
Minimum-Cost Flow Algorithms for the
Wind Farm Cabling Problem

Bachelor Thesis of

Marc Jenne

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Sascha Gritzbach
Matthias Wolf

Time Period: 1st December 2019 – 30th April 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

Selbstständigkeitserklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, August 5, 2020

iii

Abstract

The Wind Farm Cabling Problem (WCP) describes the problem of finding a
suitable cabling between a set of turbines and substations in wind farms with the
goal of transmitting the whole electricity produced by the turbines to the substations.
While there exist numerous possibilities of feasible cablings, it is of interest to find
the one that minimizes the total costs of the required cables.
This problem can be modeled as a Minimum-Cost Flow Problem (MCF), a
well-known problem for which multiple algorithms already exist. These algorithms
are proven to find an optimal solution in polynomial time; however, they cannot
be used for the WCP without adaptions because of the primary difference between
both problems: while the cost function is linear in the MCF, it is a non-linear step
function in the WCP.

In this thesis, we take a closer look at some of those algorithms and examine whether
they can be adapted so that they are able to provide solutions for the WCP. We
describe the algorithms and their different approaches to solve the MCF and outline
the problems that arise once the cost function becomes non-linear. We successfully
develop an adaption of the Successive Shortest Path Algorithm and provide multiple
strategies to solve the WCP with this algorithm. In the following experimental
evaluation, we compare these strategies among each other and then compare the best
variant to other existing WCP algorithms in terms of running times and quality of
the found solutions.

Deutsche Zusammenfassung

Das Windfarm-Verkabelungsproblem (WCP) beschreibt das Problem, für
Windfarmen eine geeignete Verkabelung zwischen einer Menge von Turbinen und
Substationen zu finden. Das Ziel einer solchen Verkabelung ist der Transport der
gesamten von den Turbinen produzierten Elektrizität zu den Substationen. Während
zahlreiche solcher zulässigen Verkabelungen möglich sind, sind wir daran interessiert,
unter diesen die kostengünstigste zu finden.
Dieses Problem kann als Minimum-Cost Flow Problem (MCF) modelliert werden,
ein bekanntes Problem, für das bereits zahlreiche Algorithmen existieren. Für diese
Algorithmen ist bewiesen, dass sie in polynomieller Zeit optimale Lösungen finden.
Ohne weitere Anpassungen können diese jedoch nicht für das WCP verwendet
werden, da sich beide Probleme vor allem in einem Aspekt voneinander unterscheiden:
Während die Kostenfunktion im MCF linear ist, verwendet das WCP eine nichtlineare
stufenförmige Kostenfunktion.

In dieser Arbeit betrachten wir einige dieser Algorithmen genauer und untersuchen,
ob sie so angepasst werden können, dass sie Lösungen für das WCP finden können.
Wir beschreiben die Algorithmen und ihre verschiedenen Ansätze, das MCF zu
lösen, und analysieren die Probleme, die sich durch eine nichtlineare Kostenfunktion
ergeben. Wir entwickeln erfolgreich eine Anpassung des Successive Shortest Path
Algorithm und stellen verschiedene Strategien vor, das WCP mit diesem Algorithmus
zu lösen. In der folgenden experimentellen Auswertung vergleichen wir zunächst
diese Strategien untereinander, um dann die beste Variante mit anderen, bereits
existierenden WCP-Algorithmen im Hinblick auf Laufzeit und Lösungsqualität zu
vergleichen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

1.2.1 The Wind Farm Cabling Problem 2
1.2.2 The Minimum-Cost Flow Problem 2

1.3 Contributions . 3
1.4 Outline of the Thesis . 3

2 Preliminaries 5
2.1 Flow Networks . 5
2.2 Wind Farm Model . 6
2.3 Vertex Potentials and Reduced Costs . 8
2.4 Further Notations . 9

3 Examining the Algorithms 11
3.1 Successive Shortest Path Algorithm . 11

3.1.1 Describing the SSP . 11
3.1.2 Adapting the SSP . 12
3.1.3 Finding Short Paths . 14

3.1.3.1 Dijkstra . 14
3.1.3.2 A Modified Bellman-Ford 15

3.1.4 Running Time and Optimality . 17
3.1.4.1 Running Time . 17
3.1.4.2 Quality of the Solution . 17

3.1.5 SSP without Vertex Potentials . 18
3.1.6 Special Case - One Cable Type Only 19

3.2 Primal-Dual Algorithm . 21
3.2.1 Describing the Primal-Dual Algorithm 21
3.2.2 Adapting the Primal-Dual Algorithm 21
3.2.3 Special Case - One Cable Type Only 23

3.3 Out-Of-Kilter Algorithm . 25
3.3.1 Describing the Out-Of-Kilter Algorithm 25
3.3.2 Adapting the Out-Of-Kilter Algorithm 26
3.3.3 Special Case - One Cable Type Only 29

3.4 Relaxation Algorithm . 31
3.4.1 Describing the Relaxation Algorithm 31
3.4.2 Adapting the Relaxation Algorithm 34
3.4.3 Special Case - One Cable Type Only 36

4 Experimental Evaluation 39
4.1 Comparing Variants of the SSP . 39

4.1.1 Comparing DIJNOR to DIJPOT . 40

vii

Contents

4.1.2 Comparing BELNOR to BELPOT 41
4.1.3 Comparing DIJNOR to BELNOR 42

4.2 Comparing our Best SSP Variant to NCC 43
4.3 Comparing our Best SSP Variant to MILP 45

5 Conclusion 49
5.1 Further Work . 49

Bibliography 51

viii

1. Introduction

1.1 Motivation
In times of climate change and discussions on renewable energies, wind energy holds an
important place. In 2019, 15% of the electricity demand in the European Union was covered
by wind power. It is currently the second largest power source and has been estimated to
outpace natural gas, the current number one, in a few years [win].
A considerable part of wind energy is produced in offshore wind farms. They consist
of turbines, generating electrical energy, and substations, where the generated energy is
collected and subsequently transmitted to land. Generated energy is transported from
the turbines to the substations by a set of cables, although it is also possible to connect
turbines among each other. Usually, more than one cable type is available, differing in the
capacity and in the costs: a cable that can carry more units of electricity has higher costs.
The cabling between turbines and substations is called internal cabling and is only one part
in the process of planning a wind farm; there is also the problem of positioning the turbines
and substations, as well as the connections from the substations to the onshore stations.
Once the last two decisions have been made, the internal cabling is left; and of course one
is interested in finding the minimum-cost cabling. Given fixed positions, produced units of
electricity per turbine and capacities of the substations, we call that problem of finding the
minimum-cost internal cabling the Wind Farm Cabling Problem (WCP).
Since the WCP is NP-hard [Sta18], finding optimal solutions takes a lot of time on large
instances. This is arguably a problem in the dynamic process of planning a wind farm, for
example when considering many different positionings. In this process of planning, it is
impractical to wait hours to calculate the optimal cabling for just one possible positioning.
For this reason there is definitely an interest in finding feasible internal cablings in a
reasonable time, even if that means finding a trade-off between computation time and the
quality of the provided solution.

The WCP can be modeled as a flow network, where the energy produced by the turbines
represents the flow that has to be transported to the substations, respecting the capacity
constraints of the cables and the substations. The problem of finding the minimum-cost
flow is known as the Minimum-Cost Flow Problem (MCF) and has already been
examined in detail, offering various algorithms to solve the problem. Nevertheless, there is
one difference between the WCP and the MCF, namely the cost function. In the MCF,
each edge has a linear cost function, meaning each additional unit of flow along this edge
causes a constant cost, regardless of the previous amount of flow on that edge. In contrast,

1

1. Introduction

the costs in the WCP depend on the used cable type. While more units of flow may need
a cable type with a higher capacity, is does not matter if the capacity of a used cable is
saturated; once it is in use, the costs for it have already been paid and it is irrelevant
whether there is capacity left or not. Therefore, sending more flow along an edge causes
more costs only if a larger cable type has to be used, otherwise the additional flow on that
edge is free of costs. We refer to such a non-linear cost function as a step cost function.
Despite of that difference, treating the WCP as a modified MCF is valid. Thus a possible
approach to tackle the WCP is to modify existing algorithms for the MCF in a way to
solve (i.e. compute feasible solutions) the WCP.

1.2 Related Work
1.2.1 The Wind Farm Cabling Problem

One of the first approaches to deal with the WCP uses a decomposition of the problem into
three layers [BVMO16]. Two of these layers map to well-known graph problems, whereas
the third layer is solved by a greedy algorithm. After this work, several approaches of
solving the WCP have been developed, both optimal and non-optimal variants. For optimal
solutions, Mixed-Integer Linear Program (MILP) variations can be used [LR13]. The
downside of these is the running time: while computing solutions on small instances is
possible in a reasonable time, it can take many days on instances with up to 500 turbines.
In contrast, the WCP can be solved by metaheuristics, for example Simulated Annealing
[LRWW17]. While not being optimal, they provide a good trade-off between running time
and solution quality.
A quite different approach is to model the WCP as a flow problem and use known techniques
for solving it as a minimum-cost flow problem. One already examined way uses negative
cycle canceling [GUW+18] and is proven to compute non-optimal, but still good solutions
in short running times: while the MILP solver Gurobi took more than one day, the negative
cycle canceling approach terminated in under two minutes on several instances with up to
500 turbines.

1.2.2 The Minimum-Cost Flow Problem

In contrast to the quite new WCP, the MCF is much older and has been studied extensively.
The first pseudo-polynomial time algorithm for this problem was the Out-of-Kilter Algorithm
which was independently developed by Minty [Min60] and Fulkerson [Ful61] in 1960 and
1961, respectively. Another early approach was the Successive Shortest Path Algorithm,
developed independently by Busaker and Gowen [BG60], Iri [Iri60] and Jewell [Jew62]. In
1972, Edmonds and Karp [EK72] were the first to solve the MCF in weakly polynomial
time. They found that using vertex potentials ensures nonnegative edge lengths, resulting
in faster shortest path computations. The first algorithm that solved the MCF in strongly
polynomial time was developed in 1985 by Tardos [Tar85]. In 1997, a polynomial time
primal network simplex algorithm for the MCF that runs in O(V 2E log(V C)) (with C as
the maximum edge cost) was published by Orlin [Orl97].
Beside those mentioned algorithms, many others have been developed, most of them
working with similar approaches or based on existing ones. All of them, as well as the
algorithms mentioned above, provide optimal solutions for the MCF.

Since the asymptotic worst-case running time does not represent the actual performance
of an algorithm, experimental studies that compare MCF algorithms in practice are of
interest. One of the first computational studies was performed in 1974 by Glover et al.
[GKK74]. Important contributions to the practical evaluations were achieved 1993 in
the First DIMACS Implementation Challenge [JM93]. More recent implementations and
computational analyses were done by Kovács and Király [KK12][Kov15] in 2015.

2

1.3. Contributions

1.3 Contributions
In this thesis, we look at four existing MCF algorithms: the Successive Shortest Path
Algorithm, the Primal-Dual Algorithm, the Out-Of-Kilter Algorithm and the Relaxation
Algorithm. For each of them, we point out which approaches it uses to solve the minimum-
cost flow problem. Thereafter we examine if they can be adapted in a way to solve the
WCP. For the Successive Shortest Path Algorithm, the only successful adaptable algorithm,
we provide various strategies and evaluate them in terms of solution quality and running
time. The best strategy is then compared to two existing WCP algorithms, namely an
exact MILP solver and a negative cycle canceling approach. The other three algorithms are
analyzed with respect to the problems arising due to the step cost function of the WCP,
and we outline why they are not appropriate to be further adapted.
For each algorithm, we also examine a special case of the WCP where only one cable type
is available.

1.4 Outline of the Thesis
The first chapter gave an overview about the problem, the current state and what we are
approaching in this thesis. In Chapter 2, we build a theoretical foundation of the concepts
and notations that are used in the following chapters.
With this knowledge, we examine in the third chapter four existing algorithms for the
minimum-cost flow problem. For each of those algorithms there are two parts. The first part
presents the original algorithm and its basic concepts. In the second part, we emphasize
the problems that occur as a result of the WCP step cost function and provide ideas how
to deal with them.
In Chapter 4 we evaluate our adapted Successive Shortest Path Algorithm in terms of
running times and quality of the provided solutions. First, we compare the different
strategies of our algorithm, and afterwards, the best variant is compared to two other
existing WCP algorithms.
Chapter 5 then concludes the results and provides an outlook on further ideas.

3

2. Preliminaries

2.1 Flow Networks
As seen in the previous chapter, the minimum-cost flow problem algorithms examined in
the following all work on flow networks. Although we assume the reader to be familiar with
that topic, we briefly recap the definition of flows and flow networks and set our notations
and assumptions that are used in the following. The concepts are based on [AMO93, Ch.
9], the formal notations sometimes differ to match the later introduced wind farm model.

A flow network is a directed graph G = (V,E) with a cost function c : E → N and a
capacity function u : E → N. We shortly denote c((i, j)) as cij for an edge (i, j) ∈ E, and
in an analogous way we refer to u((i, j)) as uij . The total costs of an edge (i, j) are linear
in the amount of flow on this edge, with cij denoting the costs for one unit of flow on (i, j).
With each vertex i ∈ V , a number b(i) ∈ Z is associated to represent the supply (if b(i) > 0)
or demand (if b(i) < 0) of the vertex. A vertex with b(i) = 0 is called a transshipment
vertex.
A flow is a function x : E → N, and indicates how much flow is transmitted along an edge.
Just like above, we refer to the flow on an edge (i, j) ∈ E as xij . A flow is called feasible if
it satisfies two constraints. The first one is called mass balance constraints (Equation 2.1)
and states that for each vertex, the total outgoing flow minus the ingoing flow has to
equal its supply or demand, respectively. The second one is called flow bound constraints
(Equation 2.2) (also referred to as nonnegativity and capacity constraints) and states that
the amount of flow on each edge has to be nonnegative and may not exceed the edge’s
capacity. ∑

j∈V :(i,j)∈E
xij −

∑
j∈V :(j,i)∈E

xji = b(i), ∀i ∈ V. (2.1)

0 ≤ xij ≤ uij , ∀(i, j) ∈ E. (2.2)

We are now able to describe the minimum-cost flow problem (Equation 2.3): among
all feasible flows, find the one that minimizes the total flow costs, referred to as z(x):

Minimize z(x) =
∑

(i,j)∈E
cij · xij , subject to the constraints 2.1 and 2.2. (2.3)

Some of the algorithms we examine later use the concept of pseudoflows. A pseudoflow x
is a flow that satisfies the nonnegativity and capacity constraints (Equation 2.2), but may

5

2. Preliminaries

violate the mass balance constraints (Equation 2.1). For that concept, we introduce the so
called imbalance for each vertex of the graph, that is, how much ingoing or outgoing flow is
required to satisfy the mass balance constraint for that vertex. Formally, we define the
imbalance of a vertex i as

e(i) = b(i) +
∑

j∈V :(j,i)∈E
xji −

∑
j∈V :(i,j)∈E

xij , ∀i ∈ V. (2.4)

We call i an excess vertex if e(i) > 0, and we call i a demand vertex if e(i) < 0. A vertex i
with e(i) = 0 is called balanced.

Now we take a look at the following assumptions from [AMO93, As. 9.1-9.5], for which we
state that they all do not restrict the generality since they can be fulfilled by transformations.

Assumption 1. All data (cost, supply/demand, and capacity) are integral.

Assumption 2. The network is directed.

Assumption 3. The supplies/demands at the vertices satisfy the condition
∑
i∈V b(i) = 0

and the minimum cost flow problem has a feasible solution.

Assumption 4. We assume that the Network G contains an uncapacitated direct path [...]
between every pair of vertices.

Assumption 5. All [edge] costs are nonnegative.

Finally, as the further presented algorithms rely on that, we recap the concept of residual
networks. For a given flow x, the residual network G(x) is defined in the following way:
each edge (i, j) ∈ E is replaced by two edges, (i, j) and (j, i). The cost of (i, j) remains
cij , since sending one unit of flow along (i, j) means to increase the flow on it. In contrast,
sending one unit of flow along (j, i) amounts to canceling one unit of the existing flow on
(i, j). This decreases the flow cost by cij , and therefore the cost of edge (j, i) is defined
as cji = −cij . Furthermore, both edges have a residual capacity, referred to as rij or rji,
respectively. The residual capacity is the remaining capacity of an edge, i.e. the remaining
amount of flow that can be transmitted without exceeding the edge’s capacity. Thus,
rij = uij − xij and rji = xij . The residual network contains only edges with positive
residual capacities, i.e. in case an edge becomes saturated, it drops out of G(x).

2.2 Wind Farm Model
In this chapter, we describe the modeling of a wind farm that is used in the following, as
well as the formal description of the Wind Farm Cabling Problem as it is described in
[GUW+18]. Furthermore, we point out some differences between the wind farm model and
the previously described “classic” flow networks.
The vertices of a wind farm are divided into two subsets: VT , representing the turbines,
and VS , representing the substations. Of course, VT ∩ VS = ∅, and we define V = VT ∪ VS
as the overall vertices of the wind farm. In a real wind farm, there is no direction of a
cable between two turbines or between a turbine and a substation. For modeling reasons,
as we have to obtain a directed graph, the direction of each connection is chosen arbitrary.
With these definitions, we have the Graph G = (V,E) modeling the wind farm vertices
and connections.
As flow can still be transmitted along both directions of an edge, the flow on an edge (i, j)
is interpreted in the following way: if xij > 0, xij units of flow are sent from i to j. If

6

2.2. Wind Farm Model

xij < 0, −xij units of flow are sent from j to i.
We assume each turbine to produce exactly one unit of electricity; going back to the flow
network model, that is b(i) = 1,∀i ∈ VT . While we can see the turbines as the supply
vertices, the wind farm does not contain real demand vertices. Instead, each substation
has a capacity, modeling how many units of flow it can store. That capacity is assigned by
the function capsub : VS → N. Thus, in contrast to the demand in the origin flow network,
the substations just have an upper bound, but no need for any amount of flow.
Now we head on to the greatest difference between the both models, the cost function.
We recap that in the flow network model each edge is assigned a cost, representing the
costs of sending one unit of flow along that edge. In contrast, the edges (i.e. the possible
connections between vertices) of the wind farm all have the same cost function as they can
all use the same set of cables. Each cable type is determined by two properties: its capacity
capcab ∈ N and its cost per unit length ccab ∈ R≥0. The set K is defined as all available
cable types represented by a pair (capcab, ccab) plus the cable types (0, 0) and (∞,∞). The
latter ones represent that no cable is used on an edge or that no cable has a large enough
capacity, respectively. With the cable types, we are now able to define the cost function
(that counts, as mentioned before, for each edge) as c : Z→ R≥0 ∪ {∞} with

c(x) = min{ccab : (capcab, ccab) ∈ K, |x| ≤ capcab} ∀x ∈ Z. (2.5)

That means, the cheapest cable type with sufficient capacity to carry |x| units of flow is
chosen.
Since the costs of a cable are not only determined by the cable type, but also by the length
(recap that ccab are the costs per unit length), we also have a function len : E → R>0,
representing the geographic distance between two turbines (or a turbine and a substation).
With that, the costs of sending |x| units of flow along an edge e = (i, j) can be denoted as
cost(x, e) = c(x) ∗ len(e).
With those definitions, the wind farm is modeled as a networkN = (G,VT , VS , len, capsub, c).
Similar to the original flow network, a flow x on a wind farm is feasible if it satisfies the
following constraints. The first ones match to the mass balance constraints (Equation 2.1)
and state that no flow may remain in a turbine (Equation 2.6) and that the net flow in
substations may not exceed their capacity (Equation 2.7). The last constraints ensure that
there is no outgoing flow at any substation (Equation 2.8).

∑
j∈V :(i,j)∈E

xij −
∑

j∈V :(j,i)∈E
xji = 1, ∀i ∈ VT . (2.6)

∑
j∈V :(j,i)∈E

xji −
∑

j∈V :(i,j)∈E
xij ≤ capsub(i), ∀i ∈ VS . (2.7)

xuv ≥ 0,
xvw ≤ 0, ∀v ∈ VS , ∀(u, v), (v, w) ∈ E.

(2.8)

The total flow costs of a feasible flow in a wind farm are computed as costs(N , x) =∑
e=(i,j)∈E

c(xij) · len(e).

The Wind Farm Cabling Problem can now be formulated as follows: among all feasible
flows x on N , find the one that minimizes costs(N , x).

7

2. Preliminaries

2.3 Vertex Potentials and Reduced Costs
All of the later examined algorithms deal with the idea of node potentials (referred to as
vertex potentials) and reduced costs. That concept is used for two reasons: to maintain
nonnegative edge weights, allowing to solve shortest path problems quicker, and to prove
the correctness of the algorithms. We summarize the idea and the most important points
of the concept as found in [AMO93, pp. 307-310].

To understand where the idea of reduced costs has its origin, we first take a look at the
shortest path problem. Having a start vertex s, a set of distance labels d(·) defines shortest
path distances from s to each other vertex if two conditions are satisfied: first, the distances
have to represent feasible distances (i.e. a path with this distance has to exist), and second
the so-called shortest path optimality conditions:

d(j) ≤ d(i) + cij , ∀(i, j) ∈ E. (2.9)

These conditions are very helpful for the validation of optimality: given a set of distances
d or a set of paths, it is simple to check whether they define shortest paths, hence being
optimal.
Equation 2.9 can be rewritten in an equivalent form:

cdij = cij + d(i)− d(j) ≥ 0, ∀(i, j) ∈ E. (2.10)

For an edge e = (i, j) we can now interpret cdij as an optimal reduced cost for e: it measures
the cost of e relative to the shortest path distances d(i) and d(j). Given optimal distance
labels, each edge has nonnegative reduced costs. Furthermore, cdij = 0 if and only if the
edge (i, j) is on a shortest path from i to j, and any shortest path from i to j uses only
zero reduced cost edges.
To define reduced costs for more general minimum-cost flow problems, we first introduce
vertex potentials: each vertex i ∈ V is assigned a real number π(i), and we call π(i)
the potential of i. With these potentials, we define the reduced costs of edge (i, j) as
cπij = cij − π(i) + π(j) (see Equation 2.10). As the later algorithms use the reduced costs,
it is important to keep the following property in mind:

Property 1. For any directed path P from vertex k to vertex l,
∑

(i,j)∈P c
π
ij =

∑
(i,j)∈P cij−

π(k) + π(l).

From Property 1 it results that using vertex potentials and reduced costs does not change
the shortest path between two vertices k and l, since the length of every path between
these vertices is increased by the same amount, namely π(l)−π(k). Though, the computed
lengths of paths may differ when using potentials.
From Property 1 also results the following property:

Property 2. For any directed cycle W,
∑

(i,j)∈W cπij =
∑

(i,j)∈W cij.

With Property 2 and the negative cycle optimality conditions, which state that a feasible
solution x∗ is an optimal solution of the MCF if and only if the residual network G(x∗)
contains no negative cost cycle, we can now establish the reduced cost optimality conditions:

Theorem 2.1. A feasible solution x∗ is an optimal solution of the minimum-cost flow
problem if and only if some set of vertex potentials π satisfy the following reduced cost
optimality conditions:

cπij ≥ 0 for every edge (i, j) in G(x∗). (2.11)

8

2.4. Further Notations

Theorem 2.1 gives us the possibility to validate the optimality of solutions on the residual
network. With the following theorem, we restate its meaning for the original network.
That theorem is called the complementary slackness optimality conditions.

Theorem 2.2. A feasible solution x∗ is an optimal solution of the minimum cost flow
problem if and only if for some set of vertex potentials π, the reduced costs and flow
values satisfy the following complementary slackness optimality conditions for every edge
(i, j) ∈ E:

If cπij > 0, then x∗ij = 0. (2.12)

If 0 < x∗ij < uij, then cπij = 0. (2.13)

If cπij < 0, then x∗ij = uij . (2.14)

2.4 Further Notations
When discussing an algorithm’s complexity and running time, we refer to the number of
vertices of a graph as n and to the number of edges as m.

In some shortest path algorithms, we denote the edge weights as ω since these are general
algorithms that do not necessarily work with reduced costs.

A path containing the edges (a, b), (b, c), (c, d) is denoted as a-b-c-d.

In the graphical representation of wind farms, turbines are displayed as circles and substa-
tions as squares. For lack of space, the potential π(i) and the imbalance e(i) of a vertex i
are shortened to πi and ei, respectively.

9

3. Examining the Algorithms

We now examine various minimum-cost flow problem algorithms. After describing them
and underlining which approaches they use to solve the problem, we try to adapt them in
a way that they are able to solve the WCP.

3.1 Successive Shortest Path Algorithm
3.1.1 Describing the SSP

We take a closer look on how the Successive Shortest Path Algorithm (SSP) works as it is
described in [AMO93, pp. 320ff.].
The fundamental idea of the SSP is to iteratively solve shortest path problems until a
feasible flow is achieved. In each step, the algorithm maintains a pseudoflow (section 2.1).
By iteratively decreasing the imbalance (Equation 2.4) of the vertices, that pseudoflow is
transformed into a feasible flow.
Before we take a look at the SSP in more detail, we introduce two vertex sets: we denote
VE as the set of all excess vertices and VD as the set of all demand vertices. Note that the
total excess always equals the total demand:∑

i∈VE

e(i) = −
∑
i∈VD

e(i). (3.1)

The SSP, displayed in Algorithm 3.1, solves in each iteration (lines 5-12) a shortest path
problem from an excess vertex to a demand vertex. This problem is computed on the
residual network, with the reduced costs of each edge as edge weights. While finding a
shortest path, the algorithm also computes and stores the shortest distances from the start
vertex to each other vertex (line 7). These distances are then used to update the vertex
potentials as seen in line 9.
When a shortest path, denoted as P (line 8), has been found, the maximum possible
amount of flow, denoted as δ, is augmented along that path (lines 10-11). After that, the
sets VE and VD and the reduced costs of each edge are updated (line 12), and the next
step begins.

Let us take a look now at the correctness and the termination behaviour of the algorithm.
We show that the algorithm always maintains a feasible pseudoflow at runtime and
terminates with a feasible flow. At the beginning, the flow x is set to zero, which is a
feasible pseudoflow since it does not violate any capacity constraints (Equation 2.2). In

11

3. Examining the Algorithms

Algorithm 3.1: Successive Shortest Path Algorithm
Input: Directed Network G = (V,E), capacities uij , costs cij
Output: Optimal flow x∗

// Initialization
1 x← 0
2 π ← 0
3 e(i)← b(i) ∀i ∈ V
4 VE ← {i : e(i) > 0}, VD ← {i : e(i) < 0}

// Main loop
5 while VE is not empty do
6 select a vertex k ∈ VE and a vertex l ∈ VD
7 compute shortest path distances d(·) from k to all other vertices in G(x) with

cπij as edge weights
8 P ← shortest path from k to l
9 ∀i ∈ V : π(i)← π(i)− d(i)

10 δ ← min[e(k),−e(l),min(rij : (i, j) ∈ P)]
11 augment δ flow along P
12 update x, G(x), VE , VD and all reduced costs

each step (until VE and VD are empty), the algorithm successfully finds an excess vertex
and a demand vertex, because there can never be excess vertices without at least one
demand vertex and vice versa, due to Equation 3.1. Because of using the reduced costs,
all edge weights are nonnegative. Therefore, the shortest path distances to all vertices
(with Assumption 4, a path to every vertex exists) are well defined and can be computed.
With δ being always greater than zero, in each step at least one unit of flow is augmented
from an excess vertex to a demand vertex. Thus, the total excess is decreased in each
step. The algorithm terminates when no excess vertex is left, and because of Equation 3.1,
there is also no demand vertex left. Hence, each vertex is balanced and the mass balance
constraints (Equation 2.1) are satisfied, so a feasible flow is achieved.
Since the total excess is decreased in each iteration, the algorithm terminates after at most
n · U iterations, where U denotes the highest excess among all vertices.

The running time of each iteration is dominated by the shortest path computation. With
denoting the time taken by the latter as SP , the running time of the SSP is O(n · U · SP).
As mentioned before, the vertex potentials and the resulting reduced costs ensure that the
shortest path computation has to handle only nonnegative edge weights. Thus, we can
for example use Dijkstra’s Algorithm [Dij59], running in O(n logn+m). With that, the
overall running time of the SSP is O(n · U · (n logn+m)).

3.1.2 Adapting the SSP

Before pointing out which parts of the original SSP need to be adapted for the WCP,
we briefly recap some properties of our WCP model that help us for the development of
solutions.
We have previously pointed out that the SSP augments as many units of flow as possible
in each step from one excess vertex to one demand vertex. In the case of our wind farm
model, every turbine is an excess vertex, and as every turbine produces exactly one unit of
electricity, e(i) = 1 for each turbine i. One important difference between the minimum-cost
flow modeling and the wind farm modeling is the absence of vertices with a fixed demand
in our wind farm. The substations are the “destination” of the flow units, so all the flow
from the turbines has to end up in substations, but they do not require a fixed amount

12

3.1. Successive Shortest Path Algorithm

of flow; quite contrary, their only restriction is the capacity. As long as the capacity of a
substation is not saturated, the substation can take more flow, but it does not have to.
The problem with this property is that the SSP requires demand vertices, and these must
have a fixed demand. To deal with it in our SSP for the WCP, we use the concept of a
supersubstation. The supersubstation, referred to as vertex t, is an added vertex where all
the demand is collected, i.e. in each step of the SSP, flow is augmented from one turbine
to the supersubstation. It is created in the following way: for each substation i, we add an
edge (i, t) from the substation to the supersubstation with cit = 0 and uit = capsub(i). The
demand of the supersubstation is set to |VT |, and all substations are set to be balanced
vertices. With that done, we have now modeled the substation capacities and solved the
problem with the demand vertices without changing the costs of the final flow.

Now we head on to the greatest problem that occurs in our wind farm model in contrast to
the standard minimum-cost flow problem: the non-linear cost function. As we have already
seen, the reduced costs of an edge (i, j) in the SSP are computed as cπij = cij − π(i) + π(j).
While cij is constant for each edge over the whole standard algorithm, it is not in the WCP.
For the following idea on how to handle that problem, we briefly recap what is known
about the augmented flow in each step: as the excess of each vertex is at most 1, we
augment at most one unit of flow along an edge per step. With that in mind, in each step
we can consider the costs cij for an edge as the costs of sending one additional unit of flow
along that edge (Equation 3.2). That means, if the currently used cable on edge (i, j) has
unused capacity, cij = 0 because we can send one more unit of flow without needing a
more expensive cable type. If the currently used cable is saturated, the costs of sending
one more unit of flow are computed as the difference in costs of the next in size cable type
minus the current one.

cij = costOfFlow(flowOnEdge(i, j) + 1)− costOfFlow(flowOnEdge(i, j)). (3.2)

In an analogous way, if the edge (i, j) has a negative flow (which means, that at the
current moment we send flow along its reverse edge (j, i)), the costs cij are considered and
computed as the saved costs if we send one unit of flow less along the edge (j, i).
With that idea, we can compute the reduced costs like in the original SSP, and could now
run that modified algorithm (displayed in Algorithm 3.2) to solve the WCP. When the
algorithm reaches the point of computing the shortest path distances, a new problem arises.
As we remember, the vertex potentials and the resulting reduced costs do not change
shortest paths (Property 1), but are used to ensure the nonnegativity of all edge weights,
enabling us to compute the shortest distances very efficiently. With the modified costs
(Equation 3.2), we lose that property, leading to negative edge weights and even negative
cycles, as we can see in Figure 3.1. The problem here is that as soon as the distances
are computed in the first iteration, cij is 1, because there is no flow on that edge, hence
sending one unit requires a new cable type. Thus, the distance of j is 1. After sending
one unit of flow along that edge, the new cij is zero, because sending one more unit of
flow does not require a new cable type. But since the vertex potential of j is now -1, the
reduced costs are negative. In the original SSP, that problem would not occur, because the
value cij would never change between two iterations and therefore the reduced costs will
always be nonnegative.

That leads to the question whether (and if so, how) we can now find the shortest path
distances in a graph with possible negative edge weights and also possible negative cycles.
An algorithm that can handle negative edge weights is the well-known Bellman-Ford Algo-
rithm [Bel58]. However, in its common way, it is not going to solve our problem, because
it detects negative cycles but it cannot compute shortest path distances in their presence.
The reason is, that with a negative cycle there exists no shortest path as we can infinitely
traverse that cycle, always decreasing the distance. What we need to find is the so-called

13

3. Examining the Algorithms

Algorithm 3.2: Adapted Successive Shortest Path Algorithm for WCP
Input: Directed network N = (G,VT , VS , len, capsub, c)
Output: Feasible flow x

// Initialization
1 Add supersubstation t to N
2 x← 0
3 π ← 0
4 VE ← VT

// Main loop
5 while VE is not empty do
6 select a vertex k ∈ VE
7 compute shortest path distances d(·) from k to all other vertices in G(x) with

cπij as edge weights
8 P ← shortest path from k to t
9 ∀i ∈ V : π(i)← π(i)− d(i)

10 augment one unit of flow along P
11 update x, G(x), VE and all reduced costs

(a)

(1, 1)

(b)

(1, 1)

cost per unit length

capacity

1 2

1 πi=0 πj=0

(0,−1)

(c)

(−1, 0)

πi=0 πj=-1

Figure 3.1: Negative reduced costs. The tuple on each edge denotes its costs and its reduced
costs. Inside each vertex, its potential is displayed. (a) Step cost function; (b)
Initial network; (c) Network after the first iteration and augmenting one unit
of flow along (i, j).

Shortest Simple Path: the shortest path that does not visit a vertex more than once. This
problem is known to be NP-complete [Sch03, p. 114].
Therefore, we have to develop ways to find path distances that might not be the shortest,
but “short enough” and that can be found in reasonable running time. Hence we are now
willing to give up optimality, and head instead for using heuristics.

3.1.3 Finding Short Paths

3.1.3.1 Dijkstra

The first approach to find path distances is to use Dijkstra’s Algorithm, although we
know that it will not find the shortest path distances. Our implementation is displayed
in Algorithm 3.3. To avoid negative cycles, an edge is not relaxed if its end vertex has
already been visited (lines 10-11). To be able to check this, a list stores all vertices that
have been removed from the priority queue (line 8). At this point, the optimality is not
given anymore since we skip relaxations of some edges even if they would provide shorter
distances.
In our implementation, Dijkstra runs in O(n logn+m) time and provides feasible distance
and parent labels. In this context, feasible means that the paths induced by the parent
labels exist and the distance labels represent distances along some paths from vertex k.

14

3.1. Successive Shortest Path Algorithm

Algorithm 3.3: Dijkstra’s Algorithm
Input: Graph G = (V,E, ω), source vertex k
Data: Priority queue Q, List L of visited vertices
Output: Distances d(v) for all v ∈ V , path tree of k given by parent(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 parent(v)← null

4 Q.insert(k, 0)
5 d(k)← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin()
8 L.insert(u)
9 forall (u, v) ∈ E do

10 if L.contains(v) then
11 continue
12 if d(u) + ω(u, v) < d(v) then
13 d(v)← d(u) + ω(u, v)
14 parent(v)← u
15 if Q.contains(v) then
16 Q.decreaseKey(v, d(v))
17 else
18 Q.insert(v, d(v))

From the parent labels we can extract a path from the start vertex k (i.e. the turbine we
chose in that iteration) to the supersubstation.

3.1.3.2 A Modified Bellman-Ford

Another approach is the usage of a modified Bellman-Ford Algorithm (Algorithm 3.4) that
does not create cycles. First, let us briefly refresh how Bellman-Ford works in the common
implementation: it iterates (n− 1)-times over all edges (lines 5-6), and if for an edge (u, v)
holds that d(u) + ω(u, v) < d(v), that edge is relaxed (lines 9-11). Of course, this does
not prevent negative cycles: if for example (u, v) and (v, u) both have negative costs, the
distances of both u and v are decreased in each iteration and u and v form a cycle.
To ensure that those cycles are not created, our modified Bellman-Ford performs an
additional check (lines 7-8) before an edge (u, v) is relaxed: if v is directly or indirectly
(which means, with other vertices between) the parent of u, the edge is not relaxed, because
that means a cycle would be created at this point. Algorithm 3.5 shows how that cycle
detection works in detail: the parents of u, starting with its direct parent (line 1), are
traversed backwards. If at some point we find v as the next parent, the algorithm returns
that a cycle is detected. Otherwise, the algorithm terminates in case the current considered
vertex has no parent (line 2), meaning that no cycle is detected (recall that all parents
have been set to null at the beginning of the Bellman-Ford Algorithm 3.4).

That modified algorithm provides feasible path distances and parent labels, from which
we can extract the required path from the start vertex to the supersubstation. However,
it still does not provide optimal results, as we can see in Figure 3.2. For shortening

15

3. Examining the Algorithms

Algorithm 3.4: Bellman-Ford Algorithm
Input: Graph G = (V,E, ω), source vertex k
Output: Distances d(v) for all v ∈ V , path tree of k given by parent(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 parent(v)← null

4 d(k)← 0
// Main loop

5 for i← 0 to n− 1 do
6 forall (u, v) ∈ E do
7 if createsCycle(G, u, v) then
8 continue
9 if d(u) + ω(u, v) < d(v) then

10 d(v)← d(u) + ω(u, v)
11 parent(v)← u

Algorithm 3.5: Cycle detection
Input: Directed Network G = (V,E), startvertex u, endvertex v
Output: True, if relaxation of edge (u, v) would create a cycle; false otherwise

1 currentParent ← u
2 while parent(currentParent) != null do
3 currentParent ← parent(currentParent)
4 if currentParent == v then
5 return True

6 return False

reasons, we ignore relaxations of edges where the start vertex has an infinite distance,
since those relaxations do not have influence on the results. At the beginning of the
algorithm, the distance of k is set to zero. In the first iteration, the edges (k, c) and (k, a)
are relaxed. In the next iteration, the edges (a, b), (c, d) and, most important, (c, a) are
relaxed because −9 = d(c) + ω(c, a) < d(a) = 1. So now, vertex c is the parent of vertex a.
Now in the next step, again (a, b) is relaxed, and the edge (b, c) would be relaxed, because
−98 = d(b) + ω(b, c) < d(c) = 1. At this point, the cycle detection checks if the end vertex
c is somehow the parent of the start vertex b and realizes it to be true because of the path
c-a-b. Thus, the relaxation is not performed since a cycle would be created. No more edges
are relaxed in the algorithm after that. Now the computed shortest distance for vertex c is
1, with the path k-c. In fact, the real shortest simple path would have been k-a-b-c with a
length of −98. Also, as quite obvious, the computed distance for d is not correct.

The running time of the original Bellman-Ford Algorithm is O(n ·m). The added cycle
detection check takes an extra time of O(n) as it has to iterate over all vertices until no
more parent is found in the worst case. With that, the modified algorithm runs in O(n2 ·m)
time, which is much slower than Dijkstra’s Algorithm, but still polynomial.

16

3.1. Successive Shortest Path Algorithm

a

k

b

c d

1 1

1-100

1-10

Figure 3.2: Example for non-optimal results with the modified Bellman-Ford Algorithm.
On each edge, its weight is shown.

3.1.4 Running Time and Optimality

We now take a look at the running time of our developed algorithm and its solution quality
from a theoretical view.

3.1.4.1 Running Time

In the previous subsections, two ways of finding paths were discussed, including their
respective running times. The overall running time of our adapted SSP depends mostly
on these path computations, as they are performed in each iteration. In the main loop,
the algorithm iterates over each turbine, therefore it takes O(n) iterations. The executed
steps per iteration apart from finding the paths are solved in O(n + m) time, which is
less or equal to the runtime of all our possible shortest path algorithms, thus the latter is
dominating the runtime during each iteration. With denoting the runtime of finding the
shortest paths as O(SP), our developed algorithm has an overall running time of O(n ·SP).

3.1.4.2 Quality of the Solution

As we have seen, the quality of the solution (i.e. the total costs of flow) depends on the
quality of the paths and distances we find with the chosen algorithm. However, in this
subsection, we hypothesize that we are actually able to find the optimal shortest paths and
examine the solution quality the algorithm provides under that assumption.
Considering each iteration separately, it is obvious that the algorithm finds the cost-optimal
flow, as the flow costs are represented by the reduced costs and we made the assumption
that we find the shortest path from the start vertex to the supersubstation. Therefore, in
each step the algorithm finds the local optimum.
However, now we show that always finding the local optimum in each step does not always
result in the global optimum and hence does not provide an optimal solution for the WCP.
In Figure 3.3, a wind farm instance is displayed, with vertex d being the only substation.
The supersubstation has been omitted in the representation. The length of each edge (i, j)
can be seen in (b), as it equals its reduced costs cπij at the beginning. In the first iteration,
vertex a is chosen, and the shortest path distances are computed. As the shortest path
from a to substation d is a-d, one unit of flow is augmented along there. In the second
(third) step, vertex b (c) is selected as start vertex. The shortest path to d is the direct
connection b-d (c-d), for this reason one unit of flow is augmented along it. The other
possible path, namely b-a-d (c-a-d), has higher costs. After the third step, the algorithm
terminates since there is no excess vertex left. In (e), the computed flow is shown: its costs
are 10+15+15=40. That solution is not optimal, as we see in (f): the (feasible) flow here
has costs 30+1+1=32.
The algorithm found the local optimum in each step, but still missed the global optimum.

17

3. Examining the Algorithms

(b)

1

1

3

cost per unit length

capacity

(a)

3

a

b c

d

1
1

1
1

10 10

15
15

15
15

πa=0

(c)

0
2

0
2

24
6 6

24

πb=-1 πc=-1

πd=-10

(e)

0 0

1 1

πa=-2

(d)

2
0

0
2

15 0 28

πb=-1 πc=-3

πd=-16

a

b c

d

(f)

1 1

a

b c

d

10 0

6 4 1

0 0

3

2

Figure 3.3: Non-optimal solution with the SSP. In (b)-(d), each edge is labeled with its
reduced costs, inside each vertex its potential is displayed. In (e) and (f) the
flow on each edge is shown. (a) Step cost function; (b) Initial network; (c)
Residual network after the first step with a as start vertex; (d) Residual network
after the second step with b as start vertex; (e) Final network flow after the
third step with c as start vertex; (f) Network flow representing an optimal
solution.

Due to the step function, the costs of edge (a, d) increased highly after augmenting the
first unit of flow along it. That caused the edge not to be part of the shortest paths in the
following steps, although using it two more times would lead to a better solution, since its
high costs arise only in the second use while the third use would be “free”.

3.1.5 SSP without Vertex Potentials

As mentioned before, the standard SSP uses vertex potentials to ensure that no negative
costs occur and therefore Dijkstra’s Algorithm can be used to compute the shortest paths.
We have also seen that with step cost functions, negative costs do occur although we
use vertex potentials. Since the upside of using potentials is not given anymore, another
possible adaption of the SSP is to leave out the vertex potentials and reduced costs. Instead,
as edge weights we use cij as computed in Equation 3.2. This further adaption requires
only one change in Algorithm 3.2, namely taking out line 9 (updating all vertex potentials).
Our analyses concerning the running time and quality of the solution still hold in that new
variant, since we only altered the edge weights that are used when computing shortest paths.
As in the first variant, we have two possibilities of finding paths: Dijkstra’s Algorithm and
our modified Bellman-Ford Algorithm. Similar to the first variant, both of these algorithms
will not provide optimal solutions, since negative costs still occur in our new variant.

18

3.1. Successive Shortest Path Algorithm

Totally, we have four variants of our modified SSP now: either using vertex potentials and
reduced costs, or using the “normal” costs. For both strategies, we have two algorithms of
finding short paths, Dijkstra and Bellman-Ford. We refer to those variants as DIJNOR
(Dijkstra using normal costs), DIJPOT (Dijkstra using potentials and reduced costs),
BELNOR (Bellman-Ford using normal costs) and BELPOT (Bellman-Ford using potentials
and reduced costs).

3.1.6 Special Case - One Cable Type Only

When analyzing the adapted SSP, we figured out two points: in the first place, neither
Dijkstra nor Bellman-Ford find the shortest paths due to the presence of negative edge
weights. Having only one cable type does not solve this problem, since edge weights can
still be negative. Secondly, the SSP was not optimal, even under the assumption that
shortest paths can be computed correctly. In Figure 3.4 we observe that also with only one
cable type the optimal solution is not always found. The length of each edge is displayed
in the initial network in (b) and equals the initial costs. In the first step, c is selected as
start vertex and one unit of flow is augmented along the shortest path, which is c-d. In
the second step with b as start vertex, the shortest path is b-c-d, and the last iteration
augments one unit of flow along a-b-d. The overall costs of the final flow (shown in (e)) are
36, while the optimal flow, displayed in (f), costs only 26.
Hence, the SSP does not benefit from having only one cable type.

19

3. Examining the Algorithms

(a)

cost per unit length

capacity

1 2

1

a

b c

d

(b)

1
1

20
20

10

10

15
15

10
10

πa=-11

(c)

2
0

31
9

20

0

15
15

-10
0

πb=-10 πc=0

πd=-10

(e)

1 0

1

1 2

πa=-11

(d)

2
0

19
21

0

-10

5
25 10

πb=-10 πc=-10

πd=-20

a

b c

d

(f)

1 0

0

2 1

a

b c

d

Figure 3.4: Non-optimal solution with only one cable type. In (b)-(d), each edge is labeled
with its reduced costs, inside each vertex its potential is displayed. In (e) and
(f) the flow on each edge is shown. (a) Step cost function; (b) Initial network;
(c) Residual network after the first step with c as start vertex; (d) Residual
network after the second step with b as start vertex; (e) Final network flow
after the third step with a as start vertex; (f) Network flow representing an
optimal solution.

20

3.2. Primal-Dual Algorithm

3.2 Primal-Dual Algorithm
3.2.1 Describing the Primal-Dual Algorithm

The fundamental idea of the Primal-Dual Algorithm (PDA) [AMO93, pp. 324ff.] is similar
to the SSP: it repeatedly solves shortest path problems and augments flow along these
shortest paths until a feasible flow is achieved. In contrast to the SSP, in each iteration
flow is not augmented along only one shortest path, but along all shortest paths by solving
a maximum flow problem.
Before the main loop begins, the network is transformed in a way that there exists only
one excess vertex and one demand vertex, respectively. This is achieved by a concept
quite similar to the supersubstation we used earlier. There, we added a vertex that was
connected with all demand vertices (namely the substations, in the case of WCP) so that
all demand was collected in one vertex. This is exactly what the transformation does, with
the new vertex referred to as sink vertex t. Analogous, a source vertex s, connected to all
excess vertices, is added to the network where all excess is collected. More formally, the
transformation performs the following steps:

1. Add source vertex s and sink vertex t to the network.

2. ∀i ∈ V with b(i) > 0: add edge (s, i) with usi = b(i), csi = 0.

3. ∀i ∈ V with b(i) < 0: add edge (i, t) with uit = −b(i), cit = 0.

4. b(s) =
∑

i∈V :b(i)>0
b(i).

5. b(t) = −b(s).

6. ∀i ∈ V \ {s, t}: b(i) = 0.

After that transformation, the PDA (Algorithm 3.6) works just like the SSP: while the
source vertex s has excess left, the algorithm determines the shortest path distances from
s to all other vertices, using the reduced costs as edge weights (line 6). With the distances,
the vertex potentials are updated (line 7). The difference to the SSP is now the following:
while the SSP augments as much flow as possible along one shortest path from the excess
vertex to the demand vertex, the PDA augments flow along all shortest paths. To do so,
the admissible network G′(x) is defined as follows: G′(x) consists of the same vertices as
the residual network G(x), but contains only those edges from G(x) with zero reduced
costs (line 8), since every shortest path includes only zero reduced edges. Now, a maximum
flow problem from s to t is solved in G′(x) and the computed flow is augmented (line 9).
When that step of augmenting flow is done, the PDA again behaves like the SSP: the
reduced costs as well as e(s) and e(t) are updated (line 10), and the next iteration begins.

The advantage of the PDA over the SSP is quite obvious: as it possibly augments flow
along more than one path in each iteration, it is faster than the SSP (or, in the case of
always finding just one shortest path, at least not slower).

3.2.2 Adapting the Primal-Dual Algorithm

As seen in the previous section, the Primal-Dual Algorithm differs from the SSP only in a
single detail, namely the number of chosen paths. However, that detail has a huge impact
on our adapted SSP. One underlying assumption of the latter has been that only one unit
of flow is augmented in each step. With that, it was possible to determine the edge costs
as the costs of sending one additional flow along that edge. That assumption is no longer
given when using the PDA, because now more than one unit of flow can be augmented in
each step. From that comes up the possibility of sending more than unit along one edge,
and here arises a problem: how should the costs be determined when it is unknown how

21

3. Examining the Algorithms

Algorithm 3.6: Primal-Dual Algorithm
Input: Directed Network G = (V,E), capacities uij , costs cij
Output: Optimal flow x∗

// Initialization
1 Transform network by adding s and t
2 x← 0
3 π ← 0
4 e(s)← b(s), e(t)← b(t)

// Main loop
5 while e(s) > 0 do
6 compute shortest path distances d from s to all other vertices in G(x) with cπij

as edge weights
7 ∀i ∈ V : π(i) = π(i)− d(i)
8 define the admissible network G′(x)
9 solve maximum flow problem and augment flow from s to t in G′(x)

10 update x, G(x), e(s), e(t) and all reduced costs

much flow is augmented there in a single step?
One possibility is to handle it as we did in the SSP, i.e. as the costs for sending exactly
one additional unit of flow. It can be shown that in this case the algorithm would take
wrong decisions, hence not finding the local optimum within one step. For illustration, we
take a look at Figure 3.5. We assume each edge to have unit length. After transforming
the flow network, we obtain the network shown in (b). On this network, the shortest path
distances are computed and the vertex potentials (and therefore, the reduced costs) are
updated. The resulting residual network is shown in (c), the bold edges belong to the
admissible network that is now defined. On that, a maximum flow problem is solved. Since
the outgoing edges from s all have a capacity of 1, one unit of flow is augmented along
each of the paths s-d-f -t, s-e-f -t and s-c-f -t. After that procedure, the costs c of all edges
are updated with respect to the new flow. Along with that, also the reduced costs cπ
are updated, shown in the residual network in (d). Now again, the shortest distances are
computed, the vertex potentials are updated and the admissible network is defined, shown
in (e). In the now solved maximum flow problem, one unit of flow is augmented along each
of the paths s-a-c-f -t and s-b-c-f -t, therefore using the edge (c, f) two additional times.
The algorithm terminates now because e(s) = 0. The original network with the computed
flow is shown in Figure 3.6 (a): with the given step cost function, the overall costs are
1 + 1 + 5 + 1 + 1 = 9. As we can see in (b), that is not an optimal solution, since the overall
costs computed by the SSP are 1 + 1 + 1 + 2 + 2 + 1 = 8.

This leads to the question why the algorithm did not find the optimal solution. When
computing the shortest path distances, the edge costs for sending one more flow were used.
Based on those distances, the admissible network was defined and on that, the maximum
flow problem was solved. During this computation, the algorithm did not care about the
actual costs of augmenting flow along edges, since the cheapest edges have been computed
before. While for a linear cost function that leads to optimal flows, it does not for the
WCP, as the costs for one more flow were used, disregarding the costs for more flow. Now
in the maximum flow problem, the edge (c, f) is used twice at one time, leading to an
abrupt increase in the costs that the algorithm did not include in its computations.
In contrast, the modified SSP would not have made that decision that led to a non-optimal
solution since there is always just one unit of flow augmented in each step. Thus, the
reduced costs are computed again after augmenting the second unit of flow along (c, f),

22

3.2. Primal-Dual Algorithm

and the rise in the costs is recognized. The algorithm then uses the cheaper path c-d-f (or
c-e-f) instead.
From the possibility of not finding the local optimum within one step it follows that also
the global optimum may not be found. Thus, the algorithm is not optimal.

When thinking about other ways to determine the costs cij , it is quite obvious that other
choices end up with exactly the same problem. For example, the costs of sending two
more units of flow could be used, but this would lead to wrong results if only one unit was
transmitted. Therefore, it does not make sense to determine the costs as a fixed value for
each iteration.

Another problem arising due to the step cost function refers to the admissible network.
As described in the previous section, it is composed of all zero reduced cost edges. In the
original algorithm, cπij ≥ 0 holds for each edge (i, j) and therefore zero reduced cost edges
are the ones to be used in shortest paths. In the WCP, the reduced costs can be negative
(as seen in Figure 3.1), making it difficult to define which edges should be contained in
the admissible network. If, as in the original algorithm, only the zero reduced cost edges
were used, we would obviously ignore cheaper edges, since negative costs are cheaper than
zero costs. In case we only took the edges with minimum reduced costs instead, there
were possibly no paths at all between vertices (imagine the case where only one edge has
negative reduced costs). Therefore the best choice seems to be to use all edges (i, j) with
cπij ≤ 0. However, this could lead to non-optimal results: when solving the maximum
flow problem, all edges are treated the same, no matter what their costs are. This leads
to correct results in the standard algorithm, because there all used edges have the same
reduced costs (namely zero), but not in our case where the costs differ and therefore cheaper
edges should be preferred.

Summarized, using the PDA instead of the SSP comes along with some disadvantages: the
problem of defining the admissible network, and the problem of taking wrong decisions that
did not occur when using the SSP. These decisions lead to results that are equal to those
of the SSP in the best case, but can be worse in many cases. Furthermore, as seen in the
previous section, the PDA’s only advantage over the SSP is the quicker running time while
aside of that the algorithms are quite similar. Because of these reasons (the similarity to the
SSP, but connected with adding problems while not really offering reasonable advantages),
we decide to not adapt the PDA for solving the WCP.

3.2.3 Special Case - One Cable Type Only

In the previous section, we have seen that one problem of the PDA is that it can augment
more than one unit of flow along an edge. Once this flow requires a new cable type, the
costs can rise abruptly. With only one cable type available, this cannot happen anymore:
the costs of the augmented flow, no matter how many units that is, cannot be higher than
the costs computed and used by the PDA (i.e. the costs for the next unit of flow) since no
new cable type with higher costs can be used. Therefore, the PDA finds the local optimum
in each step when only one cable type is used. However, it still does not find the global
optimum because it still faces the same problems as the SSP (e.g. for the WCP instance in
Figure 3.4 the PDA finds the same non-optimal solution as the SSP).
The other problem of the PDA we encountered was the definition of the admissible network.
That problem still occurs with only one cable type, since the reduced costs of edges can
still be negative.

23

3. Examining the Algorithms

1 10 0

1

0

(e)

0 00 0

0

0

(d)

πs=0

0 00 0

0

1

1

1 1

0

0 00 0

0

0

(b) (c)

cost per unit length

capacity

(a)

1 2 4

1

2

5

1

11

2

0 0

0

22

0

0 0

0

00

0

0 0

0

00

11

1

1
1 1

1

1

11

1

1
1 1

1

1

11

1

1
1 1

1

1

11

1

2
0 0

2

πa=0 πb=0

πc=0

πd=0 πe=0

πf=0 πt=0

πs=0

πa=0 πb=0

πc=0

πd=0 πe=0

πf=-1 πt=-1

πs=0

πa=0 πb=0

πc=0

πd=0 πe=0

πf=-1 πt=-1

πs=0

πa=0 πb=0

πc=-1

πd=-1 πe=-1

πf=-2 πt=-2

Figure 3.5: Using the PDA for WCP. The value on each edge denotes its reduced costs.
Inside each vertex, its potential is displayed. (a) Step cost function; (b) Trans-
formed initial network; (c) Residual network after updating vertex potentials
and reduced costs, bold edges belong to the admissible network; (d) Residual
network after solving the maximum flow problem und updating the reduced
costs; (e) Residual network after updating vertex potentials and reduced costs,
bold edges belong to the admissible network.

1 1

0 0

3

1 1

(a)

a b

c

d e

f

1 1

1 0

2

2 1

(a)

a b

c

d e

f

Figure 3.6: Computed solutions. On each edge, the amount of flow along it is shown. (a)
Non-optimal flow, computed by the PDA; (b) Optimal flow, computed by the
SSP.

24

3.3. Out-Of-Kilter Algorithm

3.3 Out-Of-Kilter Algorithm

3.3.1 Describing the Out-Of-Kilter Algorithm

As seen in the last two chapters, the idea of the SSP and the PDA has been to satisfy
the reduced cost optimality conditions (Theorem 2.1) and the flow bound constraints
(Equation 2.2) in each step. Another approach is to satisfy the mass balance constraints
(Equation 2.1) in each step while the reduced cost optimality conditions and the flow
bound constraints may be violated. This is the idea of the Out-Of-Kilter Algorithm (OOK)
([AMO93, pp. 326ff.]) that we examine in this chapter.
The OOK is based on the complementary slackness optimality conditions (Theorem 2.2),
that are (in a slightly different, equivalent form) restated in the following.

If xij = 0, then cπij ≥ 0. (3.3)

If 0 < xij < uij , then cπij = 0. (3.4)

If xij = uij , then cπij ≤ 0. (3.5)

Throughout the algorithm, every edge of the network is in one of two possible states due
to these conditions: it either satisfies the conditions, or it does not; an edge being in the
first state is called in-kilter, while an edge being in the second state is called out-of-kilter.
The conditions can be represented by the so-called kilter diagram (Figure 3.7): each edge
(i, j) defines a point in the diagram based on its flow xij and its reduced costs cπij . If that
point is located on the bold lines, the edge (i, j) satisfies the conditions (i.e. is in-kilter).

xij
uij

cπij

0

Figure 3.7: Kilter diagram for edge (i, j).

With each edge (i, j), a kilter number kij is associated. That kilter number indicates the
required change of flow xij to transform (i, j) into an in-kilter edge. Depending on cπij , that
is:

kij =

|xij |, if cπij > 0
|uij − xij |, if cπij < 0
xij − uij , if cπij = 0 and xij > uij

−xij , if cπij = 0 and xij < 0
0, if cπij = 0 and 0 ≤ xij ≤ uij .

(3.6)

From Equation 3.6 it follows that kij ≥ 0 ∀(i, j) ∈ E. An edge (i, j) with kij = 0 is called
an in-kilter edge.

25

3. Examining the Algorithms

The idea of the algorithm is now to transform all out-of-kilter edges into in-kilter edges. To
achieve that, the algorithm decreases in each step the kilter number of one or more edges
in the residual network, while never increasing any kilter numbers. Once all kilter numbers
equal zero, the flow is both feasible and optimal. The kilter number of an edge (i, j) in the
residual network is defined in the following way:

kij =
{

0, if cπij ≥ 0
rij , if cπij < 0.

(3.7)

This definition of kij is consistent with the previous definition (Equation 3.6): kij equals
the amount of flow that has to be augmented along (i, j) to satisfy its optimality condition
(i.e. the reduced cost optimality condition, Theorem 2.1). If the reduced costs of (i, j) are
positive, (i, j) satisfies its optimality condition; if the reduced costs are negative, rij units
of flow have to be augmented along (i, j), so that (i, j) drops out of the residual network
and therefore satisfies its optimality condition.

Now we take a closer look at the OOK that is displayed in Algorithm 3.7. After initializing
the algorithm with a feasible flow and setting all vertex potentials to zero (lines 1-2), the
main loop begins. In each step, one out-of-kilter edge (p, q) is selected (line 4). From the
end vertex q of that edge, the shortest distances to all other vertices are computed, leaving
out the reverse edge (q, p). For that computation, all negative edge lengths are set to zero
(lines 5-6). Particularly, a shortest path P from q to p is stored (line 7). After updating
the vertex potentials (line 8), the algorithm performs a check if the selected edge (p, q) is
still out-of-kilter (line 9; recap Equation 3.7); if it is, the path P is extended to a cycle by
adding edge (p, q) (line 10) and the maximum possible amount of flow (i.e. the minimum
residual capacity among the edges on the cycle) is augmented (lines 11-12). That way, the
kilter number kpq is decreased. If all edges are in-kilter now, the algorithm terminates;
otherwise, the next iteration starts.

Let us now examine the correctness and the termination behaviour of the OOK. The
correctness proof is based on the fact that at no time kilter numbers are increased. Only
two operations alter the kilter number of an edge: updating the vertex potentials (line
8) and augmenting flow (line 12). The two lemmas [AMO93, Lemma 9.13] and [AMO93,
Lemma 9.14] state that neither of those operations increases any kilter number.
Furthermore, in each step the kilter number of at least one out-of-kilter edge (the selected
edge in line 4) is decreased by at least 1; either in the update step or in the augmentation
step. Therefore, if U denotes the maximum kilter number among all edges, the algorithm
terminates after at most m · U steps. In each iteration, solving the shortest path problem
dominates the running time. Since that problem is computed on only nonnegative edge
weights (line 5), we can for example use Dijkstra’s Algorithm, running in O(n logn+m)
time. With that, the OOK has a total running time of O(m · U · (n logn+m)).

3.3.2 Adapting the Out-Of-Kilter Algorithm

Before examining the problems of the Out-Of-Kilter Algorithm on WCP instances, we
make some assumptions that we have already made for previous algorithms. To model the
capacity of substations, we use the concept of the supersubstation again in the same way
we did for the SSP. We consider the costs cij of an edge (i, j) as the costs that arise when
augmenting one more unit of flow than before on that edge. One problem to deal with is
the flow augmentation step, since more than one unit of flow can be augmented at one
time in the original OOK. As we have seen previously, this can cause problems due to the
changing costs of an edge. But, while augmenting the flow by only one in each iteration
makes the OOK possibly slower, it does not change the computed results. Therefore, we
set δ = 1 in each iteration.

26

3.3. Out-Of-Kilter Algorithm

Algorithm 3.7: Out-Of-Kilter Algorithm
Input: Directed Network G = (V,E), capacities uij , costs cij
Output: Optimal flow x∗

// Initialization
1 π ← 0
2 establish a feasible flow x in G, compute all initial kilter numbers

// Main loop
3 while residual network G(x) contains an out-of-kilter edge do
4 select an out-of-kilter edge (p, q) ∈ G(x)
5 length(i, j) = max{0, cπij} ∀(i, j) ∈ G(x)
6 compute shortest path distances d(·) from q to all other vertices in

G(x)− {(q, p)}
7 P ← shortest path from q to p
8 ∀i ∈ V : π(i) = π(i)− d(i), update all reduced costs
9 if cπpq < 0 then

10 W ← P ∪ {(p, q)}
11 δ ← min{rij : (i, j) ∈W}
12 augment δ flow along W
13 update x, G(x), all reduced costs and all kilter numbers

We now look at the problems that arise when using the OOK to solve the WCP. The
first problem is related to the capacities uij : while in the minimum-cost flow problem
each edge has a fixed capacity, we have different capacities for each edge depending on
the currently used cable type. In the OOK, the capacities are used for two reasons; the
first one is in the augmentation step, where the minimum residual capacity on the cycle is
computed. Since we already decided to augment only one unit of flow per step, we avoided
any problems here (since each edge in the residual network has a capacity of at least one).
The second use is when computing the kilter number of an edge (Equation 3.7). There
we have two possibilities: using the capacity of the currently used cable type, or always
using the maximum capacity among the cable types. The second possibility seems to be
the better choice, as the first one would incorrectly reflect the amount of flow that could
be augmented along an edge.

The next problem we encounter is related to the fundamental idea of the OOK. As seen in
the previous section, the algorithm is based on the complementary slackness conditions,
since these conditions state whether an edge is in-kilter or out-of-kilter and thus has to be
modified. These conditions, on the other hand, are based on the fact that for each edge
(i, j) the following skew-symmetry (Equation 3.8) holds:

cπij = −cπji. (3.8)

We briefly show how the complementary slackness condition in Equation 3.4 is based on
Equation 3.8. From the reduced cost optimality conditions (Theorem 2.1) we know that
for an optimal solution, each cπij has to be nonnegative. If the flow xij of an edge (i, j)
is now greater than zero and less than the maximum capacity, the residual network also
contains its reversal edge (j, i). Since cπij = −cπji, the reduced costs of both (i, j) and (j, i)
can be nonnegative if and only if cπij = −cπji = 0, which is exactly condition 3.4. Therefore,
3.8 is a sufficient condition for the complementary slackness condition 3.4. While that
skew-symmetry is always satisfied for a linear cost function, it sometimes is not for step cost
functions, which we use in the WCP. Figure 3.8 shows a simple example where Equation 3.8
is not satisfied and therefore an edge is wrongly classified as being out-of-kilter. The

27

3. Examining the Algorithms

(a)

1

(b)

1

cost per unit length

capacity

1 2

1 πi=0 πj=0

−1

(c)

0

πi=0 πj=-1

Figure 3.8: Complementary slackness conditions in WCP. The value on each edge denotes
its reduced costs. Inside each vertex, its potential is displayed. (a) Step
cost function; (b) Initial network; (c) Network after the first iteration and
augmenting one unit of flow along (i, j).

network consists only of the two vertices i and j, thus the only way to augment flow from i
to j is along edge (i, j). In (c) we see the network after updating the vertex potentials and
increasing the flow on edge (i, j) by one: now cπij = −1 and cπji = 0, so cπij 6= −cπji; therefore
Equation 3.8 is not satisfied. Although both edges (i, j) and (j, i) are in an optimal state
now (recall that there was no other way of augmenting flow), Equation 3.4 defines (i, j) as
being out-of-kilter.
Without that skew-symmetry, the complementary slackness conditions do not provide the
intended informative value about the optimality of a flow anymore. Hence, the previous
definition of in-kilter and out-of-kilter edges does not make sense anymore, since that
definition was based on the complementary slackness conditions.

Now, what does that mean for the question if we can use the OOK to solve the WCP?
Obviously, the optimality conditions that the OOK is based on, do not hold for WCP
networks. Therefore, the algorithm could consider optimal edges as non-optimal and vice
versa. While one could now assume that only the optimality of solutions computed with the
OOK is not given anymore, the arising problems are even greater. Recall that the algorithm
aims to transform all edges into in-kilter edges and that the definitions of in-kilter and
out-of-kilter edges make no sense anymore. As we have seen before, the proof of correctness
and termination is based on the lemmas [AMO93, Lemma 9.13] and [AMO93, Lemma
9.14]. These lemmas state that kilter numbers never increase during the algorithm. With
Figure 3.9 we now show an example where (due to the step cost function) kilter numbers
increase when using the OOK to solve the WCP. In (b) the WCP network and a feasible
initial flow is shown: vertex c is the only substation, vertices a, b, d and e are turbines, and
vertex t is the supersubstation. All edges have unit length. In the graphs shown in (c), (d)
and (e), the turbines d, e and the supersubstation are omitted since they are not relevant
in any step for the problem. In (c), the initial reduced costs are displayed. In the first
step, the edge (b, a) is selected as an out-of-kilter edge, since its kilter number is greater
than zero due to Equation 3.7. The algorithm now computes the shortest path distances
from vertex a to all other vertices in G(x)− {(a, b)}. Recall that for this computation, all
negative edge lengths are set to zero (Algorithm 3.7, line 5). In (d) we see the reduced costs
after updating the vertex potentials with these distances. The shortest path from vertex
a to vertex b has been computed as a-c-b. Since now cπba = −1 < 0, one unit of flow is
augmented along the cycle a-c-b-a, and the first iteration ends. The updated reduced costs
are shown in (e). Now we take a look at edge (a, c): at the beginning of the step, cπac = 2.
Therefore, its kilter number has been 0 according to Equation 3.7, so the edge was in-kilter.
At the end of the step, cπac = −2 and xac = 1, thus kac = rac = uac − xac = 2 − 1 = 1.
We observe that the step not only increased the kilter number of edge (a, c), but even
transformed it from an in-kilter edge into an out-of-kilter edge. The reason why that
happened is that after augmenting flow along (a, c), its costs cac decreased to zero, since
the now used cable type has an unsaturated capacity of 2.
Recall that we stated before the two possibilities of defining the capacity of an edge. In

28

3.3. Out-Of-Kilter Algorithm

(c) (d)

πa=0

-30 00

2

2

(e)

2

5

2 5

cost per unit length

capacity

(b)(a)

b

ca t

1

1

3 4

0 4

d

e

πb=0

πc=0
πa=0

-1-2 00

4

0

πb=-2

πc=-2 πa=0

21 0-2

0

-2

πb=-2

πc=-2

Figure 3.9: Increasing kilter numbers when using the OOK for the WCP. All edges have
unit length. In (c)-(e), each edge is labeled with its reduced costs and each
vertex is labeled with its potential. (a) Step cost function; (b) WCP network
with an initial feasible flow displayed on the edges; (c) Initial reduced costs
and vertex potentials; (d) Updated reduced costs and vertex potentials after
computing the shortest distances; (e) Reduced costs after augmenting one unit
of flow along a-c-b-a.

that example, we used the residual capacity of the currently used cable type. If instead
we use the residual capacity of the largest available cable type, the kilter number of (a, c)
is computed as kac = rac = uac − xac = 5− 1 = 4, and therefore (a, c) is classified as an
out-of-kilter edge too.

So we have seen that the correctness proof of the standard OOK does not hold anymore
for step cost functions, as kilter numbers may increase during the algorithm. While that
theoretical analysis does not give any information about the actual termination behaviour,
preliminary experiments have shown that infinite loops occur.

Summarized, we meet a prohibitive problem when trying to solve the WCP with the
OOK. The optimality conditions used by the OOK to define whether an edge is either
in an optimal or non-optimal state do not work with a step cost function. Because of
that, fundamental concepts as the correctness and termination proof do not hold for
WCP instances, eventually leading to infinite computations. Regarding the fact that the
whole underlying concept of the OOK does not work for the WCP and since we see no
straightforward way to adapt the optimality conditions to become meaningful for step cost
functions, the OOK will not be adapted further.

3.3.3 Special Case - One Cable Type Only

In the previous section, we encountered two problems, one concerning the definition of
residual capacities of edges, and the other one with respect to the complementary slackness
optimality conditions. If only one cable type is available, the first problem does not occur
anymore, since in that case each edge has a fixed capacity. Therefore, defining the residual
capacity of an edge works similar to the standard OOK.

29

3. Examining the Algorithms

The more serious problem with the definition of in- and out-of-kilter edges still occurs: as
we have seen before, Figure 3.8 uses only one cable type and still an edge was wrongly
classified. Preliminary experiments have shown that also with only one cable type, kilter
numbers can increase and infinite loops occur.

30

3.4. Relaxation Algorithm

3.4 Relaxation Algorithm

3.4.1 Describing the Relaxation Algorithm

In this chapter, we take a closer look at the Relaxation Algorithm (RLX) as it is described
in [AMO93, pp. 332ff.].
The idea of the RLX is to use the Lagrangian relaxation technique ([AMO93, pp. 605ff.])
that provides a so-called relaxed problem, which is directly related to the minimum cost
flow problem as we see later. The RLX relaxes the mass balance constraints; that means,
for each vertex i, its mass balance constraint is multiplied by a scalar π(i), referred to as
the vertex potential, and the resulting product is subtracted from the objective function
(which is the overall flow costs):

w(π) = min
x

∑
(i,j)∈E

cijxij +
∑
i∈V

π(i)

− ∑
j∈V :(i,j)∈E

xij +
∑

j∈V :(j,i)∈E
xji + b(i)

 (3.9)

subject to
0 ≤ xij ≤ uij ∀(i, j) ∈ E. (3.10)

For a given set of vertex potentials π, that relaxed problem is denoted as LR(π), and
its objective function is denoted as w(π). We can restate Equation 3.9 in the following
equivalent ways (recap that b(i) denotes the supply/demand and e(i) denotes the imbalance
(Equation 2.4) of a vertex i):

w(π) = min
x

∑
(i,j)∈E

cijxij +
∑
i∈V

π(i)e(i), (3.11)

w(π) = min
x

∑
(i,j)∈E

cπijxij +
∑
i∈V

π(i)b(i). (3.12)

With the formulation in Equation 3.12, we can obtain an optimal solution x of LR(π) for
a given set of vertex potentials π in the following way:

If cπij > 0, then xij = 0. (3.13)

If cπij < 0, then xij = uij . (3.14)

If cπij = 0, then x can be set to any value between 0 and uij . (3.15)

That solution is a pseudoflow (section 2.1) for the minimum cost flow problem which
satisfies the reduced cost optimality conditions (Theorem 2.1). Therefore, we can state the
following property ([AMO93, Prop. 9.15]):

Property 3. If a pseudoflow x of the minimum cost flow problem satisfies the reduced
costs optimality conditions for some π, then x is an optimal solution of LR(π).

The next lemma (adapted from [AMO93, Lemma 9.16]) now shows how the relaxed problem
is related to the original problem:

Lemma 3.1. Given an optimal flow x∗ for the minimum cost flow problem with total costs
z(x∗):
(a) For any vertex potentials π : w(π) ≤ z(x∗).
(b) For some choice of vertex potentials π∗ : w(π∗) = z(x∗).

31

3. Examining the Algorithms

Thus, if for some flow x and some vertex potentials π the equation w(π) = z(x) is true,
then x is an optimal solution of the minimum cost flow problem. This lemma is used later
again when it comes to the proof of termination of the RLX.

At all times, the RLX maintains a pair (x, π) where the pseudoflow x is an optimal solution
of LR(π) and therefore (x, π) satisfies the reduced cost optimality conditions. In each step
the algorithm modifies the pseudoflow x to x′ in a way that x′ is also an optimal solution
of LR(π′). In addition, it either decreases the excess of at least one vertex, or modifies
π to π′ in a way that w(π′) > w(π). If possible, the algorithm chooses the second option.
Now we take a look at the RLX (Algorithm 3.8) in more detail.
The algorithm starts with zero flow and zero vertex potentials and then performs major
iterations. In each major iteration, an excess vertex s is selected (line 3). Beginning with
that vertex, a tree S is built in a way that all tree vertices have nonnegative imbalances
and all tree edges have zero reduced costs. Adding a vertex to the tree is called a minor
iteration. Before we see how the tree grows and when a major iteration ends, we introduce
some notation. The set of vertices that do not belong to the tree is denoted as S. With
that, we define the forward cut (S, S) = {(i, j) ∈ E : i ∈ S and j ∈ S} and the backward
cut (S, S) = {(i, j) ∈ E : i ∈ S and j ∈ S}. Furthermore, we define the overall tree
imbalance e(S) =

∑
i∈S

e(i) and the overall residual capacity of zero reduced costs cut edges

r(π, S) =
∑

(i,j)∈(S,S) and cπij=0
rij .

Whenever a vertex is added to the tree (i.e. at the beginning (line 4) or in a minor iteration
(line 11)), the algorithm checks if e(S) > r(π, S) (line 5, line 12/13). If that is true, the
procedure adjust-potential 3.9 is performed. In the first step of that procedure, all zero
reduced costs edges in (S, S) are saturated (line 1) and since e(S) > r(π, S), the remaining
imbalance of the tree is still positive. Note that this operation does not change w(π) since
the flow change affects only zero reduced cost edges. Now all edges in (S, S) have strictly
positive reduced costs because the zero reduced cost edges dropped out of the residual
network. Among the remaining forward cut edges, the lowest reduced costs are computed
(denoted as α, line 2) and all vertex potentials in S are increased by that value (line 3).
That way, w(π) is increased by (e(S)− r(π, S))α units while preserving the reduced cost
optimality conditions. The current major iteration is finished.
If the check e(S) > r(π, S) is false, the algorithm tries to grow the tree. A zero reduced
cost edge (i, j) from the forward cut is selected (line 8; note that at least one such edge
exists, since 0 < e(S) ≤ r(π, S)). If the imbalance of j is nonnegative, j is added to S
and its parent is stored (lines 10-11). If still 0 < e(S) ≤ r(π, S), the next minor iteration
begins, otherwise the adjust-potential procedure is performed (line 14). If the imbalance of
j is negative, the procedure adjust-flow 3.10 is executed. Using the parent pointers of the
tree, the directed path from the start vertex s (which has strictly positive imbalance) to j
is computed (line 1) and the maximum possible amount of flow (line 2) is augmented along
that path (line 3). This operation decreases the excess of s while it does not change w(π)
since it takes place only on zero reduced cost edges. The current major iteration is finished.

The algorithm terminates when all vertices have an imbalance of zero. Since the pair (x, π)
maintained throughout the algorithm satisfies the reduced cost optimality conditions at
all times, the resulting flow is a minimum cost flow. We now take a look at the proof of
termination and the running time.
As we have seen, each major iteration ends by performing either the adjust-potential or the
adjust-flow procedure. While the first one strictly increases w(π), but might also increase
the overall excess, the second procedure strictly decreases the overall excess and does
not change w(π). We now show that the algorithm still terminates in a finite number of
iterations. In the following, U denotes the largest magnitude among all vertex imbalances
and edge capacities; C denotes the largest cost among all edges.

32

3.4. Relaxation Algorithm

Algorithm 3.8: Relaxation Algorithm
Input: Directed Network G = (V,E), capacities uij , costs cij
Output: Optimal flow x∗

// Initialization
1 x← 0
2 π ← 0

// Main loop
3 while G(x) contains a vertex s with e(s) > 0 do
4 S ← {s}
5 if e(S) > r(π, S) then
6 adjust-potential(G, S)
7 repeat
8 select an edge (i, j) ∈ (S, S) with cπij = 0
9 if e(j) ≥ 0 then

10 parent(j) ← i
11 add j to S
12 until e(j) < 0 or e(S) > r(π, S)
13 if e(S) > r(π, S) then
14 adjust-potential(G, S)
15 else
16 adjust-flow(G, S, s, (i,j))

Algorithm 3.9: Adjust-Potential Procedure
Input: Directed Network G = (V,E), Tree S
Output: Updated flow and vertex potentials

1 ∀(i, j) ∈ (S, S) with cπij = 0: augment rij units of flow along (i, j)
2 α← min{cπij : (i, j) ∈ (S, S) and rij > 0}
3 ∀i ∈ S : π(i)← π(i) + α

Algorithm 3.10: Adjust-Flow Procedure
Input: Directed Network G = (V,E), Tree S, start vertex s, edge (i, j)
Output: Updated flow

1 P ← directed path from vertex s to vertex j //Trace back parents
2 δ ← min[e(s),−e(j),min(rij : (i, j) ∈ P)]
3 augment δ units of flow along P

Using the upper bound mCU on the total costs of a feasible flow, Lemma 3.1(a) yields
mCU as the maximum possible value of w(π). Since the algorithm starts with w(π) = 0
and w(π) is never decreased, and each call of adjust-potential increases w(π) by at least 1,
the total number of adjust-potential calls is in O(mCU). Between two of those executions,
the algorithm may perform several adjust-flow calls. After each adjust-potential, the overall
excess is at most O((m + n)U) = O(mU). Each execution of adjust-flow decreases the
overall excess by at least 1. Therefore, the number of adjust-flow executions between two
adjust-potential executions is O(mU). Hence, altogether the number of major iterations is
O(m2CU2). In each major iteration, at most n minor iterations are performed, since at
most n vertices can be added to the tree. With that, the total number of minor iterations

33

3. Examining the Algorithms

of the RLX is in O(m2nCU2).
While that worst-case running time is much worse than those of the previous algorithms, the
RLX has proven to be very efficient in practice; on most classes of networks, it outperforms
the previous algorithms, and even competes with the network simplex algorithm ([AMO93,
p. 332]).

3.4.2 Adapting the Relaxation Algorithm

Now we examine how the Relaxation Algorithm can be adapted to work on WCP instances.
Just like in the previous algorithms, we use the concept of the supersubstation to model
the capacities of the substations. Again, the supersubstation collects the demand of all
substations and is connected with them via zero cost edges.
Also similar to the previous algorithms, the costs cij of an edge (i, j) are the current costs
of sending one more unit of flow along (i, j). As seen in the last section, the RLX can
(and often does) augment more than one unit of flow along an edge at one time. Since
the costs cij are not linear in the WCP, they can decrease or increase when augmenting
flow, leading to non-optimal decisions because the algorithm bases its computations on a
fixed cij . Therefore, an approach to achieve better solutions is to augment only one unit
of flow per edge and iteration. To apply this decision, in line 1 of the adjust-potential
procedure (Algorithm 3.9) rij is replaced with 1, and in line 2 of the adjust-flow procedure
(Algorithm 3.10) δ is set to 1. While this may slow down the algorithm, it does not affect
the termination behaviour and the optimality of the solution of the standard algorithm.
Another problem is the definition of the residual capacity rij of an edge (i, j). While the
standard RLX deals with networks with fixed capacities for each edge, the capacity of an
edge in WCP is determined by the cable types. Thus, we have two options to determine
the capacity uij and therefore rij . First, we could use the residual capacity of the currently
used cable type, i.e. the amount of flow that can be augmented along (i, j) before a new
cable type is required. If the currently used cable has no capacity left, we use the residual
capacity of the next larger cable type, since that matches with the idea of the used costs
(remember that we use the costs for augmenting one more unit of flow). The second option
is to use the residual capacity of the largest available cable type. While that matches with
the idea of the standard RLX, it ignores the fact that the WCP has the choice of not
only one, but multiple cable types. Thus, both options seem to be feasible and have both
advantages and disadvantages.
In the original algorithm, no negative edge weights occur during runtime. In contrast (as
we have seen before in Figure 3.1), this is not true for the WCP because of the step cost
function. In the adjust-potential procedure of the original algorithm, the α computed as the
lowest reduced costs among edges in (S, S) is strictly positive and therefore the potentials
of the vertices in S are increased. With negative reduced costs, α can be negative, as we
see in Figure 3.10: in (d) the costs cij decrease from 1 to 0 and therefore the reduced costs
cπij decrease from 0 to −1. The way we can handle those negative costs is the same as the
standard algorithm does: we compute α as α = min{cπij : (i, j) ∈ (S, S) and rij > 0}. If
that value is negative, the potentials are decreased (as shown in (e)). That way, all edges
in (S, S) have nonnegative costs and at least one edge has zero reduced costs, just like in
the standard algorithm.

Applying these adaptions, preliminary experiments have shown that the RLX works on
some instances only, while never terminating on others. We now examine why these infinite
computations occur. As we have seen before, the idea and the proof of termination of the
RLX is based on the relaxed problem LR(π) and the fact that its objective function w(π)
(Equation 3.9) is never decreased. That property is no longer given on WCP instances; both
the adjust-flow and the adjust-potential procedure can now decrease w(π). In Figure 3.10
(d) we see that the adjust-flow call decreases cπij and increases xij . Thus, the first term of

34

3.4. Relaxation Algorithm

(1, 1)

(b)

(1, 0)

(c)

(0,−1)

(d)

(0, 0)

(e)

3

1

cost per unit length

capacity

(a)

πi=0
ei=2

πj=0
ei=-1

πi=1
ei=2

πj=0
ei=-1

πi=1
ei=1

πi=0
ei=1

πj=0
ei=0

πj=0
ei=0

Figure 3.10: Negative edge weights and negative values for α. The pair on each edge denotes
its costs and its reduced costs. (a) The step cost function; (b) Initial situation.
Until here, xij = 0; (c) Updated potentials and reduced costs after adjust-
potential with α = 1; (d) Updated imbalances, costs and reduced costs after
adjust-flow; (e) Updated potentials and reduced costs after adjust-potential
with α = −1.

w(π) (formulation in Equation 3.12) decreases by 1 while the second term does not change.
In (e) we see that the adjust-potential call decreases π(i), therefore decreases the second
term of w(π) (formulation in Equation 3.11) by 1 while the first term does not change. In
both cases, the total value of w(π) strictly decreases.
So the guarantee of termination can no longer be shown with the previous argumentation,
and thus we have no information about the actual termination behaviour in theory. In the
following we show that infinite loops occur in practice. In Figure 3.11 (b), the initial WCP
instance is shown. The supersubstation has been omitted in the representation. With
the exception of (f, g), which has a length of 20, all edges have unit length. The general
concept of the infinite loop is to get into a state where flow is sent back and forth between
the two vertices e and f infinite times. The first procedure to reach that state is to send
one additional unit of flow to vertex e. To do so, the vertices a, b, c and d are used: they
grow a tree with an excess high enough that it exceeds the residual capacity of edge (d, e).
After that, both units of flow from e are sent to f . From there on, the vertices f and e
send one unit of flow back and forth infinite times. Again, the left vertices are used to
“collect” enough excess to exceed the residual capacity of (e, f).
We now look at the steps in more detail. In the first four iterations, the algorithm always
starts with S = {a} and ends with an adjust-potential call. In the i-th iteration, a tree
consisting of i vertices (going from a to d) is grown, until the forward cut (S, S) contains no
zero reduced cost edge. At this point in each iteration, the only edge in (S, S) has reduced
costs of 5, so adjust-potential is performed with α = 5 and thus the potentials of all i
vertices in S are increased by 5. This makes the edge in (S, S) a zero reduced cost edge,
since its reduced costs are decreased by 5. The result after these iterations is shown in (c).
The next step starts again with S = {a} and adds b, c, and d to S. Now e(S) = 4 > 3 =
r(π, S), therefore adjust-potential is performed and one unit of flow is augmented along
(d, e). Since now cde = 0 and cπde = −5, α is −5 and therefore the potentials of the vertices
in S are decreased by 5 (result is shown in (d)). The next step starts with S = {b} and
adds c, d and e to S and performs an adjust-potential call with α = cπef = 5 (result shown
in (e)). The next iteration starts the same way, but now after adding vertex e to S, it
holds that e(S) = 4 > 3 = r(π, S) and (e, f) is a zero reduced cost edge, thus one unit of
flow is augmented along it. Then α is computed as cπef = −5 and the potentials of the
vertices in S are updated with that value. The resulting residual network is shown in (f),

35

3. Examining the Algorithms

and that state is the beginning of the endless loop.
The next iteration is similar to the previous one, with the only difference that this time
α = cπef = 0. The residual networks after this step is shown in (g).
The next iteration starts with S = {f}. Since e(S) = 3 > 1 = r(π, S) and cπfe = 0, one
unit of flow is augmented along (f, e). Now cfe = cπfe = −5, therefore α = −5 and the
potential of f is decreased by 5 (result shown in (h)). In the next step, the algorithm again
chooses S = {b}, adds c, d and e to S and calls adjust-potential with α = cπef = −5. The
residual network after that operation is displayed in (i) and shows exactly the same state
we already had before (residual network shown in (f)), with the only difference that the
vertex potentials of some vertices have been decreased. This loop is now performed again
infinite times and the algorithm never terminates.

We stated earlier that there are two options of determining the residual capacity of an
edge. In the prior example, we used the first option (i.e. using the residual capacity of
the currently used cable type). Using the second option does not prevent the infinite
loops, since negative edge weights still occur. Another approach is to dismiss the idea of
augmenting only one unit of flow per iteration, which we used to obtain better results.
Recall that the original adjust-potential procedure saturates edges. Therefore they drop
out of the residual network and cannot be negative. Still, it does not fix the problem
since the original adjust-flow procedure augments δ = min[e(s),−e(j),min(rij : (i, j) ∈ P)]
units of flow and therefore does not always saturate edges. Thus, the problem of negative
reduced costs still occurs and can cause the algorithm to run into an infinite loop.

Still, as mentioned before, the algorithm works on some WCP instances and computes
feasible flows. Although it is not sufficient to work on some instances, we briefly talk
about the optimality of the algorithm. Just like the modified SSP, the modified RLX is
not optimal: on the instance shown in Figure 3.12 (b), it computes the flow shown in (c).
That flow has a total cost of 40, while the optimal solution has a cost of 32 (see Figure 3.3
(f)). The problem here is that edge (a, d) has very high costs after augmenting the first
unit of flow along it. This caused the algorithm not to use that edge again, not considering
that using it two more times would be cheaper than the other options.

Summarized, we meet a similar problem as in the OOK: the fundamental idea of the
Relaxation Algorithm that guarantees both optimality and a termination in a finite number
of steps does not work for WCP instances. The step cost function breaks the termination
behaviour and may cause infinite loops. This happens in all our tried variations of
computing the residual capacities of edges and the amount of flow augmented in a single
step. Furthermore, even on the instances where the algorithm provides a feasible solution,
it is not optimal. Mainly due to the problem of not terminating in general, the RLX will
not be adapted further.

3.4.3 Special Case - One Cable Type Only

In the previous section, we encountered two problems: how can we define residual capacities
of edges and the possible decrease of the objective value w(π) that leads to infinite loops.
The first of those problems does not arise in case only one cable type is available: defining
the residual capacity of an edge can now be done in the same way as in the standard RLX,
since each edge has a fixed capacity now.
Though, using only one cable type does not prevent w(π) from being decreased: in the
previous example (Figure 3.10), where we have shown that w(π) can decrease, only one
cable type was used. Therefore, the termination behaviour of the RLX is still unclear, and
preliminary experiments have shown that infinite loops still occur with just one cable type
available.

36

3.4. Relaxation Algorithm

5

3

cost per unit length

capacity

(a)

6

10

πa=0 5 5 5 5 5 100

πe=0
0 0 0 0

10 10 10 10
5 100

ee=1

0 0 0 0

10 10 10 -5
5 100

5 0 0 0

-5105
100

0

10

0 0 0

10

0

-51010
100

0

-5

0 0 0

10

0

-51010
100

0

0

0 0 0

10

0

-51010

-5

0

-5 0 0

10

0

-51015

0

-5

105

95

105

95

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

ea=1
πb=0
eb=1

πc=0
ec=1

πd=0
ed=1

πe=0
ee=1

πf=0
ef=1

πg=0
eg=0

πa=20
ea=1

πa=15
ea=1

πa=15
ea=1

πa=15
ea=1

πa=15
ea=1

πa=15
ea=1

πa=15
ea=1

πb=15
eb=1

πb=15
eb=1

πb=10
eb=1

πb=10
eb=1

πb=10
eb=1

πb=10
eb=1

πb=5
eb=1

πc=10
ec=1

πc=10
ec=1

πc=5
ec=1

πc=5
ec=1

πc=5
ec=1

πc=5
ec=1

πc=0
ec=1

πd=5
ed=1

πd=0
ed=0

πd=5
ed=0

πd=0
ed=0

πd=0
ed=0

πd=0
ed=0

πd=-5
ed=0

πg=0

πg=0

πg=0

πg=0

πg=0

πg=0

πg=0

πe=0
ee=2

πe=5
ee=2

πe=0
ee=1

πe=0
ee=0

πe=0
ee=1

πe=-5
ee=1

πf=0
ef=1

πf=0
ef=1

πf=0
ef=1

πf=0
ef=2

πf=0
ef=3

πf=-5
ef=2

πf=-5
ef=2

eg=0

eg=0

eg=0

eg=0

eg=0

eg=0

eg=0

xef=1

xde=1

xde=1

xde=1

xde=1

xde=1

xde=1

xef=2

xef=1

xef=1

Figure 3.11: Infinite loop with the RLX. The value on each edge denotes its reduced costs.
Non-zero edge flows are labeled below the edge. Inside each vertex, its potential
and imbalance is displayed. (a) Step cost function; (b) Initial network; (c)
Residual network after four major iterations, each starting with vertex a; (d)
Residual network after augmenting one unit of flow along d-e; (e) Residual
network after one major iteration, starting with b; (f) Residual network after
augmenting one unit of flow along e-f ; (g) Residual network after augmenting
one unit of flow along e-f ; (h) Residual network after augmenting one unit of
flow along f -e; (i) Residual network after one major iteration, starting with b.

37

3. Examining the Algorithms

(b)

1

1

3

cost per unit length

capacity

(a)

3

a

b c

d

1
1

1
1

10 10

15
15

15
15

(c)

0 0

1 1

a

b c

d

1

Figure 3.12: Non-optimal solution with the RLX. (a) Step cost function; (b) Initial network,
each edge is labeled with its costs; (c) Computed solution, each edge is labeled
with the amount of flow along it.

38

4. Experimental Evaluation

In the previous sections, we developed one working algorithm in four variants which solve
the WCP. In this chapter, we first compare these variants among each other to find the
best one in terms of running time and solution quality. This variant is then compared to a
negative cycle canceling (NCC) approach [GUW+19] and a MILP variation, again with
respect to quality of the found solutions as well as the required running times.
For these evaluations we use benchmark sets for wind farms from [LRWW17], with each set
having different wind farm sizes and characteristics. Set N1 contains small wind farms with
one substation and 10-79 turbines, while N2 contains wind farms with multiple substations
and 20-79 turbines. Larger wind farms are found in N3 and N4, having multiple substations
and 80-180 (200-499, respectively) turbines. N5 consists of complete graphs with a size of
80-180 turbines and multiple substations.
The SSP code is written in C++14 and compiled with GCC 8.2.1. A 64-bit architecture
with four 12-core CPUs of AMD clocked at 2.1 GHz with 256 GB RAM running OpenSUSE
Leap 15.1 was used to run the simulations. All simulations were computed in single-
threaded mode. That setup is nearly identical to the setup used to run the NCC and MILP
experiments ([GUW+19]) to ensure comparability of all algorithms.
In the following evaluations, we often look at ratios of the two compared algorithms. When
doing so, we always divide the value of the first mentioned algorithm by the value of the
second one.

4.1 Comparing Variants of the SSP

We briefly recall which variants we developed in the previous chapter. We have two
strategies of finding shortest paths (Dijkstra’s Algorithm and an adapted Bellman-Ford
Algorithm) and two strategies of choosing the costs of an edge (using vertex potentials and
reduced costs or using the normal costs). These strategy options provide us four possible
variants, which we referred to as DIJNOR, DIJPOT, BELNOR and BELPOT.
To find the best of these variants, we evaluate them in two steps. First, we compare both
Dijkstra variants among each other, and separately both Bellman-Ford variants. In the
second step, we compare the better Dijkstra variant to the better Bellman-Ford variant to
find the overall best SSP variant.
For these evaluations we randomly select 200 instances per benchmark set, so they are
independently chosen from the selected instances in [GUW+19].

39

4. Experimental Evaluation

Table 4.1: Minimum, average and maximum of running times in milliseconds of both
compared variants. For each column, the minimum (i.e. the best) value is
marked in green. The last row displays the minimum, average and maximum
time ratios.

Strategy
Combination

N1 N2 N3 N4 N5

min avg max min avg max min avg max min avg max min avg max
DIJNOR 0.13 2.47 12.1 0.58 3.98 12.8 11.9 28.3 88.6 122 573 1.4k 167 872 4.8k
DIJPOT 0.13 2.56 12.8 0.57 4.03 12.6 12.0 29.4 95.9 131 666 1.7k 125 609 3.1k
Time ratio 0.88 0.99 1.21 0.91 0.99 1.17 0.88 0.97 1.07 0.79 0.88 1.03 1.22 1.38 1.71

4.1.1 Comparing DIJNOR to DIJPOT
We begin the evaluation by comparing the running times of both strategies. The first
two rows of Table 4.1 show the minimum, average and maximum running times for each
benchmark set. We also look at the time ratio of both algorithms, i.e. we divide the
runnning time of DIJNOR by the running time of DIJPOT; for each set, the minimum,
average and maximum time ratios are displayed in the last row of Table 4.1.
Our first observation is that both variants are very fast, with maximum running times of
4.8 seconds (DIJNOR) and 3.1 seconds (DIJPOT), both on N5. On the benchmarks sets
N1, N2 and N3, both variants have quite similar running times with average time ratios of
0.99, 0.99 and 0.97. DIJNOR is slightly faster on these sets: while it outruns DIJPOT on
58% of the instances on N1 and N2, it is faster on 82.5% on N3. On large graphs (set N4),
we observe significant differences: DIJNOR is faster on all but two instances, having an
average ratio of 0.88. In contrast, DIJPOT is faster on complete graphs (N5), as it outruns
DIJNOR on each instance. The ratios range from 1.22 to 1.71, showing that DIJPOT is
much faster on these graphs. It remains unclear why both strategies perform so differently
on these two sets.
Overall, both variants show similar running times, with DIJNOR being faster on 59.4% of
all instances, but with an overall average ratio of 1.044 that indicates a small advance for
DIJPOT, primary coming from set N5. Since both variants are very fast and differ only
slightly in running times, we base our decision which variant is better solely on the quality
of their solutions.

To evaluate the quality of the solutions found by both strategies, we compute for each
instance the relative cost ratio, i.e. we divide the objective value found by DIJNOR by
the objective value found by DIJPOT. For each benchmark set, the ratios of all instances
are sorted in ascending order and then plotted in Figure 4.1. The first observation is that
DIJNOR finds way better solutions on nearly all instances. DIJPOT is better on only
three instances, which are all very small wind farms from set N1, with a maximum ratio of
1.005. On sets N2, N3 and N4, the average ratio is within 0.84-0.86. On complete graphs,
DIJNOR finds much better solutions than DIJPOT on all instances; the best ratio on N5
is 0.41, on 25.5% of all instances DIJNOR computes costs that are only half as much as
those computed by DIJPOT, on 61.5% of all instances the ratio is smaller than 0.55.
Overall, DIJNOR outperforms DIJPOT on all benchmark sets, with an average ratio of
0.795. Hence, we choose DIJPOT as the better Dijkstra variant.

We briefly analyze why not using vertex potentials and reduced costs seems to be the far
better strategy. As we have stated in the previous chapter when developing the SSP, the
quality of the solution depends on the paths computed by the shortest path algorithm.
We have also seen that Dijkstra does not necessarily find shortest paths in the presence
of negative edges. This brings up the assumption that the quality of the computed paths
may depend on the number of negative edges occuring. To examine this, we take a look
at the ratio of negative edges occuring during the overall computation of a solution for

40

4.1. Comparing Variants of the SSP

0.42

0.52

0.62

0.72

0.82

0.92

1.02

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

N1

N2

N3

N4

N5

Figure 4.1: Relative cost ratios of DIJNOR compared to DIJPOT.

Table 4.2: Minimum, average and maximum negative edge ratios for each benchmark set
in percent.

Strategy
Combination

N1 N2 N3 N4 N5

min avg max min avg max min avg max min avg max min avg max
DIJNOR 2.37 3.19 4.49 2.50 3.04 3.74 2.59 2.89 3.29 2.47 2.76 3.02 0.12 0.22 0.35
DIJPOT 4.64 7.88 15.56 5.24 7.15 11.31 5.46 7.68 10.06 5.71 10.0 13.84 0.37 0.89 1.72

an instance, i.e. we divide the number of negative edges by the total number of edges
throughout the computation. In Table 4.2 these ratios are displayed for both variants
and for each benchmark set. We observe that DIJNOR has a significant better ratio on
all benchmark sets, meaning much less negative edges occur compared to DIJPOT. The
highest difference is found on N5: in average, using vertex potentials leads to over four
times as many negative edges as using normal costs does. These observations seem to
correlate with the quality of the found solutions by both variants and therefore with our
assumption that more negative edges lead to worse solutions.
Now we give a possible explanation why vertex potentials lead to more negative edges.
When not using vertex potentials, only edges with negative flow (i.e. their reverse edge
has a positive flow) can have negative costs, since augmenting one unit of flow along them
means to reduce the flow on its reverse edge, so eventually a cheaper cable type is sufficient
for the resulting flow. In contrast, when using vertex potentials and reduced costs, the
potential of a vertex affects all surrounding edges; that means, also edges with zero or
positive flow can become negative. Our experiments have shown that most time, the
majority of negative edges are zero flow edges, followed by edges with positive flow. This
might explain why using vertex potentials leads to significantly more negative edges.
Looking at Table 4.2 also raises the question why on complete graphs (N5) the ratio of
negative edges is much smaller than on the other wind farms. The reason for this is most
likely because most of the edges on complete graphs are never used to carry flow. Therefore,
the costs of these unused edges never become negative, especially when using normal costs.

4.1.2 Comparing BELNOR to BELPOT

We begin by comparing the running times of both strategies. Table 4.3 displays the
minimum, average and maximum running times as well as the time ratios for each benchmark
set. Both variants are fast, with running times ranging from tenth of milliseconds to just

41

4. Experimental Evaluation

Table 4.3: Minimum, average and maximum of running times in milliseconds of both
compared variants. For each column, the minimum (i.e. the best) value is
marked in green. The last row displays the minimum, average and maximum
time ratios.

Strategy
Combination

N1 N2 N3 N4 N5

min avg max min avg max min avg max min avg max min avg max
BELNOR 0.38 46.7 326 3.75 73.9 323 299 957 4.2k 5.6k 41.3k 156k 2.8k 17.0k 101.3k
BELPOT 0.38 46.7 328 3.74 74.1 310 311 966 4.3k 5.7k 43.0k 153k 2.8k 17.1k 103.4k
Time ratio 0.96 1.00 1.07 0.93 1.00 1.05 0.92 0.99 1.08 0.82 0.97 1.14 0.87 1.00 1.13

over two and a half minutes. On small wind farms (sets N1, N2 and N3), both strategies
have very similar running times with average time ratios of 1.00, 1.00 and 0.99, and also
the minimum and maximum running times differ only slightly. On large wind farms (N4),
BELNOR is in average faster than BELPOT, though the time ratios spread between 0.82
and 1.14, meaning both strategies outrun the other on some instances. BELNOR is faster
on 71.5% of all instances on that set. On complete graphs, both variants have quite similar
running times again, with BELNOR being slightly better.
Overall, BELNOR is faster on 61.1% of all instances with an average time ratio of 0.990,
indicating that there is no significant advantage over BELPOT. Therefore, we base our
decision which strategy to choose on the quality of the solutions.

To compare the solution quality of both variants, we evaluate the relative cost ratio that is
plotted in Figure 4.2. Our first observation is that both variants seem to find solutions of
quite similar quality. On the small wind farms in benchmark set N1, they compute the
same solution on all instances. On set N2, still on 61.5% of all instances both strategies
compute the same solution, on 24% BELNOR finds better solutions. The ratios are widely
spread, ranging from 0.919 to 1.056. On sets N3 and N4, the ratios do not spread that
much and each strategy finds better solutions than the other on around 45− 55%. The
average ratio on both sets is 0.99, indicating that both strategies provide quite the same
quality of solutions. On set N5, the maximum and minimum ratio spread wider again,
with an average of 0.99. On 49% of the instances, BELNOR finds better solutions than
BELPOT, on 15% both computed solutions are equal.
Overall, BELNOR finds better solutions on 35.6% of all instances, in contrast BELPOT
finds better solutions on only 27.5%. Furthermore, the average ratio on each benchmark
set, as well as the overall ratio, is less than one, meaning that BELNOR is slightly better
than BELPOT. Hence, the strategy to use normal costs instead of vertex potentials and
reduced costs is the better one in combination with Bellman-Ford.

4.1.3 Comparing DIJNOR to BELNOR

In the previous sections we found that for both Dijkstra and Bellman-Ford, using normal
costs without vertex potentials is the better choice. In this section, we therefore compare
DIJNOR and BELNOR to find the overall best SSP variant.
In Table 4.4 the running times are displayed as well as the time ratios. We already stated
that DIJNOR always terminates in under 5 seconds while BELNOR requires up to just
over two and a half minutes. In comparison, DIJNOR is faster than BELNOR on all
instances. The larger the wind farms are, the more significant is the difference between
both running times: while the average ratio is 0.16 on set N1, it is 0.02 on N4. On the
latter, the minimum ratio is 0.01, meaning that DIJNOR requires only a hundredth of
the time that BELNOR needs to terminate. Even on the smallest wind farms on set N1,
DIJNOR is at least twice as fast as BELNOR.

42

4.2. Comparing our Best SSP Variant to NCC

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

N1

N2

N3

N4

N5

Figure 4.2: Relative cost ratios of BELNOR compared to BELPOT.

Table 4.4: Minimum, average and maximum of running times in milliseconds of both
compared variants. For each column, the minimum (i.e. the best) value is
marked in green. The last row displays the minimum, average and maximum
time ratios.

Strategy
Combination

N1 N2 N3 N4 N5

min avg max min avg max min avg max min avg max min avg max
DIJNOR 0.13 2.47 12.1 0.58 3.98 12.8 11.9 28.3 88.6 122 573 1.4k 167 872 4.8k
BELNOR 0.38 46.7 326 3.75 73.9 323 299 957 4.2k 5.6k 41.3k 156k 2.8k 17.0k 101.3k
Time ratio 0.04 0.16 0.36 0.04 0.08 0.18 0.02 0.03 0.04 0.01 0.02 0.02 0.04 0.05 0.06

Summarized, DIJNOR is much faster than BELNOR, especially on large wind farms. Still,
also BELNOR terminates in a reasonable time.

To evaluate the quality of the solution, we look again at the relative cost ratio, plotted in
Figure 4.3. On small wind farms (N1), both variants find equal solutions on 6.5% of all
instances, on 79% DIJNOR computes better results. The ratios spread widely, ranging
from 0.84 to 1.05. Similar results are observed on set N2, though there DIJNOR is better
on 86.5% of the instances and only on one instance both strategies find equal solutions.
DIJNOR is even better on sets N3, N4 and N5 as it outperforms BELNOR on 98% of the
wind farms in these sets, with ratios ranging from 0.90 to 1.02. The average ratios do not
differ significantly between the benchmark sets as they range from 0.962 to 0.970.
Overall, DIJNOR computes better solutions on 91.8% of all instances with an average
ratio of 0.968.

Altogether, we figured out that DIJNOR yields better solutions than BELNOR on each
benchmark set and requires significant less time to compute those. Hence, we declare
DIJNOR to be the best SSP variant.

4.2 Comparing our Best SSP Variant to NCC
Now we compare our best developed SSP variant DIJNOR to the NCC algorithm. For
both algorithms, we evaluate the solutions provided after termination and the running
times they need to terminate. From each benchmark set, we run the 200 instances that
have been randomly selected in [GUW+19].

43

4. Experimental Evaluation

0.82

0.86

0.90

0.94

0.98

1.02

1.06

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

N1

N2

N3

N4

N5

Figure 4.3: Relative cost ratios of DIJNOR compared to BELNOR.

Table 4.5: Minimum, average and maximum of running times in milliseconds of both
compared variants. For each column, the minimum (i.e. the best) value is
marked in green. The last row displays the minimum, average and maximum
time ratios.

Strategy
Combination

N1 N2 N3 N4 N5

min avg max min avg max min avg max min avg max min avg max
DIJNOR 0.14 2.62 12.2 0.57 3.85 12.2 12.3 28.7 95.0 125 548 1.4k 167 823 4.8k
NCC 0.47 33.7 279 2.99 51.7 260 159 666 3.2k 3.4k 26.1k 89.3k 1.8k 13.0k 97.4k
Time ratio 0.04 0.15 0.36 0.05 0.11 0.24 0.03 0.05 0.08 0.02 0.02 0.04 0.05 0.07 0.11

In Table 4.5 the minimum, average and maximum running times and time ratios are
displayed. Our first observation is that our SSP is much faster than NCC on each wind
farm instance. The running times of NCC range from half a millisecond to almost 100
seconds, while SSP always terminates in under five seconds. SSP outruns NCC especially
on larger wind farms: while the average ratio on set N1 is 0.15, it is 0.02 on set N4, meaning
that in average SSP is 50 times faster than NCC. The overall time ratio is 0.08.
Summarized, SSP is much faster than NCC, though also NCC provides reasonable running
times since it terminates in under two minutes.

As in the previous sections, we evaluate the relative cost ratio of the two algorithms to
compare their solution qualities; the ratios are plotted in Figure 4.4. As we see, NCC
outperforms our SSP on each benchmark set. On N1, N2, N3 and N4 it computes better
solutions on all instances. The ratios have a wide range on smaller wind farms: on N1 the
minimum ratio is 1.014 and the maximum is 1.275; set N2 shows very similar results. On
larger wind farms, the ratios spread less widely, ranging from 1.06 to 1.16 on both N3 and
N4. The difference between NCC and SSP is more significant on smaller wind farms: while
the average ratio on N1 is 1.154, it is only 1.101 on N4. On the latter set, our algorithm is
within 10% of NCC’s solution on 53% of the instances. On complete wind farms (N5),
SSP computes better solutions than NCC on three instances with a minimum ratio of
0.973; though, the ratios have a wide range again, with a maximum of 1.244. The overall
average ratio is 1.124.

In summary, the evaluation shows that NCC outperforms our algorithm on almost all
instances in terms of solution quality, while our algorithm is much faster. Therefore,

44

4.3. Comparing our Best SSP Variant to MILP

0.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

N1

N2

N3

N4

N5

Figure 4.4: Relative cost ratios of DIJNOR compared to NCC.

NCC seems to be the better option in most cases. However, our algorithm can be a
viable alternative in cases where very short running times are essential, for example in an
interactive planning process. Especially on large wind farms it provides solutions much
faster than NCC in a reasonable range of relative cost ratios.

4.3 Comparing our Best SSP Variant to MILP

We now compare our best developed SSP variant DIJNOR to the exact MILP solver Gurobi
8.0.0. The exact MILP formulation is found in [GUW+19]. From each benchmark set, we
run the same 200 instances we used in the previous section. Other than our SSP, Gurobi
does not only find feasible flows when it terminates, but can yield solutions during runtime.
Since the computations of optimal solutions take too long on most instances (up to many
days), we restrict the solver to different maximum running times and evaluate the solutions
provided after these times. The maximum running times are between five seconds (which
is above the maximum time the SSP takes to terminate) and one hour. For the SSP, we
always use the solution found at termination. In addition to the comparison of the relative
cost ratios (plotted in Figure 4.5), we compare the so called relative gaps, a standard notion
from Mixed-integer Linear Programming. While computing solutions for an instance,
Gurobi also tries to prove lower bounds (lb) on the optimal objective value for that instance.
Together with the best found solution, referred to as upper bound (ub), the relative gap
is computed as ub-lb/ub. The relative gap is in the unit interval and can indicate how far
away the found solution is from the optimal objective value; higher values indicate worse
solutions than lower values. In our evaluation, for each instance and maximum running
time we use the lower bound found by Gurobi after one hour, and as the upper bound
we use the best solution found by the SSP at termination and the best solution found by
Gurobi after the specified maximum running time, respectively. We denote these relative
gaps (plotted in Figure 4.6) as SSP gap and MILP gap.

After maximum running times of five seconds, our first observation is that Gurobi seems
to be better on small wind farms, while SSP yields better solutions on larger wind farms
(Figure 4.5). On N1, Gurobi finds better solutions than SSP on all but one instance, namely
the largest wind farm of the benchmark set. The ratios spread widely from 0.95 to 1.27
with an average of 1.13. The SSP gaps are on average 28% with a maximum of 38%
compared to an average MILP gap of 18.5%, ranging from 0% to 33.6%. On N2, the

45

4. Experimental Evaluation

MILP gaps are on average 26.2% with an outlier at 41.5%. Repeatedly, the SSP gaps are
worse with an average of 32.6%. The relative costs ratios show similar results as on N1,
though SSP performs slightly better than on N1 with a minimum of 0.86 and an average
of 1.10. On N3, SSP is better on 18% of the instances, the average ratio is 1.04. Both
gaps are quite similar, with the MILP gaps having a slightly better average of 32.1%, but
also a wider distribution with a maximum of 39.4%. The SSP gaps have a spread of only
seven percentage points with a maximum of 38.5%. On the large wind farms of set N4,
SSP clearly outperforms the MILP: it finds better solutions on 81% of the instances there.
On seven instances, the ratio is less than 0.18, meaning that the computed flows cost only
a fifth of those found by Gurobi. The average ratio on that set is 0.93. The SSP gaps are
within a small range with a mean of 35.8%. The MILP gaps are worse with an average
of 40.5% and seven instances above 88%. On complete graphs (N5), SSP is better than
Gurobi on all instances. The ratios range from 0.09 to 0.61 with an average of 0.15. On all
but eight instances, SSP yields solutions that are at least 80% cheaper than Gurobi’s; all
those eight instances contain only 80-90 turbines and therefore belong to the smallest wind
farms of the set. The SSP gaps are on average 44.4% and have a spread of ten percentage
points, compared to an average of 91.9% for the MILP gap. All but the above-mentioned
eight instances have a MILP gap greater than 89%. Altogether, we observe that within
five seconds, Gurobi finds better solutions than SSP on small instances, but does not find
reasonable results on large and especially on complete graphs. On the latter, SSP provides
better results.

After maximum running times of five minutes, we observe different results: Gurobi finds
better solutions on all instances. While the minimum ratios are quite similar across all
benchmark sets, ranging from 1.02-1.05, the maximum and average ratios are greater on
smaller wind farms. On N1, the maximum ratio is 1.27, on N4 it is only 1.15. The average
ratios range between 1.16 (N1) and 1.08 (N4). Especially on complete graphs, Gurobi is
now able to find way better results than it did after five seconds and outperforms the SSP
with an average ratio of 1.13. The MILP gaps are much more consistent after five minutes
compared to those after five seconds. On N2, the maximum decreases to 29.6%, the outlier
is not present anymore. On N4, the MILP gaps now have a mean of only 29.7% and a
maximum of 32.3%. The most significant change is found on N5: the average gap is now
36.3%, compared to the mean of 91.9% after five seconds; the maximum gap after five
minutes is 42%. The SSP gaps (that did not change since the solution provided after 5
seconds is the final solution) are worse than the MILP gaps on each instance now.

With even longer maximum running times of up to one hour, the results look vastly the
same: Gurobi improves its found solution only slightly, the most noteworthy difference
takes place on the larger wind farms. After fifteen minutes, the average relative cost ratio of
both N4 and N5 increases by one percentage point. After one hour, the average ratio of N5
increases again to 1.15 (compared to 1.13 after five minutes). On the other sets, the only
notable changes are small increases of the minimum and the maximum ratio. The average
ratio of all instances after five minutes is 1.1179, after fifteen minutes 1.1224 and after
one hour 1.1257, underlining that there are only slight differences between the maximum
running times. According to that, also the MILP gaps after one hour look extensively the
same as after five minutes.

Summarized, the experiments have shown that the SSP is a viable option on large wind
farms when maximum running times of few seconds are essential. In such short times,
Gurobi does not find reasonable solutions on most instances, while our algorithm does.
With more time available, the SSP cannot compete with Gurobi as the latter profits from
longer running times and yields better solutions on all instances.

46

4.3. Comparing our Best SSP Variant to MILP

0.08

0.28

0.48

0.68

0.88

1.08

1.28

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

R
el
at
iv
e
C
os
ts

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

0 20 40 60 80 100
Instances in %

N1 N2 N3 N4 N5

Figure 4.5: Relative cost ratios of the SSP compared to Gurobi at different maximum
running times. Upper left to upper right: 5 s, 5 min, 15 min; bottom left to
bottom right: 30 min, 45 min, 1 h.

47

4. Experimental Evaluation

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

t = 5 s

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

t = 5 min

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

t = 1 h

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

20

40

60

80

100

0 20 40 60 80 100

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

20

40

60

80

100

0 20 40 60 80 100

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

SSP Gap

MILP Gap

0

10

20

30

40

50

0 10 20 30 40 50

Figure 4.6: Comparison of SSP and MIP gaps for each benchmark set (rows 1-5 show
N1-N5) after maximum running times of five seconds, five minutes and one
hour.

48

5. Conclusion

In this thesis, we examined algorithms for the Wind Farm Cabling Problem. For
this purpose, we modeled the WCP as a flow network and looked at its similarities and
differences to the well-known Minimum-Cost Flow Problem. We then looked at various
optimal MCF algorithms and analyzed whether we can adapt these algorithms to solve the
WCP. For the Primal-Dual Algorithm, the Out-Of-Kilter Algorithm and the Relaxation
Algorithm we found that serious problems arise due to the non-linear step cost function of
the WCP. These problems led to our decision that none of these are appropriate for the
WCP and therefore have not been developed further.

For the Successive Shortest Path Algorithm, we found that an adaption to a WCP algorithm
is suitable. We developed two possibilities concerning the usage of vertex potentials as well
as two strategies of computing short paths, resulting in four variants of the algorithm. In
the next step, we compared these variants among each other to find the best one in terms
of running times and quality of the found solutions.
Thereafter we compared our best variant of the SSP to already existing WCP algorithms,
namely a negative cycling canceling heuristic and a MILP solver. We found that our
algorithm provides reasonable solutions in very short running times, but cannot keep up
with the other algorithms in terms of solution quality after longer running times. Therefore,
our algorithm can be a viable option in time-critical planning processes especially on large
wind farms, since it computes good solutions within a few seconds whereas NCC and MILP
need significantly more time to find comparable solutions.

5.1 Further Work
Regarding our developed SSP algorithm, one may examine ways to improve the quality of
the found solutions. The probably most promising approach for this may be improving the
computed short paths. Both our heuristics, Dijkstra and Bellman-Ford, do not find the
shortest simple paths in the presence of negative edges. Thus, one may develop heuristics
that compute better paths than our heuristics do; this will most likely come along with a
trade-off between running time and quality. One can also go deeper into our claim that
more negative edges lead to worse solutions; if this can be proved to be true, another way
of improving the quality of computed short paths can be to reduce the number of negative
edges occurring throughout the SSP.
Another approach is to identify and evaluate different strategies of choosing the start vertex

49

5. Conclusion

in each iteration. Until now, we simply select the turbines in the order they appear in
the list representation of the wind farm. Another possible strategy may be to base the
selection on the geographic distances between turbines and their nearest substations.

Another approach worth trying may be combining our algorithm with NCC or MILP. Since
the latter two need to start with a feasible initial flow, and our algorithm provides such
a flow in only a few seconds, the SSP’s solution could be used as warm start for NCC
or MILP. This may result in faster computations and better solutions compared to the
currently used initial flow.

50

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[BG60] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family
of minimum-cost network flow patterns. 1960.

[BVMO16] Constantin Berzan, Kalyan Veeramachaneni, James McDermott, and Una-
May O’Reilly. Algorithms for Cable Network Design on Large-scale Wind
Farms. http://thirld.com/files/msrp_techreport.pdf, 2016. Accessed:
2019-12-02.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–264,
April 1972.

[Ful61] Delbert Ray Fulkerson. An out-of-kilter algorithm for minimal cost flow
problems. Journal of The Society for Industrial and Applied Mathematics,
9:18–27, 1961.

[GKK74] F. Glover, D. Karney, and D. Klingman. Implementation and computational
comparisons of primal, dual and primal-dual computer codes for minimum
cost network flow problems. Networks, 4(3):191–212, 1974.

[GUW+18] Sascha Gritzbach, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner,
and Matthias Wolf. Towards negative cycle canceling in wind farm cable
layout optimization. In Proceedings of the 7th DACH+ Conference on Energy
Informatics, volume 1 (Suppl 1). Springer, 2018.

[GUW+19] Sascha Gritzbach, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and
Matthias Wolf. Engineering Negative Cycle Canceling for Wind Farm Cabling,
2019.

[Iri60] Masao Iri. A new method for solving transportation-network problems. 1960.

[Jew62] William S. Jewell. Optimal flow through networks. 1962.

[JM93] David S. Johnson and Catherine C. McGeoch. Network flows and matching:
First dimacs implementation challenge. 1993.

[KK12] Z. Király and P. Kovács. Efficient implementations of minimum-cost flow
algorithms, 2012.

51

http://thirld.com/files/msrp_techreport.pdf

Bibliography

[Kov15] Péter Kovács. Minimum-cost flow algorithms: An experimental evaluation.
Optimization Methods and Software, 30, 01 2015.

[LR13] S. Lumbreras and A. Ramos. Optimal design of the electrical layout of an
offshore wind farm applying decomposition strategies. IEEE Transactions on
Power Systems, 28(2):1434–1441, 2013.

[LRWW17] Sebastian Lehmann, Ignaz Rutter, Dorothea Wagner, and Franziska Wegner.
A simulated-annealing-based approach for wind farm cabling. In Proceedings
of the Eighth International Conference on Future Energy Systems, e-Energy
’17, pages 203–215, New York, NY, USA, 2017. ACM.

[Min60] G. J. Minty. Monotone networks. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences, 257, 09 1960.

[Orl97] James B. Orlin. A polynomial time primal network simplex algorithm for
minimum cost flows. Mathematical Programming, 78:109–129, 1997.

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[Sta18] Dominik Stampa. Verkabelung von Windfarmen auf Bäumen. Bachelor thesis,
Karlsruhe Institute of Technology, September 2018.

[Tar85] Éva Tardos. A Strongly Polynomial Minimum Cost Circulation Algorithm.
Combinatorica, pages 247–255, 1985.

[win] Wind energy in Europe in 2019 trends and statistics. https:
//windeurope.org/wp-content/uploads/files/about-wind/statistics/
WindEurope-Annual-Statistics-2019.pdf. Accessed: 2020-24-04.

52

https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.2.1 The Wind Farm Cabling Problem
	1.2.2 The Minimum-Cost Flow Problem

	1.3 Contributions
	1.4 Outline of the Thesis

	2 Preliminaries
	2.1 Flow Networks
	2.2 Wind Farm Model
	2.3 Vertex Potentials and Reduced Costs
	2.4 Further Notations

	3 Examining the Algorithms
	3.1 Successive Shortest Path Algorithm
	3.1.1 Describing the SSP
	3.1.2 Adapting the SSP
	3.1.3 Finding Short Paths
	3.1.3.1 Dijkstra
	3.1.3.2 A Modified Bellman-Ford

	3.1.4 Running Time and Optimality
	3.1.4.1 Running Time
	3.1.4.2 Quality of the Solution

	3.1.5 SSP without Vertex Potentials
	3.1.6 Special Case - One Cable Type Only

	3.2 Primal-Dual Algorithm
	3.2.1 Describing the Primal-Dual Algorithm
	3.2.2 Adapting the Primal-Dual Algorithm
	3.2.3 Special Case - One Cable Type Only

	3.3 Out-Of-Kilter Algorithm
	3.3.1 Describing the Out-Of-Kilter Algorithm
	3.3.2 Adapting the Out-Of-Kilter Algorithm
	3.3.3 Special Case - One Cable Type Only

	3.4 Relaxation Algorithm
	3.4.1 Describing the Relaxation Algorithm
	3.4.2 Adapting the Relaxation Algorithm
	3.4.3 Special Case - One Cable Type Only

	4 Experimental Evaluation
	4.1 Comparing Variants of the SSP
	4.1.1 Comparing DIJNOR to DIJPOT
	4.1.2 Comparing BELNOR to BELPOT
	4.1.3 Comparing DIJNOR to BELNOR

	4.2 Comparing our Best SSP Variant to NCC
	4.3 Comparing our Best SSP Variant to MILP

	5 Conclusion
	5.1 Further Work

	Bibliography

