
On Interval Planar Graphs

Bachelor Thesis of

Paul Jungeblut

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Lukas Barth
Guido Brückner
Marcel Radermacher

Time Period: 22 June 2017 – 21 October 2017

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, September 29, 2017

iii

Abstract

A planar drawing of a directed graph is upward planar, if each edge is a y-monotone
curve. The problem to find such drawings is known as Upward Planarity. In
Level Planarity we ask for an upward planar drawing where each vertex has a
fixed y-coordinate previously assigned to it. We will close the gap between Upward
Planarity and Level Planarity by introducing a new, more general problem
that we call Interval Planarity. In this problem we ask for an upward planar
drawing of a directed graph G = (V,E), where each vertex has its y-coordinate
chosen from an interval that was previously assigned to it.
We show NP-completeness of the problem in its general form and consider several
restricted variants that allow an efficient upward planarity test, since this is a
necessary condition. We describe embedding algorithms for st-planar graphs and
single source graphs with a fixed combinatorial embedding in O(|V |) time and cycles
in O(|V |5) time. On the other hand we show that the problem remains NP-complete,
even if a combinatorial embedding is fixed or the graph is restricted to be a tree,
single source or outerplanar.
We finish by showing that Interval Planarity is also NP-complete when we bound
the maximum number of vertices with the same y-coordinate, even for st-planar
graphs or very simple trees.

Deutsche Zusammenfassung

Eine planare Zeichnung eines Graphen ist aufwärtsplanar, wenn jede Kante durch eine
y-monotone Kurve dargestellt wird. Das Problem, eine solche Zeichnung zu finden,
heißt Upward Planarity. Bei Level Planarity geht es darum, eine solche
aufwärtsplanare Zeichnung zu finden, in der jeder Knoten eine vorher festgelegte
y-Koordinate hat. Wir werden die Lücke zwischen Upward Planarity und Level
Planarity schließen, indem wir ein neues, allgemeineres Problem namens Interval
Planarity einführen. Darin wird eine aufwärtsplanare Zeichnung gesucht, bei der
jeder Knoten seine y-Koordinate aus einem ihm zugewiesenem Intervall haben muss.
Wir zeigen die NP-Vollständigkeit des Problems in seiner allgemeinsten Form und
werden uns dann mit Spezialfällen beschäftigen, für die Upward Planarity als
notwendige Voraussetzung effizient überprüft werden kann. Wir werden Einbet-
tungsalgorithmen mit Laufzeit in O(|V |) für st-planare Graphen und Graphen mit
nur einer Quelle und einer festen kombinatorischen Einbettung beschreiben. Für
Kreise werden wir einen Algorithmus mit Laufzeit in O(|V |5) angeben. Darüber-
hinaus zeigen wir die NP-Vollständigkeit von Instanzen mit fester kombinatorischer
Einbettung. Ist der zugrundeliegende Graph ein Baum, außenplanar oder hat nur
eine einzige Quelle, zeigen wir ebenfalls die NP-Vollständigkeit.
Abschließend betrachten wir die Variante des Problems, in der die maximale Anzahl
an Knoten mit der gleichen y-Koordinate beschränkt ist. Interval Planarity ist
auch in diesem Fall NP-vollständig, selbst für st-planare Graphen und sehr einfache
Bäume.

v

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Upward, Level and Interval Planarity 3
2.2. Ear-Decomposition . 5
2.3. Bézier Curves . 7

3. Existence Of Interval Planar Drawings 9
3.1. Interval Consistency and Normal Form . 9
3.2. st-planar Graphs . 11

3.2.1. Level Assignment . 11
3.2.2. Polyline Drawing . 12
3.2.3. Straight Line Drawing . 14

3.3. Characterization of Interval Planar Graphs 17
3.4. General Graphs . 19

3.4.1. Fixed Combinatorial Embedding . 19
3.5. Single Source Graphs . 22

3.5.1. Fixed Combinatorial Embedding . 23
3.5.2. General Embeddings . 24

3.6. Trees and Outerplanar Graphs . 25
3.7. Cycles . 27

3.7.1. Cycle Operations . 28
3.7.2. Fixed Assignment of Lower and Upper Sources and Sinks 30
3.7.3. General Cycle Embedding . 32
3.7.4. Generalizations of Cycle Embedding 34

3.8. Summary: Comparing Upward Planarity and Interval Planarity . . 35

4. Interval Planar Embeddings with Bounded Width 37
4.1. Finding Schedules . 37
4.2. Planar Embedding of Schedules . 38

4.2.1. Planar Embedding of Paths and Forests 38
4.3. NP-Completeness of Interval Planarity with a Bounded Width 40

5. Conclusion 41

Appendix 45
A. Existence of Convex Cycle Embeddings . 45

vii

1. Introduction

In an upward planar drawing of a directed graph G = (V,E), each edge is drawn as a
y-monotone upward curve. The problem to find such a drawing is known as Upward
Planarity. Upward planar drawings are commonly used to display hierarchical networks
that appear in many areas. Consider a class diagram with inheritance as a software
engineering example or a Hasse Diagram of a partially ordered set. In some applications
the hierarchy further implies a partition of the objects into several levels. These objects
should be on the same rank in the hierarchy. Think of subclasses of the same superclass as
an example. In this case we talk about level planar drawings of a graph G and the problem
to find these drawings is known as Level Planarity. Obviously Level Planarity is
a special case of Upward Planarity and as it turns out it is always testable in linear
time, while Upward Planarity is NP-complete. In this thesis we want to close the gap
between the two. We will do this by restricting the possible y-coordinates of each vertex.
Not necessarily to only one integer number as in Level Planarity but to some interval
of integers, so that we get an adjustable degree of freedom for each vertex. We will call
this problem as Interval Planarity.

Lots of research has been done regarding Upward Planarity and Level Planarity.
Garg et al. proved the NP-completeness of Upward Planarity [8], while Jünger and
Leipert showed that a level planar embedding can be constructed in linear time if it
exists [11]. Efficient upward planarity tests have been described for many restricted
graph classes, for example single source graphs [1, 10], st-planar graphs [4], trees [4]
and outerplanar graphs [13]. Throughout this thesis we will consider those and see how
the computational complexity changes when the restrictions induced by the intervals are
applied.

Chapter 2 will cover the necessary prerequisites. We will formally define Upward Pla-
narity, Level Planarity and Interval Planarity, the new problem we introduce
and explore in this thesis. Further we will describe some tools that we will later use to
develop and proof graph embedding algorithms.

The existence of interval planar embeddings is considered in Chapter 3. We start by taking
a look at the intervals assigned to each vertex in Section 3.1. In some cases we can see that
no interval planar embedding exists just by looking at the intervals of the two endpoints of
each edge. As a first graph class we consider st-planar graphs in Section 3.2 and we will give
a linear time algorithm to find polyline or straight line embeddings. Using this result we
will give a combinatorial characterization of interval planar graphs in Section 3.3. This will

1

1. Introduction

lead us to a general embedding strategy to find interval planar embeddings: First we try
to augment the graph into an interval planar st-planar graph and then apply the methods
for st-planar graphs. The remainder of the chapter is spent considering several other
special graph classes. We show embedding algorithms for single source graphs with a fixed
combinatorial embedding (Section 3.5.1) and cycles (Section 3.7). Additionally we show
NP-completeness for general single source graphs (Section 3.5.2), trees and outerplanar
graphs (Section 3.6) and graphs with a fixed combinatorial embedding. All of these are
efficiently testable for upward planarity, but not for interval planarity.

Chapter 4 shows the similarity between interval planarity and multiprocessor scheduling
problems. Finding a schedule for a set of tasks with unit processing times, release times,
deadlines and precedences between the tasks corresponds to an instance of Interval
Planarity except for the missing planarity constraint. We will use known scheduling
methods to assign levels to the vertices and will then describe how this level assignment
can be used to create interval planar embeddings in Section 4.2. By using methods to find
schedules on a minimum number of machines we will show that it is NP-complete to find
an interval planar embedding of a graph with a minimal number of vertices sharing the
same y-coordinate in Section 4.3.

2

2. Preliminaries

We will use this chapter to formally define Upward Planarity and Level Planarity,
the two extreme cases of Interval Planarity, which will be introduced and explored
throughout this thesis. Additionally describe the ear-decomposition, a common way to
decompose graphs. It will be used in Chapter 3 to develop graph embedding algorithms. At
last we will summarize some basic properties of Bézier curves, that we will use to construct
straight line drawings in Section 3.2.

2.1. Upward, Level and Interval Planarity
This section looks at different planar embeddings for a directed graph. When we talk
about embeddings we can further distinguish between so called topological embeddings and
combinatorial embeddings. A topological embedding fixes the exact coordinates of each
vertex and the exact plane curve for each edge between two vertices. A combinatorial
embedding allows much more freedom: For every vertex it only fixes the cyclic order of
the edges incident to it. This already uniquely defines the faces of the graph. However
as shown in Figure 2.1, it does not force any face to be the outer face, which is the only
unbounded face in any topological embedding. Actually any face can be the outer face. We
will see later, that fixing a combinatorial embedding and the outer face sometimes leads to
efficient embedding algorithms for instances that would otherwise be NP-hard.

We say that a topological embedding of a graph G is planar, if no two edges intersect,
except maybe at a common endpoint. If such an embedding exists we call G planar. A
topological embedding is upward, if all edges are y-monotone curves strictly increasing from
their start- to their end-vertex. In this case, G is called upward.

1

2 2

1

3

4 5

3

4 5

Figure 2.1.: The same graph on the left and on the right side with the same combinatorial
embedding (cyclic order of the edges around each vertex). On the left, face
{1, 2, 3, 4, 5} is the outer face. On the right, face {1, 2, 4} is the outer face.

3

2. Preliminaries

Definition 2.1 Upward Planarity

Instance Given a directed acyclic graph G = (V,E).

Question Is there a topological embedding of G that is upward and planar? If so, such
an embedding is called upward planar.

In an upward planar embedding the y-coordinates of the vertices can be arbitrary real
numbers. Level Planarity simplifies the problem by already setting the y-coordinate of
each vertex to an integer, thus implicitly partitioning the vertex set into levels containing
vertices with the same y-coordinate. The horizontal order of the vertices in each level can
still be chosen arbitrarily.

Definition 2.2 Level Planarity

Instance Given a directed acyclic graph G = (V,E) and a leveling function l : V → N.

Question Is there a topological embedding of G that is planar and each vertex v ∈ V has
y-coordinate l(v)? If so, such an embedding is called level planar.

Both problems are well studied and understood. Upward Planarity is NP-complete
in the general case as shown by Garg and Tamassia [8], but several graph classes allow
efficient upward planarity testing. We will systematically study them in Chapter 3. Level
Planarity can always be tested in linear time as shown by Jünger and Leipert [11].

Definition 2.3 Interval Planarity

Instance Given a directed acyclic graph G = (V,E) and a function I, that maps each
vertex v ∈ V to an interval I(v) ⊆ Z of integers.

Question Is there an upward planar embedding of G where each vertex v ∈ V has its
y-coordinate contained in its interval I(v)? If so, such an embedding is called interval
planar.

The definition of Interval Planarity is motivated by the similarity of Upward Pla-
narity and Level Planarity. The goal was to extract their commonalities and to treat
them as variants of this more general problem. We observe that Upward Planarity
and Level Planarity are indeed special cases of Interval Planarity. For Upward
Planarity we choose I(v) = Z for all v ∈ V . Restricting the y-coordinates to be integers
instead of real numbers is justified by the fact that an upward planar embedding of some
graph G = (V,E) exists if and only if an interval planar embedding of G exists with
I(v) = Z for all v ∈ V . This is, because only a finite number of distinct real y-coordinates
can be chosen for the vertices. Those can then be injectively mapped to the integers Z.
For Level Planarity the interval of each vertex consists of a single integer.

We summarize this section in Figure 2.2. It shows the same graph in three different variants.
In (a) the vertices are not annotated and the given embedding is upward planar. In (b)
the vertices have been annotated with levels. In this particular instance no level planar
embedding exists, because vertices d and e need to be at the same level. This can be fixed
as in (c) by allowing two different levels for vertices d and e. Note that this also allows to
change their relative order: In the given interval planar embedding now e lies below d.

4

2.2. Ear-Decomposition

d

e

a

b c

(a)

d[3] e[3]

a[1]

b[2] c[2]

(b)

d[3; 4]

e[3; 4]

a[1; 1]

b[2; 2] c[2; 2]

(c)

Figure 2.2.: (a) A graph and an upward planar embedding. (b) The same graph with levels
for each vertex. This graph does not have a level planar embedding under the
given level assignment. (c) The same graph, now with intervals on each vertex.
An interval planar embedding under this interval assignment is given.

2.2. Ear-Decomposition
An ear-decomposition is a standard method to partition an undirected and biconnected
graph into a cycle and several paths (called ears) that can be glued together to obtain
the original graph. We will now describe a very similar decomposition for directed graphs,
which we will also call ear-decomposition. We are going to use it in Section 3.2 to embed
st-planar graphs.

Classical ear-decomposition is only defined for biconnected graphs and we need to make a
similar restriction for directed graphs. We are only considering so called st-planar graphs,
whose underlying undirected graph is indeed biconnected.

Definition 2.4 An st-planar graph G = (V,E) is an embedded planar directed acyclic
graph with exactly one source s ∈ V and one sink t ∈ V , that both lie on the boundary of
the outer face.

Definition 2.5 An ear is a directed simple path. An ear-decomposition of an st-planar
graph G = (V,E) is a partition of the edge set E into a sequence of ears E1, . . . , Ek. For
each but the first ear we require the following properties:

• The two endpoints of the ear belong to earlier ears in the sequence.

• No internal vertices of the ear belong to any earlier ear.

Lemma 2.6 Let G = (V,E) be an st-planar graph and Γ be an upward planar embedding
of G. Then for all vertices v ∈ V , a total left-to-right order of the outgoing edges of v is
fixed by Γ.

Proof Let v ∈ V be an arbitrary vertex of G. Γ fixes a cyclic order of all outgoing edges
of v. Further, all outgoing edges leave v into the half plane above v, because Γ is upward.
This then defines a left-to-right order of the outgoing edges of v: Just order them by their
clockwise order in Γ. �

Assume a graph G = (V,E) is given with an upward planar embedding Γ and an ear
decomposition E1, . . . , Ek. Further let s and t be the first and last vertex of E1 respectively.
The sequence of ears induces a set of subgraphs Gi :=

⋃i
j=1Ej for each i (1 ≤ i ≤ k).

Each Gi ⊆ G can be embedded according to Γ. We define the right front of Gi to be
the rightmost path from s to t in Gi, which always exists, because s, t ∈ E1. A path P

5

2. Preliminaries

1

2 3

4 5 6

10

7

8 9

11 12

13

(a)
1 1 1

2 3

4 5 5 6

7 7 7

8 9 10 10 10

11 12 12

13 13 13

E1

E2

E3

E4

E5

E6

(b)

Figure 2.3.: (a) An st-planar graph (s = 1, t = 13). (b) An ear-decomposition of the graph
on the left. Vertices labeled the same correspond to the same vertex in the
original graph. E1 = (1 → 2 → 4 → 7 → 8 → 11 → 13), E2 = (7 → 9 →
12→ 13), E3 = (1→ 3→ 5→ 7), E4 = (5→ 10→ 12), E5 = (10→ 13),
E6 = (1→ 6→ 10)

is rightmost in Gi, if there is no other st-path in Gi containing an edge that lies right
of an edge of P . The rightmost path is well defined, since Lemma 2.6 gave us the total
left-to-right order of all outgoing edges at each vertex.

Definition 2.7 An ear-decomposition E1, . . . , Ek of an st-planar graph G = (V,E) is
called left-to-right, if s and t are the endpoints of E1 and for each but the first ear
Ei (2 ≤ i ≤ k) the following two conditions hold:

• The two endpoints are on the right front of Gi−1.

• Ei lies completely on the right front of Gi.

An example graph with a left-to-right ear-decomposition is given in Figure 2.3. The
left-to-right order will allow us to embed st-planar graphs ear by ear and we can then use
induction on the number of ears to show the correctness of this approach. What is left to
show is that such an ear-decomposition exists for all st-planar graphs.

Theorem 2.8 For every st-planar graph G a left-to-right ear decomposition exists.

Proof Consider any upward planar embedding Γ of G. We want to construct a sequence
E1, . . . , Ek of ears for a left-to-right ear-decomposition.

Choose E1 to be the leftmost path from s to t in Γ. By Lemma 2.6 we know that E1
is well defined. With each new ear we will extend the current subgraph Gi =

⋃i
j=1Ej

until Gk = G. At each step i (2 ≤ i ≤ k) we call an edge e ∈ E visited, if e ∈ E(Gi−1).
Otherwise it is unvisited. Choose Ei to be the leftmost path of unvisited edges between
two vertices u and v on the right front of Gi−1, where u and v are chosen as follows:

• u is the vertex closest to t that still has unvisited outgoing edges.

• v is the first vertex of Gi−1 that we reach following the leftmost path of unvisited
edges starting at u.

6

2.3. Bézier Curves

By construction each ear Ei (2 ≤ i ≤ k) chosen like this intersects Gi−1 at exactly two
vertices, so we get a valid ear-decomposition. Further, ear Ei will be part of the right front
of Gi, because otherwise a previous ear was not chosen leftmost, so the ear-decomposition
is left-to-right. �

The proof of Theorem 2.8 gave a construction for a left-to-right ear-decomposition. Let
us again consider Figure 2.3 as an example. The given ear-decomposition was created via
this construction. E1 = (1→ 2→ 4→ 7→ 8→ 11→ 13) is the leftmost st-path. For E2,
vertex 7 is the highest vertex on E1 that has unvisited outgoing edges and E2 = (7→ 9→
12→ 13) is the leftmost path of unvisited edges starting there. Vertex 1 is then the only
vertex with unvisited outgoing edges in G2 = E1 ∪ E2, so E3 = (1→ 3→ 5→ 7) started
at vertex 1. Continuing like this yields the given left-to-right ear-decomposition.

Lemma 2.9 A left-to-right ear-decomposition of an st-planar graph G = (V,E) can be
constructed in O(|V |) time.

Proof The proof of Theorem 2.8 gave a construction for a left-to-right ear-decomposition.
This can be implemented in O(|V |) with a left-first depth first search (DFS) from source
vertex s. The DFS partitions the edges E into tree-edges and non-tree-edges. Now number
the vertices in increasing order by their finishing time, that is when all their children are
visited and the DFS backtracks to their parent.

The left-to-right ear-decomposition can now be obtained as follows: E1 is the unique path
of tree-edges from s to t. By construction, it is the leftmost path. Mark these edges as
visited. For each other ear Ei: Visit the vertices in ascending order of their finishing times:
If the current vertex u has unvisited outgoing edges, follow the leftmost unvisited tree-edges
as far as possible. We arrive at some vertex v where all outgoing tree-edges are already
visited. Then this path and the leftmost unvisited non-tree edge are the next ear Ei. Mark
these edges as visited. By construction Ei intersects the right front of the union of Gi−1
only in its endpoints. It also lies on the right of Gi, because of the left-first order in the
DFS, so the ears are left-to-right.

The left-first DFS needs time in O(|V |). Constructing the ears from the DFS-tree then
needs time O(|V (Ei)|) for ear Ei and thus O(|V |) in total. �

2.3. Bézier Curves
To finish this chapter we are going to look at some properties of Bézier curves that we are
going to use to find straight line embeddings of st-planar graphs in Section 3.2.3.

Definition 2.10 The polynomial

Bi,n(t) =
(
n

i

)
ti(1− t)n−i

is called the i-th Bernstein polynomial of order n. In this definition we assume that 00 := 1.
For t ∈ [0, 1] a Bézier curve for control points P0, . . . , Pn is defined as

C(t) =
n∑

i=0
Bi,n(t) · Pi.

Lemma 2.11 For t ∈ [0, 1], the Bézier curve C(t) lies inside the convex hull of its control
polygon P0, . . . , Pn.

7

2. Preliminaries

Proof We just need to show that the Bernstein polynomials of order n are a partition of
unity for t ∈ [0, 1]:

n∑
i=0

Bi,n(t) =
n∑

i=0

(
n

i

)
· ti · (1− t)n−i = (t+ (1− t))n = 1n = 1

�

Lemma 2.12 For t ∈ [0, 1] the Bézier curve C(t) interpolates exactly the control points
P0 and Pn and no others.

Proof For t = 0 and t = 1 we get

C(0) =
n∑

i=0
Bi,n(0) · Pi =

n∑
i=0

(
n

i

)
· 0i · 1n−i︸ ︷︷ ︸

0 for i 6=0

·Pi = P0 and

C(1) =
n∑

i=0
Bi,n(1) · Pi =

n∑
i=0

(
n

i

)
· 1i · 0n−i︸ ︷︷ ︸

0 for i 6=n

·Pi = Pn

so P0 and Pn are interpolated. Remember that we assumed 00 := 1. For every t ∈ (0, 1)
the term ti · (1− t)n−i is in (0, 1) as well, so every other point on C in influenced by all
control points and C does not intersect any of them. �

Lemma 2.13 The tangents in the endpoints of the Bézier curve C(t) are parallel to the
line through the first two and last two control points respectively.

Proof C(t) is continuous in the interval [0, 1] and differentiable in (0, 1) as a composition
of continuous and differentiable functions. With the product and the chain rule we get:

C ′(t) =
n∑

i=0

(
n

i

)
·
(
i · ti−1 · (1− t)n−i − ti · (n− i) · (1− t)n−i−1

)
· Pi

To get the tangents at t = 0 and t = 1 we need to consider the one sided limits:

C ′(0) = lim
t→0+

C ′(t)

= lim
t→0+

n∑
i=0

(
n

i

)
·
(
i · ti−1 · (1− t)n−i︸ ︷︷ ︸

→0 for i 6=1

− ti · (n− i) · (1− t)n−i−1︸ ︷︷ ︸
→0 for i 6=0

)
· Pi

= −n · P0 + n · P1 = n · (P1 − P0)

C ′(1) = lim
t→1−

C ′(t)

= lim
t→1−

n∑
i=0

(
n

i

)
·
(
i · ti−1 · (1− t)n−i︸ ︷︷ ︸

→0 for i 6=n

− ti · (n− i) · (1− t)n−i−1︸ ︷︷ ︸
→0 for i 6=n−1

)
· Pi

= −n · Pn−1 + n · Pn = n · (Pn − Pn−1)

In both cases we again assumed that 00 := 1. As we can see for C ′(0) only the summands
with i = 0 and i = 1 contributed to the sum. For C ′(1) only the summands with i = n− 1
and i = n do. �

8

3. Existence Of Interval Planar Drawings

In this chapter we will give a characterization of interval planar graphs and we will show
that it is NP-complete to decide whether a given general graph and an interval assignment
allow an interval planar embedding. The proof will be based on the known NP-completeness
of upward planarity testing. In the remaining sections of this chapter we deal with special
subclasses of graphs that allow upward planarity testing in polynomial time. We will give
efficient interval planarity tests and embedding algorithms in some cases while showing
NP-completeness in others.

3.1. Interval Consistency and Normal Form

We first take a closer look at the intervals assigned to the vertices. Let I ⊆ 2Z be the set
of intervals over the integer numbers, let G = (V,E) be a directed acyclic graph and let
I : V → I be a function that maps each vertex v ∈ V to an interval of levels that v can be
embedded to. We call this function I an interval assignment of the vertices V . A level
assignment l : V → Z maps each vertex to a level from its interval, so for every v ∈ V we
have l(v) ∈ I(v). We further define Imin(v) := min I(v) and Imax(v) := max I(v) to be the
lowest and highest possible level of vertex v.

Definition 3.1 An interval assignment I is consistent, if for each edge (u, v) ∈ E levels
lu ∈ I(u) and lv ∈ I(v) exist with lu < lv. Otherwise we call it inconsistent.

A graph with an inconsistent interval assignment does not have an interval planar embedding.
There would be two vertices u and v connected by an edge (u, v) ∈ E with lu ≥ lv for
every lu ∈ I(u) and every lv ∈ I(v). Therefore the edge (u, v) cannot be embedded
as a y-monotone curve, it cannot not end above its start. We see that a consistent
interval assignment is a necessary condition for an interval planar embedding. However,
in Figure 3.1a we see that a consistent interval assignment is not sufficient. In the given
example it is possible for each edge independently to embed its start vertex below its end
vertex. However combined this is not possible any more, because edge (x, y) forces vertex y
to be an level 2 while edge (y, z) forces it to be on level 1. Our definition of consistency
only checks the dependencies between two adjacent vertices. We are now going to extend
this to also take all transitive dependencies into account.

9

3. Existence Of Interval Planar Drawings

x [1; 2]

y [1; 2]

z [1; 2]

(a)
x [1; 0] = ;

y [2; 1] = ;

z [3; 2] = ;

(b)

Figure 3.1.: (a) The shown interval assignment is consistent. However there is no interval
planar embedding. (b) The same graph as on the left, but the interval
assignment was transformed into normal form. Now it is obvious that there
cannot be any interval planar embedding.

Algorithm 3.1: Construct Normal Form
Input: Graph G = (V,E), interval assignment I(1).
Output: Interval assignment I(2) in normal form.

1 I(2) ← I(1)

2 forall v ∈ V in topological order do
3 forall (u, v) ∈ E do
4 I(2)(v)← I(2)(v) ∩ [I(2)

min(u) + 1,∞)

5 forall v ∈ V in reverse topological order do
6 forall (v, w) ∈ E do
7 I(2)(v)← I(2)(v) ∩ (−∞, I(2)

max(w)− 1]

8 return I(2)

Definition 3.2 An interval assignment I is in normal form, if the following two conditions
hold for every edge (u, v) ∈ E:

Imin(u) < Imin(v) and
Imax(u) < Imax(v)

Algorithm 3.1 describes a technique to transform an interval assignment I(1) of a graph
G = (V,E) into an interval assignment I(2) in normal form in O(|V |) steps. It works in two
phases. The first one increases the lower bounds of the intervals. For each vertex v ∈ V the
lower bound must be strictly bigger than the lower bound of all its direct predecessors. So
by traversing G in topological order all predecessors of the current vertex v already have
their final lower bound assigned and we can determine v’s final lower bound as well. The
second phase decreases the upper bounds and works symmetrically to the first, traversing G
in reverse topological order. Figure 3.1b shows the normalized intervals of the example
in Figure 3.1a. They are all empty, so it immediately follows that there cannot be any
interval planar embedding.

The intervals in the new interval assignment I(2) can be smaller than in I(1). However, we
will now see that this does not make any otherwise possible embeddings impossible.

Lemma 3.3 For a graph G = (V,E) and an interval assignment I(1), the interval assign-
ment I(2) in normal form as obtained from Algorithm 3.1 allows exactly the same interval
planar embeddings as I(1).

Proof Algorithm 3.1 produces an interval I(2)(v) ⊆ I(1)(v) for every vertex v ∈ V . There-
fore every interval planar embedding under I(2) is also a valid interval planar embedding
under I(1).

10

3.2. st-planar Graphs

To show that Algorithm 3.1 does not eliminate any interval planar embeddings while
shrinking the intervals, we show that each shrinking operation of the algorithm does not
reduce the set of all possible interval planar embeddings.

• Line 4: Assume this operation eliminates an embedding where vertices u and v are
embedded at levels l(u) and l(v) respectively, connected by an edge (u, v). Since
this embedding is eliminated, l(v) must have been smaller than I

(2)
min(u) + 1, so

l(v) ≤ I(2)
min(u). Since u must be on a lower level than v, we get l(u) < l(v) ≤ I(2)

min(u).
This is a contradiction, so this would have not been a valid embedding in the first
place.

• Line 7: Again we assume that the operation would eliminate a valid embedding with
v on level l(v) and w on level l(w), connected by an edge (v, w). As above we get
l(v) ≥ I(2)

max(w). Since w must be on a higher level than v, we get l(w) > l(v) ≥ I(2)
max(w).

Again a contradiction, so this embedding was not in the first place. �

Lemma 3.3 allows us to only consider interval assignments in normal form in the following
chapters. By doing so we will not loose any possible embeddings but we can safely ignore
the consistency check for each edge, because all transitive dependencies are represented in
the reduced intervals.

3.2. st-planar Graphs
Before looking at more general cases we will use this section to embed st-planar graphs,
because they appear as subproblems in many other instances. Remember that those were
graphs with only a single source s and a single sink t. As described by Di Battista [4],
st-planar graphs are always upward planar. We will describe a method to choose a level for
each vertex from its interval. Finding a planar embedding is then just a Level Planarity
instance. By giving explicit constructions for polyline and straight line embeddings, we
then show that this Level Planarity instance is always solvable with the obtained levels.

3.2.1. Level Assignment
The first step to find an interval planar embedding for an st-planar graph is to choose a
level for each vertex. This choice is the same for polyline and straight line embeddings.
How a topological embedding can always be obtained from these levels will be described in
Sections 3.2.2 and 3.2.3.

Lemma 3.4 Let G = (V,E) be an st-planar graph and I be an interval assignment in
normal form. If I(v) 6= ∅ for all v ∈ V , we can set l(v) = Imin(v) and we can obtain an
interval planar embedding with these levels.

Proof With l(v) = Imin(v) we obviously get Imin(v) ≤ l(v) ≤ Imax(v) for all v ∈ V ,
so the assignment is not in conflict with the intervals. We still need to show that this
assignment gives an upward embedding, meaning that for each edge (u, v) ∈ E we get
l(u) < l(v). This follows from the fact, that the interval assignment I is in normal form, so
we have l(u) = Imin(u) < Imin(v) = l(v) for each edge (u, v) ∈ E.

We have not yet proved that this level assignment actually has a level planar embedding.
To avoid repetition, we refer to the proofs of Theorem 3.5 and Theorem 3.8 that will close
this gap in two different ways. �

In Lemma 3.4 we chose the levels greedily as low as possible. Any interval planar embedding
based on this level assignment will therefore have the y-coordinates of all vertices at the
lowest possible position.

11

3. Existence Of Interval Planar Drawings

1[1; 2]

2[2; 4] 3 [2; 5]

4[3; 5] 5 [3; 6]

6[3; 6]

10[5; 7]7[4; 7]

8[5; 10] 9 [5; 8]

11[6; 11] 12 [6; 9]

13[7; 12]

(a)
1

2

4

7

8

11

13

9

12

10

5

3

6

(b)

Figure 3.2.: (a) An upward planar embedding of some sample graph. (b) The graph
from the left with a polyline interval planar embedding as constructed via
Theorem 3.5.

3.2.2. Polyline Drawing
After assigning levels to the vertices we can construct a polyline planar embedding with
respect to these levels.
Theorem 3.5 Let G = (V,E) be an st-planar graph with a level assignment l obtained
from an interval assignment in normal form via Lemma 3.4. Then G has a polyline interval
planar embedding where each vertex has its level as its y-coordinate. The number of edge
bends is in O(|V |).

Proof Take any upward planar embedding Γ of G (recall that Γ exists for all st-planar
graphs). Based on a left-to-right ear-decomposition E1, . . . , Ek we are now going to
construct a polyline embedding of G in several steps. Starting with an empty drawing,
we extend the current drawing in each step by the next ear in the ear-decomposition. To
illustrate the construction we will embed the upward planar graph in Figure 3.2a parallel
to this proof obtaining the embedding shown in Figure 3.2b.
The first ear E1 is always an st-path. Draw it on a vertical line with each vertex v ∈ V (E1)
at coordinates (1, l(v)). In our running example this is the path 1→ 2→ 4→ 7→ 8→
11→ 13. For each following ear Ei call the first vertex Es

i and the last vertex Et
i . They

are already positioned by earlier ears. We need to distinguish two cases:
• If Ei has no inner vertices, we draw a polyline from Es

i to Et
i with two bends at

(i, l(Es
i) + 0.5) and (i, l(Et

i)− 0.5). In our example this is the case for ear 10→ 13.
• If Ei has inner vertices v, we draw them at (i, l(v)) and connect them with vertical
edges. We connect Es

i with the first inner vertex via a polyline with one bend at
position (i, l(Es

i) + 0.5). Similarly we connect the last inner vertex with Et
i via a

polyline with one bend at position (i, l(Et
i)− 0.5). In Figure 3.2b this is the case for

the remaining ears: 1→ 3→ 5→ 7 and 5→ 10→ 12 are just two of them.
For each but the first ear we introduced two edge bends. Since the number of ears is
bounded by the number of edges, the total number of bends is less than 2|E|. Since G is
planar, this is in O(|V |).

12

3.2. st-planar Graphs

Algorithm 3.2: Polyline Embedding for st-Planar Graphs
Input: Graph G = (V,E), st-planar.
Output: Polyline interval planar embedding Γ of G.

1 E1, . . . , Ek ← left-to-right ear-decomposition of G
// Embed first, leftmost ear.

2 forall v ∈ V (E1) do
3 Γ← Γ ∪ {v at coordinates (1, l(v))}.
4 forall (u, v) ∈ E(E1) do
5 Γ← Γ ∪ {line: u→ v}

// Embed remaining ears.
6 for i = 2 to k do
7 n← V (Ei)
8 v1, . . . , vn ← vertices of Ei from bottom to top

// First and last edges, the ones with bends.
9 if n > 2 then

10 Γ← Γ ∪ {line: v1 → (i, l(v1) + 0.5)→ v2}
11 Γ← Γ ∪ {line: vn−1 → (i, l(vn)− 0.5)→ vn}
12 else
13 Γ← Γ ∪ {line: v1 → (i, l(v1) + 0.5)→ (i, l(v2)− 0.5))→ v2}

// Inner vertices and edges.
14 for j = 2 to n− 1 do
15 Γ← Γ ∪ {vj at coordinates (i, l(vj))}.
16 for j = 2 to n− 2 do
17 Γ← Γ ∪ {line: vj → vj+1}

18 return Γ

We still need to show that the resulting embedding is planar. We do this by induction
on the number of ears already added. Remember that we called the rightmost st-path in
Gi =

⋃i
j=1Ej the right front of Gi.

The induction base is the first ear E1. It gets drawn as a vertical line, obviously planar
and no intersections are possible.
Every other ear Ei (2 ≤ i ≤ k) can be seen as the union of three line segments. The
middle one is a vertical line with a greater x-coordinate than all older segments from ears
E1, . . . , Ei−1. No intersection is possible here. The first segment starts at the right front
of Gi−1, so a horizontal ray to the right would not intersect any other segment. Anyway,
the first segment is not a horizontal line, but goes up by 0.5 units on its way. All other
outgoing segments from Es

i make the same vertical difference but on a smaller horizontal
difference. Therefore they have a bigger slope and we have no intersection except at Es

i .
The third segment can be treated analogously to the first one (with negative vertical
difference −0.5). �

The construction algorithm given in the proof of Theorem 3.5 is given in pseudocode in
Algorithm 3.2.
Corollary 3.6 Algorithm 3.2 constructs a polyline interval planar embedding for any
st-planar graph G requiring area in

O (|V | · (l(t)− l(s))) .

13

3. Existence Of Interval Planar Drawings

Proof The height is maxv∈V l(v)−minv∈V l(v), because each vertex gets its assigned level
as a y-coordinate. But because the drawing is upward and an st-planar graph G has a single
source s and a single sink t, we know that maxv∈V l(v) = l(t) and that minv∈V l(v) = l(s).
Further, consecutive ears are positioned at consecutive integer x-coordinates. We know
that the number of ears is bounded by O(|V |). �

Corollary 3.7 Algorithm 3.2 constructs a polyline interval planar embedding of any st-
planar graph G = (V,E) in O(|V |) time.

Proof According to Lemma 2.9 the ear-decomposition E1, . . . , Ek can be obtained
in O(|V |). Ear E1 is a path that is embedded on a vertical line. This is possible
in O(|V (E1)|). For each following ear Ei (2 ≤ i ≤ k), the construction needs to as-
sign positions to |V (Ei)| − 2 vertices (the first and the last vertex have already been
embedded) and |E(Ei)| − 2 line segments. This can be done in O(|V (Ei)|) time. In total
this gives us O(|V |) time. �

3.2.3. Straight Line Drawing

In the last section we constructed relatively compact polyline drawings. However it is
also possible to find x-coordinates to the assigned levels such that we get a straight line
drawing.

Theorem 3.8 Let G = (V,E) be an st-planar graph with a level assignment l obtained
from an interval assignment in normal form via Lemma 3.4. Then G has a straight line
interval planar embedding where each vertex has its level as its y-coordinate.

Proof Again we will construct an interval planar embedding via a left-to-right ear-
decomposition E1, . . . , Ek of G and the result of this construction is shown in Figure 3.4.
In each step we add the next ear Ei to the already drawn subgraph Gi−1 ⊆ G. To get
a straight line embedding, we make sure the following invariant is fulfilled during every
step i (1 ≤ i ≤ k) of the algorithm: All non-adjacent vertices at the right front of Gi are
visible to each other. Two vertices u and v are visible to each other, if drawing a straight
line between them does not intersect any other vertex or edge in Gi.

The first ear E1 is an st-path. Let e1, . . . , e|E(E1)| be the edges on E1 from s to t. We are
going to choose the x-coordinates of the vertices to fulfill the visibility invariant: For every
edge ei = (u, v) ∈ E1 (1 < i < |E(E1)|), we choose the x-coordinate of u strictly smaller
than the x-coordinate of v. This gives the straight line between u and v a positive slope s(u,v).
Further we require that the slopes along E1 are strictly decreasing. This way the vertices
of E1 form the vertices of a convex polygon, therefore the visibility invariant is fulfilled. In
Figure 3.4 we can see such an embedding of E1 = (1→ 2→ 4→ 7→ 8→ 11→ 13).

For every other ear Ei (2 ≤ i ≤ k) we now need to find x-coordinates that keep the visibility
invariant fulfilled. One possible way to do so, is to consider the first and the last point
on Ei, which we will again denote with Es

i and Et
i respectively. Take these two and all

vertices between them on the right front of Gi−1 and call this set of vertices Ci. Now let Ci

be the control points of a Bézier curve Bi. For some vertex v ∈ V (Ei) we can now choose
the x-coordinate at which Bi intersects the level l(v). This process is shown in Figure 3.3
for some sample ear Ei.

To justify that the chosen x-coordinates are valid we need to use some properties of Bézier
curves. Let Bi be the Bézier curve with control points Ci = {C1, . . . , Ck}.

Planarity. The resulting embedding is planar, because Bi intersects exactly its first and
last control points C1 and Ck an no others by Lemma 2.12. By Lemma 2.11 we even know

14

3.2. st-planar Graphs

C1 = Es

i

C4 = Et

i

C3

C2

Bi

Figure 3.3.: How to find valid x-coordinates for an ear Ei to keep the visibility invariant
fulfilled: The set of control points is given by Ci = {C1, C2, C3, C4}. The
vertices on ear Ei are embedded at the unique x coordinate that curve Bi

intersects their level at.

that Bi lies completely within the convex hull of Ci, so each Ei is embedded below the
polyline induced by the right front of Gi−1, just intersecting it at its endpoints.

Uniqueness. Above we used that curve Bi uniquely determines the x-coordinate for each
vertex on Ei. This is true, because Bi is strictly monotone increasing in the vertical
direction if its control points Ci are. This guarantees a unique intersection of Bi and the
horizontal line at l(v) for each v ∈ V (Ei).

Visibility Invariant. Since the control points Ci formed a convex polygon, curve Bi is convex
as well, meaning that a straight line segment between any two points on Bi would not
intersect Bi. So the vertices of Ei that are embedded on Bi fulfill the visibility invariant.
We still need to show, that they do so together with all vertices of the right front of Gi

as well. The tangent of Bi at some point p converges to the line defined by C1 and C2,
the closer p gets to C1 by Lemma 2.13. Similarly it converges to the line defined by Ck−1
and Ck, if p approaches Ck (also by Lemma 2.13). This guarantees that the visibility
invariant is not broken at C1 = Es

i and at Ck = Es
i and is therefore valid everywhere on

the right front. �

1

2 3

4 5 6

7

8 9
10

11 12

13

Figure 3.4.: A straight line embedding as constructed via Theorem 3.8. The graph used is
the same as for the polyline embedding in Figure 3.2.

15

3. Existence Of Interval Planar Drawings

The construction algorithm given in the proof of Theorem 3.8 is given in pseudocode in
Algorithm 3.3. Worth mentioning is how the x-coordinates for the first ear are computed
in Lines 6 and 7, because we did not provide a concrete formula in above proof. We said
that the coordinates need to be chosen in order to give decreasing positive slopes on the
edges of E1. In the pseudocode we set the horizontal distance of two consecutive vertices
on E1 to a multiple of their vertical difference, so that the first slope is 1, the second is 1/2,
the third is 1/3 and so on.

The straight line drawings constructed with Algorithm 3.3 are not really readable. They
will always have a similar shape and the edges can be embedded very close to each other.
They can also require an exponential amount of area, since there is upward planar graphs
that need an exponential amount of area for all their straight line drawings as shown by
Di Battista [5].

When constructing a straight line drawing, the most time in Algorithm 3.3 is spent finding
the x-coordinates of the vertices, because evaluating or approximating the Bézier curve
takes linear time in the number of control points. While the construction using the Bézier
curves allowed a very elegant proof for the existence of such drawings, we can speed up the
actual construction to run in O(|V |) time.

Corollary 3.9 It is possible to construct a straight line interval planar embedding of any
st-planar graph G = (V,E) in O(|V |) time.

Proof All operations in Algorithm 3.3 need only constant time per vertex or edge. The
only exception is the computation of the x-coordinates of the vertices. When embedding an

Algorithm 3.3: Straight Line Embedding for st-Planar Graphs
Input: Graph G = (V,E), st-planar.
Output: Straight line interval planar embedding Γ of G.

1 E1, . . . , Ek ← left-to-right ear-decomposition of G
// Embed first, leftmost ear.

2 v1, . . . , v|E1| ← vertices of E1 from bottom to top.
3 X ← 0
4 Γ← Γ ∪ {vertex v1 at coordinates (X, l(v1))}
5 for i = 2 to |E1| do
6 ∆← l(vi)− l(vi−1)
7 X ← X + (i− 1) ·∆
8 Γ← Γ ∪ {vertex vi at coordinates (X, l(vi)}
9 Γ← Γ ∪ {line: vi−1 → vi}

// Embed remaining ears.
10 for i = 2 to k do
11 v1, . . . , v|Ei| ← vertices of Ei from bottom to top.
12 C1, . . . , Cn ← vertices on right front of Γ between v1 and v|E1|
13 B ← Bézier curve with control points C1, . . . , Cn

14 for j = 2 to |Ei| − 1 do
15 X ← x-coordinate of B’s intersection with horizontal y = l(vi)
16 Γ← Γ ∪ {vertex vi at coordinates (X, l(vi))}
17 for j = 2 to |Ei| do
18 Γ← Γ ∪ {line: vi → vi+1}

19 return Γ

16

3.3. Characterization of Interval Planar Graphs

1 1 1 1

2 2 2 2 2 2

3 3 3

Figure 3.5.: An upward planar tree that is not level planar with the assigned levels. Since
level planarity is just a special case of interval planarity this tree is also not
interval planar with the given levels (one element intervals).

ear Ei (2 ≤ i ≤ k), we can embed all inner vertices of Ei = {v1, . . . , vn} on the straight line
between its endpoints v1 and vn (which are already embedded). This gives those vertices
initial x-coordinates, but if the ear has any inner vertices, these x-coordinates violate the
visibility invariant. This can be fixed by moving the vertices to the left. Start with v2,
it can be shifted left just shortly before it would intersect the right front of Gi−1. Then
edge (v1, v2) still has a lower slope than the preceding one on the right front of Gi and a
greater slope that the rest of ear Ei. Next we shift v3 to the left until just before the slope
of edge (v2, v3) would become equal to the slope of the preceding edge (v1, v2). Doing this
for all vertices on ear Ei restores the visibility invariant. �

3.3. Characterization of Interval Planar Graphs
We will use this section to present a combinatorial characterization of interval planar
graphs. This extends a characterization of upward planar graphs to also take the interval
assignment into account.

Di Battista [4] showed that a directed graph G is upward planar, if and only if it is the
spanning subgraph of an st-planar graph. Of course, upward planarity is a necessary
condition. However it is not sufficient as Figure 3.5 shows. In Section 3.1 we saw that a
consistent interval assignment is another necessary but not sufficient condition.

Theorem 3.10 Let G = (V,E) be a directed graph and let I be an interval assignment.
The following statements are equivalent:

1. G is interval planar.

2. G is a subgraph of an st-planar graph G′ = (V ∪̇{s, t}, E′) with an interval assignment
I ′ in normal and ∅ 6= I ′(v) ⊆ I(v) for all v ∈ V and I ′(s), I ′(t) ⊆ Z.

Proof We start by showing that Statement 2 implies Statement 1. If G′ = (V ∪̇{s, t}, E′)
is an st-planar graph and I ′ an interval assignment in normal form with non-empty intervals,
we can find an interval planar embedding as described in Section 3.2. By deleting the
vertices s, t and all edges e ∈ E′ \ E we get an interval planar embedding of G. Since
I ′(v) ⊆ I(v) for all v ∈ V , the embedding is valid for G under I and G is therefore interval
planar.

To show that Statement 1 implies 2, let G = (V,E) be interval planar under a consistent
interval assignment I. Consider an arbitrary interval planar embedding Γ of G. To augment
G to an st-planar graph G′ we need to extend it by supersource s and supersink t and add
dummy edges until we s and t are the only source and the only sink. Define

Smin := {v ∈ V | v is a source with minimal y-coordinate} and
Tmax := {v ∈ V | v is a sink with maximal y-coordinate}

17

3. Existence Of Interval Planar Drawings

to be the lowest sources and highest sinks in Γ. Denote the corresponding y-coordinates
with ymin and ymax respectively. We first extend the vertex set by a supersource s and a
supersink t, so V ′ := V ∪̇{s, t} and define I ′ as follows:

I ′(v) :=


[ymin − 1, ymin − 1] if v = s

[ymax + 1, ymax + 1] if v = t

[l(v), l(v)] if v ∈ V , where l(v) is the level of v in Γ

We can then extend the embedding Γ by placing s at y-coordinate ymin − 1 and t at
y-coordinate ymax + 1 and connect s with all sources in Smin and all sinks in Tmax with t.
Embedding Γ can have several more sources and sinks that we can augment with a method
described in [4]: Start with E′ = E. For a sink t′ 6= t, draw a straight edge e′ leaving t′
upward until shortly before it would intersect another edge. Then follow this edge closely
to its end. If the upward edge would not intersect any other edge, then t′ can directly be
connected to the supersink t. Add the new edge e′ to E′. A source s′ 6= s can be augmented
similarly by drawing an edge downward.

Adding dummy edges to reduce the number of sources and sinks was done without breaking
planarity. What is left to show is that I ′ is an interval assignment in normal form, even
after adding edges in the previous step. All intervals in I ′ contain only a single integer, for
simplicity we will also denote it by I(v) for each v ∈ V in the following. To show that I ′ is
in normal form we need I(u) < I(v) for every edge (u, v) ∈ E′. This is obviously true for
all e ∈ E, because we started with an interval planar embedding. For all e ∈ E′ \E, this is
true as well, because they are upward by the described construction and therefore their
endpoint has a y-coordinate strictly greater than their startpoint. These y-coordinates
correspond with the one-element intervals of the vertices. �

We are going to use Theorem 3.10 several times in later sections. It tells us, that if we
want to find an interval planar embedding of a given graph, we need add a supersource s,
a supersink t and dummy edges until no other sources and sinks are left. The interval
assignment however must not contain empty intervals for any vertex when converted to
normal form. As it turns out, this can efficiently be done for some graph classes while it is
NP-complete for others. When we transformed the graph into an st-planar graph, we can
use the known methods from Section 3.2 to embed st-planar graphs.

We summarize this as a general embedding strategy for a graph G = (V,E), consisting of
three steps:

1. Augment G by adding a supersource s, a supersink t and dummy edges to a graph G′,
so that G′ is st-planar and has an interval assignment in normal form with non-empty
intervals. If this is impossible, no interval planar embedding exists and we can stop
here.

2. Use the methods from Section 3.2 to get an interval planar embedding Γ of G′.

3. Remove supersource s, supersink t and all dummy edges from G′ to obtain an interval
planar embedding of G.

Step 1 is the hard part of this method. Consider a sink vertex t′ ∈ V in G. To augment G
to an st-planar graph, we need to add a dummy edge from t′ to another vertex v ∈ (V ∪{t}).
Every such v is a possible candidate. However, if we already have a given combinatorial
embedding we can observe that all outgoing edges of t′ would lie inside some face f . This
reduces the candidates to the vertices on the boundary of f . Actually we can go even
further: We only need to consider the face sinks of f , that is all vertices on f ’s boundary
that do not have any outgoing edges incident to f . This is justified by the fact that all

18

3.4. General Graphs

other vertices on f ’s boundary will definitely be embedded below some face sink of f . We
can make a similar observation for sources s′. If a combinatorial embedding is given, we
only need to consider the face sources as candidates to cancel s′.

We will refer to the process of adding dummy edges between sources or between sinks as
source canceling and sink canceling from now on. When we know how to efficiently do this,
we already know how to find an interval planar embedding.

3.4. General Graphs
Garg and Tamassia [8] showed that testing for upward planarity is NP-complete. We can
use their result to easily show the NP-completeness of testing for interval planarity.

Theorem 3.11 Interval Planarity is NP-complete, i.e. for a directed acyclic graph
G = (V,E) and an interval assignment I, it is NP-complete to decide, whether there is an
interval planar embedding of G.

Proof Interval Planarity is in NP, since we can easily check a given embedding. We
just need to test that it is planar and that we have Imin(v) ≤ l(v) ≤ Imax(v) for each
vertex v ∈ V .

Now consider a directed acyclic graph G = (V,E). We define I(v) := [1, |V |] for each
v ∈ V . If there is an interval planar embedding of G under I, this is also an upward planar
embedding. If there is no interval planar embedding of G under I, then G is not upward
planar. This is because no upward planar embedding can have more than |V | different
y-coordinates for the vertices which could then be injectively mapped to the allowed levels
in [1, |V |]. �

By Theorem 3.11 we see that unless P = NP , we cannot give an efficient algorithm to test
a given graph for interval planarity. We will spend the remainder of this chapter looking at
several special graph classes for which efficient upward planarity tests exist and explore,
for which of them we can also check interval planarity efficiently.

3.4.1. Fixed Combinatorial Embedding

Bertolazzi et al. [2] showed that general directed graphs can be tested for upward planarity
under a fixed combinatorial embedding in polynomial time. However, for interval planarity
the fixation of an embedding does not allow an efficient test. We will show NP-completeness
via a reduction starting from Planar Monotone 3SAT, which is NP-complete as shown
by De Berg and Khosravi in 2012 [3].

Definition 3.12 Planar Monotone 3SAT

Instance Given a 3SAT formula ϕ together with a planar rectilinear embedding Γ. Every
clause in ϕ contains exaclyt three literals, either all positive or all negative.

Question Is there a truth assignment of the literals such that ϕ is true.

Figure 3.6 shows an example of a Planar Monotone 3SAT instance. It represents
a boolean formula in conjunctive normal form where each clause contains exactly three
literals. The variables are shown as segments on a horizontal line and the clauses are shown
as E-shapes connecting three variables each, either above or below them. A nice property
of Planar Monotone 3SAT is that we can embed the clause shapes in a way, that all
positive clauses (the ones containing only positive literals) are below the variables and
all negative clauses are above it. This way we do not need to further distinguish which
E-shape represents a positive and which a negative clause.

19

3. Existence Of Interval Planar Drawings

x1 x2 x3 x4 x5

negative clauses

positive clauses

Figure 3.6.: An instance of Planar Monotone 3SAT. In this rectilinear embedding
all positive clauses are below the variables and all negative clauses are above
the variables. This instance corresponds to the following boolean formula:
(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x5)

Theorem 3.13 Interval Planarity is NP-complete even if the graph G has a fixed
combinatorial embedding and outer face.

Proof We already know from Theorem 3.11 that Interval Planarity is in NP. It is so
as well when we fix the combinatorial embedding and the outer face.

Given a Planar Monotone 3SAT instance ϕ with a planar rectilinear embedding Γ.
In Γ, every positive clause is embedded below the variables and every negative clause is
embedded above the variables as shown in Figure 3.6. We are going to transform this into
an instance of Interval Planarity. Replace each E-shape clause in Γ with a gadget as
shown in Figure 3.7: Each gadget has three vertices xi,1, xi,2 and xi,3 that correspond to
the three literals that appear in the clause. The gadgets of two clauses that both contain
the same variable are merged at the corresponding vertices. Since Γ was planar and each
gadget mimics the E-shape, the resulting graph also has a planar embedding.

For an interval planar embedding we need to cancel the sources and sinks in each of the
gadgets. Consider the gadget corresponding to the i-th clause. Without loss of generality
this is a positive gadget (corresponding to a positive clause). It contains a sink pi, that
we call the pendulum of the gadget. There are three different sinks in the gadget, that pi

can be canceled to: xi,1, xi,2 and xi,3, each corresponding to one of the variables in ϕ. In
Figure 3.7 the three choices are shown by the gray dashed lines. We are going to show,
that finding a valid assignment of all pi’s to one of their three possible sinks (or sources in
negative gadgets) is equivalent to finding a satisfying variable assignment for the Planar
Monotone 3SAT instance ϕ.

First observe, that the level of each pendulum pi is fixed to 0 in all gadgets. Therefore, in
a positive clause i the sink that pi gets connected to must be at level 1. Symmetrically, in
a negative clause j the source that pj gets connected to will be at level −1. So if a positive
gadget i and a negative gadget j share a literal, their pendulums pi and pj cannot both be
canceled with the same vertex (a sink in gadget i and a source in gadget j).

Assume an interval planar embedding of G is given. This induces an assignment for the
pendulums pi for each gadget. We can now extract a truth assignment for ϕ from this:
For the interval planar embedding each pendulum pi was canceled with some vertex xi,k

that corresponds to the k-th variable in ϕ. If pi was in a positive gadget, set variable xk to
true. If pi was in a negative gadget, set xk to false. By above observation it is impossible
that a vertex corresponding to a variable xk is simultaneously set to true and to false. If
any variable is not yet set, we can either set it to true or false. The extracted variable
assignment is indeed a truth assignment, because each gadget contains a pendulum and
each pendulum sets a literal in the corresponding clause to true.

If on the other hand a truth assignment of ϕ is given, we can use it to assign the pendulums
pi in each gadget i to one of the three possible sources or sinks. Each clause contains at

20

3.4. General Graphs

pi[0,0]

xi;1[-1,1] xi;2[-1,1] xi;3[-1,1]

vi;2(-1;-2] vi;3(-1;-2]

vi;1(-1;-3]

pi[0,0]

xi;3[-1,1]xi;2[-1,1]xi;1[-1,1]

vi;3[2;1)vi;2[2;1)

vi;1[3;1)

Figure 3.7.: The gadgets to replace the Planar Monotone 3SAT clauses with. The
left gadget replaces each positive clause below the variables, the right gadget
replaces each negative clause above the variables. The dashed lines show the
possible ways to cancel the pendulum pi.

least one literal that was assigned the value true. Use a vertex of gadget i corresponding
to one of these true literals for the pendulum pi. Since no variable was both true and
false at the same time, no vertex that corresponds to a variable will get a pendulum from
a positive and a negative gadget assigned at the same time. Therefore an interval planar
embedding exists for this way of canceling the pendulums. �

This reduction works on a fixed embedding of the graph that we construct from the Planar
Monotone 3SAT instance. The only variations we can force on the embedding are the
dummy edges to cancel the inner sources and inner sinks. This implies that Interval
Planarity is already NP-complete for graphs with inner sources and sinks under a fixed
combinatorial embedding.

The only way to further restrict this is to restrict the number of sources or sinks to one. If
both are restricted, we get an st-planar graph. In section 3.2 we saw an efficient test and
embedding algorithm for them. If only one type is forbidden, we get a single source (or
single sink) graph handled next in section 3.5.

Remark 3.14 The vertices corresponding to the variables all have interval [−1, 1] in
all gadgets of Figure 3.7. We can prove Theorem 3.13 with similar gadget where each
variable vertex has interval [0, 1]. This would have the advantage, that we get a direct
correspondence between the assigned level in an interval planar embedding and a truth
value (0 is false and 1 is true). This is more elegant that in the given proof above where
we say that 1 is true, −1 is false and that 0 can be arbitrarily chosen. However, a
disadvantage is that the gadgets for positive and negative clauses are not symmetric any
more: The gadget for positive clauses would remain unchanged (except for the smaller
intervals at xi,1, xi,2 and xi,3). In the gadget for negative clauses, the pendulum pi now
gets interval [1, 1], so the source that it gets canceled with is forced to be embedded at
level 0 instead of level −1.

Remark 3.15 Using a variation of the gadgets shown in Figure 3.7 we can even show
the NP-completeness for graphs with a fixed embedding and an interval assignment with
|I(v)| ≤ 2 for each vertex v ∈ V : The pendulums have |I(pi)| = 1 anyway. For the
vertices corresponding to a variable we take the same approach as in Remark 3.14 and get
|I(xi,j)| ≤ 2. For all other vertices we can assign one-element intervals. To do this, we
start with the rectilinear embedding of the Planar Monotone 3SAT instance as shown
in Figure 3.6. This tells us how the gadgets are nested. We start assigning y-coordinates
for the innermost gadgets. For example a positive innermost gadget i will get [−3,−3] for
vertex vi,1 and [−2,−2] for the two remaining vertices vi,2 and vi,3. A second innermost
positive gadget j will then be assigned y-coordinates just below that. The two vertices vj,2
and vj,3 will get [−4,−4], the remaining vertex vj,1 will get [−5,−5]. We continue like this
until each vertex has an interval assigned.

21

3. Existence Of Interval Planar Drawings

3.5. Single Source Graphs
Hutton and Lubiw [10] first gave an O(|V |2) upward planarity test for single source directed
acyclic graphs. Later Bertolazzi, Di Battista, Mannino and Tamassia [1] improved this to
an optimal O(|V |) algorithm. For a given graph, both describe a method to test for upward
planarity with the same combinatorial embedding and outer face. Then they decompose
the graph into its triconnected components to find an upward planar embedding with an
arbitrary combinatorial embedding. Similarly we will give an O(|V |) algorithm to check
a single source directed acyclic graph for interval planarity with the same combinatorial
embedding and outer face. However, we will see that it is NP-complete to test for interval
planarity without fixing a combinatorial embedding.

Note that any result applying to single source graphs also applies to single sink graphs.
Those have only one sink but might have several sources. Single sink instances can be
mapped bijectively to single sources instances as shown in the following lemma:

Lemma 3.16 Let Gt be a directed acyclic graph with a single sink and an interval assign-
ment It. Then we can augment Gt and It to a graph Gs with a single source that has an
interval planar embedding under an interval assignment Is, if and only if Gt has an interval
planar embedding under It.

Further, if it exists, an embedding for Gt under It can be obtained from an embedding of
Gs under Is.

Proof Let Gt = (V,Et) be a directed acyclic graph with a single sink t and let It be an
interval assignment. Define Gs = (V,Es) to be a graph on the same vertex set as Gt, where
Es = {(u, v) | (v, u) ∈ Et} contains all edges of Et in their reverse direction. Now let C be
a constant such that C > max

⋃
v∈V It(v), so C is bigger than any element in any interval

of It. For each vertex v ∈ V we define Is(v) := C − It(v) := {C − x | x ∈ It(v)}.

Vertex t is the single source of Gs, so Gs is indeed a single source graph. For each edge
(u, v) ∈ Et there is exactly one edge (v, u) ∈ Es. For every vertex v, intervals It(v) and Is(v)
have the same size. If u and v are two adjacent vertices, their intervals have the same
relative position in Is and It. The difference between their minimal and their maximal
elements is the same:

min Is(u)−min Is(v) = (C −min It(u))− (C −min It(v))
= min It(v)−min It(u)

max Is(u)−max Is(v) = (C −max It(u))− (C −max It(v))
= max It(v)−max It(u)

From this we can now follow that an interval planar embedding of Gt under It exists, if
and only if an interval planar embedding of Gs under Is exists. Let Γ be such an interval
planar embedding of Gs under Is. For each edge (u, v) ∈ Es we know that if v is placed k
levels higher than u, then the intervals in It allow us to place u also k levels above v in an
embedding of Gt. So it is possible to assign valid levels to all vertices: Set l(t) := max It(t)
to the single sink t. Each other vertex v gets l(v) assigned, such that the level difference
to t is equal to the level difference of v and t in Gs. With the same procedure an interval
planar embedding of Gt under It can be converted into an interval planar embedding of Gs

under Is.

Since the underlying undirected graph is the same for Gs and Gt, we also get planarity for
an embedding of Gt. �

22

3.5. Single Source Graphs

3.5.1. Fixed Combinatorial Embedding

Throughout this section G = (V,E) is a directed acyclic graph with a single source vertex
s ∈ V and an interval assignment I in normal form. We further assume that G is upward
planar, since this is a necessary condition for interval planarity. Let Γ be any combinatorial
embedding of G. We know that all these conditions can be checked in O(|V |) and will
describe a method to test for interval planarity under I with the same combinatorial
embedding and outer face as in Γ.

An inner sink is a sink not incident to the outer face, so it needs to be canceled with some
sink of the face it lies in. The key observation is that every face in an embedded single
source graph has only a single sink. So for any inner sink of the graph there is only one
possible candidate to cancel it with. If we do so and add the corresponding dummy edges,
the resulting graph has all its remaining sinks on the boundary of the outer face and thus
they can all be canceled with a supersink t. This gives us an st-planar graph that can
then be embedded with the known methods from Section 3.2. This process is given in
pseudocode in Algorithm 3.4.

Theorem 3.17 Let G = (V,E) be a single source directed graph and let I be an interval
assignment in normal form. Then we can construct an interval planar embedding of G
in O(|V |) or detect that none exists.

Proof The number of sinks in G is bounded by O(|V |) and each of them can be canceled
with the unique sink of the face containing it in constant time. Further, adding the
supersink and dummy edges from each remaining sink also takes constant time per sink.
The sink canceling thus takes O(|V |) in total.

Running Algorithm 3.1 to get a new interval assignment for the resulting st-planar graph
also takes time in O(|V |) and we know that we can find an interval planar embedding
for an st-planar graph in O(|V |) from Section 3.2.2. All combined, Algorithm 3.4 runs
in O(|V |). �

Algorithm 3.4: Embed Single Source Graph
Input: Directed, acyclic graph G = (V,E), interval assignment I in normal form,

combinatorial embedding Γ and fixed outer face.
Output: Γ′ interval planar embedding of G or NO EMBEDDING if none exists.
// Cancel all inner sinks.

1 forall inner sinks t ∈ V do
2 tf ← sink of face f that any edge leaving t to the top lies in
3 E ← E ∪ (t, tf)

// Add supersink t∗ and cancel remaining sinks.
4 V ← V ∪ {t∗}
5 forall sinks t ∈ V \ {t∗} do
6 E ← E ∪ {(t, t∗)}

// Fix normal form of interval assignment.
7 I ′ ← run Algorithm 3.1 on G and I
8 if ∃v ∈ V : I ′(v) = ∅ then
9 return NO EMBEDDING

10 Γ′ ← interval planar embedding of G under I ′ (as in Section 3.2)
11 return Γ′ \ ({t∗} ∪ {added dummy edges})

23

3. Existence Of Interval Planar Drawings

3.5.2. General Embeddings

Now that we know how to embed single source graphs under a fixed combinatorial embedding
we are going to see, that this cannot efficiently be extended to general embeddings. To
prove NP-completeness we are going to show a reduction from an NP-complete scheduling
problem.

Definition 3.18 Sequencing With Release Times And Deadlines

Instance Given a set of tasks T = {t1, . . . , tn} with individual release times r1, . . . , rn ∈ N,
deadlines d1, . . . , dn ∈ N and processing times p1, . . . , pn ∈ N for each task.

Question Is there a non-preemptive one-processor schedule for T , such that each task is
scheduled after its release time and finished before its deadline? Formally, is there a
function σ : T → N, such that for each i ∈ {1, . . . , n} we get:

• σ(ti) ≥ ri, so each task starts after its release time.

• σ(ti) + pi − 1 ≤ di, so each task finishes before its deadline.

• σ(ti) > σ(tj)⇒ σ(ti) ≥ σ(tj) + pj for any j ∈ {1, . . . , n} \ {i}, so no two tasks
are executed at the same time.

Garey and Johnson [6] showed that Sequencing With Release Times And Deadlines
is strongly NP-complete in 1977: It is NP-complete, even if the sum of the processing times∑n

i=1 pi is bounded by a polynomial in n. This is a very important property, because in the
given reduction this will guarantee that the resulting instance of Interval Planarity
will have polynomial size.

Theorem 3.19 Interval Planarity is NP-complete, even if the given graph is a single
source graph.

Proof We already know that Interval Planarity is in NP from Theorem 3.11. Testing
a given embedding for interval planarity can be done in polynomial time.

Let T = {t1, . . . , tn}, r1, . . . , rn, d1, . . . , dn and p1, . . . , pn be an instance of Sequencing
With Release Times And Deadlines with

∑n
i=1 p bounded by a polynomial in n. We

will give a polynomial transformation into an Interval Planarity instance with a single
source. Start with G = (V,E) to be the base gadget shown in Figure 3.8a. Additionally
for each task ti ∈ T add one of the task gadgets shown in Figure 3.8b. The base and all
the task gadgets contain two common vertices u and v at which they are merged. The task
gadget for job i consists of two vertices u, v and a path Pi = {x1, . . . , xpi} above those two,
so the number of vertices on Pi equals the processing time pi of task ti. Each vertex on Pi

gets interval [ri, di], which corresponds to all possible time slots this task can be executed
at. An example of G transformed from two tasks is shown in Figure 3.8c. In this example
one of the tasks had length 3, the other length 4. The special vertices u, v and s all get
interval (−∞, 0].

We claim that G is interval planar, if and only if there is a valid one-processor schedule for
the Sequencing With Release Times And Deadlines instance.

Start with a valid schedule σ. Since σ is non-preemptive, it induces a total order on the
tasks, without loss of generality σ(t1) < . . . < σ(tn). Order the outgoing edged to the task
gadgets at u (and therefore symmetrically at v) from tn to t1 from left to right. Then in a
planar embedding the gadget corresponding to tn is incident to the outer face. The gadget
for tn−1 is just inside of it, itself containing the remaining gadgets until the gadget for t1 is
the innermost one. For any i ∈ {1, . . . , n− 1} we know that σ(ti) + pi ≤ σ(ti+1). Thus we

24

3.6. Trees and Outerplanar Graphs

u v

s

(a)

xi;pi
[ri; di]

xi;1 [ri; di]

xi;3 [ri; di]

xi;2 [ri; di]

u v

s

(b)

u v

s

(c)

Figure 3.8.: The gadgets for the reduction to prove the NP-completeness of Interval
Planarity for graphs with only a single source. (a) The base gadget. (b) One
of these gadgets is needed for every task. The gray part illustrates how it is
merged with the base gadget. (c) The base and all task gadgets are merged
at their common vertices u and v.

.

can embed the j-th vertex of the path of ti’s gadget at y-coordinate σ(ti) + j − 1 to get an
interval planar embedding. All vertices get x-coordinate 0, except for u and v, which get
−1 and 1 respectively.

Now consider an interval planar embedding of G. For the i-th task gadget define yi to be
the y-coordinate of xi,1, the lowest vertex in the path Pi of the gadget. Then set σ(ti) = yi.
Since the path of the i-th gadget has length pi, the lowest vertex of any gadget above it
must be at least at y-coordinate yi + pi. Therefore for all tj > ti we get σ(tj) ≥ σ(ti) + pi,
so we have a valid schedule. �

3.6. Trees and Outerplanar Graphs
Every tree is upward planar [4] and for outerplanar graphs, Papakostas [13] showed that
upward planarity can be tested in polynomial time. We will show that testing for interval
planarity of trees is NP-complete. Then the NP-completeness for outerplanar graphs follows
immediately. We can use a reduction very similar to the one used for single source graphs
in Section 3.5.2.

Theorem 3.20 Interval Planarity is NP-complete, even if the given graph G = (V,E)
is an oriented tree.

Proof We already know that Interval Planarity is in NP, because a given embedding
can be tested for interval planarity in polynomial time.

Again, let T = {t1, . . . , tn}, r1, . . . , rn, d1, . . . , dn and p1, . . . , pn be an instance of Sequenc-
ing With Release Times And Deadlines with

∑n
i=1 pi bounded by a polynomial in n.

We are going to transform this into an instance of Interval Planarity where the graph
G is a tree in polynomial time.

We start with the base gadget shown in Figure 3.9a. It consists of vertices u and v with
interval [0, 0] and vertices c1, . . . , ck, where k is a constant bigger than the greatest deadline.
Vertex u will be the connection to all other gadgets that are going to be added.

25

3. Existence Of Interval Planar Drawings

u[0; 0]v[0; 0]

c1[1; 1]

c2[2; 2]

c3[3; 3]

c4[4; 4]

ck[k; k]

(a)
u [0; 0] ai[0; 0] bi[0; 0]

xi;1 [ri; di − 1]

xi;2 [ri; di − 1]

xi;3 [ri; di − 1]

xi;pi
[ri; di − 1]

eb

ea

(b)
u a1 b1 a2 b2v

(c)

Figure 3.9.: Gadgets needed to show NP-completeness of Interval Planarity on trees.
(a) The base gadget that the task gadgets get connected to. (b) One of these
gadgets is needed for every task. The gray part does not belong to the gadget
but shows how u is connected with it. (c) All task gadgets are merged at the
common vertex u. In this case there are two tasks with processing times 3 and
4 respectively.

Now we add one gadget as shown in Figure 3.9b for each task ti ∈ T . It consists of two
base level vertices ai and bi as well as a path Pi = {xi,1, . . . , xi,pi} of pi vertices above them,
each getting interval [ri, di]. Vertex xi,1, the lowest vertex of path Pi, gets connected to u.
If there are n task gadgets, u has n+ 1 outgoing edges, the leftmost of which belongs to
the base gadget. This is because each task gadget contains a vertex at level 1 or higher
and thus cannot be embedded below the triangle-top formed by v → c1 ← u. So we know
that all task gadgets are on the same side of the long path of vertices c1, . . . , ck and all
vertices ai and bi are on the same side of vertex u on level 0. An example with two tasks
with processing times 3 and 4 is shown in Figure 3.9c. The resulting graph G is a tree, as
none of the gadgets has a cycle and two gadgets intersect at exactly one vertex. We claim
that G has an interval planar embedding, if and only if there is a valid schedule for the
Sequencing With Release Times And Deadlines instance.

Let σ be a valid schedule. Again, σ induces a total order on the tasks and we order the
outgoing edges to task gadgets at vertex u according to σ from left to right (edge (u, c1)
still being the leftmost outgoing edge). We can embed the vertex xi,k of the i-th gadget at
position σ(ti) + k − 1 to get an interval planar embedding.

Now let Γ be an interval planar embedding, we need to extract a schedule for the tasks
t1, . . . , tn. We claim that the order of the outgoing edges to the task gadgets around u
from left to right gives a valid schedule (each edge belongs to exactly one gadget). We need
to show that in each interval planar embedding of G the following holds: If some vertex
xi,k of the i-th gadget is below a vertex xj,l of the j-th gadget, all vertices xi,1, . . . , xi,pi of
the i-th gadget are below all vertices xj,1, . . . , xj,pj of the j-th gadget.
Assume that this condition is violated, so there is some vertex xj,l that is embedded above
xi,1 and below xi,pi and without loss of generality the i-th gadget is left of the j-th gadget
(by the order they are connected to vertex u). See Figure 3.10 for an illustration of this
situation. The key observation here is that there is an u→ xj,l path P . But in order to get
from u to xj,l, path P needs to go around vertex ai on level 0 and thus initially downward
from u. This is impossible, because we required each edge and therefore each path to be
y-monotone. Thus the order of the task gadget at vertex u indeed induces a total order on
the tasks that fulfills the requirements of a schedule. �

26

3.7. Cycles

u ai aj bj biv

xi;1

xi;pi

xj;l

Figure 3.10.: xj,l lies between xi,1 and xi,pi . But there must be a y-monotone path from xj,l

to u, which is impossible as it would have to go "around" ai (see the dashed
edge, which is not monotone).

Corollary 3.21 Interval Planarity is NP-complete, even if the given graph G = (V,E)
is an outerplanar graph.

Proof Every tree is outerplanar, because any embedding of a tree has exactly one face.
All vertices v ∈ V lie on the boundary of this face. We immediately get from Theorem 3.20
that Interval Planarity remains NP-complete, when the graph G is outerplanar. �

3.7. Cycles
As a last graph class we look at the interval planarity of simple cycles and develop an
algorithm to decide whether they are interval planar. We are then providing some ideas
how to generalize this approach to embed cycles that are extended by attached trees or
similar subgraphs.

In a cycle every vertex has degree 2, so no matter how we embed the adjacent edges at any
vertex, the cyclic order around it is always the same. This gives us a lot of freedom when
looking for an embedding of the cycle. If we have an upward planar embedding Γ, we call
it convex, if each vertical line intersects the interior of the cycle at most once. An example
for a convex embedding of a cycle can be seen in Figure 3.11a, while the embedding in
Figure 3.11b is not convex.

Conjecture 3.22 Let G = (V,E) be a cycle and let I be an interval assignment. If Γ is
an interval planar embedding of G under I, then a convex interval planar embedding Γc

of G under I exists.

We will not prove Conjecture 3.22 in this thesis but we will provide some ideas how a proof
could look like in Appendix A. Based on this conjecture we will only construct convex
embeddings in this chapter. We assume that no interval planar embedding exists at all,
if we are not able to find a convex one. In any convex upward planar embedding we can
uniquely distinguish between two types of sources and sinks:

Definition 3.23 Let G = (V,E) be a cycle and Γ be a convex and upward planar embed-
ding. Further let W = (v1, . . . , v|V |) be a circular walk around the cycle in counterclockwise
direction. Since Γ is convex, we can partition W into a part Wl→r where we only walk
from left to right and a part Wr→l where we only walk from right to left. We get
Wl→r ∪̇Wr→l = W . The sources and sinks on Wl→r are called lower sources and lower
sinks. On the other hand, the sources and sinks on Wr→l are called upper sources and
upper sinks.

27

3. Existence Of Interval Planar Drawings

t5

t4

t3

s5
s4

t1 t2

s1 s2

s3

(a)

t1 t2

t3t4

t5 t6

t7t8t9

s1 s2 s3

s4s5

s6 s7

s8s9

(b)

Figure 3.11.: (a) Any vertical line intersects the cycle at most once in this embedding.
(b) A vertical line going through s2, t4, s6 and t8 would intersect the cycle
twice.

In Figure 3.11a the sources s1, s2 and s3 are lower sources while s4 and s5 are upper
sources. Similarly, t1 and t2 are lower sinks while t3, t4 and t5 are upper sinks. Again, our
strategy to find an interval planar embedding is to augment the cycle into an st-planar
graph. To do this we need to cancel all lower sources with upper sources and all lower sinks
with upper sinks by inserting dummy edges. The lower sources and upper sinks can then
be canceled with a supersource and a supersink, so that we can use the known methods
from Section 3.2.

Lemma 3.24 Let G = (V,E) be a cycle, I be an interval assignment in normal form, s
be a lower source and S be an upper source in some upward planar embedding of G. We
can determine whether s can be canceled with S in O(1) for an interval planar embedding.

Proof To verify that s can be canceled with S by adding a dummy edge between them,
we need to show that all intervals in I remain non-empty after computing a new normal
form with the added dummy edge. The important observation is that no matter how
we place dummy edges in G, we will never get a directed path in G with more than one
dummy edge on it. This is because a dummy edge is always oriented from a lower source
(or sink) to an upper one and there is in general no edges from upper vertices to lower
vertices. Because of this, we have no transitive dependencies between different dummy
edges and it is enough to verify that the intervals of the endpoints of the dummy edges
remain consistent after adding the dummy edge. Remember that we called the intervals of
s and S consistent, if there are some ls ∈ I(s) and lS ∈ I(S) with ls < lS . Because I is in
normal form, all vertices precedding s can then be embedded below ls while all vertices
following S can be embedded above lS . �

Lemma 3.24 can equally be stated for lower and upper sinks and we will use it equally for
sources and sinks in the following sections.

3.7.1. Cycle Operations

A combinatorial embedding of a cycle does not yet define which sources (or sinks) are the
upper and which are the lower ones. Actually we can label the sources and sinks as upper
(or lower) sources and sinks arbitrarily as long as all upper sources and upper sinks appear

28

3.7. Cycles

1

2

53

4

6

7

8

(a)
1

2

3

4

5

6

7

8

(b)
3

4

5

6

7

8

1

2

(c)
3

4

75

6

8

1

2

(d)

Figure 3.12.: (a) A sample cycle. (b) The cycle from 3.12a after a right flip. (c) The
cycle from 3.12a after a left flip. (d) The cycle from 3.12a after a shift.

consecutive on the cycle. Then the lower sources and lower sinks automatically form a
consecutive sequence as well. Of course there needs to be at least one lower source and
at least one upper sink. In Figure 3.12 the same graph is shown four times with different
upper and lower sources and sinks.

Lemma 3.25 Let G = (V,E) be a cycle. Between any two sources is a sink and between
any two sinks is a source.

Proof Let s1 and s2 be two consecutive sources and let P = {s1 = v1, . . . , vk = s2} be
a path between them. Assume there is no sink on P . Then all inner vertices on P have
exactly one incoming and one outgoing edge (otherwise they would either be a source or a
sink). Since s1 is a source, edge (v1, v2) is oriented towards v2. Then edge (v2, v3) must
be oriented towards v3. Inductively we get that edge (vk−1, vk) must be oriented towards
vk = s2. But this is a contradiction, because s2 is a source and thus has no incoming edges.
There must have been a sink on P . By the same argument we can show that there is a
source between any two sinks. �

Definition 3.26 Let G = (V,E) be a cycle with a convex upward planar embedding Γ.

• In a right flip R(Γ), the rightmost lower source in Γ becomes the rightmost up-
per source and the rightmost lower sink in Γ becomes the rightmost upper sink.
Figure 3.12b shows the graph from Figure 3.12a after one right flip.

• In a left flip L(Γ), the leftmost lower source in Γ becomes the leftmost upper source
and the leftmost lower sink in Γ becomes the leftmost upper sink. Figure 3.12c shows
the graph from Figure 3.12a after one left flip.

Note that both operations can be inversed: We will denote this with R−1(Γ) and L−1(Γ).
A flip can only be applied, if there are at least two lower sources in Γ (and by Lemma 3.25
a lower sink between them). Similarly, an inverse flip can only be applied, if there is at
least one upper source in Γ.

Definition 3.27 Let G = (V,E) be a cycle with a convex upward planar embedding Γ.
A shift S(Γ) is a combination of a left flip and an inverse right flip executed in any order.
Figure 3.12d shows the graph from Figure 3.12a after one shift.

Note that a shift is always well defined, even in the degenerated cases with just one lower
source or just one upper sink. If there is exactly one lower source and exactly one upper
sink, a shift has no effect. If there is at least two of either kind, either L or R−1 is defined
and the other can then be executed afterwards.

Shifts and flips allow us to enumerate all possible assignments of which sources and sinks
are lower ones and which are upper ones. If the cycle contains S sources, we can have any

29

3. Existence Of Interval Planar Drawings

number between 1 and S of lower sources. To get from an assignment with k lower sources
to one with k − 1, apply a left (or right) flip. To get to an assignment with k + 1 lower
sources apply a left (or right) inverse flip. By shifting, we can enumerate all assignments
with the same number of lower sources, because a single shift does not change the number
of lower sources.

3.7.2. Fixed Assignment of Lower and Upper Sources and Sinks

Let G = (V,E) be a cycle, let Γ be a convex upward planar embedding and let I be an
interval assignment in normal form. Note that the convex upward planar embedding Γ
already defines which sources and sink are lower and which are upper ones. In this section
we will describe an algorithm to embed G. We need to cancel all lower sources to upper
sources and all lower sinks to upper sinks. However we might have several choices which
lower source (or sink) we can cancel with which upper source (or sink) and not every choice
will allow an interval planar embedding, i.e. result in an interval assignment in normal form
with non-empty intervals. We will describe an O(|V |3) dynamic programming algorithm
that finds a valid embedding or detects that none exists. In Section 3.7.3 we are going to
apply this algorithm to any possible assignment of lower and upper sources and sinks.

The convex upward planar embedding Γ gives us a left to right order on the lower sources
and sinks as well as a left to right order on the upper sources and sinks. Between any two
sources lies a sink and between any two sinks lies a source by Lemma 3.25. Therefore, if
our cycle has k lower sources and l upper sinks, it has k − 1 lower sinks and l − 1 upper
sources. Algorithm 3.5 processes the lower sinks from left to right. For a lower sink t, we
identify all upper sinks T that it can be canceled with, such that all lower sinks left of
t and all upper sources left of T can be canceled as well. If and only if there is such an
upper sink T for the rightmost lower sink t and all upper sources to the right of T can be
canceled with the rightmost lower source, then an interval planar embedding exists and
can be constructed.

In Algorithm 3.5 the lower sources and sinks are denoted with lowercase letters s and t, the
upper sources and sinks with uppercase letters S and T . We are now going to look at the
different steps of the algorithm (as they are labeled in the given pseudocode). Whenever
we check whether a lower source (or sink) can be canceled with an upper one we do so as
in Lemma 3.24.

Initialization. In Line 5 we initialize a two-dimensional k−1× l-array possible, where k−1
is the number of lower sinks and l is the number of upper sinks. If an entry possible[i][j]
equals true, this means that lower sink ti can be canceled with upper sink Tj and that all
upper sources and lower sinks to the left of either of these can also be canceled. This step
needs O(|V |2) time, since both k and l are in O(|V |).

Base case. We find the possible upper sinks to cancel lower sink t1 with in lines 6-9 by
iterating over all upper sinks. For a candidate Tj we further need to check, if we can cancel
all upper sources left of Tj (these are S1, . . . , Sj−1) with lower source s1, since this is the
only lower source left of t1. We need O(|V |) time to do this, if we do not recheck each
upper source in each iteration in line 8 but only once when it first is left of the current
upper sink Tj .

Recursive case. We now deal with the remaining lower sinks in lines 10-15. For a lower
sink ti we find all possible upper sinks Tj that we can cancel ti with. To guarantee that
everything left of ti and Tj can be canceled as well, we recursively ask for the biggest index
j′ ≤ j, such that ti−1 can be canceled with Tj′ and everything left of it can be canceled.
What remains to check are all upper sources between Tj′ and Tj (these are Sj′ , . . . , Sj−1).
We need to test, that we can cancel them with si, which is the only lower source between ti

30

3.7. Cycles

Algorithm 3.5: Embed Cycle with Assignment of Lower and Upper Sources/Sinks
Input: Directed Cycle G = (V,E), upward planar embedding Γ, interval

assignment I in normal form, assignment of lower and upper sources/sinks.
Output: Γ′ interval planar embedding of G or NO EMBEDDING, if none exists.
// Initialization.

1 {s1, . . . , sk} ← lower sources (left to right)
2 {S1, . . . , Sl−1} ← upper sources (left to right)
3 {t1, . . . , tk−1} ← lower sinks (left to right)
4 {T1, . . . , Tl} ← upper sinks (left to right)
5 possible[1..k − 1][1..l]← false

// Base case: First lower sink.
6 for j = 1 to l do
7 if t1 can be canceled with upper sink Tj then
8 if upper sources S1, . . . , Sj−1 can be canceled with lower source s1 then
9 possible[1][j]← true

// Recursive case: Remaining lower sinks.
10 for i = 2 to k − 1 do
11 for j = 1 to l do
12 if lower sink ti can be canceled with upper sink Tj then
13 foreach j′ ≤ j with possible[i− 1][j′] = true do
14 if sources between Tj′ and Tj can be canceled with source si then
15 possible[i][j]← true

// Check existence.
16 if ∀j ∈ {1, . . . , l} : possible[k − 1][j] = false then
17 return NO EMBEDDING

18 j′ ← arg max
j∈{1,...,l}

possible[k − 1][j] = true

19 if some source S ∈ {Sj′ , . . . , Sl−1} cannot be canceled with lower source sk then
20 return NO EMBEDDING

// Ebedding exists: Now cancel sources and sinks.
21 E ← E ∪ {(sk, Sj′), . . . , (sk, Sl−1)}
22 pos← l
23 for i← k − 1 to 2 do
24 j′ ← arg max

j∈{1,...,pos}
possible[i][j] = true

25 j′′ ← arg max
j∈{1,...,j′}

possible[i− 1][j] = true

26 E ← E ∪ {(ti, Tj′)}
27 E ← E ∪ {(si, Sj′′), . . . , (si, Sj′−1)}
28 pos← j′′

29 E ← E ∪ {(t1, Tpos)}
30 E ← E ∪ {(s1, S1), . . . , (s1, Spos−1)}

// Add supersource s and supersink t. Then embed st-planar graph.
31 V ← V ∪ {s, t}
32 E ← E ∪ {(s, s1), . . . , (s, sk), (T1, t), . . . , (Tl, t)}
33 I(s), I(t)← [−∞,∞]
34 Γ′ ← interval planar embedding of G (Section 3.2)
35 return Γ′ \ {added dummy edges and vertices s, t}

31

3. Existence Of Interval Planar Drawings

and ti−1. This step of the algorithm takes O(|V |3) time. The outer loop iterates over
O(|V |) lower sinks. Each can be processed in O(|V |2) as in the base case.

Existence check. In lines 16-20 we check whether an interval planar embedding of the cycle
exists. First we check whether the rightmost lower sink tk−1 can be canceled with some
upper sink. If so, let Tj′ be the rightmost of it. If not, there is of course no interval planar
embedding. But even if that is possible (and therefore everything left of it is as well), we
still need to check all upper sources right of Tj′ (these are Sj′ , . . . , Sl−1). They all need
to be canceled with lower source sk (the only one right of tk−1). This step can be done
in O(|V |), since we just need to iterate over one dimension of the possible-array and
afterwards once over the upper sources.

Source and sink canceling. The information from the possible array is used in lines 21-30
to find a valid assignment of lower sources and sinks to the upper sources and sinks. We
know from the previous step, that Sj′ , . . . , Sl−1 can be canceled with sk. In line 21 these
dummy edges are added. We then cancel all upper sources and sinks from right to left.
Variable pos always marks the rightmost upper sink, that we can still cancel lower sinks to,
initially this is Tl. In each step we connect the current rightmost lower sink ti to the upper
sink that is as far right as possible but left of or equal to Tpos, we call this one Tj′ . The
corresponding dummy edge is added in line 26. We also query where ti−1 will be connected
to, and call this upper sink Tj′′ . All upper sources between Tj′′ and Tj′ are canceled with
the unique lower source si between ti−1 and ti in line 27. After the loop we still need to
take care of the leftmost lower sink t1 and all upper sources left of the upper sink that t1 is
canceled with. The construction is done in O(|V |2) by a traversal of the possible-array
in the reverse order it was computed.

Embedding. Lines 31-35 now take the graph without any upper sources and lower sinks
and extend it by a supersource s, a supersink t and dummy edges from s to all lower
sources and from all upper sinks to t. Then the known algorithm to embed st-planar
graphs from Section 3.2 can be used to find an interval planar embedding. Removing the
supersource and the supersink as well as all added dummy edges then gives an interval
planar embedding of the cycle. The embedding can be done in O(|V |). Only O(|V |) edges
are added (and afterwards removed) and the known technique to embed st-planar graphs
also takes O(|V |) time.

In total the runtime of Algorithm 3.5 is in O(|V |3), dominated by the recursive step to fill
the possible-array. This array itself dominates the space requirement, which is in O(|V |2).

3.7.3. General Cycle Embedding

We are now going to combine the cycle operations from Section 3.7.1 and the embedding
algorithm from Section 3.7.2 to an algorithm that can find an interval planar embedding
for any given cycle or detect that no such embedding exists.

Lemma 3.28 Let G = (V,E) be a cycle. G is upward planar, if and only if G contains
at least one source and at least one sink. Further an upward planar embedding of G with
exactly one lower source exists. All other sources and sinks are upper sinks.

Proof Assume that G contains no sources or sinks. Then each vertex v ∈ V has exactly
one incoming and one outgoing edge, so we can walk around G following the direction of
the edges. But then by transitivity every vertex v ∈ V needs to be strictly below any other
vertex u ∈ V and even below itself in any upward planar embedding, which is impossible.

Now assume G has at least one source. We will construct an upward planar embedding Γ,
assuming that G contains only sources and sinks as vertices. Any other vertices with
exactly one incoming and one outgoing edge can then be added to the upward planar

32

3.7. Cycles

Algorithm 3.6: Embed Cycle
Input: Directed Cycle G = (V,E), interval assignment I in normal form.
Output: Γ′ interval planar embedding of G or NO EMBEDDING, if none exists.
// Guarantee that the cycle is upward planar. (Lemma 3.28)

1 if G does not contain sources or sinks then
2 return NO EMBEDDING

// Initialization.
3 S ← number of sources of G
4 Γ← upward planar embedding of G with exactly one lower source (Lemma 3.28)

// We have between 1 and S lower sources.
5 for i = 1 to S do

// Enumerate assignments with exactly i lower sources.
6 for j = 1 to S do
7 Γ′ ← interval planar embedding from Algorithm 3.5
8 if Γ′ 6= NO EMBEDDING then
9 return Γ′

// Shift to get to the next assignment with i lower sources.
10 Γ← S(Γ)

// Inverse right flip to get i+ 1 lower sources.
11 Γ← R−1(Γ) (Ignore if all sources are lower sources and this is not defined.)

12 return NO EMBEDDING

embedding later. All vertices on a directed path P from a source s to a sink t can be placed
arbitrarily on the edge between s and t in the constructed upward planar embedding as
long as they appear in the same order as in P .

Let s ∈ V be an arbitrary source of G. It will be the only lower source in Γ. Initially
place s at position (0, 0) and all other vertices in the order they appear on the cycle from
left to right on consecutive x-coordinates and at y-coordinate 2. Every source s′ ∈ V \ {s}
is now pulled down to y-coordinate 1. For the given coordinates, edges can easily be added
to obtain an upward planar drawing. �

Pseudocode to embed a cycle is given in Algorithm 3.6. The idea is to systematically
enumerate all possible assignments of which sources and sinks are lower ones and which are
upper ones. It starts with an upward planar embedding Γ that has a single lower source,
which exists by Lemma 3.28. Then S shift operations are applied, where S is the number of
sources of G. This way, each possible assignment of which sources and sinks are lower ones
and which are upper ones with exactly one lower source is generated once. Each of them is
tested for an interval planar embedding with Algorithm 3.5 in Line 7. If no interval planar
embedding is found, an inverse right flip is applied to Γ in Line 11. This transforms Γ into
an upward planar embedding with exactly two lower sources and one lower sink. Again, S
shifts are applied to test all assignments with two lower sources and each is tested for an
interval planar embedding. This process continues until all S sources are lower sources. In
total every possible assignment of which sources and sinks are lower ones and which are
upper ones is tested once.

Theorem 3.29 Let G = (V,E) be a cycle and I be an interval assignment in normal form.
We can find a convex interval planar embedding of G under I in O(|V |5) time or detect
that none exists.

33

3. Existence Of Interval Planar Drawings

Proof Flips, inverse flips and shifts can all be applied to an upward planar embedding Γ
in constant time. Algorithm 3.6 iterates over the number of sources S which is in O(|V |). In
each iteration it applies S shifts, so the total number of calls of Algorithm 3.5 is in O(|V |2).
Each of these calls takes time in O(|V |3), so in total we get a time in O(|V |5). Since every
possible assignment of which sources and sinks are lower ones and which are upper ones is
tried once, we definitely find a convex embedding if one exists. �

3.7.4. Generalizations of Cycle Embedding

In this section we collect some ideas how the developed algorithm to embed a cycle can be
extended to graphs that are a little bit more complex.

• Consider cycles that already have some chords connecting sources with other sources
or sinks with other sinks. If the resulting graph is still planar, these chords then
partition the single inner face of the cycle into several ones, each of them might
contain several sources and sinks. We can only handle cases where chords start at
lower sources (or sinks) and end at upper ones. Therefore the chords already fix some
sources (and sinks) to be lower ones and some to be upper ones. All sources and sinks
between two lower sources (or sinks) are then also lower ones. Similarly, all sources
and sinks between two upper sources (or sinks) are upper ones as well. This fixes
most of the sources and sinks to be lower or upper ones. Only the sources and sinks
left of the endpoints of the leftmost chord or right of the endpoints of the rightmost
chord could still be chosen to be lower or upper ones. Again, executing left or right
(inverse) flips can enumerate all possible assignments. By using Algorithm 3.6 on
each face independently, we can then find an embedding for the cycle with chords, if
it exists.

• Consider cycles where some vertices are the single sources (or single sinks) of attached
single source (or single sink) graphs. An example for such a graph is shown in
Figure 3.13a. Single source and single sink graphs include single source/single sink
trees, paths and st-planar graphs. The important property of these attached graphs is
that their single source (or sink) is the only vertex that they share with the boundary
of the cycle. How these attached subgraphs are embedded is not part of this section.
For some types of graphs the known methods from earlier sections can be used.

To extend Algorithm 3.6 we can make the following observations. Without loss of
generality we assume that the attached subgraphs are single source graphs with
several sinks.

1. Attached subgraphs that are outside of the cycle can be canceled with the added
supersource or supersink. They do not need to be considered when embedding
the cycle. If it is possible to flip and shift the cycle such that it allows an interval
planar embedding and all attached subgraphs are outside of the cycle, then
Algorithm 3.5 can be used.

2. If an inner subgraph contains multiple sinks, we can cancel them all to the same
upper sink of the cycle: If the sink that will be embedded at the highest level
among all sinks can be canceled at a particular upper sink of the cycle, all other
and therefore not higher sinks can be canceled at the same upper sink as well.

3. If there are multiple inner single source subgraphs with the same source vertex
on the cycle, we can cancel all sinks of these subgraphs at the same upper sink
of the cycle. The argument is similar as in observation 2: If the subgraph with
the highest sink can be canceled at some upper sink of the cycle, the sinks of
the others are not higher and can therefore be canceled at the same upper sink.

34

3.8. Summary: Comparing Upward Planarity and Interval Planarity

(a)

P

s

(b)

P

v

(c)

Figure 3.13.: (a) An example for a cycle with some inner graphs inside it. They are all
single source or single sink graphs, so they can be embedded by the known
methods. (b) The inner graph P is connected to the cycle at a lower source.
In this case this gives two options how upper sources can be canceled at this
source. (c) The inner graph P is connected to a vertex v that is neither a
sink nor a source of the cycle. Upper sources can now be also canceled at v,
even though it is not a lower source.

Observations 2 and 3 allow us, to treat all sinks of all subgraphs starting at the same
vertex v on the cycle as a single sink of the graph when using Algorithm 3.6 to embed
the cycle. But besides adding more sources and sinks, the attached subgraphs create
additional options to cancel other sources and sinks to:

1. Figure 3.13b shows an inner subgraph P that is connected to the cycle at a
lower source s of the cycle. For upper sources it now makes a difference whether
they are canceled with s left of P or right of P . So in the list of lower sources
we now need to duplicate s to sleft and sright and always check both options to
cancel upper sources. The same needs to be done for upper sinks t of the cycle
that are the single sink of an inner subgraph.

2. Figure 3.13c shows an inner subgraph P that is connected to a vertex v on the
cycle that is neither a source nor a sink of it. Therefore v would not have been
a candidate to cancel upper sources with. However, since P starts at vertex v,
it might be necessary to cancel an upper source with v "between" P and the
boundary of the cycle.

3.8. Summary: Comparing Upward Planarity and Interval
Planarity

Table 3.1 lists the different scenarios that we considered in this chapter. We first saw that
both Upward Planarity and Interval Planarity are NP-complete on general graphs.
We then looked at several restricted graph classes that allow for an efficient upward planarity
test. In most cases Interval Planarity remains NP-complete. A notably exception are

35

3. Existence Of Interval Planar Drawings

Upward Planarity Interval Planarity
(Any Embedding)

Interval Planarity
(Fixed Embedding)

General Graphs NP-complete[8] NP-complete
Theorem 3.11

NP-complete
Theorem 3.13

st-planar Graphs O(|V |)[9] O(|V |)
Theorems 3.5, 3.8

Single Source O(|V |)[1] NP-complete
Theorem 3.19

O(|V |)
Theorem 3.17

Trees
O(1)

All trees are
upward planar.

[4] NP-complete
Theorem 3.20

Outerplanar O(|V |2)[13] NP-complete
Corollary 3.21

Cycles O(|V |)
Lemma 3.28

O(|V |5)
Theorem 3.29

Table 3.1.: A comparison between Upward Planarity and Interval Planarity sum-
marizing the results of this chapter.

st-planar graphs for which we gave fast embedding algorithms, even if the combinatorial
embedding is not fixed. Also surprising are cycles: We can gave an embedding algorithm,
but even if it runs in polynomial time, it is quite slow (and relies on Conjecture 3.22).
Level Planarity can be tested in O(|V |) for any graph G = (V,E), so it is not listed
explicitly in the given table.

36

4. Interval Planar Embeddings with
Bounded Width

In the previous chapter we looked at the existence of interval planar embeddings and saw
how to construct them for some graph classes. Now we want to consider embeddings where
the maximum number of vertices on each level is bounded. We can then binary search for
the minimum number m, such that an interval planar embedding exists with where no
level contains more than m vertices.
Definition 4.1 The width of an interval planar embedding Γ is the maximum number of
vertices that share the same y-coordinate in Γ, i.e. are embedded in the same level.

This definition is motivated from scheduling problems, where a set of tasks needs to be
scheduled on a bounded number of available machines. If each task has an individual
release time and deadline, there is a precedence relation between the tasks and all tasks
have unit processing time, the only difference to Interval Planarity is the planarity
constraint. The idea is to use known scheduling methods for the level assignment and then
create planar drawings of the graph with respect to these levels. Given a valid schedule, it
is a classic Level Planarity problem to find a planar embedding. We know, that this
can be constructed, if it exists, in O(|V |)[11].
Note that our definition of width does not take edges into account. This is because of
the similarity to the scheduling problem. If we would be interested in nicely readable
drawings we should consider the number of edges crossing a certain level as well in our
width definition.
In this chapter we will see that the existence of a schedule with some width does not
imply the existence of an interval planar embedding with the same width. Further, we will
describe some graph classes in which every schedule can be used to construct an interval
planar embedding with the same width. This will be useful to show the NP-completeness of
finding an interval planar embedding with bounded width even for instance that otherwise
allow an efficient interval planar embedding, for example st-planar graphs.

4.1. Finding Schedules
Definition 4.2 Multiprocessor Scheduling
Instance Given n unit length tasks t1, . . . , tn, individual release times r1, . . . , rn and

deadlines d1, . . . , dn and a precedence relation between the tasks. Further, integer m
is the number of available machines.

37

4. Interval Planar Embeddings with Bounded Width

Question Is there a non-preemptive m-processor schedule obeying the precedence relation
and executing all tasks in their allowed interval?

Theorem 4.3 Multiprocessor Scheduling is NP-complete.

Proof Multiprocessor Scheduling is in NP, since a given schedule can easily be
checked to obey all precedences, release times and deadlines.

Ullman [14] proved NP-completeness of the simpler version without release times and only
one overall deadline D for all tasks with a reduction from 3SAT. An easier reduction
from Clique was given by Lenstra [12] even for the case D = 3. We can transform such
an instance into a Multiprocessor Scheduling instance by just defining ri := 0 and
di := D for all i ∈ {1, . . . , n}. Obviously there is a bijection between the valid schedules of
both instances, so that Multiprocessor Scheduling is indeed NP-complete. �

There is however a few special cases in which a schedule can be found in polynomial time.
If all release times ri are 0 and the precedence relation forms an in-tree, a schedule can
be found efficiently (in an in-tree precedence relation, no task has more than one direct
successor)[7]. If there are exactly two processors, Garey and Johnson [6] describe an O(|V |3)
algorithm to find a schedule.

4.2. Planar Embedding of Schedules
Constructing a planar embedding of a given schedule is a Level Planarity instance
and can be done in linear time, if such an embedding exists. However, the existence of a
schedule with some width, does not guarantee the existence of a level planar embedding of
this schedule, as can be seen in Figure 4.1.

4.2.1. Planar Embedding of Paths and Forests
Assume we are given a schedule for a set P of paths on m machines. Our goal is to embed
this schedule with planar and y-monotone edges. We imagine a grid of machine slots
of width m and height d, where d is the time that the last job is scheduled at. In this
grid, each line corresponds to one time unit, time running from bottom to top, and each
column corresponds to one machine. We now try to assign the jobs to machine slots so
that the resulting embedding is planar with y-monotone edges and each job is in the line
that corresponds to its execution time.

[2; 2] [2; 2]

[1; 1] [1; 1]

(a)

[4; 4]

[5; 5][5; 5]

[6; 6]

[7; 7][7; 7]

[1; 5]

[1; 5]

[1; 5]

(b)

Figure 4.1.: (a) This instance can easily be scheduled, but there is no upward planar
drawing of it. (b) A schedule of width 2 exists, but any planar drawing needs
width 5. This example can be made arbitrarily worse by putting more vertices
before the one with interval [6, 6].

38

4.2. Planar Embedding of Schedules

1

2

3

4

5

1 1

2

3

5 5

4

3

2

(a) (b)

Figure 4.2.: (a) A schedule for four paths on three processors. (b) A planar embedding of
the four paths as constructed in the proof for Theorem 4.4. The paths were
embedded in left to right order. Each dot represents a processor slot at some
time unit. The filled slots are occupied by tasks, the empty ones are free.

Theorem 4.4 For a given set of paths P = {P1, . . . , Pk} scheduled on m machines it is
always possible to embed them planar with y-monotone edges.

Proof We can process the paths one by one in any order. Since we already have a schedule,
we know on which line each vertex needs to be placed. We greedily choose the leftmost free
slot on this line. This gives us an invariant that at every step every line has its first few
(possibly zero) slots filled and all others right of that still free. We can therefore divide the
grid at every step into a filled left subset and a free right subset. After placing the vertices
of a path we can then draw the edges between them as y-monotone curves. On every level
we draw them between the rightmost filled and the leftmost free slot. This construction is
shown in Figure 4.2. �

We can extend this step by step construction to some special trees.

Definition 4.5 An in-tree is a tree in which no vertex has more than one direct successor.
An out-tree is a tree in which no vertex has more than one direct predecessor.

Theorem 4.6 Given a set of in-trees and out-trees F scheduled on m machines it is always
possible to embed them planar with y-monotone edges.

Proof To embed an out-tree, we start by getting an arbitrary upward planar embedding
of it. We process the vertices in a left-first depth first search (DFS) order starting from
the root. Place each vertex at the level it was scheduled at and all but the root are then
connected to their DFS parent. When placing the vertices and drawing the edges we
maintain the same invariant as in Theorem 4.4, meaning that we fill the slots on each level
from left to right and always draw the edges between the rightmost filled and leftmost free
slot on each level.

We process in-trees analogously, finding the leftmost paths from leaves to roots with a right
first DFS in the reverse graph. An example of this embedding is given in Figure 4.3. �

We can further extend this results to trees that can be separated into an in-subtree and an
out-subtree that share exactly one vertex (the root of both subtrees). Start by embedding
the in-tree as in Theorem 4.6. In a second step the out-tree can be embedded, reusing the
common root.

39

4. Interval Planar Embeddings with Bounded Width

2

1

33

4 4

2

4

5

1 1

2

3

5

(a) (b)

Figure 4.3.: (a) A schedule for two trees on three processors. (b) A planar embedding of
the two trees as constructed in the proof for Theorem 4.6. The left tree was
embedded first. Each dot represents a processor slot at some time unit. The
filled slots are occupied by tasks, the empty ones are free.

4.3. NP-Completeness of Interval Planarity with a Bounded
Width

We saw that computing a schedule for tasks with release times, deadlines and a precedence
relation is NP-complete for a fixed number of available machines. We will use this to show
that the same is true for interval planarity with a bounded width.

Definition 4.7 Bounded Width Interval Planarity

Instance Given a graph G = (V,E), an interval assignment I and an integer m.

Question Is there an interval planar embedding of G under I with width not exceeding m?

Theorem 4.8 Bounded Width Interval Planarity is NP-complete.

Proof Bounded Width Interval Planarity is in NP. Given an embedding, we can
check planarity in linear time. In constant time per vertex we can check, that each vertex
was embedded at an integer y-coordinate inside its interval. By counting the number of
vertices per level we can verify that no level contains more than m vertices.

To show that Bounded Width Interval Planarity is NP-complete, we need to show,
that the restriction to upward planar graphs does not make Multiprocessor Scheduling
easier. Garey and Johnson [7] showed that Multiprocessor Scheduling remains NP-
complete, even if the precedence relation forms an out-tree. But every tree is upward
planar and in Theorem 4.6 we saw, that we can always construct a planar embedding for
schedules of out-trees without having to increase the width. So we get that Bounded
Width Interval Planarity is NP-complete for out-trees and therefore also for general
upward planar graphs. �

40

5. Conclusion

In this thesis we introduced Interval Planarity, a generalization of Upward Planarity
and Level Planarity. The goal was to close the theoretical gap between these two well
understood problems. Since any interval planar embedding is also upward planar, it was
no surprise that Interval Planarity is NP-complete in its general case, because testing
an embedding for upward planarity is also NP-complete.

We started by giving an explicit and efficient construction for interval planar embeddings
of st-planar graphs in O(|V |). Based on this result we presented a combinatorial characte-
rization of interval planar graphs: Every interval planar graph G = (V,E) is a subgraph of
an st-planar graph on the same vertex set and a supersource and a supersink, where the
interval of each v ∈ V is a subset of the interval assigned to v in G. This led to a general
strategy to find interval planar embeddings: We need to cancel all sources and sinks except
for the supersource and supersink while maintaining non-empty intervals in normal form.
We successfully applied this strategy to single source graphs under a fixed combinatorial
embedding, using the fact that all their sinks need to be canceled with a unique other
vertex. An interval planar embedding can therefore be found in O(|V |). Another positive
example are cycles, for which we described an O(|V |5) embedding algorithm by enumerating
possible upward planar embeddings. For each of them we then used dynamic programming
to assign sources and sinks to others to augment the cycle to an st-planar graph.

Even though Upward Planarity can be efficiently tested for general single source graphs,
trees and outerplanar graphs, we showed that Interval Planarity remains NP-complete
in these cases. We further showed that fixing a combinatorial embedding (and even an
outer face) is in general not enough to efficiently find an embedding. Interval Planarity
remains NP-complete in this case.

In the last chapter we defined the width of an interval planar embedding to be the
maximum number of vertices that share a level, i.e. are embedded with the same y-
coordinate. Motivated by the problem to find a schedule for tasks with unit processing
times, release times and deadlines on a minimum number of machines we tried to find
interval planar embeddings of minimal width. We denoted this problem by Bounded
Width Interval Planarity. We saw that Bounded Width Interval Planarity is
NP-complete even for very simple graph classes like out-trees (trees with a single source).
Bounded Width Interval Planarity is therefore NP-complete for even more graph
classes than general Interval Planarity.

41

5. Conclusion

For further research, the following questions remain unanswered: First, is there an efficient
algorithm to find an interval planar embedding for trees or outerplanar graphs both with
a fixed combinatorial embedding (and maybe outer face)? We saw that both are NP-
complete for general embeddings. The second regards Conjecture 3.22, that our O(|V |5)
cycle embedding algorithm relies on. We believe that every cycle that has an interval
planar embedding also has a convex one. In this case convex means that any vertical line
intersects the interior of the cycle at most once. We left this conjecture without a proof,
however some thoughts an a proof outline are given in Appendix A. The idea is that a non
convex embedding can iteratively be converted into a convex embedding while maintaining
interval planarity in each executed step.

The goal of this thesis was to close the gap between Upward Planarity and Level
Planarity by looking at a more general problem, that can describe instances "between"
the two. Upward Planarity is NP-complete, Level Planarity can always be solved
in linear time. What we found is that Interval Planarity is in many cases harder
than Upward Planarity. Both are NP-complete for general graphs, but even for many
restricted graph classes Interval Planarity is efficiently solvable.

42

Bibliography

[1] Paola Bertolazzi et al. “Optimal Upward Planarity Testing of Single-Source Di-
graphs”. In: SIAM Journal on Computing 27.1 (1998), pp. 132–169. doi: 10.1137/
S0097539794279626. eprint: https://doi.org/10.1137/S0097539794279626. url:
https://doi.org/10.1137/S0097539794279626.

[2] P. Bertolazzi et al. “Upward drawings of triconnected digraphs”. In: Algorithmica
12.6 (Dec. 1994), pp. 476–497. issn: 1432-0541. doi: 10.1007/BF01188716. url:
https://doi.org/10.1007/BF01188716.

[3] Mark De Berg and Amirali Khosravi. “Optimal Binary Space Partitions For Segments
In The Plane”. In: International Journal of Computational Geometry & Applications
22.03 (2012), pp. 187–205. doi: 10.1142/S0218195912500045. eprint: http://
www.worldscientific.com/doi/pdf/10.1142/S0218195912500045. url: http:
//www.worldscientific.com/doi/abs/10.1142/S0218195912500045.

[4] Giuseppe Di Battista, ed. Graph drawing : algorithms for the visualization of graphs.
An Alan R. Apt Book. Upper Saddle River, NJ: Prentice Hall, 1999. isbn: 0-13-
301615-3.

[5] Giuseppe Di Battista and Fabrizio Frati. “Drawing trees, outerplanar graphs, series-
parallel graphs, and planar graphs in a small area”. In: Thirty Essays on Geometric
Graph Theory. Springer, 2013, pp. 121–165.

[6] M. R. Garey and D. S. Johnson. “Two-Processor Scheduling with Start-Times
and Deadlines”. In: SIAM Journal on Computing 6.3 (1977), pp. 416–426. doi:
10.1137/0206029. eprint: https://doi.org/10.1137/0206029. url: https:
//doi.org/10.1137/0206029.

[7] Michael R. Garey and David S. Johnson. Computers and intractability : a guide to
the theory of NP-completeness. New York: Freeman, 1979.

[8] Ashim Garg and Roberto Tamassia. “On the computational complexity of upward
and rectilinear planarity testing”. In: Graph Drawing: DIMACS International Work-
shop, GD ’94 Princeton, New Jersey, USA, October 10–12, 1994 Proceedings. Ed. by
Roberto Tamassia and Ioannis G. Tollis. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1995, pp. 286–297. isbn: 978-3-540-49155-2. doi: 10.1007/3-540-58950-3_384.
url: http://dx.doi.org/10.1007/3-540-58950-3_384.

[9] Ashim Garg and Roberto Tamassia. “Upward planarity testing”. In: Order 12.2
(June 1995), pp. 109–133. issn: 1572-9273. doi: 10.1007/BF01108622. url: https:
//doi.org/10.1007/BF01108622.

[10] Michael D. Hutton and Anna Lubiw. “Upward Planar Drawing of Single-Source
Acyclic Digraphs”. MA thesis. University of Waterloo, 1990.

43

https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1007/BF01188716
https://doi.org/10.1007/BF01188716
https://doi.org/10.1142/S0218195912500045
http://www.worldscientific.com/doi/pdf/10.1142/S0218195912500045
http://www.worldscientific.com/doi/pdf/10.1142/S0218195912500045
http://www.worldscientific.com/doi/abs/10.1142/S0218195912500045
http://www.worldscientific.com/doi/abs/10.1142/S0218195912500045
https://doi.org/10.1137/0206029
https://doi.org/10.1137/0206029
https://doi.org/10.1137/0206029
https://doi.org/10.1137/0206029
https://doi.org/10.1007/3-540-58950-3_384
http://dx.doi.org/10.1007/3-540-58950-3_384
https://doi.org/10.1007/BF01108622
https://doi.org/10.1007/BF01108622
https://doi.org/10.1007/BF01108622

Bibliography

[11] Michael Jünger and Sebastian Leipert. “Level Planar Embedding in Linear Time”. In:
Graph Drawing: 7th International Symposium, GD’99 Štiřín Castle, Czech Republic
September 15–19, 1999 Proceedings. Ed. by Jan Kratochvíyl. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 72–81. isbn: 978-3-540-46648-2. doi: 10.1007/3-
540-46648-7_7. url: http://dx.doi.org/10.1007/3-540-46648-7_7.

[12] J. K. Lenstra and A. H. G. Rinnooy Kan. “Complexity of Scheduling under Precedence
Constraints”. In: Operations Research 26.1 (1978), pp. 22–35. doi: 10.1287/opre.
26.1.22. eprint: http://dx.doi.org/10.1287/opre.26.1.22. url: http:
//dx.doi.org/10.1287/opre.26.1.22.

[13] Achilleas Papakostas. “Upward planarity testing of outerplanar dags (extended
abstract)”. In: Graph Drawing: DIMACS International Workshop, GD ’94 Princeton,
New Jersey, USA, October 10–12, 1994 Proceedings. Ed. by Roberto Tamassia and
Ioannis G. Tollis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 298–
306. isbn: 978-3-540-49155-2. doi: 10.1007/3-540-58950-3_385. url: https:
//doi.org/10.1007/3-540-58950-3_385.

[14] J.D. Ullman. “NP-complete scheduling problems”. In: Journal of Computer and
System Sciences 10.3 (1975), pp. 384–393. issn: 0022-0000. doi: http://dx.doi.
org/10.1016/S0022-0000(75)80008-0. url: http://www.sciencedirect.com/
science/article/pii/S0022000075800080.

44

https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/3-540-46648-7_7
http://dx.doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1287/opre.26.1.22
https://doi.org/10.1287/opre.26.1.22
http://dx.doi.org/10.1287/opre.26.1.22
http://dx.doi.org/10.1287/opre.26.1.22
http://dx.doi.org/10.1287/opre.26.1.22
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://www.sciencedirect.com/science/article/pii/S0022000075800080
http://www.sciencedirect.com/science/article/pii/S0022000075800080

Appendix

A. Existence of Convex Cycle Embeddings
We will use this section to provide an idea how a proof of Conjecture 3.22 could look like.
This will be mostly illustrated with pictures and will not be a formal proof. Figure A.1
shows three cycles with different non-convex embeddings. Being non-convex means that
there is a vertical line intersecting the interior of the embedded graph at least twice, so
there is always at least two branches of the cycle lying on top of each other. The figure
shows the three possible ways how two branches can relate to each other: In Figure A.1a
the branches do not overlap, both of them could be arbitrarily stretched to the right. In
Figure A.1b the upper branch overlaps the lower one, so that the lower one cannot be
arbitrarily stretched to the right. The reverse situation is shown in Figure A.1c.

Definition A.1 Let G = (V,E) be a cycle and Γ be an upward planar embedding of G.
A segment is a maximal path P = (v1, . . . , vk) of vertices, such that vi lies left of vi+1 for
all 1 ≤ i < k.

In case Γ is convex there are only two segments: One is formed by the lower sources and
sinks, the other by the upper sources and sinks. In our example cycles in Figure A.1 we
get four segments each, labeled A, B, C and D. We can transform these upward planar
embeddings into the embeddings shown in Figure A.2. In Figure A.1a the "inner" segments
B and C can just be flipped out, because the two branches of the embedding do not overlap
and if segment C could be embedded above B between A and D, then C can also be

A

B

C

D

(a)
A

B

C

D

(b)
A

B

C

D

(c)

Figure A.1.: The three different ways two branches of a cycle can overlap (all of them can
be mirrored horizontally). The four segments of each embedding are labeled
with A, B, C and D. (a) The lower and the upper branch do not overlap.
(b) The upper branch overlaps the lower one. (c) The lower branch overlaps
the upper one.

45

5. Appendix

A
B

C

D

(a)
A

B

C

D

(b)
A

B

C

D

(c)

Figure A.2.: The shapes that the overlapping embeddings from Figure A.1 can be trans-
formed into. The labeling of the segments is the same as in Figure A.1.
(a) The embedding we get from Figure A.1a. (b) The embedding we get
from Figure A.1b. (c) The embedding we get from Figure A.1c.

A
left
min A

right
min

Amax
B

left
min B

right
min

Bmax

C
left
min C

right
min

Cmax
D

left
min D

right
min

Dmax
D

C

B

A

Figure A.3.: A cycle with a non convex embedding where the upper branch overlaps the
lower one. Extremal vertices on each branch are labeled.

above B in the new embedding. To see why the transformations in Figure A.2b and A.2c
work, we will consider the first case in more detail now. The other then follows from
symmetry.

The embedding from Figure A.1b is shown again with added detail in Figure A.3. The
shape is the same but we labeled some special vertices: Amax is the vertex with the
highest y-coordinate in segment A in the given embedding, Aleft

min and Aright
min are the vertices

in segment A with the lowest y-coordinates in the embedding left and right of Amax

respectively. Without loss of generality we assume that these are all unique. For the
segments B, C and D the extremal vertices have been labeled similarly. The described
transformation can now be done by flipping between segments A and B as well as between
segments B and C while horizontally stretching segment D. This merges segments A, B
and C into a single segment ABC, so that the resulting embedding is indeed convex. The
result of this operation is shown in Figure A.4.

To prove that every cycle that has a non convex interval planar embedding also has a
convex one we would now need to prove two statements:

1. The embedding we get from such a transformation is indeed interval planar if the
original embedding was.

2. There is always four segments in any non convex embedding that allow one of the
transformations described in Figures A.1 and A.2. We will leave this without a proof
but will show a nontrivial example how this segments can be found.

46

A. Existence of Convex Cycle Embeddings

A
left
min A

right
min

Amax B
left
min B

right
min

Bmax C
left
min C

right
min

Cmax

D
left
min D

right
min

Dmax

A

B

C

D

Figure A.4.: The convex expansion of the cycle given in Figure A.3. The dashed dummy
edges show how the lower sinks and upper sources can be canceled.

If both statements are true, we can iteratively apply the described transformations, each
time reducing the number of segments by two. Thus we would get to an embedding with
just two segments, which is then convex.

Proof of Statement 1
Let G = (V,E) be a graph with an interval planar embedding Γ as in Figure A.3. We know
that Amax could be embedded below Bmax in Γ. Similarly Bmax could be embedded below
Cmax which could be embedded below Dmax in Γ. By transitivity we then know that Amax,
Bmax and Cmax can all be embedded below Dmax, which is indicated by dashed dummy
edges between them in Figure A.4. Since Amax, Bmax and Cmax were the highest vertices
on their segments, every other vertex right of Amax and left of Cmax can also be embedded
below Dmax.

What is left to show is that the vertices of segment D can still be embedded above the new
segment ABC. From Γ we know that Dleft

min could be above Aleft
min and it still can in the

new embedding. The same is true for Dright
min and Aright

min . Since these are the lowest vertices
on D on either side of Dmax, we can embed all other vertices on D above segment ABC as
well. �

We finish this section with an example. Given is the embedded cycle shown in Figure A.5a.
We will apply above transformations until we get a convex embedding. The ten segments
in this example are labeled A, . . . , J .

1. The first step is not really a transformation, it is just some stretching along the
x-coordinate to remove the deepest level of nesting branches. The result is shown in
Figure A.5b. The resulting embedding still has the same ten segments.

2. Now consider segments A, B, E and F . They form two branches and the lower one
overlaps the upper one on the left, so we are in the situation show in Figure A.1c
(mirrored horizontally). Applying the transformation brings us to the embedding
shown in Figure A.5c and merges segments B, E and F into a single segment BEF ,
so this embedding has only eight segments.

3. Segments J , G, D, C now form two non overlapping branches as in the situation
from Figure A.1a. We can therefore merge J and G into a single segment JG and

47

5. Appendix

merge C and D into a single segment CD. The resulting embedding is shown in
Figure A.5d and has only six segments.

4. For the next transformation segments JG, I, H and CD are in the situation of
two branches where the upper one overlaps the lower one as shown in Figure A.1c
(mirrored horizontally). We merge I, H and CD into a single segment IHCD and
get the embedding shown in Figure A.5e, which now only has four segments.

5. Only one more transformation needs to be done. Segments JG, IHCD, BEF and A
are as in Figure A.1c, forming two branches, where the lower one overlaps the upper
one. We merge JG, IHCD and BEF into a single segment JGDCHIBEF and get
the embedding in Figure A.5f. It now has only two segments and is indeed convex.

All of above transformations preserved interval planarity as we showed earlier. Therefore
the embedding in Figure A.5f is interval planar if the one in Figure A.5a was.

48

A. Existence of Convex Cycle Embeddings

A
B

C
D

E
F

G
H

I
J

(a)
A

B

C
D

E
F

G
H

I
J

(b)

A
B

C
D

E

F

G
H

I
J

(c)

A
B

C

D E

F
G

H

I
J

(d)

A
B

C

D E

F
G

H

I
J

(e)

A
B

C

D E

FG
H

I

J

(f)

Figure A.5.: (a) A cycle with a non convex embedding and nested branches. (b) Stretching
the lower branch reduces the nesting. (c) Joining segments B, E and F into
a single segment BEF . (d) Joining segments C and D into a segment CD
and joining segments J and G into a segment JG. (e) Joining segments I, H
and CD into a segment IHCD. (f) Joining segments JG, IHCD and BEF
into a single segment JGDCHIBEF . The resulting embedding has only two
segments, it is convex.

49

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Upward, Level and Interval Planarity
	2.2 Ear-Decomposition
	2.3 Bézier Curves

	3 Existence Of Interval Planar Drawings
	3.1 Interval Consistency and Normal Form
	3.2 st-planar Graphs
	3.2.1 Level Assignment
	3.2.2 Polyline Drawing
	3.2.3 Straight Line Drawing

	3.3 Characterization of Interval Planar Graphs
	3.4 General Graphs
	3.4.1 Fixed Combinatorial Embedding

	3.5 Single Source Graphs
	3.5.1 Fixed Combinatorial Embedding
	3.5.2 General Embeddings

	3.6 Trees and Outerplanar Graphs
	3.7 Cycles
	3.7.1 Cycle Operations
	3.7.2 Fixed Assignment of Lower and Upper Sources and Sinks
	3.7.3 General Cycle Embedding
	3.7.4 Generalizations of Cycle Embedding

	3.8 Summary: Comparing Upward Planarity and Interval Planarity

	4 Interval Planar Embeddings with Bounded Width
	4.1 Finding Schedules
	4.2 Planar Embedding of Schedules
	4.2.1 Planar Embedding of Paths and Forests

	4.3 NP-Completeness of Interval Planarity with a Bounded Width

	5 Conclusion
	Appendix
	A Existence of Convex Cycle Embeddings

