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Abstract

The girth of a graph is the size of the smallest cycle contained in the graph.
A planar graph G is called girth-planar maximal with respect to some integer g, if

girth(G) ≥ g and the addition of any non edge e ∈
(
V (G)
2

)
\E(G) results in a non-planar

graph or reduces the girth of G to a value less than g.
Some early results on the face length of girth-planar maximal graphs were given by

Axenovich, Ueckerdt and Weiner in 2016 [1] for g = 6. Fernándes, Sieger and Tait
computet bounds for the probability of girth-planar maximal graphs to appear in random
graphs [7]. However in their case, maximality was seen in an extremal setting.

This thesis presents results on the face lengths of girth-planar maximal graphs. In
particular, we prove that the maximum face length is bounded by a function of g and
give upper and lower bounds. Furthermore a tight characterization is shown for g ≤ 6
and some special classes of planar graphs.
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1 Introduction

1 Introduction

1.1 Definitions and Notation

For more detailed definitions also see Diestel [6].
A graph is a pair G = (V,E) of sets containing vertices and edges, where E ⊆

(
V
2

)
.

Here
(
X
k

)
denotes the set of all k-element subsets of a given set X. If not clear from

the context, the vertex and edge set shall be referred to as V (G) and E(G). For an
edge e = {v, w} ∈ E(G) also write e = vw = wv. Note that this thesis only covers
simple undirected graphs. The order of a graph is the number of vertices, denoted by
|G| := |V |. The number of edges is denoted by ∥G∥ := |E|.

For another graph G′ we write G′ ⊆ G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G) ∩(
V (G′)

2

)
. Two graphs G and H are called isomorphic if there exists a bijective map

Φ : V (G) → V (H) such that for all v, w ∈ V (G) the following equivalence holds:
Φ(v)Φ(w) ∈ E(H) ⇐⇒ vw ∈ E(G). The function Φ is called a graph isomorphism
and we write H ≃ G. If an isomorphism exists between two graphs and no distinction
is necessary, both graphs will be treated as if they were equal without applying the
isomorphism. Especially if H ′ ⊆ H and G′ ⊆ G s.t. G′ ≃ H ′ the notation H ′ ⊆ G shall
also be valid.

A walk of length n, W = v1e1v2e2 · · · vnenvn+1 is a sequence of vertices and edges of
G such that ei = vivi+1 for i = 1, . . . , n. A walk might use vertices and edges more than
once. A walk is called a closed walk if v1 = vn+1. If not stated otherwise, a graph is
always connected, meaning that for each pair of vertices, there exists a walk that has
both vertices as endpoints.

This thesis heavily uses paths, a special class of graphs. A path P is a graph such
that for n := |P |, V (P ) = {v1, . . . , vn} and E(P ) = {vivi+1 | 1 ≤ i < n}, v1, vn are called
the endpoints. Paths can also be defined as walks with no repeating edges or vertices.
The length of a path is the number of edges.

A cycle C is a graph on a vertex set V (C) = {v0, . . . , vn−1} and edge set E(C) =
{vivi+1 | 0 ≤ i < n mod n}. Note that for any path P = uPv s.t. ∥P∥ > 1 one can
create a cycle by adding a single edge e = uv. Similar to paths, the length of a cycle is
the number of edges, ∥C∥. For a graph G the girth, denoted by girth(G), is the length
of the smallest cycle contained in G. Graphs that contain no cycles, i.e. the trees and
forests, have girth(G) = ∞.

A common visualization for graphs is drawing a graph in the two-dimensional plane
where vertices are represented as points and edges as curves. A plane graph M is
a drawing of a graph in the plane, such that no two edges cross. Similar to graph
isomorphisms, a plane graph can be mapped to a general graph. General graphs that
have a plane drawing are called planar graphs, the plane graph is sometimes referred
to as embedding. It is not necessary to characterize planar graphs by finding a plane
drawing, as proven by Kuratowski [13] and Wagner [18].

For a plane drawing, the union of all edges splits the two-domensional plane into
connected regions, called faces. When identified with a planar graph, the frontier of
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1 Introduction

Figure 1: A drawing of the graph K4 (left). A plane drawing of K4 (right).

each face can be described by a closed walk along the edges that comprise the frontier.
The minimum length of such a walk is called the face length. For 2-connected planar
graphs, each face is bounded by a cylce. Thus the walk corresponds to a cycle C and the
face length is ∥C∥. We define fmax(G) as the maximum face length over all embeddings
of a planar graph.

A planar graph G is called maximal planar if no non-edge e ∈
(
V (G)
2

)
\E(G) can be

added such that G + e is still a planar graph. This definition allows for any planar
graph to have a maximal planar supergraph on the same vertex set. In other words,
for all planar graphs H there exists a maximal planar graph H ′ with V (H) = V (H ′)
such that H ⊆ H ′. The process of finding such supergraphs is called triangulating a
planar graph and is used extensively in algorithms dealing with planar graphs. Some
algorithms are the computation of a separator for the Planar Separator Theorem [15]
or a mixed max-cut algorithm by Shih, Wu and Kuo [16]. Such triangulations may be
computed in linear time and space. For an exemplary algorithm see [3].

There are two well known equivalent characterizations of being maximal planar.
Firstly, a graph is maximal planar if and only if each face is bounded by a triangle.
Hence the name triangulation. This fact leads to the second equivalent characterization,
which is that a graph is maximal planar if and only if there are exactly 3n − 6 edges,
where n = |G|. The last part is a consequence of Euler’s Formula.

For this thesis we will be considering girth-planar maximal (gpm) graphs, which is a
natural extension of being maximal planar.

Definition 1.1:
A planar graph G is called girth-planar maximal with respect to some g ∈ N, g ≥ 3
(gpm-g) if for any non-edge e, G+ e is either not planar or has girth strictly less than g.

Examples and facts about girth-planar maximal will be given in Section 3 and Sub-
section 5.3
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1 Introduction

1.2 Main Results

The main results of this thesis are listed here and will be proven in Section 4. A very
general result that holds for all classes of planar graphs and all girths g ∈ N, g ≥ 3 is a
sufficient condition for the property of being girth-planar maximal.

Proposition 4.3:
Let G be a 2-connected planar graph with girth(G) ≥ g. If fmax(G) < 2(g − 1) then G is
girth-planar maximal.

Using this result yields an exact characterization for girth-planar maximal graphs of
girth g ∈ {3, 4, 5, 6}. Note that the case of g = 3 is exactly the case of maximal planar
graphs.

Lemma 4.6:
Let G be a planar graph with girth(G) ≥ g for g ∈ {4, 5}. Then G is gpm-g if and only
if fmax(G) < 2(g − 1).

Lemma 4.7:
Let G be a 2-connected gpm-g graph for g = 6. Then fmax(G) < 2(g − 1).

In the case of g ≥ 7 the sufficient condition proposed in Proposition 4.3 is no longer
necessary to obtain girth-planar maximal graphs. As shown in the following theorem, a
larger maximal face length can be achieved.

Theorem 4.9:
There exists a gpm-g G graph having fmax(G) = 3g − 12.

The most important result of this thesis concerns an upper bound for the face length
of girth-planar maximal graphs as a function of g.

Theorem 4.13:
Let G be a 2-connected gpm-g graph. Then fmax(G) < R(2g; g− 3) where R(2g; g− 3) is
the multicolor Ramsey Number for K2g and g − 3 colors.

Additionally, several structural observations about girth-planar maximal graphs have
been made. Some interesting results are a minimum length for ears on cycles bounding
the faces of some embedding and forbidden substructures. The results can be found in
Subsections 4.1 and 4.3 respectively.
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2 Preliminaries

2 Preliminaries

In this section more definitions and notation are presented that are used throughout the
thesis. Some less common notation that was introduced in the introduction is reiterated
here for an easier lookup.

Definition 2.1 (Some Notation):
This definition introduces some general mathematical notation.

(i) For n ∈ N define [n] := {1, . . . , n}

(ii) For some set X and 0 ≤ k ≤ |X| define
(
X
k

)
:= {S ⊆ X | |S| = k}

(iii) For x ∈ R define ⌊x⌋ := max(−∞, x] ∩ Z and ⌈x⌉ := min[x,∞) ∩ Z as the floor
and ceiling function.

Definition 2.2 (Graph Notation):
Let G,G1, G2 be graphs.

(i) For some subset V ′ ⊆ V or E ′ ⊆ E define the induced subgraph G[V ′] :=
(V ′, E(G) ∩

(
V ′

2

)
) and G[E ′] := (

⋃
e∈E′

e, E ′).

(ii) The union G = G1 ∪ G2 is defined as the graph G = (V (G1) ∪ V (G2), E(G1) ∪
E(G2)). The intersection is defined similarly.

Remark: If G2 is only one edge e or a single vertex, also write G = G1 ∪ e = G1 + e.

Definition 2.3 (Graph Parameters):
Let G be a graph and u, v ∈ V (G). Define the following parameters:

(i) NG(u) := {x ∈ V (G) | ux ∈ E(G)} is the neighborhood of u

(ii) degG(u) := |NG(u)| is the degree of u

(iii) |G| := |V (G)| and ∥G∥ := |E(G)|

(iv) girth(G) := min{|C| | C ⊆ G,C is a cycle} is the girth of G

(v) distG(u, v) := min{∥P∥ | P = uPv ⊆ G is a path} is the distance of u and v.

(vi) diam(G) := max{distG(x, y) | x, y ∈ V (G)} is the diameter of G

(vii) If G is planar with some plane embedding M and f ∈ F (M), then
ℓ(f) := min{∥W∥ | W is a closed walk spanning ∂f}

(viii) fmin(G) := min{ℓ(f) | f ∈ F (M) for all plane embeddings M of G} and
fmax(G) := max{ℓ(f) | f ∈ F (M) for all plane embeddings M of G}

If it is clear from the context, the subscript G will be dropped.
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2 Preliminaries

Definition 2.4 (More on plane graphs):
Let M = (V,E) be a plane graph. The set of all faces is denoted as F (M).
For f ∈ F (M) define ∂f as the subgraph of M containing all edges and vertices that
border the face f .

Definition 2.5 ((k-)ears):
Let G be a graph and C ⊆ G a cycle. A path P = uPv ⊆ G with endpoints u, v is
called an ear of C if V (P ) ∩ V (C) = {u, v}.
If ∥P∥ = k then P is called a k-ear.
The width of the ear is distC(u, v).

Definition 2.6 (Maximal Planar):
A planar graph G is called maximal planar, if and only if G′ = G + e is not planar for
every e ∈

(
V (G)
2

)
\E(G).

Definition 2.7 (Girth-Planar Maximal):
Let g ∈ N, g ≥ 3. A planar graph G having girth(G) ≥ g is called girth-planar maximal
with respect to g (gpm-g) if and only if

∀e ∈
(
V (G)

2

)
\E(G) : girth(G+ e) < g or G+ e is not planar

Remark: A gpm graph G with girth(G) = 3 is maximal planar. Thus the notion
girth-planar maximal is a generalization of maximal planarity.

Figure 2: The graph K4 (left). A subdivision of K4 (right).

Definition 2.8 (Subdivision):
A graph G is obtained from a graph H by subdividing an edge e = xy if G is obtained
by deleting the edge e from H and adding a path P of length at least 2 with endpoints
x, y but inner vertices not in V (G).

A graph G is called a subdivision of some graph H, if G can be obtained from H by
a sequence of edge-subdivisions.
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2 Preliminaries

2.1 Path Arithmetic

v1 v2 v3 v4 v5 v6 u v3 v4 v5 v6
P v3Pv6

u w2 w3 w4 w5

Q

v1 v2 v3 v4 v5 v6 u w2 w3 w4 w5

PQ

Figure 3: Visual examples for path arithmetic. Trimming of paths (top) and concatena-
tion with u = v7 = w1 (bottom).

As paths and cycles are used extensively throughout this thesis, some notation will be
introduced to describe common operations on paths like trimming and concatenation.

Let P = ({v1, . . . , vn}, E) be a path and vi, vj ∈ V (P ) be two vertices with i < j.
Then viPvj is the subpath on the vertices vi, . . . , vj. In particular P = v1Pvn. If two
paths P and Q share some endpoints, for example P = Pv,Q = vQ, then the paths
may be concatenated, denoted by PQ = PvvQ where V (PQ) = V (P ) ∪ V (Q) and
E(PQ) = E(P )∪E(Q). By using this notation, an edge e = vw may also be interpreted
as a path of length one. Visual examples are given in Figure 3. For easier concatenation,
paths may also be written in reverse by swapping the endpoints used for path trimming.
For example vjPvi as a graph is the subpath viPvj but is seen as vjvj−1vj−2 · · · vi+1vi.

ui

uj

uiCujujCui

Figure 4: Visual examples for cycle arithmetic. In particular the difference between
uiCuj and ujCui.

Similar operations can be defined for cycles. Let C = u0 · · ·umu0 be a cycle. All
indices are seen modulo m+1. Then for i < j the graph uiCuj denotes the path ui · · ·uj.
Contrary to paths, swapping the endpoints does not denote the same subgraph. Rather
ujCui is the part of the cycle complementary to uiCuj. In other words (uiCuj)(ujCui) =
C.

Using this notation, paths can also be extended to cycles by simply attaching the left
endpoint to the right side. If P = uPv is a path then Pu = uPvu is the cycle on the
same vertex and edge set as P but with the additional edge uv /∈ E(P ).
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2 Preliminaries

Figure 5: A wheel on 7 vertices (left). An outerplanar graph (right)

2.2 Common Graph Classes

The following section will introduce the reader to some common graph types and classes
that are used in this thesis.

Definition 2.9 (Complete Graph):
The complete graph is given by Kn = ([n],

(
[n]
2

)
)

Definition 2.10 (Wheel):
A graph W is called a wheel if W consists of a cycle C and one additional universal
vertex, called the center vertex.
W = ({0} ∪ [n], {{i, i+ 1} | 0 ≤ i < n mod n} ∪ {{i, n} | 0 ≤ i < n})
Subdivisions of this graph are also called wheels and the subdivisions of the edges con-
taining the center vertex are the spokes.

Definition 2.11 (Star and Spider):
A graph S is called a star if there exists a unique vertex u ∈ V (S) such that every edge
e ∈ E(S) contains u. A spider is a subdivision of a star. A subdivision of one edge
containing u is called a leg.

Definition 2.12 (Outerplanar):
A planar graph G is called outerplanar, if there exists some embedding M and f ∈ F (M)
sucht that V (∂f) = V (G).

10



2 Preliminaries

2.3 Known Theorems and Tools

In this thesis, some well known theorems and tools will be used. The most important
ones will be mentioned here, mostly without proof. If not stated otherwise, proofs for
the respective theorems can be found in Diestel [6].

Theorem 2.13 (Euler’s Formula):
Let G be a planar graph and M some plane embedding. Define the numbers n := |G|,m :=
∥G∥, f := |F (M)|. Then the following equality holds:

n−m+ f = 2 (2.1)

Remark: As n and m do not depend on the embedding, the number of faces of a planar
graph is consistent across all drawings.

Theorem 2.14 (Ramsey’s Theorem):
For graphs Pi, i ∈ [k] define

R(P1, . . . , Pk) := min{n ∈ N | Any coloring of the edges of Kn into k colors
contains a monochromatic copy of at least one Pi}

Then R(P1, . . . , Pk) < ∞

Remark: For P1 = Km1 , . . . , Pk = Kmk
also write R(P1, . . . , Pk) = R(m1, . . . ,mk) and

if m1 = . . . = mk = m write R(m1, . . . ,mk) = R(m; k)

Lemma 2.15:
Let u, v be some vertices and P,Q distinct paths with P = uPv,Q = uQv. Then
G := P ∪Q contains a cycle.

Proof. Assume that G does not contain a cycle. Then G must be a tree. For any pair of
vertices in a tree, there exists exactly one path connecting those vertices. Now consider
the pair u, v. By construction of G there are two distinct u, v-paths in G, P and Q.
This contradicts the uniqueness of a u, v-path. Thus G is not a tree and must contain a
cycle. ■
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3 Observations about Girth-Planar Maximal Graphs

3 Observations about Girth-Planar Maximal Graphs

Whilst maximal-planar graphs are well studied, the notion of maximal planar graphs
of girth larger than 3 has not been explored in great detail. To familiarize the reader
with the concept of girth-planar maximal graphs, some facts and observations, as well
as some examples will be stated.

3.1 Extension of Maximal Planar

As mentioned in the introduction, the notion of girth-planar maximal graphs is a nat-
ural extension of maximal planar graphs. Indeed, each graph of girth at least g has a
girth-planar maximal supergraph. Recall that there are three easy characterizations of
maximal planar graphs. Edge maximality with respect to edge addition, the number of
edges and the structure of the faces.

The first characterization has been extended to being the definition of girth-planar
maximal graphs. The second statement about the edge count can also be formulated as
an application of Euler’s Formula.

Lemma 3.1:
Let G be a connected planar graph, g ∈ N and g ≤ girth(G) < ∞. Then

∥G∥ ≤ g

g − 2
(|G| − 2)

Proof. Define n := |G|,m := ∥G∥, l := m− n+ 2. Now fix some plane embedding M of
G. By Euler’s Formula we have l = |F (M)|.

D := {(e, f) ∈ E(G)× F (M) | e ∈ E(∂f)}

As girth(G) < ∞ we know that G is not a tree. Furthermore G is connected and thus
the frontier ∂f contains a cycle for each f ∈ F (M). Hence it must contain at least g
edges. This is because in a connected plane graph that is no tree, each face must be
adjacent to some other face. Furthermore, an edge can only be contained in the frontier
of at most two faces.

Using the facts mentioned above, one can derive some inequalities using the set D:

|D| =
∑

f∈F (M)

|{e ∈ E(G) | e ∈ E(∂f)}| ≥
∑

f∈F (M)

g = l · g (3.1)

|D| =
∑

e∈E(G)

|{f ∈ F (M) | e ∈ E(∂f)}| ≤
∑

e∈E(G)

2 = 2m (3.2)

Finally, one can rearrange Euler’s Formula and conclude the proof:

n−m+ l = 2
·g⇐⇒ gm = gn+ gl − 2g

3.2

≤ gn+ 2m− 2g

⇐⇒ (g − 2)m ≤ g(n− 2) ⇐⇒ m ≤ g

g − 2
(n− 2)

■
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3 Observations about Girth-Planar Maximal Graphs

Since every girth-planar maximal graph still has girth at least g, the bound of Lemma
3.1 also applies. A simple calculation verifies that indeed, for the smallest possible girth
g = 3, the bound is exactly the edge count for maximal planar graphs. However for
girth at least five the fraction is not always a natural number and for girth at least four
examples of girth-planar maximal graphs can be constructed, that do not even meet the
bound in the floor function, see Example 3.2.

It is therefore apparent, that this extremal view on girth-planar maximal graphs can-
not be used as a characterization and only describes a subclass of gpm graphs. Indeed, if
a graph has equality on the bound for the edge count, adding another edge immediately
implies that the resulting graph cannot have girth at least g. Thus by definition the
original graph was girth-planar maximal.

For a closer look at this extremal setting, see Subsection 5.3.

What remains is a characterization of girth-planar maximal graphs based on the struc-
ture of each face. Similar to the fact that triangles bound the faces of maximal planar
graphs, one might find a good condition on the length of the faces of gpm graphs. Results
concerning this approach to girth-planar maximality can be found in Section 4.

g − 2g − 1

1

1

Figure 6: Girth-planar maximal graph G of girth g and maximum face length fmax(G) =

2g − 3. G also does not satisfy ∥G∥ =
⌊

g
g−2

(|G| − 2)
⌋
.

Example 3.2: A minimal counterexample for a gpm graph that does not meet the
bound of Lemma 3.1 is the graph G, that is the union of a cycle of length 2g − 3 and
a 2-path (a path on 2 edges) as seen in Figure 6. Using Proposition 4.3 it is immediate
that G is indeed a gpm graph. Counting the number of edges in G gives

∥G∥ = 2g − 3 + 2 = 2g − 1

but since
|G| = 2g − 3 + 1 = 2g − 4 + 2 = 2(g − 2) + 2

the upper bound is

g

g − 2
(|G| − 2) =

g

g − 2
(2(g − 2) + 2− 2) = 2g

13



3 Observations about Girth-Planar Maximal Graphs

3.2 Connectedness

In graph theory, many problems become easier, when there are some restrictions to
graph parameters other than the girth. One being the connectedness. Recall that a
graph is k-connected, if there exists a k-subset of its vertex set, such that removing those
vertices leaves at least two disconnected components, but the graph is still connected
after removing any k − 1 element subset.

Connectednesss also plays a role when dealing with planar graphs. If a planar graph
has conectivity at least 2, then the frontier of each face is a cycle. As another consequence
of Euler’s Formula and the bound on the edge count for planar graphs, one can derive
that every planar graph must contain a vertex v such that deg(v) ≤ 5. This implies
that all planar graphs of order at least 7 are at most 5-connected. Furthermore it has
been shown, that 3-connected planar graphs are among the class of graphs that have a
unique embedding [8].

The connectivity of girth-planar maximal graphs is even more restricted than for
common planar graphs as is shown in the following lemma.

Lemma 3.3:
Let g ∈ N, g ≥ 6 and G a gpm-g graph. Then the connectivity of G is at most 2.

Proof. Assume that the connectivity of G is at least 2, as being 1-connected concludes
the proof. We will prove a stronger statement and show that there exists a vertex of
degree at most 2. If such a vertex exists, one may delete its two neighbors and recieve
disconnected components. Due to Lemma 3.1 we have that

∥G∥ ≤ g

g − 2
(n− 2)

where n := |G| Using the Handshake Lemma we get that for any graph 2∥G∥ =∑
v∈V (G) deg(v). Thus the average degree of a vertex can be written as 2∥G∥

|G| Using
the bound provided by Lemma 3.1 we get

2∥G∥
n

≤ 2g

g − 2

n− 2

n

g≥6

≤ 12

4

n− 2

n
= 3

n− 2

n
< 3

Thus the average degree is less than 3 implying the existence of a vertex of degree at
most 2. ■

The thesis mostly restricts itself to 2-connected girth-planar maximal graphs, espe-
cially in section 4. This is mostly due to the fact that 2-connected planar graphs only
have faces bounded by cycles, but also because there are 1-connected girth-planar max-
imal graphs that can achieve arbitrarily large maximum face lengths, as can be seen in
Example 3.4.

Note that the graph presented there is also 1-edge-connected. It is still an open
question whether 2-edge-connected but 1-vertex-connected girth-planar maximal graphs
have a bounded maximum face length.
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3 Observations about Girth-Planar Maximal Graphs

Figure 7: A 1-connected girth-planar maximal graph with arbitrary large fmax.

Example 3.4: Let G be a graph constructed from a cycle C of size g. For each v ∈ V (C)

add k vertices u(v)
i and edges vu(v)

i , i = 1, . . . , k. The graph also seen in Figure 7 is girth
planar maximal, as its diameter is ⌊g/2⌋+2. However a shortest closed walk around the
outer face has length g + 2gk = g(1 + 2k). This is because a closed walk containing all
vertices of the outer face must also contain all edges of the entire graph.
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3 Observations about Girth-Planar Maximal Graphs

3.3 More Examples of Girth-Planar Maximal Graphs

Example 3.5: Let C be a cycle of length g ≤ ∥C∥ ≤ 2g − 3. Then C is gpm-g as can
again be seen from Proposition 4.3.

Figure 8: A graph of girth 8 (left). A gpm supergraph on the same vertexset for girth 6
(right). New edges are colored orange.

Figure 9: A gpm supergraph of girth 4 where each face has length 4 (left). A gpm
supergraph of girth 4 with less edges (right). New edges are colored orange.

Example 3.6: The definition of girth-planar maximality allows for every planar graph
of girth g to have a gpm supergraph with respect to g. Figure 8 shows a drawing of a
planar graph with girth 8. Note that for this graph, every drawing is equivalent w.r.t.
the relative positioning of the faces. The graph is already gpm for g = 8. For g = 7 only
one edge has to be inserted into the largest face in order to create a gpm supergraph. A
drawing for a gpm supergraph for g = 6 is depicted on the right in Figure 8.

Note that similar to creating plane triangulations, it is possible to create gpm su-
pergraphs with certain additional properties. Figure 9 depicts two variants for a gpm
supergraph for g = 4. The left drawing aims to create as many faces of length 4 as
possible. Indeed, every face in the drawing has length 4. The second drawing adds as
few edges as possible.
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4 Bounds on the Maximum Face Length

4.1 Structure of Faces in Girth-Planar Maximal Graphs

As maximally planar graphs can be characterized by examining the face length in an
arbitrary embedding, one can ask whether such a characterization also exists for girth-
planar maximal graphs. Proposition 4.3 gives a sufficient condition for this property
based on the face length and indeed, for girth-planar maximal graphs of girth 3, in other
words the maximal planar graphs, this characterization is tight. Thus any planar graph
with an embedding that contains a face of length at least 2(g − 1) = 2(3 − 1) = 4 is
not maximal planar. Lemma 4.6 and 4.7 extend the characterization for girth-planar
maximality using the face length to a girth of at most 6.

The following two lemmas will aid in proving a sufficient condition for a graph to be
girth-planar maximal and will also appear during consecutive proofs.

Lemma 4.1:
Let G be a graph, C ⊆ G a cycle of length k and u, v ∈ V (C). Then dist(u, v) ≤ ⌊k/2⌋.

Proof. Assume not. Then dist(u, v) ≥ ⌊k/2⌋ + 1. As u and v lie on a cycle there must
be two distinct paths P = uCv,Q = vCu connecting u to v that form said cycle. P and
Q are edge disjoint and thus ∥P∥ + ∥Q∥ = ∥C∥. As per the condition on the distance
between u and v we get ∥P∥, ∥Q∥ ≥ ⌊k/2⌋+ 1 and finally

∥C∥ = ∥P∥+ ∥Q∥ ≥ 2⌊k/2⌋+ 2 ≥ k − 1 + 2 > k

a contradiction. ■

Remark: Note that if k = 2g− 3 for some g ∈ N then dist(u, v) ≤ ⌊(2g − 3)/2⌋ = g− 2

Lemma 4.2:
Let G be a graph, u, v ∈ V (G) such that uv /∈ E(G) and 0 < dist(u, v) = k < ∞. Then
G+ e contains a cycle of length k + 1

Proof. As dist(u, v) < ∞ there must be a path P connecting u to v in G. Then it is easy
to see that uPvvu = uPve must be a cycle of length ∥P∥ + 1 = k + 1. Since all edges
used in the cycle are either already contained in P ⊆ G or the edge is e, the resulting
cycle must lie in G+ e. ■

Proposition 4.3 (Sufficient condition for gpm):
Let G be a 2-connected planar graph with girth(G) ≥ g. If fmax(G) < 2(g − 1) then G is
girth-planar maximal.

Proof. Recall that a planar graph is gpm iff no edge can be added without breaking
planarity or reducing the girth. If an edge has been added that would break planarity, the
edge must have endpoints that do not lie on the same face. For the sake of contradiction
assume that G is not gpm and that there exists some non-edge e ∈

(
V (G)
2

)
\E(G) such

that G+ e is planar and girth(G+ e) ≥ g.
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4 Bounds on the Maximum Face Length

Then the edge must have endpoints that lie on the same face. As G is 2-connected each
face is bound by a cycle. Let C be the cycle bounding the face containing the endpoints
of e. Let u, v denote the endpoints of e. As ∥C∥ ≤ 2g − 3 Lemma 4.1 guarantees
dist(u, v) ≤ g− 2. By Lemma 4.2 G+ e must have girth strictly less than g. Since e was
an arbitrary non-edge that does not break planarity the statement is proven. ■

To understand the faces of girth-planar maximal graphs, one must understand the
shortest paths between two vertices on the same face. Lemma 4.2 states that every pair
of vertices on a face in a 2-connected gpm graph must be connected by a shortest path
of length at most g − 2. For large faces those paths cannot be entirely contained in the
frontier of the face. Therefore the cycle bounding the face must have ears.

The next lemmas examine the presence of 1- and 2-ears in girth-planar maximal
graphs.

Lemma 4.4:
Let g ∈ N and G be a 2-connected gpm-g graph. Then, each face is bounded by a chordless
cycle.

Proof. Let f ∈ F be a face of some plane embedding. Using the connectivity of G it
is immediately clear that ∂f must be a cycle. Let C = ∂f = u0 · · ·umu0, all indices
modulo m+ 1. If ∥C∥ < 2(g − 1) a chord implies the existence of a cycle of length less
than g, as the endpoints would have a distance of at most g − 2, a contradiction. Thus
we may assume ∥C∥ ≥ 2(g − 1). As a chord is an edge, by planarity not other ear may
cross the chord. W.l.o.g the endpoints of the chord are u0 and uk with k ≥ g − 1 (a
smaller k results in a cycle of length less than g).
Choose v = u−⌊g/2⌋, w = u⌈g/2⌉−1. As there cannot be any other ear crossing the chord,
a shortest vw-path P must use either u0 or uk. The vertices always split the path into
two sections. The minimum length of each possible section is displayed in Figure 10.

u0 uk

v

w

≥ ⌊ g

2
⌋ ≥ ⌈ g

2
⌉ − 1

≥ ⌊ g

2
⌋≥ ⌈ g

2
⌉ − 1

Figure 10: C with chord and minimum lengths between v, w and ui

Case 1: Assume u0 ∈ V (P ). By choice of v, dist(v, u0) ≥
⌊
g
2

⌋
, as there is a path along

C of length
⌊
g
2

⌋
that, together with a shorter path, would break the girth-condition, since

their union would contain a cycle with a length bounded by the path lengths. The same
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u z v

x

y

u z v

x

y

u z v

x

y

Figure 11: The three base cases for paths crossing with a 2-ear. P using u (left). P uses
v (center). P uses v (right).

argument yields dist(w, u0) ≥
⌈
g
2

⌉
− 1, as g =

⌈
g
2

⌉
− 1 +

⌊
g
2

⌋
+ 1 and

⌊
g
2

⌋
+ 1 ≥

⌈
g
2

⌉
.

Thus we get ∥P∥ = ∥vPu0∥+ ∥u0Pw∥ ≥
⌊
g
2

⌋
+
⌈
g
2

⌉
− 1 = g− 1. Together with the edge

vw, Pvw then forms a cycle of length at least g and since P is the shortest vw-path, the
addition of vw will not break the girth condition, a contradiction.

Case 2: Assume uk ∈ V (P ). Note that vPuk, together with vCu−1u0 and the chord
u0uk contains a cylce of length at least

⌊
g
2

⌋
+ 1 + ∥vPuk∥ ≥ g, because of the girth

condition. This implies ∥vPuk∥ ≥
⌈
g
2

⌉
− 1. Similarly, ∥ukPw∥ ≥

⌊
g
2

⌋
. As seen in the

first case, this is a contradiction. ■

Lemma 4.5:
Let G be a 2-connected girth-planar graph with fmax(G) ≥ 2(g−1) and a face f admitting
said bound. Then f is bounded by a 2-ear free cycle.

Proof. Let C be the cycle bounding f . Assume there exists a 2-ear E on vertices u, z, v
such that z /∈ E(G). Then u and v split C into two paths, call them the sides of E.
As ∥C∥ ≥ 2(g − 1) one can choose two vertices x, y on C having distC(x, y) = g − 1
such that these vertices lie on different sides of E. Now choose the vertices in such a
way, that distC(u, x) = ⌊g/2⌋ and distC(u, y) = ⌈g/2⌉ − 1 exactly as in Lemma 4.4. As
distC(x, y) ≥ g − 1 there must be a x, y-path P of length ∥P∥ ≤ g − 2. By planarity
V (P ) ∩ {u, z, v} ≠ ∅. Thus there are three cases (see Figure 11).

Case 1: u ∈ V (P ). This case is equivalent to case 1 from the proof of Lemma 4.4.
Thus it can never happen.

Case 2: z ∈ V (P ). Assume that ∥zP∥ ≤ ⌊g/2⌋ − 1. Then

g ≤ ∥yCz∥+ ∥uEz∥+ ∥zPy∥ ≤
⌈g
2

⌉
− 1 + 1 +

⌊g
2

⌋
− 1 < g. (4.1)

Thus ∥zP∥ ≥ ⌊g/2⌋ and consequently ∥Pz∥ ≤ ⌈g/2⌉−2. Plug this in the girth condition
and recieve

g ≤ ∥xCu∥+ ∥uEz∥+ ∥xPz∥ ≤
⌊g
2

⌋
+ 1 +

⌈g
2

⌉
− 2 < g, (4.2)

another contradiction.
Case 3: v ∈ V (P ). As the ear has length 2, the proof of Lemma 4.4 does not hold

anymore. There may exist a path of length at most g − 2 connecting x to y. However
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u z v

x

y

x′

y′

P1

P2
Q2

Q1

u z v

x x′

P1

Q1

> g − 1

c

u z v

x x′

> g − 1

E ′

Figure 12: Depiction of the symmetric path Q using u while crossing the 2-ear (left). P1

and Q1 intersect in a vertex not on C (middle). P1 and P2 intersect only on
C resulting in an ear with short width (right). If Q1 would not have such an
ear then P1 must have one, otherwise there will be a crossing like the middle
figure.

v still splits P into two parts, P1 = Pv and P2 = vP . Now assume that there exits
P ′ ∈ {P1, P2} with ∥P ′∥ ≤ ⌊(g − 2)/2⌋ − 1 < ⌊(g − 2)/2⌋ = ⌊g/2⌋ − 1. This yields the
following inequalities:

g ≤ ∥yCu∥+ ∥E∥+ ∥P ′∥ ≤
⌈g
2

⌉
− 1 + 2 +

⌊g
2

⌋
− 2 = g − 1 (4.3)

g ≤ ∥xCu∥+ ∥E∥+ ∥P ′∥ ≤
⌊g
2

⌋
+ 2 +

⌊g
2

⌋
− 2 = 2

⌊g
2

⌋
≤ g (4.4)

Indeed, (4.3) forces ∥P2∥ ≥ ⌊g/2⌋ − 1 because of the girth condition. Thus ∥P1∥ ≤
⌈g/2⌉ − 1. Note that (4.4) has ∥P ′∥ ≥ ⌊g/2⌋ − 2 and ∥P ′∥ ≥ ⌊g/2⌋ − 1 if g is odd.
Combining the result gives g − 3 ≤ ∥P∥ ≤ g − 2.
Due to the girth condition, we know that ∥uCv∥, ∥vCu∥ ≥ g − 2. Furthermore one
can construct a symmetrical path Q using vertices x′, y′ with distC(x

′, y′) = g − 1
and distC(v, x

′) = ⌊g/2⌋, as well as distC(v, y
′) = ⌈g/2⌉ − 1. Now consider ∥uCv∥

(the length of the section where x and x′ are placed). We will examine the cases
max{∥uCv∥, ∥vCu∥} > g − 1 and ∥uCv∥ = ∥vCu∥ = g − 1.

Case 3.1: Assume max{∥uCv∥, ∥vCu∥} > g − 1 and that w.l.o.g ∥uCv∥ ≥ ∥vCu∥.
Thus x is placed in the larger section. In this case, u, x, x′, v appear as listed in order
along C, as distC(u, x) = ⌊g/2⌋ ≤ ⌈g/2⌉ = g − ⌊g/2⌋ ≤ distC(x, v) and symmetrically
for x′. As ∥P1∥ ≤ ⌈g/2⌉ − 1 it is clear that xCv ̸= P1. By planarity P1 and Q1 must
cross (Figure 12). Since x = x′ can only happen if uCv = g − 1 and g is odd, we get
x ̸= x′.
Let c be the first vertex in the intersection as seen from u (Figure 12, middle). Then
max{∥cP1x∥, ∥cQ1x

′∥} > 0, as x ̸= x′. If c /∈ {x, x′} and one of the following: c /∈ V (C)
or c ∈ V (xCx′) holds, it follows that ∥cP1x∥, ∥cQ1x

′∥ > 1 and we get a cycle of length
at most

g ≤ ∥E∥+ ∥vP1c∥+ ∥cQ1u∥ ≤ 2 + 2(
⌈g
2

⌉
− 2) < g. (4.5)

If c ∈ {x, x′} and the cycle formed by the intersecting paths still has length greater than
g there must ne an ear E ′ contained in Q with endpoints in uCx (or an ear contained in
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u z v

x = x
′

y = y
′

= g − 1

= g − 1

u z v

x
′

= g − 1

= g − 1

x

y
′

y

Figure 13: The case where ∥uCv∥ = ∥vCu∥ = g − 1. The endpoints pairwise coincide,
contradicting case 1 (left). There is either an ear in the lower part, or a short
cycle in the top part (right).

P , but w.l.o.g it is sufficient to only consider Q because of symmetry). Thus, as Q was
chosen to contain this ear, c = x. Therefore the ear must have length at most ∥Q1∥− 1,
as there is still a path of length greater than 0 connecting x′ tp x (see Figure 12, right).
We then have

∥E ′∥ ≤
⌈g
2

⌉
− 2 <

⌊g
2

⌋
= ∥uCx∥. (4.6)

Consequently E ′ ̸= uCx and by Lemma 2.15 E ′ ∪ uCv contains a cycle of size at most

∥E ′∥+ ∥uCx∥ ≤
⌈g
2

⌉
− 2 +

⌊g
2

⌋
< g. (4.7)

Case 3.2: Now consider ∥uCv∥ = ∥vCu∥ = g−1. It follows that ∥C∥ = 2(g−1) and
for each w ∈ V (C) there exists a unique w′ ∈ V (C) with distC(w,w

′) = g−1. Therefore
u, x′, x, v, y′, y is the counter-clockwise ordering of these vertices along C. If g is odd,
x = x′ and y = y′ as ⌊g/2⌋ = ⌈g/2⌉ − 1 = (g − 1)/2. Now observe that Q is a x, y-path
of length at most g − 2 passing through u. This contradicts case 1 as such paths may
never exist (Figure 13, left).
Thus only g even is left. Assume P1 has an ear. Then the ear has length at most ⌈g/2⌉−1
but so does xCv, resulting in a cycle of length less than g. Therefore P1 = xCv and
∥P1∥ = ⌈g/2⌉ − 1. The same holds for Q1. Then ∥P2∥ ≤ ⌊g/2⌋ − 1 implying P2 ̸= vCy
as ∥vCy∥ = ⌊g/2⌋ by the choice of y. This again results in a small cycle in P2 ∪ vCy
(Figure 13, right).

Overall the cases lead to a contradiction to the gpm condition of the underlying graph.
Thus the graph could not have been girth-planar maximal, proving the statement. ■

Lemma 4.6:
Let G be a planar graph with girth(G) ≥ g for g ∈ {4, 5}. Then G is gpm-g if and only
if fmax(G) < 2(g − 1).

Proof. First consider the case g = 4. Assume that G is gpm but still has a face with
length at least 2(g− 1) = 6. By Lemma 4.4 G cannot have a chord. Thus each shortest
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u0

u1

u2

u3

u4

u
−1

u0

u1

u2

u3

uℓ

u
−2

u
−1

u
−3

u0

u1

u2

u3

u
−2

u
−1

u
−3

Figure 14: Two 2-ears with neighboring endpoints must create a 3-cycle (left). A two-
ear crossed by a three ear must create one of the two 4-cycles (red, orange)
(center). Two crossing 3-ears with neighboring endpoints must create a 4-
cycle (right).

path connecting 2 vertices in C must have length at least 2. As G is gpm and the addi-
tion of any non-edge into the face creates a cycle of length g − 1 = 3, all such shortest
paths must have length at most 2.
Let C = u0 . . . um,m ≥ 2g − 3 = 5 be the cycle bounding the large face. Then
distC(u0, u3) ≥ g − 1 = 3. Therefore there must exist a path of length g − 2 = 2
containing an ear that connects u0 to u3 in G. As the ear cannot be a chord, the entire
path is an ear. The same holds for u1, u4. As G is a planar graph, both 2-ears must
intersect on a vertex not on C. Otherwise, one path would have length at least 3. Let z
be the vertex in the intersection. As both paths have length 2, the intersection is unique.
Then u0, u1, z forms a triangle, see Figure 14 contradicting girth(G) ≥ 4.

Now consider the case g = 5. Let C be defined as above with m ≥ 7. Assume there
exists a 2-ear with endpoints u0, uℓ and ℓ ∈ {3,m−2}. Using the same idea as in Lemma
4.4 select vertices u, v = u2, u−2. Then distC(u, v) ≥ g − 1 = 4 and there must exist a
path of length at most 3 connecting u to v. This short path cannot use u0, uℓ. Indeed,
as there are no 4-ears the used vertex would split the ear into two parts, one being just
an edge and therefore there is a chord. Thus it must use the middle vertex of the 2-ear,
z. This also implies that the short path contains an ear of length 2 or 3. By pigeonhole
principle uz ∈ E(G) or vz ∈ E(G) as the ear intersecting z would otherwise have length
4, see Figure 14. This creates a 4-cycle, a contradiction.
Thus there cannot be any 2-ears on C and every short path that uses an ear must use a
3-ear. By the same argumentation as for g = 4, connecting the vertices u0, u4 and u1, u5

respectively leads to the intersection of two 3-ears. This creates a cycle of length less
than 4.

Thus it is clear by contradiction, that a girth-planar maximal graph of girth at least
4 or 5 must satisfy fmax(G) < 2(g− 1). The second implication of the equivalence arises
from Proposition 4.3. ■

Remark: Note that the case of g = 4 also immediately follows from Lemma 4.5

Lemma 4.7:
Let G be a 2-connected gpm-g graph for g = 6. Then fmax(G) < 2(g − 1).
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Proof. The proof follows from Lemma 5 in [1] as it was shown that a 2-connected planar
graph that is maximal with respect edge addition for both planarity and retaining girth
6, can only have faces bounded by cycles of length at most 9. ■

As shown above, the sufficient condition of Proposition 4.3, fmax(G) ≤ 2g − 3 for a
graph to be girth-planar maximal is indeed necessary if g ∈ {3, 4, 5, 6} and gives a tight
characterization of girth-planar maximal graphs based on the face length.

Recall that a graph is girth-planar maximal if for any embedding no non-edge can be
added without breaking the girth or planarity. Thus a graph is not girth planar maximal
if some embedding can be constructed that allows for the insertion of a non edge into
a face without breaking the girth. This immediately results in a characterization for
girth-planar maximal outerplanar graphs.

Corollary 4.8:
Let G be a 2-connected outerplanar graph. Then G is gpm-g if and only if |G| < 2(g−1)

Proof. It is clear form Proposition 4.3 that if |G| < 2(g − 1), G must be gpm. Assume
that |G| ≥ 2(g− 1) and that G is gpm. Fix the outerplanar embedding. Then the outer
face is bounded by all vertices. Using Lemma 4.4 the outer face must be bounded by a
chordless cycle. As all vertices of G lie on this cycle, G must be a cycle. However a cycle
of length at least 2(g − 1) cannot be gpm, as there exist vertices that have distance at
least g − 1. Connecting both vertices with an edge thus cannot create a cycle of length
less than g. A contradiction. ■
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g − 4

g − 4

g − 4

C1

C2

C3

S1

S2

S3

Figure 15: A gpm-g subdivision of a wheel as described in Thm 4.9.

4.2 Lower Bound on the Face Length

Theorem 4.9:
There exists a gpm-g G graph having fmax(G) = 3g − 12.

Proof. Define G as seen in Figure 15 as a wheel with three spokes of length 2 each. The
spokes split the outer cycle into three parts of size g− 4. The graph has exactly 4 faces.
All inner faces containing the center vertex of the wheel have a face length of exactly
g. By construction the outer face has a length of 3g − 12. Using Proposition 4.3 it
is sufficient to show that every non edge inserted into the outer face creates a cycle of
length less than g.

Denote the cycle bounding the outer face by C, the spokes by S1, S2, S3 and the
sections of the outer face as C1, C2, C3. Let u, v ∈ V (C) s.t. distC(u, v) ≥ g − 1. Note
that u and v can never be in the same section of C. W.l.o.g. u ∈ V (C1) and v ∈ V (C2).
Observe that C1 ∪C2 ∪ S1 ∪ S3 forms a cycle in G containing both u and v. The length
of the cycle is

∥C1∥+ ∥C2∥+ ∥S1∥+ ∥S3∥ = 2(g − 4) + 4 = 2g − 4 ≤ 2g − 3.

By this inequality there must exist a path of length at most g − 2 in G with endpoints
u and v as shown in Lemma 4.1 and Lemma 4.2.

Therefore on cannot insert a non-edge into the outer face and not reduce the girth. It
is clear that the graph has indeed girth g, as each cycle in G either contains two sections
Ci, Cj or one section Ci and two spokes Sj, Sk. Thus G is a gpm-g graph. ■

Theorem 4.10:
For g ≥ 7 there exists a gpm-g graph with no crossing ears and having fmax(G) =
5
2
g + o(g).

Proof. Consider the following construction: Let G be a graph consisting of a cycle C
split into 3 sections C1, C2, C3 having

∥Ci∥ =

⌊
2

3
g

⌋
+

⌊
1

6
g − 3

2

⌋
.
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Figure 16: A gpm-g graph for g ≥ 7 as described in Thm 4.10. c =
⌊
1
6
g − 3

2

⌋
.

The endpoints of each segment is xi. The endpoints are pairwise connected by disjoint
paths P1, P2, P3 of length

⌈
g
3

⌉
, such that Pi = xiPi and Ci = xiCi, see Figure 16.

We shall now show that G is indeed gpm by proving that every two distinct vertices
in G lie on a cycle of length at most 2g−3. Then the gpm property follows from Lemma
4.1 and Lemma 4.2. Observe that for {i, j, k} = {1, 2, 3} Pi ∪ Cj ∪ Ck is a cycle in G.
The length of any such cycle is

∥Pi∥+ ∥Cj∥+ ∥Ck∥ = 2

(⌊
2

3
g

⌋
+

⌊
1

6
g − 3

2

⌋)
+
⌈g
3

⌉
= g +

⌊
2

3
g

⌋
+ 2

⌊
1

6
g − 3

2

⌋
≤ g +

2

3
g +

1

3
g − 3 = 2g − 3.

Now consider any pair of vertices u, v ∈ V (G). The vertices may either lie on a cycle
segment or one of the center paths respectively. Since there are only two vertices, they
lie on at most two cycle segments. Thus we can distinuish two cases:

Case 1: W.l.o.g u ∈ V (C1). Using the symmetry of G and potential relabeling we
get v ∈ V (C2) or v ∈ V (P3). Then u and v lie on the cylce C1 ∪ C2 ∪ P3 and thus have
a distance of at most g − 2.

Case 2: W.l.o.g u ∈ V (P1) and v ∈ V (P2). In this case the vertices lie on the cylce
P1∪P2∪P3. The cycle has length 3

⌈
g
3

⌉
. Since by construction ∥Pi∥ ≤ ∥Cj∥ the distance

is again at most g − 2, as the upper bound from case 1 also is an upper bound here.
Note that the inequalities only hold since g ≥ 7.

For the length of the outer face we have ∥C∥ = 3∥Ci∥ and the following inequalities:

∥C∥ = 3

(⌊
2

3
g

⌋
+

⌊
1

6
g − 3

2

⌋)
≤ 3

(
2

3
g +

1

6
g − 3

2

)
=

5

2
g − 9

2
,

but also

∥C∥ ≥ 3

(
2

3
g − 1 +

1

6
g − 3

2
− 1

)
=

5

2
g − 21

2
.

This concludes the proof as ∥C∥ has both an upper bound and a lower bound admitting
5
2
g + o(g). ■
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Figure 17: The paths connecting xiyi for i = 1, 2 must cross (left). Each path has
a subpath of length at most k/2 ending in z, implying all subpaths must
have length exactly k/2. The wheel like structure formed by all crossing
paths (center). A path of length g − 2 not containing z must cross all other
subpaths (right).

4.3 Upper Bound on the Face Length

The main goal of this thesis is to find a function of g bounding the maximum face length
of gpm-g graphs. Indeed, using Ramsey Theory such a bound can be given, however it
is quite large.

Let G be a 2-connected girth planar maximal graph. As seen in Lemma 4.15 all
vertices sitting on the bounding cycle of the same face must have distance at most g− 2
and at least 3. We now construct an auxiliary complete graph on the vertices of the
bounding cycle. Create a coloring on the edges of the new graph as follows: For any
edge uv define c(uv) = distG(u, v) ∈ [g−2]. Ramsey Theory then states that if there are
enough vertices on the face, we must find a monochromatic K2g-copy. Chosen correctly,
this copy can then be used to find a short cycle in G, contradicting the girth-condition
as there are other ears that must intersect with the shortest paths connecting the 2g
vertices of the K2g-copy.

The proof heavily makes use of the fact, that no girth-planar maximal graph can
contain a large spider. The following key lemmas will be used in the proof.

Lemma 4.11:
Let G be a gpm-g graph and C a cycle bounding the outer face of a drawing of G. If
there exist vertices y1, y2, y3, y4 in order around C such that dist(yi, yj) = k for i ̸= j
the shortest y1, y3- and y2, y4-paths (P1 and P2) intersect exactly in one vertex z and
∥xjPiz∥ = k/2.

Proof. For visualization also see Figure 17.
As all paths must lie on the same side of C, by planarity P1 and P2 must cross. Define
u as the first vertex appearing in the intersection V (P1) ∩ V (P2) as seen traversing P1

from y1 and symmetrically w as the last vertex. Note that

∥y1P1u∥+ ∥uP1w∥+ ∥wP1y3∥ = ∥P1∥ = k. (4.8)

Thus we get min{∥y1P1u∥, ∥wP1y3∥} ≤ ⌊k/2⌋ ≤ k/2. Similarly, one can observe that
min{∥y2P2u∥, ∥uP2y4∥},min{∥y2P2w∥, ∥wP2y4∥} ≤ k/2. Assume that ∥y1P1u∥ < k/2.
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Then for P = argmin{∥uP2y2∥, ∥uP2y4∥}

∥y1P1uP∥ = ∥y1P1u∥+ ∥P∥ <
k

2
+ ∥P∥ ≤ k

2
+

k

2
= k,

contradicting dist(y1, y2) = dist(y1, y4) = k. The same observation is made if ∥wP1y3∥ <
k/2 by exchanging u with w in the inequalities. Thus ∥y1P1u∥ ≥ k/2 and ∥wP1y3∥ ≥
k/2. Accounting for the total length of P1 (4.8), we get ∥y1P1u∥ = ∥wP1y3∥ = k/2,
also implying that k must be even. Furthermore and again using (4.8) is is clear that
∥uPw∥ = 0 and thus u = w. Note that since V (P1) ∩ V (P2) ⊆ V (uPw) the claim is
proven by renaming u and w to z. ■

Lemma 4.12:
Let g ∈ N, G be a gpm-g graphand C a cycle bounding the outer face. Then G cannot
contain a spider with 2⌈g/2⌉+ 2 legs of size at most g/2− 1 that end in C.

Proof. Assume otherwise. Let S be the spider contained in G. The center point shall
be denoted by z. A leg of the spider is a path Pi with endpoint xi. All endpoints
x0, . . . , x2⌈g/2⌉+1 appear in order along C.

The endpoints split C into 2⌈g/2⌉ + 2 sections Ci where each section is a path with
endpoints xi and xi+1 (see Figure 17, center). All indices are modulo 2⌈g/2⌉+ 2.

Claim 1: For each section Ci there exists at least one vertex u and a vertex v such
that u, v ∈ V (Ci) and distS(u, z) = ⌊g/2⌋, distS(v, z) = ⌈g/2⌉ − 1.

Proof of Claim 1: Indeed, consider the path P := zPixiCixi+1. Then ∥P∥ ≥ g/2 as
∥Pi+1∥ ≤ g/2 − 1 and girth(G) ≥ g. Thus one can choose vertices u and v on P such
that they have the desired distance to z along P . Furthermore both vertices must lie on
Ci as they cannot lie on Pi, since Pi is too short. It remains to show that there does not
exists a shorter u, z- and v, z-path.

Assume otherwise and let Q be the shorter path. Then Q ̸= Pu and by Lemma 2.15
D = Pu∪Q must contain a cycle. This cycle has length ∥D∥ ≤ ∥Pu∥+∥Q∥ < 2∥Pu∥ =
2⌊g/2⌋ ≤ g. This is however a contradiction to girth(G) ≥ g. Similarly, one can obtain
the same result for Pv since 2(⌈g/2⌉ − 1) ≤ 2(g/2 + 1− 1) = g.

Claim 2: Let P be an arbitrary path starting in C0, ending in C⌈g/2⌉+1 and having
length at most g − 2. Then z ∈ V (P ).

Proof of Claim 2: Assume that z /∈ E(P ). Then by planarity P still has to intersect
with either P1, . . . , P⌈g/2⌉+1 or P⌈g/2⌉+2, . . . , P0 (see Figure 17, right). Since all legs only
meet in z the path has to contain at least ⌈g/2⌉ vertices that intersect with a leg. Note
that for Pi and Pi+1 both legs together with P form a cycle in G. As each leg has length
at most g/2− 1 the section of P that connects from Pi to Pi+1 must contain at least 2
edges. Thus ∥P∥ ≥ 2(⌈g/2⌉+ 1− 1) ≥ g, a contradiction.

Now choose u ∈ V (C0) and v ∈ V (C⌈g/2⌉+1) according to Claim 1. Then distG(u, v) ≤
g−2 by Lemma 4.2. Let P be a shortest u, v-path in G. By Claim 2 P must go through
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Figure 18: The case where Qu = P0. The cycle bounded by Qv and vCP⌈g/2⌉+1 must
have length less than g (left). The case where Qu ̸= P0 and Qv ̸= P⌈g/2⌉+1.
The cycles created by the paths have lengths ℓ1, ℓ2 with ℓ1 + ℓ2 < 2g (right).

z. Furthermore P cannot be contained in S as can be derived from Claim 1, since
distS(u, v) = distS(u, z) + distS(z, v) = g − 1 > ∥P∥.

Define Qu, Qv = uPz, zPv. Then Qu ̸= P0 or Qv ̸= P⌈g/2⌉+1 as otherwise P would be
contained in S.

Case 1: Qu = P0. Then Qv ∪ P⌈g/2⌉+1 must contain a cycle of length at least g.
However the cycle must have a length of at most ∥Qv∥ + ∥P⌈g/2⌉+1∥ ≤ g − 2 − ⌊g/2⌋ +
⌈g/2⌉ − 1 = 2⌈g/2⌉ − 3 < g a contradiction.

Case 2: Qu ̸= P0 and Qv ̸= P⌈g/2⌉+1. Then P ∪P0∪P⌈g/2⌉+1∪C must contain at least
two cycles, one contained in Qu∪P0∪uCx0 and the other in Qv∪P⌈g/2⌉+1∪vCx⌈g/2⌉+1 both
of length at least g. The entire structure only has at most 2g− 3 edges by construction,
due to the path lengths. Applying the pigeonhole principle to both cycles yields a
contradiction as one cycle must have length less than g.

In conclusion all cases lead to a contradiction as is illustrated in Figure 18 (right) and
therefore the graph G cannot contain the spider. ■

Theorem 4.13 (Large bound on the Face Length):
Let G be a 2-connected gpm-g graph. Then fmax(G) < R(2g; g− 3) where R(2g; g− 3) is
the multicolor Ramsey Number for K2g and g − 3 colors.

Proof. For the sake of contradiction assume that G has a drawing with a face of length
at least N := R(2g; g − 3). Let C be the cycle bounding this face. Now choose V (C).
as the vertex set of the auxiliary graph. Then at least R(2g; g − 3) vertices have been
chosen. Impose the following coloring on the edges: c(uv) := distG(u, v). By the proof
of Lemma 4.15 it is clear that c colors the auxiliary graph in at most g − 3 colors. By
Ramsey Theory there exists a vertex set X = {x0, . . . , x2g−1} s.t. these vertices form a
monochromatic copy of K2g in the complete graph. All indices modulo 2g. Denote its
color by k.

It is clear that C is split into 2g sections C0, . . . , C2g−1 where Ci = xiCxi+1. For
i, j ∈ [2g], i ̸= j define P (i, j) as the shortest xi, xj-path in G. As by the choice of the
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vertices of the complete auxiliary graph, all xi must have distance exactly k. Thus each
such path has to have an ear of length at most k if |i− j| > 1.

Let yi, yj, yk, yl ∈ X be vertices on C appearing in the order of their indices. Then by
Lemma 4.11 the paths P (i, k), P (j, l) must intersect in a unique vertex z.

Now consider all such crossing paths. As each pair of distinct paths intersect exactly in
the middle and the union of all paths only intersect in z as well. Define S :=

⋃
P (i, j) as

the untion of all such paths that contain z. Indeed, S is a spider with legs Pi = xiP (i, j)z
(independent of j). For Pi define x′

i as the first vertex in the intersection V (Pi) ∩ V (C)
as seen from z. As the x′

i are ordered in the same way as the xi one can also define the
spider S ′ accordingly.

Note that each leg has length at most k/2 ≤ (g − 2)/2 = g/2 − 1. Then the contra-
diction follows from Lemma 4.12.

■

Theorem 4.13 shows that the maximum face length of a girth-planar maximal graph
is bounded by some function of g. However, the proposed bound is very large and does
not come close to more tight bounds proven for several special graph classes. I thus
conjecture, that the general bound for all girth-planar maximal graphs is still linear in
g, as is consistend with all current observations.

Conjecture 4.14:
There exists a constant c > 0 such that for every gpm-G graph G, fmax(G) ≤ cg holds.
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Figure 19: The short spoke S and the vertex u (left). A shortest u, v-path using S and
S ′ (right).

4.4 Results for Special Classes of Graphs

Lemma 4.15:
Let G be a gpm-g graph with some embedding M and f ∈ F (M) with C = ∂f such that
ℓ(f) ≥ 2(g − 1). Let u, v ∈ V (C) s.t. distC(u, v) ≥ g − 1. Then every shortest u, v path
must contain a k-ear for some k with 2 ≤ k ≤ dist(u, v) ≤ g − 2.

Proof. As G is gpm, each non-edge that can be inserted into f must create a cycle of
length less than g. Thus there must be a shortest u, v-path of length at most g − 2.
This implies distG(u, v) ≤ g− 2 and since distC(u, v) ≥ g− 1 this shortest path is not a
subgraph of C. Therefore the part of the path not intersecting with C is a collection of
ears having a length of less than g − 2, as each ear is a subpath of the shortest path.
The lower bound is given by Lemma 4.4. ■

The union of all such short ears then forms a subgraph of G whose structure can then
be used to gain knowledge about whether the underlying graph is girth-planar maximal.
The simplest such graph is the intersection in exactly one vertex. This implies that G
is a wheel.

Proposition 4.16 (About Wheels):
Let g ∈ N, G a gpm-g wheel and let c be the center vertex of the wheel. Then fmax(G) ≤ 3g

Proof. Note that a wheel has a unique embedding on the sphere with respect to the
relative positioning of the faces. Let C be the cycle bounding the face that does not
have c on its frontier.

Assume that ∥C∥ > 3g. Then there exist pairs of vertices with a distance at least
g − 1 along C. Lemma 4.15 then implies that there must exist ears of length at most
g − 2. Since each ear crosses c, at least one spoke of the wheel must have length at
most g/2− 1. Let S be any spoke of length at most g/2− 1. Now choose a vertex u on
C ∪ S such that distC∪S(u, c) = ⌊g/2⌋. Such a vertex always exists as G has sufficiently
many vertices. Furthermore, u lies on C, as all vertices on S have distance at most
g/2− 1 < ⌊g/2⌋ from c, see Figure 19.

Claim: dist(u, c) = ⌊g/2⌋.
Assume otherwise. Then there exists a shorter u, c-path P . This path cannot be con-
tained in uCSc which is the shortest u, c-path in C ∪ S. Thus by Lemma 2.15 there
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must exist a cycle contained in P ∪ uCSc with length bounded by

∥P ∪ uCSc∥ ≤ ∥P∥+ ∥uCSc∥ < 2
⌊g
2

⌋
≤ g,

a contradiction. Hence there cannot be any u, c-path shorter than distC∪S(u, c), proving
the claim.

P

u

v
x

S
′

P

u

v

x

S
′

v
′

v
′

S S

u1 u1

Figure 20: The vertex v′ is always to the left of v and has distance at most g to v along
C.

Let C = u0 · · ·umu0 for some m ≥ 3g and u0 = u. We denote v = ug−1. Observe
that distC(u, v) = g− 1 as there are only two possible u, v-paths on C, one of which has
length g−1 and the other m+1−(g−1) ≥ 2g. Again by Lemma 4.15 there must exist a
u, v-path P in G that contains an ear E and has length at most g−2. By the properties
of the wheel it contains c. In the wheel, every ear with respect to the outer cycle must
consist of exactly two spokes. Thus there are two spokes, S and S ′ s.t. E = S ∪ S ′.
W.l.o.g S ⊆ uPc. Since by the claim dist(u, c) = ⌊g/2⌋ the other part of P containing
S ′ must satisfy

ℓ := ∥S ′∥ ≤ ∥cPv∥ = ∥P∥ − ∥uPc∥ ≤
⌈g
2

⌉
− 2 <

g

2
− 1.

Let x = ui be the endpoint of S ′ on C. Now define k := ⌊g/2⌋ − ℓ and v′ = ui+k,
see Figure 20. Observe that similar to the choice of u, distC∪S′(v′, c) = k + ℓ = ⌊g/2⌋.
Therefore the claim also holds and dist(v′, c) = ⌊g/2⌋.

Case 1: distC(u, v
′) ≥ g − 1. Lemma 4.15 guarantees that a shortest u, v′-path

P ′ must use an ear and contain c. This path can be partitioned into uP ′c and cP ′v′.
However, as both subpaths cannot have a shorter length than dist(u, c) and dist(v′, c)
respectively, it follows that

∥P ′∥ = ∥uP ′c∥+ ∥cP ′v′∥ ≥ 2
⌊g
2

⌋
≥ g − 1 > g − 2 ≥ dist(u, v′) = ∥P ′∥,

a contradiction.
Case 2: distC(u, v

′) < g − 1. By the choice of v′, the vertex must not lie in the
section uu1 · · ·ui−1xui+1 · · · v of C. Otherwise v′ ∈ {ui+1, . . . v} implying distC(v

′, x) ≤
distC(v, x) and leading to

distC∪S′(v′, c) = distC(v
′, x) + ℓ ≤ distC(v, x) + ℓ = distC∪S′(v, c) <

⌊g
2

⌋
.
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Figure 21: An inner face f of the wheel with spokes S1 (blue) and S2 (orange) (left).
A different embedding of the wheel in the plane having f as the outer face
(right).

Therefore ∥uCv′∥ ≥ ∥uCv∥ = g − 1. Now consider v′Cu as the only other option for a
u, v′-path along C.

∥v′Cu∥ = ∥C∥ − ∥uCv′∥ = ∥C∥ − (∥uCv∥+ ∥vCv′∥) > 3g − (g − 1 + ∥vCv′∥). (4.9)

Finally observe that ∥vCv′∥ ≤ 2∥xCv′∥ as distC(x, v) ≤ distC(x, v
′). Thus we get the

bound

∥vCv′∥ ≤ 2k = 2
(⌊g

2

⌋
− ℓ

)
≤ 2

⌊g
2

⌋
≤ g.

Pluggin this bound into (4.9) yields

∥v′Cu∥ > 3g − (g − 1 + g) ≥ g.

Therefore distC(u, v′) = min{∥uCv′∥, ∥v′Cu∥} ≥ g−1, a contradiction to the assumption
of case 2.

For the second part of the proof, assume that a face f that contains c, has length larger
than 3g. By the properties of the wheel this face must be bounded by three paths. Two
spokes and a section of C. Denote the spokes by S1 and S2 and the section of C by C ′,
see Figure 21.

Claim: ∥S1∥+ ∥S2∥ ≤ 2g − 1 and ∥Si∥+ ∥C ′∥ ≤ 2g − 1 for i = 1, 2.
Indeed, assume not and the length of two paths, p1 and p2, sum up to at least 2g. Choose
vertices u and v s.t. they lie exactly in the middle of each section. Then the distance to
either one of the endpoints is at least ⌊p1/2⌋ and ⌊p2/2⌋ respectively. Note that ∂f only
has three vertices of degree larger than 2.

Consider a shortest u, v-path P . The path can only be contained in the cycle bounding
the face, see Figure 22. Indeed, otherwise P would have to use at least 2 additional edges
for an ear. However, still half of the sections need to be used in order to reach a vertex
that can be used as an endpoint of an ear. As the lengths of each half only vary by at
most 1, the path cannot be shorter.

Thus a lower bound for the length of P is the floor of each half

∥P∥ ≥
⌊p1
2

⌋
+
⌊p2
2

⌋
>

p1 + p2
2

− 2 ≥ g − 2.
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c

u

v

Figure 22: The only possibility for a shortest u, v-path (red) up to symmetry and choice
of the sections containing u and v.

Since the inequality is strict there cannot be a u, v-path of length at most g − 2, a
contradiction.

Therefore using the fact that the face has length at least 3g, the remaining section
has to have a length greater than g. Symmetrically this calculation can be done for all
3 sections:

∥S1∥+ ∥S2∥ ≤ 2g − 1 =⇒ ∥C ′∥ ≥ 3g − (∥S1∥+ ∥S2∥) ≥ 3g − (2g − 1) = g + 1,

∥S1∥+ ∥C ′∥ ≤ 2g − 1 =⇒ ∥S2∥ ≥ 3g − (∥S1∥+ ∥C ′∥) ≥ 3g − (2g − 1) = g + 1

It follows that ∥C ′∥+ ∥S2∥ ≤ 2g+2, contradicting the claim. Thus the graph could not
have been girth planar maximal.

Altogether it was shown that each possible face in a wheel has to have length at most
3g, if the wheel is to be gpm-g. ■

Remark: Note that by Theorem 4.9 the bound of 3g is tight up to an additive constant
c ≤ 12.

In the proof of the above proposition, one can observe that the condition of the graph
being a subdivision of a wheel can be weakend. Indeed, it is only necessary that there
exists a common vertex c that is used by all shortest paths connecting the vertices u
and v′ that are chosen according to the proof of Proposition 4.16.
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Figure 23: The graph Wg,k as defined in Def. 4.17. Note that there are always exactly
k inner paths depicted by the straight lines.

The constructions given in Subsection 4.2 can be generalized to allow for more sections
along the cycle bounding the outer face. However if a fourth section is added to the
construction, the graphs are no longer girth-planar maximal.

The idea for the construction of Theorem 4.10 stems from a more general graph of
girth at least g that is defined in Def. 4.17.

Definition 4.17:
Let k, g ∈ N . Define the graph Wg,k as follows:

(i) Let C be a cycle on the vertices u0, . . . , u⌊ k−1
k

g⌋k−1

(ii) Let Pi, i ∈ {0, . . . k − 1} be a path of length
⌈
g
k

⌉
with endpoints ui, ui+⌊ k−1

k
g⌋ ∈

V (C) but otherwise disjoint from C and all other Pj, j ̸= i

(iii) Wg,k := C ∪ P0 ∪ . . . ∪ Pk−1

Remark: For a drawing of Wg,k, see Figure 23

Lemma 4.18:
The graph Wg,k is only girth-planar maximal for k = 3

Proof. Consider the sections C0 = u0Cu1 and C1 = u⌊k/2⌋Cu⌊k/2⌋+1. For each section
choose a vertex x ∈ V (C0) and y ∈ V (C2) such that the distance to the endpoints of
each section is at least

⌊
k−1
2k

g
⌋
. A shortest x, y-path then has to use at least ⌊k/2⌋ Pis

as well as
⌊
k−1
2k

g
⌋

edges along each section Ci. This yields a lower bound of

2

⌊
k − 1

2k
g

⌋
+

⌊
k

2

⌋
·
⌈g
k

⌉
>

k − 1

k
g − 2 +

k

2
· g
k
− g

k
=

k − 2

k
g +

g

2
− 2

Since k ≥ 4 it follows that 2/k ≤ 1/2 and thus

k − 2

k
g +

g

2
− 2 ≥ k − 2

k
g +

2g

k
− 2 = g − 2

concluding the proof as the inequality is scrict. ■
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5 Related Work

The graph parameters used to describe girth-planar maximal graphs tend to be quite
useful in many other aspects of graph theory. Especially girth and planarity on their
own have great applications both in graph theory and in several algorithms.

5.1 Planar Graphs in Algorithms

Probably the most popular and useful aspect of planar graphs in algorithm theory is the
Planar Separator Theorem [15]. A separator is a vertex set S ⊆ V (G) such that G− S
is split into two disconnected subgraphs G1, G2. A recursive algorithm can then use the
subgraphs and combine the respective results using the separator. It is crucial for the
analysis of such algorithms that the separator has as few vertices as possible and that
G1 and G2 are similar in size. The Planar Separator Theorem ensures |S| ∈ O(

√
n),

|G1|, |G2| ≤ 2
3
n, where n := |G|. Its practicality follows from the fact that such a

separator can be calculated in O(n) time.
One early application of the Planar Separator Theorem was the analysis of an algo-

rithm for nested dissection [10]. This algorithm computes a Cholesky Decomposition of
a sparse matrix such that the decomposition is still sparse by using the matrix as the
adjacency matrix of a graph. Using separators the graph then can be split into smaller
parts resulting in the preservation of many zero-entries. The version proposed by George
Alan could be generalized for graph classes admitting a f(n)-separator theorem [14]. A
f(n)-separator theorem is a generalized version of the Planar Separator Theorem where
for 1

2
≤ α < 1, β < 1 |S| ≤ βf(n) and |G1|, |G2| ≤ αn. Bounds on the sparsity of

the decomposition and both time and space complexity were given using this theorem
[12][11].

As girth-planar maximal graphs also allow for a separator of size g − 1 as seen in
Lemma 4.15, the question can be raised if one can always find a separator that satisfies
a (g − 1)-separator theorem. Indeed, for girth-planar maximal graphs with a maximum
face length of at least 2g − 2 one can always find a planar separator of size g − 1 that
splits the graph into two components. However, it is not known whether girth-planar
maximal graphs of hight maximum face length always have a balanced separator. Note
that this is not possible for a girth of at most 6. Therefore this approach cannot improve
on the Planar Separator Theorem for general planar graphs.
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5.2 Coloring Planar Graphs

A topic that is studied quite extensively is graph colorings. It is known that planar
graphs can be colored using 4 colors. It is however not clear which planar graphs have
chromatic number 3. Indeed, it is NP-complete to determine whether a planar graph is
3-colorable [9]. Thus there are still many open areas concerning the coloring of planar
graphs.

Instead of checking for proper colorings of a graph, one might also look into improper
colorings with some restrictions. An improper coloring is a coloring where vertices or
edges of the same color might be adjacent. All vertices or edges of the same color induce
a subgraph. For proper vertex coloring the subgraphs all are independent sets and in
the case of edge colorings all subgraphs are matchings. For improper colorings one can
examine how close the induces subgraphs get to independent sets or matchings. This is
done by finding partitions of the graph into forests of small, easy to understand graphs,
like trees.

Axenovich, Ueckerdt and Weiner showed that a planar graph of girth at least 6 can
be split into two path-forests such that each path has length at most 14 [1]. The paths
were constructed along the faces of a girth-planar maximal graph with a girth at least 6.
It was in this paper that the upper bound for the maximum face length for girth-planar
maximal graphs was first discussed, but only for the fixed girth of 6.

For general graphs, bounding the chromatic number by restricting the girth does not
work as was shown by Erdős [6]. Planar graphs on the other hand have a trivial bound
as discussed above. There are however some variants to colorings that are not as easy to
find good bounds for. One example is total colorings. A proper total coloring of a graph
is a coloring of the vertex and edge set such that no adjacent or incident elements have
the same color. For any graph with highest degree ∆ it is clear that the total chromatic
number χ′′ must be at least ∆. It was conjectured by Behzad [2] and Vizing [17] that
for any graph χ′′ ≤ ∆+ 2. The conjecture was verified for ∆ ≥ 9 by Borodin [5].

As planar graphs have a lot of structure to work with, the total chromatic number can
be calculated precisely for many planar graphs. As shown by Borodin, Kostochka and
Woodall [4] restricting the girth can be helpful to determining the exact total chromatic
number.
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k k

Figure 24: A construction of a gpm graph with a maximum number of edges and g =
2k + 1 (left). Construction for g = 2k + 2 (right). The concentric cycles all
have length g.

5.3 Extremal Version of GPM

Girth-planar maximal graphs can also be considered in an extremal setting. Here the
goal is to determine the maximum number of edges an arbitrary girth-planar maximal
graph on n vertices can have. This number is given by Euler’s Formula through

∥G∥ =

⌊
g

g − 2
(n− 2)

⌋
=: ex(n, gpm-g), G ∈ EX(n, gpm-g)

where EX(n, gpm-g) is the set of extremal gpm-g graphs, i.e. the gpm graphs that have
exactly the maximum number of edges. As shown by Fernándes, Sieger and Tait [7] this
bound is achieved by constructing plane graphs of girth g with each face also having
length g, see Figure 24. For parity reasons, they only considered the cases where the
above bound does not need the floor function to yield a natural number.
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6 Conclusion

6 Conclusion

This thesis discussed bounds on the maximum face length for girth-planar maximal
graphs. In particular lower and upper bounds as seen in Proposition 4.3 and Theorem
4.13. Additionally, several smaller results were stated considering tight bounds on the
face length for girths 3 to 6 in Lemma 4.6 and 4.7 but also for outerplanar graphs
(Corollary 4.8) and wheels (Proposition 4.16). Here the result was even stronger stating
that girth-planar maximal outerplanar graphs are exactly the cycles of length g to 2g−3.

Some questions regarding the faces of girth-planar maximal graphs still remain open.
It was shown in Theorem 4.9 and 4.10 that a tight characterization for girth-planar
maximality is not possible if no further restrictions are imposed on the graph. However,
it might be possible to identify the graph classes where such a characterization still
holds, similar to outerplanar graphs.

Furthermore, the very large upper bound could be improved drastically. As proposed
in Conjecture 4.14 it might even be true that the bound is linear, as no graphs are known
that admit a superlinear bound.

For a more general view of the potential graphs that can be considered for girth-planar
maximality, it is also interesting to look at graphs embeddable on other surfaces than
the plane, like the torus or the Klein Bottle.

As an application of girth-planar maximal graphs with a maximal face length greater
than 2g − 3, a (g − 1)-separator theorem could be formulated that, together with an
algorithm for finding girth-planar maximal supergraphs could be useful in the field of
algorithmic graph theory.
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