local optima describing
90% as one cluster. This cluster has a low but still positive score in Modularity and a high
relevance in some attributes giving it an overall high Attributed Modularity score. The
attributes that have high relevance include the average time between two mail and the
average number of people listed in the CC. Because all objects in these attributes have
the same attribute values the outlier scores are low so that there is no real indication if
an object should be considered as an inlier or an outlier. Adding an extra LM afterwards
detects the outliers hidden in this large cluster as it reviews each vertex on its local context.

5.2.2. DBLP

As the last data set, a subset of the DBLP graph is considered where vertices represent
authors and edges the co-authorship relation between them. Each author is described
by 46 numerical attributes which describe the publication ratio at major database, data
mining, artificial intelligence, and statistics conferences. The largest connected component
of this graph contains about 28000 vertices and was analysed using Attributed Modularity .

In the following, we describe some of the top 100 ranked authors from the results of the
LM Merge instantiation. A preliminary analysis shows that most of the top-ranked authors
are professors. The common characteristic of these professors within the top-100 ranking
is that they have highly number of publications in several research areas. In particular,
the communities they belong to are mainly focused on a specific topic (e.g., databases or
data mining). These top ranked authors have usually publications in other research areas
as the result of a collaboration project or an intention to expand the research area of their
department. Thus, they have publications in conferences where their communities do not
publish, and show deviating values w.r.t. their community.

Jiawei Han (rank:1) and Jian Pei (rank: 37): They belong to the same community
with 12 members. This community does not publish in specialised artificial intelligence and
machine learning (e.g., ICML and AAAI/IAAI) conferences or workshops as their main
topic is data mining. However, Jiawei Han has several publications in machine learning
and artificial intelligence.

Hans Peter Kriegel(rank:95): The community of Hans Peter Kriegel, represented by 42
authors (e.g., Peer Krüger, Alvin Cheung, Markus M. Breunig), has a more specific profile
for publishing than the previous community. It is characterised by not publishing neither
in specialised conferences about web, information retrieval and artificial intelligence (e.g.,
AAAI/IAAAI, WWW, ECIR) nor in workshops. Thus, all authors in this community
do not have any publications in these conferences and workshops. However, Hans Peter
Kriegel has recently published on WWW and has few publications in workshops.
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6. Conclusion

Summary

As part of this work a measure for the quality of clusterings for graphs with attributed
vertices was developed that did not depend on any user-given parameters. The proposed
measure scores a clustering based on the structural density and the selection of the char-
acteristic attributes for a cluster. A cluster gets a higher score for its structural formation
the higher the fraction of edges per vertex that are inside the cluster is than the fraction
of edges that would be inside the cluster if the edges were distributed at random. On the
attribute side a cluster will get a better score for each attribute that has a lower local than
global variance. To get an overall high score both of these properties need to be balanced.

As not all objects in the graph fit into the patterns that are described by the clusters,
these outliers should be ranked for e.g. inspection. Because outliers occur in different
settings which are to the extreme either as a size-one community or embedded in a large
community, the scoring function has to take care of this. The developed methods combine
these settings to give a uniform outlier score for all objects. For the computation of the
outlier scores the selected dimension and chosen clusters by the clustering process are used
to respect the local attribute contexts.

To optimise the proposed score, an efficient algorithm scaffold that can be instantiated
with three different optimising steps has been develop. One of the steps optimises the
score by looking at the local context of each vertex and moving it to the best community
within this context w.r.t. to the attributes and the structure. As local optima in the area
of a single vertex are quickly found, a further approach contracts the graph so that each
community forms a vertex. On this graph the previous step could be applied recursively. A
third technique computes for each possible merge of two cluster the increase in Attributed
Modularity and merges the best ones until no further increase is possible. All these in-
stantiations of the algorithm run without any user-given parameter and their performance
and quality have been shown in experiments on synthetic and real world data.

Future work

One of the theoretical problems of this work is to determine the maximal runtime of the
outer iteration in the LM and Coarse steps. In the evaluation it was shown that these
algorithms run in near linear time on the given data sets but no upper bound could be
specified.
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38 6. Conclusion

In the real world experiments, the LM Merge instantiation produced a cluster which con-
tained a large part of the vertices. This was caused by a number of attributes that only
differed in a small set of vertices and did not distinguish the hidden clusters contained
in the large cluster. A future approach could look at these clusters and try to build up
a hierarchy of clusters using the large cluster as a first recursion step, Another concept
could limit the merges done by a Merge step to specific properties so that not only merges
with the highest increase are done at first. Some of the possible limits include that small
clusters or cluster with high relevance should be merged first to prevent the creation of
large cluster with low relevances.

In this work the clustering is for efficiency reasons a partition and overlapping clusters
will be split up. As an addition to the existing algorithm, a scheme could be developed
that enables the detection of overlapping cluster. An algorithm capable of detecting and
handling hubs, i.e. objects that have high connectivity to two or more clusters and fit
well into the attribute spaces of their neighbours, would cluster these objects in all its
neighbouring communities which which share similar attribute values instead of assigning
it to only one of these clusters.
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Appendix

A. Cluster Quality

The diagrams listed here are part of the Cluster Quality evaluation and show how the
algorithms perform in some scenarios. They are not used directly in the discussion in the
related chapter but included to highlight some properties with different input data.
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