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Abstract

Comparing sums of square roots is inevitable in many geometric problems in Euclidean
space, e.g. the Euclidean traveling salesman or Euclidean Steiner tree problem. The
Sum of Square Roots Problem is a notorious open problem since the 1970s, and
placing it in the vast landscape of complexity classes has been an ongoing challenge.
Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen showed in 2009 that the Sum
of Square Roots Problem lies within the Counting Hierarchy CH in their paper On
the Complexity of Numerical Analysis. To date, no stronger upper bound for the
complexity of this problem, let alone a placement in a well studied complexity class
like P, NP or the Polynomial Hierarchy PH is known. In this work, we present the
proof of Allender et al. and unpack its complicated intermediate steps.

Deutsche Zusammenfassung

Summen von Quadratwurzeln zu vergleichen ist in vielen geometrischen Problemen in
euklidischen Räumen, wie zum Beispiel dem euklidischen Traveling Salesman Problem
oder dem euklidischen Steiner-Baum-Problem, unvermeidlich. Seit den 1970er-Jahren
ist das sogenannte Sum of Square Roots Problem eine bekannte offene Fragestellung
und das Finden von Schranken an dessen Komplexität eine andauernde Aufgabe.
Allender, Bürgisser, Kjeldgaard-Pedersen und Miltersen zeigen in On the Complexity
of Numerical Analysis, erschienen 2009, dass das Sum of Square Roots Problem
in der sogenannten Counting Hierarchie CH liegt. Seither ist keine stärkere obere
Schranke an die Komplexität dieses Problems, geschweige denn eine Einordnung
in eine der klassischen und gut erforschen Komplexitätsklassen P, NP oder die
Polynomialzeithierarchie PH, bekannt. In dieser Arbeit präsentieren wir den Beweis
von Allender et. al und erklären dessen vielschichtige Zwischenschritte.
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1. Introduction

The Pythagorean theorem is one of the most basic relations in geometry: Given the length
of two sides a and b of a right triangle, the length of the hypotenuse c is the square root of
the sum of a2 and b2. Distances between two points in Euclidean space can be computed by
considering the difference of their Cartesian coordinates and then applying this fundamental
statement. Moreover, if the goal is to decide whether the length of a path along a set of
points is less than some value, comparing a sum of square roots to this value is inevitable.
The task of deciding whether

∑n
i=1

√
ai ≥ k for nonnegative integers a1, . . . , an and k ∈ N

hence arises naturally in computational geometry. This problem or, to be precise, a slight
generalization of it, is called the Sum of Square Roots Problem (SQRT-SUM) and is a
notorious open problem since the 1970s. Multiple definitions are commonly used throughout
literature. Out of the two presented below, we will stick to the first one throughout this
text.

Problem 1.1. SQRT-SUM:

• Given nonnegative integers a1, . . . , an and δi ∈ {−1, 1} for i = 1, . . . , n, decide
whether

n∑
i=1

δi
√
ai ≥ 0.

• Or equivalently, given integers a1, . . . , an and b1, . . . , bm, decide whether
n∑

i=1

√
ai ≥

m∑
i=1

√
bi.

It is commonly agreed upon that Garey, Graham and Johnson were the first to mention
SQRT-SUM in 1976 [GGJ76]. Since then, placing this problem in the vast landscape of
complexity classes has been an ongoing challenge. Allender, Bürgisser, Kjeldgaard-Pedersen
and Miltersen showed in 2009 that SQRT-SUM lies within the Counting Hierarchy CH
in their paper On the Complexity of Numerical Analysis [All+09]. To date, no stronger
upper bound on the complexity of SQRT-SUM, let alone a placement in a well studied
complexity class like P, NP or the Polynomial Hierarchy PH is known.

In this work, we present the proof of Allender et al. and unpack many of its complicated
intermediate steps. A great part of this proof concerns a problem called PosSLP that asks
whether an integer represented by a simple sequence of arithmetic instructions is positive.
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1. Introduction

Theorem 1.2 ([All+09]). PosSLP is in the counting hierarchy CH.

Allender et al. show that this problem is in the third level of the counting hierarchy. A
lemma used in this proof, however, contains two arguments that we are not able to validate.
We present this auxiliary theorem in detail, highlight the two critical steps and prove it
under the assumption that they are valid. Furthermore, we show a slightly weaker version
which only depends on one of the assumptions and discuss the effects on the complexity of
PosSLP.

Newton’s method, an algorithm for approximating roots of rational functions, is used to
compute the square root of any nonnegative integer up to desired precision. Using this
algorithm, SQRT-SUM can be decided in polynomial time on a computational model
called Blum-Shub-Smale machine, which is more suited for numerical computations than a
standard Turing machine. We show how a certain kind of computations on such a machines
can be simulated by a polynomial-time Turing machine given access to an oracle that can
decide instances of PosSLP in constant time. Theorem 1.2 is then used to prove the main
theorem of this text:

Theorem 1.3. SQRT-SUM is in counting hierarchy CH.

Throughout this text, we assume only basic mathematical and complexity theoretical
knowledge. For this reason, a great part of it introduces new concepts that are needed to
understand the complex result. We try to explain all steps in a comprehensible manner;
the proofs of some statements, however, are out of the scope of this work.

1.1 Applications
SQRT-SUM arises in many geometric problems. The Euclidean Traveling Salesman Problem
and the Euclidean Steiner-Tree Problem are two prominent examples:

Problem 1.4. Euclidean-TSP: Given a set N ⊆ Z2 of points in the Euclidean plane,
find a tour of minimal length, where the distance between two points is defined using the
Euclidean norm.

Problem 1.5 ([Bra+14], p. 329). Euclidean-STEINER-TREE: Given a set N ⊆ Z2 of
points in the Euclidean plane, find a tree T = (V,E) embedded in Z2, such that N ⊆ V
and

∑
(u,v)∈E∥u− v∥ is minimal, where ∥·∥ is the Euclidean norm.

Both problems can be generalized to Zd for some fixed d ∈ N. Furthermore, each of them
has associated with it a decision problem asking whether there exists a tour or, respectively,
Steiner tree having at most some given length. Not only does the task of comparing sums
of square roots appear in these problems, their complexity hinges on SQRT-SUM. Neither
Euclidean-TSP nor Euclidean-STEINER-TREE is known to be in NP. For the former,
however, we show that this is indeed the case if there exists a polynomial-time algorithm
for SQRT-SUM.

Theorem 1.6. SQRT-SUM ∈ P =⇒ Euclidean-TSP ∈ NP

Proof. An instance of the decision version of Euclidean-TSP consists of a set of k points in
Zd and a length L. We have to show that for a certificate, i.e. a tour, it can be verified
in polynomial time that the total length is less than L. The length of a tour visiting the
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1.2. Related Work

points v1, . . . , vk in order is given by the sum of their relative distances. The Euclidean
distance between two point u, v ∈ Zd is defined as

d(u, v) = ∥u− v∥ =

√√√√ d∑
i=1

(ui − vi)2.

This expression is the square root of a nonnegative integer, therefore the total length of the
tour v1, . . . , vk is a sum of square roots. If SQRT-SUM ∈ P, it can be decided in polynomial
time by a deterministic TM whether this sum is less than L. Hence, Euclidean-TSP ∈ NP
if SQRT-SUM ∈ P.

As a side note, we want to mention some interesting results concerning the two presented
problems: Garey et al. showed that the problem EXACT-COVER-BY-3-SETS, which is
NP-complete, can be reduced to Euclidean-STEINER-TREE and Euclidean-TSP when
the rectilinear (Manhattan) metric or a discretized version of the Euclidean metric is used
instead of the Euclidean metric [GGJ76]. Furthermore, these versions of the two problems
are in NP, hence they are NP-complete. Independently, Papadimitriou showed that a variant
of Euclidean-TSP where the Euclidean metric is used but distances are rounded to integers
is also NP-complete [Pap77].

Aside from that, Arora and, independently, Mitchell proved the existence of polynomial-
time approximation schemes (PTAS) for Euclidean-TSP and Euclidean-STEINER-TREE
[Aro98], [Mit99]. For a minimization problem, a PTAS is a family of algorithms that for a
fixed ε > 0 compute, in time polynomial in the size of the problem instance, a solution
that is within a factor of (1 + ε) of the optimal solution. E.g. if for a given instance of
Euclidean-TSP the optimal solution has a total length of L, a PTAS would compute a
solution that has a length of at most (1 + ε) ·L. Arora and Mitchell were awarded the 2010
Gödel Prize for this results.

1.2 Related Work
1.2.1 Complexity Results

Deciding whether a sum of square roots is equal to zero can be solved by a deterministic
polynomial-time algorithm, as proven by Blömer [Blö91]. However, if the sum is not equal
to zero, this does not solve the problem of determining its sign.

SQRT-SUM is in the complexity class ∃R which consists of all problems that can be reduced
to the existential theory of the reals. Since ∃R ⊆ PSPACE [Can88, Theorem 3.3], SQRT-SUM
can be decided in PSPACE. It is unlikely that SQRT-SUM is also PSPACE-complete. We
provide more evidence for this in Section 2.3.2.

Malajovich stated a conjecture concerning Kronecker’s Theorem, a result from the mathe-
matical branch of Diophantine approximation, relative to which SQRT-SUM ∈ P [Mal01].
Theorem 1.6 states that if this conjecture is true, Euclidean-TSP is in NP.

Etessami and Yannakakis showed that SQRT-SUM reduces to the Qualitative Termination
Problem for Recursive Markov Chains [EY09] and the problem of computing a Nash
Equilibrium of a specific game [EY10].

In November 2023, Balaji and Datta showed that a unary version of SQRT-SUM is in
the complexity class P/poly [BD23]. This class is the set of decision problems that can
be decided by small circuits or equivalently Turing machines that are given a polynomial
length advice string.

3



1. Introduction

1.2.2 Separation Bounds

A large area of work concerning the sum of square roots problem is the study of separation
bounds. For an arithmetic expression E having a value ξ, a separation bound sep(E) is a
positive real number such that if ξ ̸= 0, then |ξ| ≥ sep(E). In 1981, O’Roukre proposed
the problem of finding the minimal positive value of the expression

∑
i
√
ai −

∑
j

√
bj ,

where ai and bj are positive integers with 1 ≤ ai, bj ≤ N for some N and i, j ∈ {1, 2}
[ORo81]. Angluin and Eisenstat showed that for any two nonnegative integers a and b
between 1 and N , the minimum nonzero distance of

√
a+

√
b to an integer is in Θ(1/N 3/2)

[AE04]. Burnikel et al. proved the existence of an easily computable separation bound for
expressions involving radicals, i.e. square roots, in [Bur+00]. As stated in [EHS23], the
separation bound presented in [Bur+00] implies that∣∣∣∣∣

n∑
i=1

δi
√
ai

∣∣∣∣∣ ≥
(
n max

i=1,...,n

√
ai

)−(2n−1)
.

In their 2023 paper [EHS23], Eisenbrand et al. provided a new bound of∣∣∣∣∣
n∑

i=1
δi

√
ai

∣∣∣∣∣ ≥ γn−2n,

where γ is a constant that depends on the numbers a1, . . . , an. Without diving any deeper
into the topic of separation bounds, the following example might give a sense for why sums
of square roots are hard to compare.

Example ([DMO09]). For n, k ∈ N, let r(n, k) be the minimum nonzero value of the
expression ∣∣∣∣∣

n∑
i=1

√
ai −

m∑
i=1

√
bi

∣∣∣∣∣,
where a1, . . . , ak and b1, . . . , bk are integers with 0 ≤ ai, bi ≤ n for i ∈ {1, . . . , k}. The
minimum nonzero distance between the sum of square roots of two and, respectively, three
integers less than or equal to 20 is given by

r(20, 2) =
√

10 +
√

11 −
√

5 −
√

18 ≈ 1.9 · 10−4 and

r(20, 3) =
√

5 +
√

6 +
√

18 −
√

4 −
√

12 −
√

12 ≈ 4.8 · 10−6.

We see that by allowing one more summand, the minimum nonzero distance decreased by
two orders of magnitude.

1.3 Outline
In Chapter 2 we introduce important concepts from complexity theory: Oracle Turing
machines allow us to characterise the complexity of decision problems under the assumption
that we can treat certain parts of an algorithm as a black box. We generalize the concept of
language oracles to oracles for whole complexity classes and show basic relations concerning
them. The polynomial hierarchy PH is introduced, which is a generalization of the classes
NP and coNP. We explain the concept of counting complexity and the complexity classes
#P and PP. Toda’s theorem, an important result which states that every problem in the
polynomial hierarchy can be reduced to counting, is presented. At the end of Chapter 2,
we define the counting hierarchy.

Chapter 3 gives a detailed definition of Boolean circuits and introduces complexity classes
that capture their computational power and limitations. A calculus for the composition of

4



1.3. Outline

different circuit classes is presented. Boolean circuits are, in general, a non-uniform model
of computation. We discuss the rather absurd consequences of this property and how this
model can be fixed. The rest of Chapter 3 considers circuits for addition and their complexity:
The carry-lookahead method for addition is presented as a more efficient alternative for
the classical carry-ripple method. The problems ADD, ITADD and LOGITADD are
introduced and placed within the framework of composed circuit complexity classes. Lastly,
we show how these addition circuits can be simulated on a Turing machine, in order to
prove upper bounds on the complexity of addition in terms of the complexity classes defined
in Chapter 3.

The proof of Theorem 1.2 (PosSLP ∈ CH) makes use of statements from number theory,
which we cover in Chapter 4. First and foremost, we introduce the Chinese remainder
representation, which allows us work with “very large” numbers by regarding them as a
list of remainders modulo some primes. Next, we recall basic definition from group theory
and show some fundamental theorems. We explore the multiplicative group of the integers
modulo a prime in more detail and prove that is cyclic. Finally, we briefly explain how to
easily compute bits of the binary expansion of prime reciprocals. Most of the statements
presented in this chapter are not hard to prove and can be found in introductory literature
on number theory or algebra. In our opinion, however, it is helpful to have a sense for why
they are true in order to fully understand how they are used as arguments.

Chapter 5 contains an extensive description of a computational model called the Blum-
Shub-Smale machine, which is a generalization of the standard Turing machine. This
machine operates on a tape consisting of elements of an arbitrary ring or field and can
perform arithmetic operations on its cells in constant time. Straight-line programs, which
are sequences of arithmetic instructions, are introduced as another model of arithmetical
computation. We give an example on how these simple programs can represent large
numbers, relative to their size. We define the problem PosSLP, which asks whether a
straight-line program evaluates to a positive number. The concept of Boolean parts forms
the link between machines over the real numbers and standard Turing machine operating
on Boolean values. Using Boolean parts and the problem PosSLP, we then relate the
world of real computation to the classical Turing framework.

In Chapter 6, we use the preliminaries established in the preceding chapters to prove
that PosSLP lies within the counting hierarchy. We split the proof of Allender et al. into
small parts. As already mentioned, the proof contains two arguments, which we are not
able to validate. We highlight these arguments and show the concerning lemma under the
assumption that they are true. In addition, we show a slightly weaker statement which
depends only on one of the assumptions.

The square root of any nonnegative integer can be approximated using an algorithm known
as Newton’s method, which we describe in Chapter 7. Together with the preliminaries
established in the previous chapters and the result about PosSLP, we then prove our main
theorem, which states that SQRT-SUM is in the counting hierarchy.

5





2. Complexity Theory Basics

In this chapter, we introduce important concepts from complexity theory that are essential
for the rest of this text. We assume familiarity with terms such as deterministic and
nondeterministic Turing machines, decidability, and the classes P, NP and coNP. To begin,
let us briefly recall the concept of a polynomial-time Karp reduction:

Definition 2.1 ([AB07], Definition 2.7). A language L ∈ {0, 1}∗ is polynomial-time Karp
reducible to a language L′ ∈ {0, 1}∗, if there is a polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗, called the reduction, such that for every x ∈ {0, 1}∗, x ∈ L if and only
if f(x) ∈ L′.

2.1 Oracle Machines
Definition 2.2 ([AB07], Definition 3.4). An oracle Turing machine MO, where O ⊆ {0, 1}∗
is called the oracle, is a standard (deterministic or non-deterministic) Turing machine (TM)
that has an additional read-write tape called the oracle tape and states qquery, qyes, and
qno. Whenever M enters the state qquery and the content of the oracle tape is q, M moves
into qyes if q ∈ O and qno if q /∈ O in the next computation step.

Definition 2.3 ([AB07], Definition 3.5). For every O ⊆ {0, 1}∗, PO and NPO denote
the sets of languages that can be decided by a polynomial-time deterministic TM and
polynomial-time non-deterministic TM, respectively, having oracle access to O.

Let us briefly recall the definition of a NP-hard and NP-complete language: A language L
is NP-hard if every L′ ∈ NP can be polynomially-time Karp reduced to L. If L is also a
member of NP, we say that L is NP-complete. [AB07, Definition 2.7]

We can generalize the notions of hardness and completeness for arbitrary complexity classes:
Let L be some set of languages, then a language L is L-hard if every L′ ∈ L can be
reduced to L and L-complete if additionally L ∈ L. Note that in this case reduced does not
necessarily mean that the reduction is a polynomial-time Karp reduction.

The language SAT consists of all satisfiable Boolean formulas in conjunctive normal form
(CNF). By the above definition, PSAT is the set of all languages that can be decided
by a polynomial-time TM M having access to a SAT-oracle. That is, M can write any
(polynomial-length) CNF-formula F on its oracle tape and after entering the query state, M

7



2. Complexity Theory Basics

transitions to either the state qyes or qno in the next step, depending on whether F ∈ SAT.
Since SAT is NP-complete, M can actually use the oracle to answer queries about the
membership of some polynomial-length string w ∈ {0, 1}∗ in any language in NP. This can
be accomplished by first transforming w into a polynomial-sized CNF-formula Fw, which
is possible since there exists a polynomial-time Karp reduction, and then sending Fw to
the SAT-oracle. [AB07, p. 45]

Definition 2.4. Let L be a set of languages, then PL =
⋃

L∈L PL. Furthermore, if there
exists an L-complete language L in the sense of polynomial-time Karp reducibility, then
PL = PL.

Lemma 2.5. PP = P

Proof. P ⊆ PP since a TM with access to a P-oracle can simply not use this capability. For
the other direction let L be a language in PP. By definition, there exists a language L′ ∈ P,
such that L ∈ PL′ , i.e. L can be decided by a polynomial-time TM M having access to a
L′-oracle. Since L′ ∈ P, L′ is also decided by a polynomial-time TM. Every query of the
L′-oracle can thus be simulated in polynomial-time by M and therefore L ∈ P.

Remark. Definition 2.4 states that if there exists a language L′ that is complete for
some set of languages L, then a L-oracle can be replaced by a L′-oracle. This is under the
assumption that the reduction can actually be performed by the machine using the oracle.
Not all complexity classes are known to have complete languages, however, this is the case
for the class P. A language L′ is P-complete it is in P and every language in P is log-space
reducible to it [AB07, Definition 6.28]. A machine using O(logn) space can only need a
polynomial amount of time, since there exists at most 2O(log n) possible configurations. For
this reason, log-space reducibility implies polynomial-time Karp reducibility. An example
of a P-complete language is the language CIRCUIT-EVAL, which we do not discuss in
further detail [AB07, Theorem 6.30]. We might therefore show the direction PP ⊆ P in the
proof of Lemma 2.5 using the concept of P-completeness: Let L be language in PP, thus L
is decided by a polynomial-time TM that has access to an oracle for a P-complete language
L′. A polynomial-time TM M can simulate this oracle by transforming a query string w
into an instance w′ of L′, since the P-completeness of L′ implies that every language in P
is polynomial-time Karp reducible to L′. Afterwards, M decides whether w′ is a member
of L′ in polynomial time.

2.2 The Polynomial Hierarchy
Definition 2.6 ([AB07], Definition 5.3). The polynomial hierarchy is the set PH =

⋃
i∈N0 Σp

i ,
where Σp

i is the set of languages for which there exists a polynomial-time TM M and a
polynomial q such that

x ∈ L ⇐⇒ Q1u1 ∈ {0, 1}q(|x|) . . . Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1

with Qi denoting ∀ or ∃ depending on whether i is even or odd, respectively.

Remark. Alternatively, let Πp
i be defined analogously to Σp

i but the existential and universal
quantifiers are swapped, i.e. Qi is ∀ is i is odd and ∃ if i is even. Then PH =

⋃
i∈N0 Πp

i .

We give some interesting facts about the polynomial hierarchy without proof: The well
known complexity classes P, NP and coNP form the foundation of PH in the sense that
P = Σp

0 = Πp
0, Σp

1 = NP and Πp
0 = coNP. For every i ∈ N0, the inclusions Σp

i ⊆ Πp
i+1 ⊆ Σp

i+2

8



2.3. Counting Complexity

hold. If Σp
i is strictly contained in Σp

i+1 for every i ∈ N0 then, in particular, P ̸= NP. In this
case we say that the polynomial hierarchy does not collapse. On the other hand, if there
exists some i ∈ N0 such that Σp

i = Σp
i+1, PH collapses to the i-th level, that is PH = Σp

i .
The polynomial hierarchy collapses to the first level, i.e. PH = P, if and only if P = NP.
[AB07, p. 97]

Similar to Definition 2.4 we define PHO to be the set of languages as defined in Definition 2.6
but the TM M has access to an oracle O for some language (or complexity class).

Definition 2.7. Let L be a set of languages, then PHL =
⋃

L∈L PHL. Furthermore, if there
exists an L-complete language L in the sense of polynomial-time Karp reducibility, then
PHL = PHL.

In continuation of Lemma 2.5 we show two more equivalences concerning oracles that we
use frequently in this text:

Lemma 2.8. PHPH = PH

Proof. Trivially, PH ⊆ PHPH. To show the other inclusion let L be a language in PHPH. By
Definition 2.7, there exists a language L′ ∈ PH, such that L ∈ PHL′ . Hence, there exists a
polynomial-time TM M having access to a L′-oracle, alternating quantifiers Q1, . . . , Qi,
and a polynomial p, such that

x ∈ L ⇐⇒ Q1u1 ∈ {0, 1}p(|x|), . . . , Qiui ∈ {0, 1}p(|x|) : M(x, u1, . . . , ui) = 1.

Also, since L′ ∈ PH, there exists a polynomial-time TM M ′, alternating quantifiers
Q′1, . . . , Q

′
j , and a polynomial p′, such that

x ∈ L′ ⇐⇒ Q′1u
′
1 ∈ {0, 1}p′(|x|), . . . , Q′ju

′
j ∈ {0, 1}p′(|x|) : M ′(x, u′1, . . . , u′j) = 1.

We can construct a TM M̃ that simulates M when given a tuple (x, u1, . . . , ui, u
′
1, . . . , u

′
j).

Every time that M asks its L′-oracle about the membership of some string w, M̃ runs
M ′(w, u′1, . . . , u′j) and transitions into the appropriate state depending on the answer.
Hence, there exists a polynomial p̃ such that

x ∈ L ⇐⇒ Q1u1 ∈ B, . . . , Qiui ∈ B,Q′1u
′
1 ∈ B, . . . , Q′ju

′
j ∈ B : M̃(x, u1, . . . , ui, u

′
1, . . . u

′
j),

where B = {0, 1}p̃(|x|). If Qi = Q′1, i.e. the chain of quantifiers is not alternating, we can
merge the two quantifiers into a new expression quantifying over strings of length 2p̃(|x|)
and split the certificates into ui and u′1 afterwards. Thus L ∈ PH.

Corollary 2.9. PHP = PH

Proof. The claim follows immediately from Lemma 2.8 since P ⊆ PH.

2.3 Counting Complexity
The complexity classes P and NP capture the difficulty of finding and validating certificates,
respectively. It is an open question whether these tasks are equivalently difficult. The
polynomial hierarchy presented in the previous section generalizes these fundamental com-
plexity classes by allowing the quantification of certificates. We now introduce the concept
of counting complexity that concerns with determining the total number of certificates.
Using the language SAT as an example, we demonstrate how decision problems in NP have
corresponding counting problems. These counting problems in turn can be transformed
back into decision problems.
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2. Complexity Theory Basics

Definition 2.10 ([AB07], Definition 17.5). #P is the set of functions f : {0, 1}∗ → N0
for which there exists a polynomial p and a polynomial-time TM M such that for every
x ∈ {0, 1}∗

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣.
The class #P, pronounced “sharp P”, can also be defined in terms of nondeterministic
TMs. That is, a function f is in #P if, for every input x ∈ {0, 1}∗, the value f(x) is equal
to the number of accepting paths of a nondeterministic polynomial-time TM.

Example. #SAT is the corresponding counting problem to the NP-complete problem SAT.
In case of #SAT, the task is to compute the total number of satisfying assignments for a
Boolean formula. A Boolean formula is satisfiable if and only it has at least one satisfying
assignment. Solving an instance of #SAT must therefore, in some sense, be at least as hard
as deciding an instance of SAT. The function #SAT that maps a Boolean formula F to
the number of satisfying assignments of F is in #P.

Definition 2.11 ([AB07], Definition 17.6). PP is the set of languages for which there
exists a polynomial-time TM M and a polynomial p such that for every x ∈ {0, 1}∗

x ∈ L ⇐⇒
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ ≥ 1
2 · 2p(|x|).

Intuitively speaking, the concern of problems in PP is deciding the most significant bit
of functions in #P. As a side note, the counterpart of PP is the complexity class ⊕P,
pronounced “parity P”. Problems in this class concern with determining the least significant
bit of a function in #P [AB07, Definition 17.15]. As for #P, we can also define PP in terms
of nondeterministic TMs: A language L is in PP if there exists a nondeterministic TM M
such that x ∈ L if and only if the majority of computation paths of M are accepting, for
every x ∈ {0, 1}∗.

Example. MAJ-SAT is a decision problem that asks whether the majority of assignments
for a given Boolean formula is satisfying. For example, let F be a Boolean formula of n
variables, then F is a yes-instance of MAJ-SAT, if and only if at least 2n−1 of the possible
2n possible assignments are satisfying. The language MAJ-SAT is in the complexity class
PP. Let us summarize the relationship between the classes NP, #P and PP:

Decision Problem
SAT ∈ NP

Is there a satisfying
assignment?

Counting Problem
#SAT ∈ #P

How many satisfying
assignments are there?

Decision Problem
MAJ-SAT ∈ PP

Is the majority of assignments
satisfying?

Remark. A probabilistic Turing machine is a TM that may take possibly multiple tran-
sitions at each step and chooses which transition to use according to some probability
distribution. Although probabilistic TMs are similar to nondeterministic TMs, they differ in
how we interpret their acceptance behaviour. We say that a nondeterministic TM accepts
an input if there exists at least one accepting path. However, for a probabilistic Turing
machine we consider the probability that a path is accepting. If the underlying probability
distribution is uniform, this is equal to the fraction of all accepting paths. Instead of a
machine that chooses each transitions at random, one could also use a deterministic TM
and provide a series of “coin tosses” that determine the transitions as additional input.
[AB07, p. 125]

10



2.3. Counting Complexity

The class PP can also be defined in this probabilistic framework: Let us denote the
probability of an event X(r), where r is sampled from a (uniform) probability distribution R,
as Prr←R[X(r)]. Furthermore, for a language L, we define the function L : {0, 1}∗ → {0, 1}
to be 1 if x ∈ L and 0 otherwise for every x ∈ {0, 1}∗. A language L is in PP if and only if
there exists a deterministic polynomial-time TM and a polynomial p such that

Prr←{0,1}p(|x|) [M(x, r) = L(x)] > 1
2

for every input x ∈ {0, 1}∗. Here, we provide M with a polynomial-length series of “coins
tosses” and thereby simulate a probabilistic TM, as stated above.
The related complexity class BPP, which stands for bounded error probabilistic polynomial
time, is commonly defined as the set of languages L for which exists a polynomial-time
probabilistic TM M and a polynomial p, such that

Prr←{0,1}p(|x|) [M(x, r) = L(x)] ≥ 2
3

for every input x ∈ {0, 1}∗. In fact, the constant 2/3 for BPP and 1/2 in the case of PP can
be replaced by 1/2 +ε for some constant ε > 0 and 1/2 +2−|x|, respectively. This brings us to
the key difference between these two complexity classes: For any decision problem in BPP,
we can increase the probability that the output of the TM (accept/reject) is actually correct
by running the machine polynomially many times, the emphasis being on polynomially.
This process is called probability amplification. For a problem in PP, in general, it would
take exponentially many trials to distinguish between the two cases. [AB07, p. 345]

It is evident, that we can decide whether the majority of assignments of a Boolean formula
is satisfying, if the total number of satisfying assignments is known. We now show that given
access to an oracle which decides if the majority of assignments is satisfying, determining
the total number of satisfying assignments can be accomplished in polynomial time by
performing a binary search.

Lemma 2.12 ([Fil15], [For02]). P#P = PPP

Proof. To show PPP ⊆ P#P let M be a deterministic polynomial-time TM having access
to a PP-oracle. That is, M has access to an oracle which can answer queries about the
membership of an arbitrary x ∈ {0, 1}∗ in a PP-complete language and thus any language
in PP. We have to show that we can simulate such an oracle using a #P-oracle. Let L be a
language in PP. By Definition 2.11, there exists a polynomial p, such that a x ∈ {0, 1}∗ is
a member of L if and only if the majority of strings y ∈ {0, 1}p(|x|) are certificates. Using
the #P-oracle we can find total number of certificates of length p(|x|) and can decide in
polynomial time if this number is at least 1/2 · 2p(|x|).
The direction P#P ⊆ PPP requires more work: Let L be a language in P#P. L can be
decided by a polynomial-time TM having access to an oracle for a function f ∈ #P, i.e.
L ∈ Pf . We show that a call to the f -oracle call can be simulated in polynomial time given
access to a PP-oracle.
By the definition of #P, there exists a nondeterministic polynomial-time TM M such that
for every input x ∈ {0, 1}∗, the value f(x) is equal to the number of accepting paths of
M . For all inputs x ∈ {0, 1}∗, denote the total number of computation paths of M as
TM (x) and let TM

1 (x) and TM
0 (x) denote number of accepting and rejecting paths of M ,

respectively. Furthermore, we define the following two languages:

L1 =
{

(x, y) ∈ {0, 1}∗ × N0 | TM (x) ≥ y
}

and

L2 =
{

(x, y) ∈ {0, 1}∗ × N0 | TM
1 (x) ≥ y

}
.

11
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We show the following four statements:

1. L1 ∈ PP.

2. Given a L1-oracle, TM (x) is computable in polynomial time using binary search.

3. L2 ∈ PP.

4. Given a L2-oracle, TM
1 (x) is computable in polynomial time using binary search.

The following proof of these statements yields a polynomial-time algorithm for computing
T1(x), assuming we are given access to a PP-oracle.

1. We construct a nondeterministic TM M ′ and show that, on input x, the majority of
computation paths of M ′ is accepting if and only if M has at least y accepting paths,
i.e.

TM ′
1 (x) ≥ 1

2T
M ′(x) ⇐⇒ TM (x) ≥ y.

Since the language L1 is exactly the set of tuples (x, y) such that TM (x) ≥ (y), the
above statement implies that L1 ∈ PP.

M ′ starts by nondeterministically choosing a bit b ∈ {0, 1}. Note that in the prob-
abilistic model, we would additionally require that b is chosen from the uniform
distribution {0, 1}. If b = 1, M ′ nondeterministically chooses a value z ∈ {1, 2, 3}. If
z = 1, M ′ accepts immediately. Otherwise, that is if z = 2 or z = 3, M ′ simulates
M on the input x and accepts afterwards. This procedure generates 2TM (x) + 1
computational paths each of which is accepting.

If b = 0, M ′ generates 2y paths, each of which rejects the input. This can be
accomplished by, for example, nondeterministically writing a word in {1k | k ≤ 2y}
onto the tape and rejecting afterwards.

The total number of computation paths of M ′ is the sum of accepting and rejecting
paths, i.e.

TM ′(x) = TM ′
0 (x) + TM ′

1 (x) = 2y + 2TM (x) + 1.

Therefore, we have the following equivalences:

TM ′
1 (x) ≥ 1

2T
M ′(x)

⇐⇒ 2TM (x) + 1 ≥ 1
2

(
2y + 2TM (x) + 1

)
⇐⇒ TM (x) + 1

2 ≥ y

⇐⇒ TM (x) ≥ y,

where the last equivalence follows because TM (x) ∈ N.

2. M is a nondeterministic polynomial-time TM. Hence, there exists a polynomial p
such that M performs at most p(|x|) steps on input x. Without loss of generality, we
can assume that M nondeterministically chooses between two transitions in each step.
For every input x, the number of computational paths its therefore at most 2p(|x|).
Given access to a L1-oracle, we perform a binary search using an initial lower and
upper bound of 0 and 2p(|x|), respectively. A binary search on a set of size 2p(|x|) takes
at most log(2p(|x|)) = p(|x|) steps. Thus, TM (x) is be computable in polynomial-time
given access to a L1-oracle.
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3. We construct a TM M ′′, such that

TM ′′
1 (x) ≥ 1

2T
M ′′(x) ⇐⇒ TM

1 ≥ y.

Like M ′, M ′′ begins by choosing a bit b ∈ {0, 1}. If b = 1, M ′′ simulates M on
the input x and accepts if and only if M accepts. Otherwise, that is if b = 0, M ′′
generates TM (x) computation paths; y rejecting and TM (x) − y accepting. By this
construction, it follows that

TM ′′(x) = 2TM (x) and TM ′′
1 (x) = TM

1 (x) + TM (x) − y.

Therefore

TM ′′
1 (x) ≥ 1

2T
M ′′(x) ⇐⇒ TM

1 (x) + TM (x) − y ≥ TM (x) ⇐⇒ TM
1 (x) ≥ y.

Again, this implies L2 ∈ PP.

4. Analogously to the second step, there exists a polynomial p such that the number
TM

1 (x) is bound by 2p(|x|) from above. We perform binary search and obtain TM
1 (x)

in log(2p(|x|)) = p(|x|) steps. Thus, TM
1 (x) is computable in polynomial time given

access to a L2-oracle.

In summary, a TM having access to a PP-oracle, in order to query the languages L1 and
L2, can compute TM

1 (x) in polynomial time by performing two binary searches. Hence, we
can simulate a #P-oracle in PPP, which implies the claim P#P ⊆ PPP.

2.3.1 Toda’s Theorem

In his seminal paper “PP is as Hard as the Polynomial-Time Hierarchy” ([Tod91]), Toda
showed that the polynomial hierarchy is contained within PPP. Toda was awarded the 1998
Gödel Prize for this result. The awarders justified their decision with the following words:

“[. . . ] Toda showed that two fundamental and much studied computational con-
cepts had a deep and unexpected relationship. The first is that of alternation of
quantifiers - if one alternates existential and universal quantifiers for polynomial
time recognizable functions one obtains the polynomial time hierarchy. The
second concept is that of counting the exact number of solutions to a problem
where a candidate solution is polynomial time recognizable. Toda’s astonishing
result is that the latter notion subsumes the former - for any problem in the
polynomial hierarchy there is a deterministic polynomial time reduction to
counting. This discovery is one of the most striking and tantalizing results in
complexity theory. It continues to serve as an inspiration to those seeking to
understand more fully the relationships among the fundamental concepts in
computer science.” [Par99]

We now present Toda’s theorem, another result from his work, and a useful Corollary that
we use repeatedly in the subsequent chapters to connect statements about the polynomial
hierarchy with those concerning counting complexity.

Theorem 2.13 (Toda’s Theorem – [Tod91], Main Theorem). PH ⊆ PPP

Theorem 2.14 ([Tod91], Theorem 4.10). PPPH ⊆ PPP

Corollary 2.15. PPPHA

⊆ PPPA for every oracle A.
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2.3.2 The Counting Hierarchy

The counting hierarchy CH was introduced by Wagner in [Wag86] and independently by
Parberry and Schnitger in [PS88].

It is similar to the previously defined polynomial hierarchy. However, CH builds a hierarchy
over the class PP instead of NP.

Definition 2.16 ([AW97], Section 1). Let CHp
0 = P, then for every i ≥ 0

CHp
i+1 = PPCHp

i .

The union
⋃

i∈N0 CHp
i is denoted as CH. We refer to CH as the counting hierarchy and call

CHp
i its i-th level.

The counting hierarchy is contained in PSPACE and contains the polynomial hierarchy PH
[AW97]. As stated in Chapter 1, SQRT-SUM ∈ PSPACE and we show in Chapter 6 that
SQRT-SUM ∈ CH. Therefore, if SQRT-SUM is a PSPACE-complete problem, i.e. every
problem in PSPACE can be polynomial-time reduced to SQRT-SUM, the counting hierarchy
collapses.
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In this chapter, we present the computational model of Boolean circuits, together with
complexity classes that capture their computational power and limitations. Boolean circuits
are often studied out of the motivation that they are, in principle, easier to describe formally
than Turing machines. Many researchers believe that it might therefore be easier to prove
lower bounds on their complexity. Finding suitable circuit lower bounds could, in fact,
prove that P ̸= NP. Hence, this field of complexity theory has attracted great interest
since the 1970s. However, large obstacles have prevented significant progress from being
made in this area of work for many years. To phrase it in the words of Arora and Barak:
Circuit lower bounds might be complexity theory’s Waterloo. Another motivation to study
the complexity of Boolean circuits comes from the fact that they resemble a simplified
version of physical circuits used in actual computers. Results from circuit complexity could
therefore answer, whether there exists tailor-made chips that are able to efficiently solve
hard problems such as 3SAT. [AB07, p. 106]

Our goal though is to construct circuits for the efficient addition of binary numbers and
prove upper bounds on the complexity of these problems. The complexity of addition will
play a great role in the proof for Theorem 1.2. At the end of this chapter, we relate the
world of circuit complexity, which deals with its own complexity classes, with the classical
Turing framework by showing how these addition circuits can be simulated on Turing
machines.

3.1 Boolean Circuits
Definition 3.1 ([Vol99], Definition 1.1, 1.2, 1.4). A Boolean function is a function
f : {0, 1}n → {0, 1} for a n ∈ N. A family of Boolean functions is a sequence F = (fn)n∈N,
where fn is an n-ary Boolean function. A basis is a finite set of Boolean functions and
families of Boolean functions.

Example. The Boolean functions ∧,∨ : {0, 1}2 → {0, 1} can easily be generalized to n-ary
functions:

ANDn : {0, 1}m → {0, 1}, (x1, . . . , xn) 7→ x1 ∧ x2 . . . ∧ xn

ORn : {0, 1}m → {0, 1}, (x1, . . . , xn) 7→ x2 ∨ x2 . . . ∨ xn.

We can then define two families of Boolean functions:

AND = (ANDn)n∈N and OR = (ORn)n∈N.
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The basis {AND,OR,¬}, where ¬ is the unary function mapping a Boolean value to its
negation, is referred to as the standard basis.

We write F(x1, . . . , xn) instead of fn(x1, . . . , xn) for a family of functions F = (fn)n∈N
from now on. Note that a basis is always a finite set, but some elements may be families of
functions and thus infinite objects themselves.

Definition 3.2 ([Vol99], Definition 1.6). A Boolean circuit over a basis B with n inputs
and m outputs is a tuple

C = (V,E, α, β, ω),

where (V,E) is a directed acyclic graph, α : E → N is an injective function, and functions
β : V → B ∪ {x1, . . . , xn} and ω : V → {y1, . . . , yn} ∪ {∗}, such that

1. If v ∈ V has in-degree 0, then β(v) ∈ {x1, . . . , xn} or β(v) is a Boolean constant.

2. If v ∈ V has in-degree k with k ≥ 0, then β(v) is a k-ary Boolean function from B.

3. For every i, with 1 ≤ i ≤ n, there is at most one node v ∈ V such that β(v) = xi.

4. For every i, with 1 ≤ i ≤ m, there is at most one node v ∈ V such that β(v) = yi.

If a v ∈ V has in-degree l and out-degree k we say that v has fan-in l and fan-out k. If
(u, v) ∈ E, we say that u is a predecessor gate of v. If β(v) = xi for some i, then v is an
input node, and if ω(v) = yi for some i, then v is an output node.

The nodes v ∈ V are also referred to as gates. Conceptually, the function β associates a
gate with either the i-th bit of the input or a Boolean function from B. The function ω
defines the output gates of the circuit, i.e. if ω(v) = yi, then v gives the i-th bit of the
output. Since a Boolean functions b ∈ B associated with a certain gate is in general not
symmetric like the functions AND and OR, the value of b may depend on the order of its
inputs. Thus, the function α is needed to define the order of predecessor gates. Up until
now, a Boolean circuit is merely a lifeless construct. The following definition defines the
function computed by a Boolean circuit. In this text, we speak of the circuit performing
some computation when we actually, more technically correct, mean the evaluation of the
associated function defined below.

Definition 3.3 ([Vol99], Definition 1.7). Let C = (V,E, α, β, ω) be a Boolean circuit over
a basis B with n input and m output gates For a v ∈ V and arbitrary Boolean values
a1, . . . , an, we define a function valv : {0, 1}n → {0, 1} as follows:

1. Let v have fan-in 0. If β(v) = xi for some i with 1 ≤ i ≤ n, then valv(a1, . . . , an) = ai.
If β(v) = b for some Boolean constant from B, then valv = b.

2. Let v have fan-in k with k > 0 and v1, . . . , vk be the predecessor gates of v ordered
in a way that α(v1) < . . . < α(vk). In this case F := β(v) is a Boolean function or
family of Boolean functions from B by Definition 3.2 and

valv(a1, . . . , an) = F (valv1(a1, . . . , an), . . . , valvk
(a1, . . . , an)).

For each i with 1 ≤ i ≤ m let vi be the unique gate for which ω(vi) = yi. The function
computed by C, fC : {0, 1}n → {0, 1}m, is defined as

fC(a1, . . . , an) = (valv1(a1, . . . , an), . . . , valvm(a1, . . . , an)).
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Definition 3.4 ([Vol99], Definition 1.11). Let C = (V,E, α, β, ω) be a Boolean circuit
over a basis B. The size of C is the number of gates in V that are not input gates, i.e.∣∣{v ∈ V | β(v) ∈ B

}∣∣, and the depth of C is the longest path between any input and output
gate, i.e. the longest directed path in the graph (V,E).

A Boolean circuit differs from other computational models in the fundamental aspect that
it works on a fixed number of inputs. In order to solve problems, whose instances all have
different sizes, we need to construct a family {Cn}n∈N of circuits, where each circuit Cn in
that family solves the problem for instances of one specific size n.

3.2 Symmetric Functions
Definition 3.5 ([Vol99], Definition 1.8). A Boolean function f : {0, 1}∗ → {0, 1}∗ is
symmetric, if f(x1) = f(x2) for any inputs x1, x2 having the same number of bits that are
equal to 1.

In other words, a Boolean function is symmetric, if its value depends only on the number
of ones of the input. We call a gate symmetric if it computes a symmetric function. Thus,
the output of a symmetric gate is determined by the sum of its inputs.

Example. We define the function MODm to evaluate to 0 if
∑n

i=1 xi divides m, where
x1, . . . xn is the given input of length n, and 1 otherwise. This function is symmetric since its
output only depends on the number of ones in the input. Another example is the threshold
function θt, where θt(x1, . . . , xn) = 1 if and only if

∑n
i=1 xi ≥ t. The functions MOD2 and

θn/2 are also referred to as parity and majority. Majority is also denoted as MAJ.

Definition 3.6 ([MT98], Definition 2.2). Let SYM denote the set of functions that can be
computed by a family of polynomial-size circuits of depth 1 consisting of only symmetric
gates.

We present two more statements about symmetric functions that we use later.

Lemma 3.7 ([MT98], Proposition 2.4). Suppose that f is a function defined on an input
x = (x1, . . . xm) as f(x) = h(

∑m
i=1wixi), where wi ∈ Z and h : Z → {0, 1}. In this case f

can be computed by a circuit consisting of a single symmetric gate having fan-in m ·max |wi|.

Lemma 3.8 ([MT98], Corollary 2.6). Every function that can be computed by k symmetric
gates of fan-in m can be computed by a single symmetric gate having fan-in (2m)k.

3.3 NC, AC and TC
Definition 3.9 ([AB07], Definition 6.24). For d ∈ N, the class NCd contains all languages
that can be decided by a family of Boolean circuits {Cn} of fan-in 2, over the standard
basis, where the size of Cn is polynomial in n and Cn has depth O(logd(n)). We denote
the union

⋃
i∈N0 NCi as NC.

Relaxing the condition of fan-in 2 yields the similarly defined class AC.

Definition 3.10 ([AB07], Definition 6.25). For d ∈ N, the class ACd contains all languages
that can be decided by a family of Boolean circuits {Cn} of unbounded fan-in, over the
standard basis, where the size of Cn is polynomial in n and Cn has depth O(logd n). We
denote the union

⋃
i∈N0 ACi as AC.
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AC0 circuits cannot compute parity, majority, MODm for any constant m, and the threshold
function θt for any t /∈ (logn)O(1) [MT98, p. 58]. Adding majority gates, i.e. gates that
evaluate to 1 if and only if the majority of their inputs are 1, to AC0 yields the class TC0.

Definition 3.11 ([Vol99], Definition 4.34). For d ∈ N, the class TCd contains all languages
that can be decided by a family of Boolean circuits {Cn} over the standard basis with
additional majority gates, of unbounded fan-in, where the size of Cn is polynomial in n and
Cn has depth O(logd n). We denote the union

⋃
i∈N0 TCi as TC.

As shown in [Haj+93, Proposition 2.1], every symmetric function can be computed by a
TC0 circuit. Its easy to see that every TC circuit can be realized using only majority and
“not” gates:

AND(x1, x2) = 1 ⇐⇒ x1 = 1 ∧ x2 = 1 ⇐⇒ MAJ(x1, x2, 0) = 1 and
OR(x1, x2) = 1 ⇐⇒ x1 = 1 ∨ x2 = 1 ⇐⇒ MAJ(x1, x2, 1) = 1.

Theorem 3.12 ([Vol99], Corollary 4.35). NC0 ⊊ AC0 ⊊ TC0 ⊆ NC1

An important open question in circuit complexity theory is whether TC0 ?= NC1, thus
whether the last inclusion above is strict.

3.4 Constant-Depth Circuits
The classes NC0, AC0 and TC0 are all referred to as constant-depth circuit classes, since the
depth of the circuits contained in these classes is bound by O(log0(n)) = O(1). Since later
we are interested in designing circuits of small depth, we want to refine these constant-depth
circuit complexity classes even further.

Definition 3.13 ([MT98], p. 58). We denote as NC0
d, AC0

d, and TC0
d the sets of functions

computed by, respectively, NC0, AC0, and TC0 circuits having depth exactly d.

Every output gate of a NC0 circuit computes a function of a constant number of inputs.
Transforming this function into disjunctive normal form allows us to compute it using
circuit of depth two and fan-in two.

Definition 3.14 ([MT98], p. 58 and Definition 2.12). Denote as Σd and Πd the sets of
functions computed by AC0

d circuits whose output gates consist entirely of OR and AND
gates, respectively. Let ∆d be the set of function computed by both Σd and Πd circuits, i.e.
∆d = Σd ∩ Πd.

3.5 A Calculus for the Composition of Circuit Classes
Definition 3.15 ([MT98], Definition 2.7). Let Γ1 and Γ2 be sets of Boolean functions. We
denote as Γ1 ◦ Γ2 the set of functions f of the form f = f1 ◦ f2, where f1 ∈ Γ1 and f2 ∈ Γ2.

Although the above definition does not make any reference to Boolean circuits, if Γ1 and
Γ2 are circuit complexity classes, then Γ1 ◦ Γ2 is the set of circuits constructed from a
circuit in Γ2 whose output is fed into a circuit in Γ1. More precisely, if g ∈ Γ1 is computed
by a family of circuits {Gn} and h ∈ Γ2 is computed by a family of circuits {Hn}, then a
function f is in Γ1 ◦ Γ2 if it is computed by a family of circuits {Fn} that, for an input x
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of length n, evaluate Hn for x, producing an output y of length m and then evaluate Gm

for y, thus computing the function g ◦ h in two stages. [MT98, Section 2.4]

We present some properties exhibited by the composition of circuit classes of constant
depth. The proofs of most of these statements is beyond the scope of this text; the first
one, however, is straight-forward.

Lemma 3.16. ∆j ◦AC0
k = ∆j+k

Proof. A circuit is in ∆j if it can be computed by both AC0
j circuits whose output gates

consists entirely of AND gates as well as AC0
j circuits whose output gates consist entirely

of OR gates. Adding a AC0
k circuit above, changes the total depth to j + k but keeps the

output layer untouched. The resulting circuit is in ∆j+k.

Lemma 3.17 ([MT98], Proposition 2.13). ∆j ◦ ∆k = ∆j+k−1 for every j, k ≥ 1.

Lemma 3.18 ([MT98], p. 63). NC0 ◦ ∆d = ∆d for all d ≥ 2.

Lemma 3.19 ([MT98], p. 65). NC0 ⊆ ∆1 ◦ NC0
1

Lemma 3.20 ([MT98], Proposition 2.15). SYM ⊆ ∆1 ◦ NC0
1 ◦ TC0

1

3.6 Uniformity
In general, we do not demand circuits of one family to have any similarity in structure.
As opposed to e.g. Turing machines, Boolean circuits are therefore called a non-uniform
model of computation, whereas the former are called uniform.

A consequence of the non-uniformity is that we can define a family of circuits {Hn}n∈N
which decides a unary version of the classically undecidable halting problem by defining
each Hn to output 1 if the string 1n is the unary encoding of tuple (M,x) such that M is a
TM and halts on x. Although this circuit family can be defined, there exists no procedure,
let alone one that runs in polynomial time, which outputs a description of an actual circuit
Hn for a given n. For this reason, we are most often interested in uniform circuit families.
Uniform means that the structure of a circuit in a family is computable under some time
or space constraints. [AB07, Section 6.2]

Definition 3.21 ([AB07], Definition 6.14). A circuit family {Cn}n∈N is logspace-uniform
if there is a function computable in O(logn) space that maps the string 1n to a description
of the circuit Cn.

According to [AB07, p. 112], a circuit family {Cn}n∈N is logspace-uniform if and only if
the following questions can be answered by a computation using only logarithmic space:

• What is the size of the circuit Cn?

• Is a node u ∈ V a predecessor of a node v ∈ V ?

• How many predecessors does a node have?

• Which function or input is a gate associated with, i.e. what is the value of β(v) for
some v ∈ V ?
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Since these computations only use logarithmic space, they can be performed in polynomial
time.

For classes of “small” circuits, however, even the logspace-uniform version of these classes
contain circuits whose computational power seems to stem from the process of constructing
them and not the circuit itself [HAM02, Section 2.2]. For this reason, the even more
restrictive notion of DLOGTIME-uniformity is often used when considering those circuits.
DLOGTIME-uniformity requires that questions like the ones listed above can be answered
in a logarithmic amount of time for any circuit Cn of a family. Logarithmic computation
time only makes sense for machines that can access all cells in constant time ( random
access machines) since a classical TM that is given an input of size n would not even be
able to read each bit of the input in O(logn) time.

We barely scratch the surface of circuit uniformity. Formally proving that the circuits we
look at in this chapter satisfy certain uniformity conditions is out of the scope of this work.
From now on, it is therefore assumed that all presented circuits are uniform for a certain
notion of uniformity and it is feasible to compute functions that answer the questions listed
above. In some sense, this is implied if we explicitly describe the structure of a circuit.

3.7 Carry-Lookahead Addition
We describe the construction of a circuit that computes the sum of two n-bit integers using
the carry-lookahead method. The construction loosely follows the detailed exposition in
[HPA12][Appendix J.8] and is adapted to follow our notation.

Circuits for binary addition are commonly constructed from simple building blocks such as
half adders and full adders. Both produce two outputs: a sum bit Si and a carry bit Ci.
The difference being that the full adder has a third input gate for a carry-in bit. Hence,
the full adder is defined by the following equations:

Si = xi + yi + Ci mod 2 (3.1)
Ci+1 = xiyi + xiCi + yiCi mod 2. (3.2)

And we can realize the sum and carry bit using the gates introduced in this chapter:

Si = MOD2(xi, yi, Ci) and Ci+1 = MOD2(AND(xi, yi),AND(xi, Ci),AND(yi, Ci)).

In order to construct a circuit for adding two n-bit numbers we face the problem of
propagating the carries from one full adder to the next. The simplest solution to this
problem is the so-called carry-ripple method, which links n full adders in a chain by
connecting the carry-out of one adder to the carry-in of the next. The carry-in of the last
full adder in this chain might depend on the results of all preceding additions, e.g. in the
addition of the binary number 111 . . . 11 and 000 . . . 01. Hence, we observe the key weakness
of the carry-ripple method, being that the last full adder has to wait until all previous
carry bits have been computed. We will not explain the carry-ripple construction in further
detail, instead we are interested in another method called carry-lookahead, that improves
upon this problem. We can rewrite Eq. (3.2) as

Ci+1 = Gi + PiCi, (3.3)

where Gi = xiyi and Pi = xi + yi. If Gi = 1, then Ci+1 = 1, so a carry is generated. And
if Pi = 1, then if Ci = 1, the carry is propagated and Ci+1 = 1. Successively inserting
Eq. (3.3) into itself yields

Ci = Gi−1 +Pi−1Gi−2 +Pi−1Pi−2Gi−3 +. . . Pi−1Pi−2 . . . P1G0 +Pi−1Pi−2 . . . P1P0C0. (3.4)
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For i > j, let Ri,j denote AND(Pi−1, . . . , Pj+1, Gj). Ri,j = 1 if the carry from position j is
propagated to position i. By requiring the initial carry and propagation bits to be zero, i.e.
C0 = G0 = 0, the last two terms of Eq. (3.4) vanish and we can rewrite the equation as

Ci = OR(Ri,(i−1), . . . , Ri,1).

Alternatively, define Hi as AND(xi, yi). If Hi = 1, then Ci+1 = 0, hence the carry-in Ci is
consumed. Now for i > j, let Qi,j denote AND(Pi−1, . . . , Pj+1, Hj). If Qi,j = 1, a carry bit
coming into position j + 1 would be propagated to position i since all of the propagation
bits Pi−1, . . . , Pj+1 are true. But since Hj = 1, the carry is consumed by position j. Thus,
if Qi,j = 1, position j prevents position i from receiving a carry. The carry bit Ci is set if
no position prevents position i from receiving a carry bit, i.e.

Ci = AND(Qi,(i−1), . . . , Qi,0),

where we set H0 to 1.

3.8 Complexity of Addition

Problem 3.22. ADD is the problem of computing the (n + 1)-bit sum of two n-bit
numbers.

Lemma 3.23 ([MT98], Theorem 3.1). ADD ∈ ∆2 ◦ NC0
1

Proof. We use the carry-lookahead method presented above. The computation of the carry
bit Ci can be realized in a circuit consisting of three levels, more precisely in ∆2 ◦ NC0. In
the first level, the propagation bits Pi,j are computed using at most n MOD2 gates, thus
the first level is in NC0. In the next level we compute either Ri,j or Qi,j using AND gates,
hence the second level is in Σ1. The carry bit can than be computed either as

Ci = OR(Ri,(i−1), . . . , Ri,1) or Ci = AND(Qi,(i−1), . . . , Qi,1).

We immediately see that the second variant is in Π2, since it is computed by a circuit
consisting of one level of NOT gates followed by a level of AND gates, or more precisely
one AND gate. We can artificially increase the depth of the first variant by adding a
second layer consisting of a single OR gate that has as inputs Ci, as defined above, and a
constant 0. Hence, the first variant is in Σ2. Level three is in both Σ2 as well as Π2 and
therefore in ∆2, which is equal to ∆1 by Lemma 3.17. Level two and three combined are
in ∆1 ◦ Σ1 and thus in ∆2 by Lemma 3.16 because Σ1 ⊆ AC0

1. Finally we compute each
bit Si of the sum from the input bits xi and yi and the carry bit as Si = MOD2(xi, yi, Ci),
which is in NC0. In summary the carry-lookahead circuit is in NC0 ◦ ∆2 ◦ NC0 = ∆2 ◦ NC0,
where the equality comes from Lemma 3.18. By Lemma 3.19 NC0 ⊆ ∆1 ◦ NC0

1, thus
∆2 ◦ NC0 ⊆ ∆2 ◦ ∆1 ◦ NC0

1 = ∆2 ◦ NC0
1, where the equality follows from Lemma 3.17.

3.9 Iterated Addition

Problem 3.24. ITADD is the problem of computing the (n+ ⌈logn⌉)-bit sum of n n-bit
numbers.

Corollary 3.25 ([MT98], Theorem 3.3). ITADD ∈ ∆2 ◦ NC0
1 ◦ TC0

1.
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Proof. Let x1, . . . , xn be the input numbers given as xi = xi,n, . . . , xi,1 for i ∈ {1, . . . , n}.
Divide each input number xi into m portions of length l, where l = ⌈logn⌉ and m = ⌈n/l⌉.
Let Sk be the sum of the k-th blocks of all input numbers.

Sk =
n∑

i=1

l∑
j=1

xi, (k−1)·l+j 2j−1

S =
m∑

k=1
Sk 2(k−1)l

Since the maximum value of each block, when seen as a separate l bit number, is 2l − 1, we
see that Sk ≤ n(2l − 1) for each k ∈ {1, . . . ,m}. Each Sk has a length of at most 2l bits
because

n(2l − 1) ≤ n 2l = 2l+log n ≤ 22l.

We can split each Sk into a lower- and higher-order half both having length l, which
we denote as Lk and Hk. Thus, Sk = Hk2l + Lk. Denote as SH and SL the result of
concatenating the numbers Hk and Lk, respectively. Therefore,

SH + SL =
m∑

k=1
Hk2kl +

m∑
k=1

Lk2(k−1)l

=
m∑

k=1

(
Hk2(k−1)l+l + Lk2(k−1)l

)
=

m∑
k=1

(Hk2l + Lk)2(k−1)l

=
m∑

k=1
Sk2(k−1)l = S

Each bit of SH and SL is a function of one of the Sk, and Sk itself is a weighted sum
of the input numbers x1, . . . , xn. We can thus apply Lemma 3.7, yielding that every bit
of SH and SL can be computed by a circuit consisting of a single symmetric gate. Since
the addition of the two numbers SH and SL is in ∆2 ◦ NC0

1 by Lemma 3.23, ITADD is
in ∆2 ◦ NC0

1 ◦ SYM. A circuit in NC0
1 ◦ SYM computes a function of symmetric gates and

can therefore be computed by a single symmetric gate according to Lemma 3.8. Thus,
ITADD ∈ ∆2 ◦ SYM. Lemma 3.20 states that SYM ⊆ ∆1 ◦ NC0

1 ◦ TC0
1, therefore

ITADD ∈ ∆2 ◦ SYM ⊆ ∆2 ◦ ∆1 ◦ NC0
1 ◦ TC0

1.

By Lemma 3.17, ∆2 ◦ ∆1 = ∆2+1−1 = ∆2. Hence follows the claim.

Definition 3.26. BitITADD is the language of tuples (X1, . . . , Xn, j, 1n) such that Xi is
a n-bit number for each i ∈ {1, . . . , n} and the j-th bit of the sum

∑n
i=1Xi is 1.

Lemma 3.27. BitITADD ∈ PHPP

Proof. We show in Corollary 3.25 that the problem ITADD of adding n n-bit numbers can
be solved by a circuit in ∆2 ◦ NC0

1 ◦ TC0
1. Such a circuit consists of four layers: a layer of

majority gates, one layer of AND and OR gates of bounded fan-in, followed by two layers
of AND and OR gates of unbounded fan-in. We show how the task of determining the
value of a single output gate of such circuits can be realized in PHPP.

Let the predicate Con(u, v) be true if and only if gate u is connected to gate v. Furthermore,
let Layi denote the set of gates in layer i. Note that layer 0 consists entirely of input nodes.
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3.9. Iterated Addition

Under the assumption that these circuits are uniform, for a suited definition, we are able
to answer questions about their structure in polynomial time. E.g. we are can evaluate the
Con or list all gates of layer i.

Let Vali be the set of gates in layer i that evaluate to 1 and let the unary predicate Vali(v)
be true if and only if v ∈ Vali. If v is an OR gate, the output of v is 1 if there exists a
predecessor gate in the preceding layer that evaluates to 1, i.e.

Vali(v) ⇐⇒ ∃u ∈ Layi−1 : Con(u, v) ∧ Vali−1(u).

If v is an AND gate, the output of v is 1 if and only if all of its predecessor gates in the
preceding layer evaluate to 1, i.e.

Vali(v) ⇐⇒ ∀u ∈ Layi−1 : Con(u, v) → Vali−1(u).

By the construction of the ITADD circuit, the number of gates in each layer is at most
exponential in n. Therefore, each gate can be represented by a polynomial-length string
and we can quantify over the set {0, 1}p(n) for some polynomial p instead of quantifying
over a set of gates, in the above formula. Additionally, all predicates except Vali−1(u) can
be evaluated in polynomial time. It follows, that Vali ∈ PHVali−1 for all i ∈ {2, 3, 4}, by the
definition of the polynomial hierarchy.

The first layer consist entirely of majority gates. The output of a majority gate is 1 if and
only if the majority of its inputs are 1. Let f be the function that counts the number of
predecessor gates of a majority gate v that evaluate to 1. Formally:

f(v) =
∣∣∣{u ∈ Lay0 | Con(u, v) ∧ Val0(u)

}∣∣∣.
Instead of taking u from a set of gates, we can identify u with a string from {0, 1}p(n) for
some polynomial p. Furthermore, the predicate Con is computable in polynomial time
because of the assumed uniformity and Val0 is given by the input. Thus, the function f is
in #P. The total number of predecessor gates of v can also be determined in polynomial
time because of the assumed uniformity. If the value f(v) is known, a polynomial-time
TM can decide if the majority of the inputs of v are 1. Hence, Val1 ∈ P#P and therefore
Val1 ∈ PPP, since P#P = PPP by Lemma 2.12.

In summary, Val4 ∈ PHVal3 , Val3 ∈ PHVal2 , Val2 ∈ PHVal1 and Val1 ∈ PPP. Combining
these findings, we see that

Val4 ∈ PHPP

since PHPH = PH (Lemma 2.8) and PHP = PH (Corollary 2.9). BitITADD is equal to
deciding whether the j-th output gate is in Val4.

Problem 3.28. LOGITADD is the problem of computing the sum of logn many n-bit
numbers.

Lemma 3.29 ([Vol99], Theorem 1.21). LOGITADD can be solved by a uniform AC0

circuit.

Lemma 3.30. The problem of deciding whether the j-th output gate of a given uniform
AC0 circuit evaluates to 1 is in PH.
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Proof. AC0 circuits have constant depth but the fan-in of each gate is unbounded. Without
loss of generality, we can assume that the given circuit is made up of a constant number
of layers. The proof is analogous to the first part of the proof of Lemma 3.27: A gate
v is in Vali if it is in layer i and evaluates to 1. Using predicates like Con(u, v), which
can be decided in polynomial time sine we only consider uniform circuits, we show that
Vali ∈ PHVali−1 for each layer i. Since PHPH = PH, the values of gates in the output layer
can be decided in PH.
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4. Number Theoretical Notions

4.1 Chinese Remainder Representation
The Chinese remainder theorem is a basic result from number theory. A statement of this
theorem was mentioned by the Chinese mathematician Sun Tzu who lived between 544 an
496 B.C.

Theorem 4.1 (Chinese remainder theorem – [HW79], Theorem 121). The system of
congruences

X ≡ a1 (mod m1)
...

X ≡ ak (mod mk)

has a unique solution if the moduli m1, . . . ,mk are pairwise coprime.

Definition 4.2. For n ∈ N, let Pn be the set of all odd primes less than n and Pn =
∏

p∈Pn
p.

The Chinese remainder theorem implies that a nonnegative integer can be represented
as a list of remainders modulo some primes, which is sometimes referred to as Chinese
remainder representation. This representation has some interesting properties that we apply
in Chapter 6.

Lemma 4.3. For n ∈ N, every nonnegative integer X smaller than Pn can be represented
uniquely as a list (xp)p∈Pn, where xp ≡ X (mod p).

Proof. Let p1, . . . , pk denote the elements of Pn. By the Chinese remainder theorem (4.1),
the system of congruences

X ≡ a1 (mod p1)
...

X ≡ an (mod pk)
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has a unique solution modulo Pn because p1, . . . , pk are prime and therefore pairwise
coprime. In other words X 7→ (X mod p1, . . . , X mod pk) defines a ring isomorphism and

Z/PnZ ∼= Z/p1Z × . . .× Z/pkZ.

Thus, we can represent any integer less than N as a list (xp)p∈Pn , where xp = X mod p.

Lemma 4.4. Let X be a nonnegative integer smaller than Pn and let hp,n denote the
modular inverse of Pn/p mod p, then

X ≡
∑

p∈Pn

xphp,nPn/p (mod Pn).

Proof. By the Chinese remainder theorem, it suffices to show that the congruence∑
p∈Pn

xphp,nPn/p ≡ xq (mod q)

is satisfied for every odd prime number q less than Pn. Since hp,n is the modular inverse of
Pn/p modulo p and every odd prime number q′ with q′ < Pn and q′ ̸= p divides Pn/p, the
following two congruences hold:

hp,nPn/p ≡ 1 (mod p) and hp,nPn/p ≡ 0 (mod q′).

Therefore ∑
p∈Pn

xphp,nPn/p ≡
∑

p∈Pn

(xp mod q)(hp,nPn/p mod q) ≡ xq (mod q).

Definition 4.5. For x ∈ R, let ⌊x⌋ and {x} be the integral and fractional part of x,
respectively.

For example, {π} = 0.14159 . . . and ⌊π⌋ = 3. We observe the following basic properties
concerning the integral and fractional part.

Observation 4.6. For every x ∈ R:

1. ⌊x⌋ ∈ N

2. 0 ≤ {x} < 1

3. x = ⌊x⌋ + {x}

4. ⌊x⌋ = 0 ⇐⇒ x < 1

5. x < 1 =⇒ {x} = x.

Corollary 4.7. The fractional part of
∑

p∈Pn
xphp,n/p is given by X/Pn for every X ∈ N0

with X < Pn.

Proof. Let us denote the number
∑

p∈Pn
xphp,n/p as X̃. By Lemma 4.4, X is congruent to∑

p∈Pn
xphp,nPn/p modulo Pn, i.e. there exists an integer q such that

X = q · Pn +
∑

p∈Pn

xphp,nPn/p.
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Dividing both sides by Pn and rearranging yields

q =
∑

p∈Pn

(
xphp,n/p

)
−X/Pn.

After decomposing each summand into its integral and fractional part we are left with

q = ⌊X̃⌋ + {X̃} −
⌊
X/Pn

⌋
−

{
X/Pn

}
.

Since X < Pn, X/Pn < 1 and ⌊X/Pn⌋ = 0. Consequently q = ⌊X̃⌋ + {X̃} −
{
X/Pn

}
.

Since q and ⌊X̃⌋ are integers, the fractional parts on the right side must cancel out, hence
{X̃} =

{
X/Pn}. Since X/Pn < 1, {X̃/Pn} = X/Pn.

Definition 4.8. For n ∈ N, let N(n) denote the value 2n2 . In cases where no confusion
can arise, we simply write N instead of N(n).

According to the above definition, PN is the product of all odd primes less than 2n2 .

Lemma 4.9. 22n
< PN < 22n2+1 for large enough n ∈ N.

Proof. For any integer n, the prime-counting function π gives the number of primes not
exceeding n. The prime number theorem states that π(n) ∼ n

log n , i.e. limn→∞
π(n) log n

n = 1
[HW79, Theorem 6]. This implies that for all ε > 0 there exist an integer n0, such that for
every n ≥ n0

(1 − ε) n

logn ≤ π(n) ≤ (1 + ε) n

logn.

By choosing ε = 1/2, we see that for large enough n

π(n) ≥ (1 − 1
2) n

logn = n

2 logn. (4.1)

Similarly by choosing ε = 1, we see that for large enough n

π(n) ≥ (1 + 1) n

logn = 2n
logn. (4.2)

Since every p ∈ PN is larger than 2 and there are π(N) primes smaller than N , we see that

PN =
∏

p∈PN

p > 2π(N).

For large enough n, inequality 4.1 implies that

π(N) ≥ N

2 logN = 2n2

2n2 ≥ 2n2

2n2−n
= 2n2−n2+n = 2n

were the second inequality follows from 2n2 ≤ 2n2−n for n ≥ 5 which can be shown using
induction. Therefore PN > 22n . Similarly it follows that

PN < Nπ(N) =
(
2n2)π(N)

≤
(
2n2)(

2N
log N

)
= 2

(
n2 1

n2 2n2+1
)

= 22n2+1

for large enough n, by inequality 4.2.
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4.2 Lagrange’s Theorem
Definition 4.10. Let G be a finite group. For any g ∈ G, the set ⟨g⟩ = {gn | n ∈ Z}
is called the cyclic subgroup generated by g. The order of an element g ∈ G, denoted as
ord(g), is the number of elements in the cyclic subgroup generated by g or, equivalently,
the smallest positive integer i for which gi = 1.

Definition 4.11. Let G be a finite group of order m, i.e. |G| = m. If there exists a g ∈ G
that has order m, then ⟨g⟩ = G. In this case we call g a generator of G and say that G is
cyclic.

Theorem 4.12 (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G,
then |H| divides |G|.

Proof. Let gH = {gh | h ∈ H} be the so-called left coset of H for some g ∈ G. We show
that every such left coset has the same number of elements as H and that the left cosets of
H form a partition of G. As G can be divided into equally sized portions of |H| elements,
the claim follows.

For every g ∈ G, consider the functions

fg : H → gH, h 7→ gh and f ′g : gH → H, h 7→ g−1h.

It is easy to see that f ′g is the inverse of fg, hence fg is a bijection. Therefore every left
coset of H has the same number of elements as H.

Suppose g1H and g2H are left cosets and g1H ∩ g2H ̸= ∅. Then there are h1, h2 ∈ H such
that g1h1 = g2h2. Rearranging yields g1 = g2h2h

−1
1 . Thus, for every h ∈ H,

g1h = g2h2h
−1
1 h ∈ g2H.

Since h is arbitrary, g1H ⊆ g2H. The inclusion g2H ⊆ g1H follows by the same reasoning,
thus g1H = g2H. Therefore, every pair of left cosets g1H and g2H is either disjoint or
identical. Furthermore, for every g ∈ G, g = g · 1 ∈ gH since H, as a subgroup of G,
contains the neutral element 1. Hence the left cosets form a partition of G.

In conclusion the number of elements of all left cosets of H are equal to |H| and add up to
|G|. Thus, |H| must divide |G|.

Corollary 4.13. Let G be a finite group, then g|G| = 1 for every g ∈ G.

Proof. Consider the subgroup ⟨g⟩ generated by some g ∈ G and let q = ord(g) = |⟨g⟩|.
We have gq = 1. By Theorem 4.12, q divides |G|, i.e. there exists some k ∈ Z such that
kq = |G|. Thus, g|G| = gkq = (gq)k = 1k = 1.

4.3 Multiplicative Inverses
When speaking of Z/nZ for some n ∈ N, we always mean the group (Z/nZ,×), unless stated
otherwise. That is, we assume multiplication as the group operation and use multiplicative
notation, i.e. xy and x−1 to denote the product of x and y and the inverse of x, respectively.

Definition 4.14 ([HW79], p. 52). For an integer n the Euler totient function φ gives the
number of integers not greater than and coprime to n, that is

φ(n) =
∣∣{m ∈ N | m < n, gcd(m,n) = 1

}∣∣.
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Definition 4.15. (Z/nZ)× is the set of units, i.e. elements which have an inverse, of Z/nZ.

An element a ∈ Z/nZ is a unit of Z/nZ if a is coprime to n, i.e. gcd(a, n) = 1. Therefore,

(Z/nZ)× = {x ∈ Z/nZ | gcd(x, n) = 1}.

The set (Z/nZ)× contains the neutral element. Additionally, for every unit x of Z/nZ, x−1

is clearly also a unit of Z/nZ. Therefore, (Z/nZ)× forms a group under multiplication and
is referred to as the multiplicative group of the integers modulo n.

The greatest common divisor of zero and any nonnegative integer n is n. On the other
hand, every element of Z/pZ except zero is coprime to p for any prime p. If p is prime,
the multiplicative group of the integers modulo p therefore contains all elements of Z/pZ
except zero and we obtain

∣∣(Z/pZ)×
∣∣ = p− 1.

Theorem 4.16 (Fermat-Euler-Theorem). Let a and n be coprime integers, then

aφ(n) ≡ 1 (mod n).

Proof. Let a and n be coprime integers. By definition, the order of the multiplicative
subgroup of integers modulo n, (Z/nZ)×, is φ(n). Since a and n are coprime, a ∈ (Z/nZ)×.
The claim follows directly from Corollary 4.13 since raising an element to the power of the
group order yields the neutral element, i.e. aφ(n) ≡ 1 (mod n).

Corollary 4.17. Let p be prime and a ∈ Z/pZ, then a−1 ≡ ap−2 (mod p).

Proof. As a prime, p is coprime to every integer smaller then itself. Furthermore, p is not
coprime to itself since 1 is the only number coprime to itself. Therefore φ(p) = p− 1 and
according to the Fermat-Euler theorem (4.16)

ap−1 ≡ 1 (mod p)

for any a ∈ Z/pZ. By rewriting the above statement as a · ap−2 ≡ 1 (mod p), we see that
ap−2 is the modular inverse of a modulo p.

4.4 The Multiplicative Group of the Integers modulo a Prime
We use the notation n|m to say that nonzero integer n divides an integer m, i.e. there
exists an integer k, such that m = kn.

Lemma 4.18 ([HW79], Theorem 63).
∑

d|n φ(d) = n for all n ∈ N.

Proof. We follow the alternative proof for [HW79, Theorem 63] given in [HW79, Section
16.2]. Consider the set of fractions Q =

{
k
n | 1 ≤ k ≤ n

}
. Each fraction k/n can be expressed

in irreducible form by cancelling out all common factors of the numerator and denominator.
That is k/n = a/d such that d | n and gcd(a, d) = 1 with 1 ≤ a ≤ d. Conversely, every
fraction a/d, with d | n and gcd(a, d) = 1 for 1 ≤ a ≤ d, appears in Q. Since the number of
integers a that satisfy 1 ≤ a ≤ d and gcd(a, d) = 1 is exactly φ(d), it follows that

n = |Q| =
∑
d|n

∑
1≤a≤d

gcd(a,d)=1

1

=
∑
d|n

φ(d).
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Theorem 4.19 ([IR90], Theorem 4.1). For every prime p, (Z/pZ)× is cyclic.

Proof. Let p be some prime. We prove the cyclicity of (Z/pZ)× by showing the existence
of an element of order p − 1. For any d ∈ N, let ψ(d) denote the number of elements of
(Z/pZ)× having order d. Hence ψ(p− 1) ≥ 1 implies that (Z/pZ)× is cyclic.

Every x ∈ (Z/pZ)× generates a subgroup ⟨x⟩ and the number of elements in ⟨x⟩ is the
order of x. By Theorem 4.12, ord(x) divides p− 1. This implies that there exists an element
of order d, i.e. ψ(d) > 0, if and only d divides p − 1. The total number of elements in
(Z/pZ)× is equal the sum of the number of elements of each order, therefore

p− 1 =
p−1∑
d=1

ψ(d) =
∑

d|p−1
ψ(d).

Applying Lemma 4.18 for n = p− 1 yields:
∑

d|p−1
ψ(d) = p− 1 =

∑
d|p−1

φ(d).

And therefore ∑
d|p−1

ψ(d) − φ(d) = 0. (4.3)

Next, we show that ψ(d) ≤ φ(d) for all d dividing p− 1: Suppose there exists an integer
d dividing p− 1 such that ψ(d) > φ(d) and let h be an element of order d. Let H be the
subgroup of (Z/pZ)× generated by h, i.e. H = ⟨h⟩ = {h, h2, . . . , hd}. Thus, every element
of H can be written as hj for some j ∈ {1, . . . , d}.

The order of each hj ∈ H is the smallest number k such that hjk ≡ 1 (mod d). The order
of hj is independent of whether we regard hj as an element of (Z/pZ)× or H. Therefore,
the congruence hjk ≡ 1 (mod p) also holds. By Theorem 4.12, k divides d. Thus, jk is the
smallest common multiple of j and d. For any two number a and b, ab = lcm(a, b) ·gcd(a, b).
Therefore:

lcm(j, d) · gcd(j, d) = jd ⇐⇒ jk · gcd(j, d) = jd ⇐⇒ k = d

gcd(j, d) .

This implies that k = d if and only if gcd(j, d) = 1. Hence, the number of elements of H
which have order d is equivalent to the number of elements hj ∈ H for which gcd(j, d) = 1
which is exactly φ(d).

Since ψ(d) > φ(d), there must exist an element g ∈ (Z/pZ)× which has order d but is
not in H. By definition, gd ≡ 1 (mod p). Consequently, the congruence xd ≡ 1 (mod p)
has more than d solutions: each of the d elements of H and at least one element g which
is not in H. That is, the polynomial xd − 1 ∈ Z/pZ[x] has more than d roots. This is a
contradiction to the fact that every polynomial of degree d over a Z/pZ, which is a field
since p is prime, has at most d roots. Therefore, φ(d) − ψ(d) ≥ 0 for all d dividing p− 1.

It follows that φ(d) = ψ(d) for all d dividing p− 1, because each summand in Eq. (4.3) is
nonnegative but the sum is equal to zero. For every prime p, φ(p− 1) ≥ 1. Thus, if p is
prime, ψ(p− 1) = φ(p− 1) ≥ 1, i.e. (Z/pZ)× is cyclic.
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4.5 Binary Expansion of Prime Reciprocals
Prime reciprocals are rational numbers of the form 1/p, where p is prime. The representation
of any rational number q in some base r is either finite or repeating, and the length of
the repeating sequence of digits in this representation is called the period of q. William
Shanks, who lived between 1812 and 1882, spend years of his life calculating the decimal
expansion of reciprocals of every prime number up to 110 000 in order to determine their
period. Luckily, the following statement allows us to easily compute the bit at position j
of the binary expansion of prime reciprocals. We show in Chapter 6 that this method is
efficient even if j is “very large”.

Lemma 4.20 ([Kak87]). The j-th bit of the binary expansion of 1/p is 1 if and only if
2j mod p is odd for every odd prime p.

Proof. For any p ∈ Z, the so-called d-sequence a1, a2, . . . of 1/p are the digits that represent
the expansion of 1/p in base r ≥ 2. The statement given in [Kak87] is the following:

ai = l(ri mod p) mod r,

where l ∈ Z is a number such that l < r and −l ≡ p (mod r). In this case r = 2 and p is
an odd prime. Thus, p mod r = 1. For l = 1, the congruence −l ≡ p (mod r) is satisfied,
since −1 ≡ 1 (mod 2). Therefore ai = (2i mod p) mod 2.
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5. Computation over the Reals

The theory of computation over an arbitrary field or ring was introduced in 1989 by Lenore
Blum, Mike Shub and Steve Smale, arising from the problem that the classical (Turing)
theory of computation is inherently dependent on discrete objects, i.e. 0s and 1s, and
therefore inadequate most real number algorithms from the world of numerical analysis.
[Blu04]

5.1 Finite-Dimensional Machines
Definition 5.1 ([Blu+98], Definition 1). A polynomial (or rational) map g : Rm → Rm

is given by m polynomials (or rational functions) gi : Rm → R for i = 1, . . . ,m. If g is
a rational map, we assume that each gi is given by a pair of polynomials (pi, qi) and
gi(x) = pi(x)/qi(x).

Definition 5.2 ([Blu+98], Definition 1). A finite-dimensional machine M over a ring
R consist of a finite directed graph with each node being either an input, computation,
branch or output node. There exists only one input node. The input node has no incoming
edges and only one outgoing edge. Every other node has possibly multiple incoming edges.
Computation nodes have only one outgoing edge. Branch nodes have two outgoing edges,
labeled Yes and No. Output nodes have no outgoing edges. In addition, M has associated
with it:

• an input space I = Rn for some n ∈ N,

• a state space S = Rm for some m ∈ N,

• and an output space O = Rl for some l ∈ N.

Each node is equipped with maps on these spaces and a next node assignment as follows:

• Associated with the input node is a linear map I : I → S and a unique next node β1.

• Each computation node η has an associated computation map gη : S → S, and a
unique next node βη. If R is a field, gη is a rational map, otherwise gη is a polynomial
map.

• Each branch node η has an associated branching function which is a nonzero poly-
nomial function hη : S → R. The next node along the outgoing edge Yes, β+

η , is
associated with the condition hη(z) ≥ 0 and the next node along the outgoing edge
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No, β−η is associated with hη(z) < 0. If R is a ring or field without order, e.g. C or
Z/nZ, we alter the above by associating β+

η with the condition hη(z) = 0 and β−η
with hη(z) ̸= 0.

• Every output node η has an associated linear map Oη : S → O and no next node.

It is sometimes convenient to define the computation map and next node assignment for
all nodes. This can be achieved by defining the computation map to be the identity on all
nodes that are not computation nodes and the next node of any output node to be itself.

The set of all coefficients of linear of rational maps that are used by a finite-dimensional
machine over R is called the set of machine constants.

Definition 5.3 ([Blu+98], p. 44). Let R be a ring and M a machine over R. Let N be
the set of nodes of M and S its state space. We call the set of all node/state pairs N × S
the configuration space of M .

Definition 5.4 ([Blu+98], p. 44). The computing endomorphism H : N × S → N × S
maps each node/state pair (η, x) to the unique next node/state pair (η′, x′). Let B ⊂ N
denote the subset of branch nodes of M and C be N \ B. Then we define H as

H(η, x) = (βη, gη(x))

for each η ∈ C. If η ∈ B is a branching node, we define H as

H(η, x) =
{

(β+
η , gη(x)) if hη(x) ≥ 0

(β−η , gη(x)) if hη(x) < 0

in the case that R has order and

H(η, x) =
{

(β+
η , gη(x)) if hη(x) ̸= 0

(β−η , gη(x)) if hη(x) = 0

in the case that R is a ring without order.

Definition 5.5 ([Blu+98], p.45). Starting from an initial point z0 = (q1, x
0) ∈ N × S, the

iterated application of H generates the sequence z0, z1, z2, . . ., where

zk = H(zk−1) = Hk(z0)

is called a computation.

Definition 5.6 ([Blu+98], p.45). Let πN : N × S → N be the projection from the
configuration space onto the set of nodes. We call the sequence of nodes η0, η1, η2, . . ., where
ηk = πN (zk), the computation path γx traversed by M on input x.

Definition 5.7 ([Blu+98], p. 45). We say that a computation halts if there exists an
output node N , a time T ∈ N and some u ∈ S, such that zT = (N, u). In this case the
finite sequence (z0, z1, . . . , zT ) ∈ (N × S)(T +1) is called a halting computation.

Definition 5.8 ([Blu+98], p.45). The halting set of M , denoted as Ω, is the set of all
inputs on which M halts. The input-output map Φ: Ω → O maps each input in the halting
set to the state on which M halts and applies the mapping to the output space, i.e.

Φ(x) = O(xT ),

where T is the least number such that zT = (N, xT ) for some output node N or.
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Definition 5.9 ([Blu+98], p.46). A map φ : X → Rl, where X ⊂ Rn, is computable if it
is the input-output map of a finite-dimensional machine. That is, φ is computable if there
exists a finite-dimensional machine M having the input space Rn, output space Rl, halting
set X and input-output map φ.

Definition 5.10 ([Blu+98], p.47). A set S ⊆ Rn is decidable over R if the function

χ : Rn → R, x 7→
{

1 if x ∈ S

0 otherwise
,

called the characteristic function is decidable. Otherwise we call S undecidable over R.

When R = Z2, all of the above definitions are equivalent to the classical definition of a
Turing machine.

5.2 The Blum-Shub-Smale Model
The Blum-Shub-Smale (BSS) Model can be seen as a generalization of the standard Turing
machine where each cell of the tape can hold an element of the underlying ring or field R.
Furthermore, this machine can perform specific arithmetic operations on R in constant
time.

Definition 5.11 ([Blu+98], p.70). Let R be a ring. We denote the disjoint union
⊔

n≥0R
n

by R∞.

Definition 5.12 ([Blu+98], p. 70). For a ring R, we denote the bi-infinite direct sum over
R by R∞. Elements of R∞ have the form

x = (. . . , x−2, x−1, x0 # x1, x2, . . .),

where xi ∈ R for all i ∈ Z, xk = 0 for |k| sufficiently large, and # is a distinguished marker
between x0 and x1. We say that xi is the i-th coordinate of x for every i ∈ Z.

The bi-infinite direct sum corresponds to the “working tape” of a classical Turing machine.
Similarly, the distinguished marker represents the position of the “read-write head”. We
move the “read-write head” by defining two endomorphisms on the “tape” R∞, shift left
and shift right. Shift left moves the distinguished marker one coordinate to the right and
thus each element one coordinate to the left. Shift right is the inverse operation.

Definition 5.13 ([Blu+98], p.70). The two endomorphisms σL, σR : R∞ → R∞ are called
shift left and shift right and are defined as σL(x)i = xi+1 and σR(x)i = xi−1 for each i ∈ Z.

Before we present the definition of a BSS machine, we need a few more technical definitions.
As in the case of finite-dimensional machines, we can define polynomial (or rational) maps
from the state space onto the underlying ring. These maps are used in the branch nodes of
the new machine.

Definition 5.14 ([Blu+98], p. 70). Let h : Rm → R be a polynomial (or rational) function
over R. Then h defines a polynomial (or rational) map

ĥ : R∞ → R, x 7→ h(x1, . . . , xm)

on R∞ of dimension m.
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Likewise, we need to adapt the concept of polynomial (or rational functions) endomorphisms
on the state space, that are used by the computation nodes.

Definition 5.15 ([Blu+98], p.70). Let gi : Rm → R for i = 1, . . . ,m be polynomial (or
rational) functions having maximum degree d over R. Then the gi for i = 1, . . . ,m define a
polynomial (or rational) map

ĝ : R∞ → R∞ with
(
ĝ(x)

)
i

=
{
ĝi(x) if 1 ≤ i ≤ m

xi otherwise

on R∞. Note that ĝi : R∞ → R is a polynomial (or rational) map defined by gi as in
Definition 5.14.

Finally we must define input and output mappings allowing us to relate the input and
output space R∞ with the state space R∞. As for the case of finite-dimensional machines,
these mappings are associated with the input and output nodes.

Definition 5.16 ([Blu+98], p.71). Let I∞ : R∞ → R∞ and O∞ : R∞ → R∞ be the maps
defined by

I∞(x) = (. . . , 0, 0, 0, n̂ # x1, x2, . . . , xn, 0, 0, . . .)
for x ∈ Rn, where n̂ is the sequence of n 1s if n > 0 and 0̂ = 0, and

O∞(. . . , x0 # x1, . . . , xl, . . .) =
{

0 ∈ R0 if l = 0
(x1, . . . , xl) otherwise

where l = mini≥0{x−i = 0}.

Definition 5.17 ([Blu+98], p. 71). A Blum-Shub-Smale (BSS) machine M over a ring
R is a finite connected graph, containing five types of nodes: input, computation, branch,
output, and shift nodes. The Space R∞ is both the underlying input and output space of
M , and R∞ is the state space. Input, computation, branch and output nodes are defined
as in the case of finite-dimensional machines (5.2). The only difference being that now the
notion of polynomial (or rational) maps on R∞ are used and the linear input and output
maps are substituted by I∞ and O∞, respectively. Each shift node has possibly multiple
incoming edges and one outgoing edge. In addition, each shift node η has associated with
it an endomorphism gη ∈ {σL, σR} of the state space into itself and a unique next node βη.

By replacing the input and output spaces by R∞ and the configuration space by R∞,
the definitions for the computing endomorphism, computation, computation path, halting
computation, input-output maps, computable maps, decidable and undecidable sets are
exactly as in the case of finite-dimensional machines with some adaptions [Blu+98, p. 72].
It is important to note, that the increased computational power of a machine as defined
above is not a result of the infinite dimensional state space per se, but the shift nodes that
enable the accessing of “registers of arbitrary high address” [Blu+98, p. 71]. In the case of
R = Z2, this formulation reduces to the classical definition of Turing machine operating on
a “tape” of Boolean values.

Definition 5.18 ([AB07], Definition 16.23). The class PR contains every language over R,
i.e. subsets of R∞, that are decidable by a BSS machine over R in polynomial time.

Definition 5.19 ([All+09], Section 1.1). The set PS
R is the subset languages L in Preal, that

are decidable in polynomial time by a BSS machine over R using only machine constants
in S.

Note that PR =
⋃

S⊆R PS
R.
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5.3 Straight-Line Programs and the Problem PosSLP

Definition 5.20 ([AB07], Definition 16.2). A straight-line program (SLP) of size S is a
sequence of instructions of the form yi := zk ⋄ zl for i = 1, . . . , S, where ⋄ is an operation
of the underlying ring or field, i.e. ⋄ ∈ {+,−,×,÷} in case of R, and zk and zl are either
input variables, built-in constants or intermediate values yj for j < i. For every choice of
input variables, executing these simple instructions in order yields values for y1, . . . , yS . We
call the value of yS the output of the computation. We call a SLP division-free if it does
not make use of the division operation.

If a division-free SLP P that uses only constants in {0, 1} has no indeterminates, i.e. input
variables, the result of P is an integer X. In this case we say that P represents X.

Example. Let n be some positive integer. Consider the following SLP:

y0 := 2
y1 := y0 · y0

...
yn := yn−1 · yn−1

Its easy to show by induction, that this SLP outputs 22n since yi evaluates to 22i for every
i ≤ n:

y0 = 2 and yi = yi−1 · yi−1 = 2(2i−1+2i−1) = 22i
.

This example demonstrates that a SLP of size n can represent a double exponentially large
integer. In contrast, representing this number in binary would require 2n bits.

Lemma 5.21 ([Str73]). Every SLP of size n can be transformed into an equivalent division-
free SLP of size polynomial in n.

We now introduce the problem PosSLP, whose complexity we study in the subsequent
chapter.

Definition 5.22 ([All+09]). For every finite subset S ⊂ R, PosSLP(S) is the language
of division-free SLPs without indeterminates that use only constants in S ∪ {0, 1} and
evaluate to a positive real number.

Definition 5.23. PosSLP is the language of SLPs that represent a positive integer.

In other words, a SLP P is in PosSLP if it is in PosSLP(∅).

5.4 Boolean Parts

Definition 5.24 ([Blu+98], Section 22.2, Definition 2). Given a class C of subsets of R∞
define the Boolean part of C as

BP(C) := {S ∩ Z∞2 | S ∈ C},

where we are identifying Z2 with the subset {0, 1} of R.
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In Chapter 7, we prove Theorem 1.3 by reducing SQRT-SUM to the problem PosSLP in
two steps: First, we show how SQRT-SUM can be solved in polynomial time by a machine
which is equivalent to the BSS machines presented in this chapter. The following theorem
states that the set of problems over {0, 1}∗ decided by a BSS machine over the reals using a
finite set of real constants, i.e. BP(PS

R), can be decided by a standard polynomial-time TM
having access to an oracle for the language PosSLP. We use this fact in the second step,
to show that SQRT-SUM ∈ PPosSLP. By Theorem 1.2, which we address in the following
chapter, it then follows that PosSLP is in CH.

Theorem 5.25 ([All+09], Proposition 1.1). PPosSLP(S) = BP(PS
R) for all finite subsets

S ⊂ R.

Proof. Let P be a SLP of size n. Since a BSS-machine over R can evaluate every arithmetic
expressions used in P in O(1), we can implement a SLP interpreter that evaluates the result
of P in linear time and perform a single sign-test afterwards. Thus, a machine performing
a polynomial number of queries to a PosSLP-oracle can be emulated by a BSS machine in
polynomial time, i.e. PPosSLP(S) ⊆ BP(PS

R).

To show the other direction, let M be a polynomial-time BSS machine over R using
only constants in S ∪ {0, 1}. According to Lemma 5.21 we may assume that M does not
make use of division, without loss of generality. We can emulate M using a standard
polynomial-time TM M ′ having access to a PosSLP(S)-oracle as follows: Given this input
string M performs some computation and produces intermediate values which are stored
in the cells of M . For every cell ci of M , the standard TM M ′ stores a SLP Pi which
initially represents the initial content of the cell, i.e. 0 or 1 since we are considering the
Boolean part. Instead of computing and storing the actual values of these intermediates,
M appends every arithmetic operation performed on cell ci to Pi. Note that since M can
access only polynomially many cells of its tape and can only perform a polynomial number
of operations on each cell, M ′ must only store polynomially many SLPs of polynomial size.
M can then simulate branching instructions of M ′, i.e. evaluate the branching function, by
sending the constructed SLP to its PosSLP(S)-oracle.

Corollary 5.26. PPosSLP = BP(P∅R).
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We prove that the problem PosSLP, introduced in Chapter 5, lies within the counting
hierarchy CH. As mentioned in Chapter 1, we follow the proof of Allender et. al closely.
However, the proof, more specifically the proof of Lemma 4.4. in [All+09], contains two
arguments that are beyond our understanding. We present the statement and use it for the
rest of our proof, however, we refrain from formally showing its correctness. Instead, we
highlight the two critical arguments and prove the statement under assumption that they
are true. Furthermore, we show a slightly weaker statement, which only depends on one of
the assumptions and discuss the consequences.

In Chapter 4 we defined Pn as the set of all odd primes less than n and Pn as their product,
respectively. Furthermore, recall that N = N(n) = 2n2 ; a value that becomes of importance
in this chapter. PN therefore denotes the product of all odd primes less than 2n2 .

Definition 6.1. We define a family of approximation functions appn : R → R as

appn(X) =
∑

p∈Pn

xphp,nσp,n,

where σn is the result of truncating the binary expansion of 1/p after 2n4 bits.

Lemma 6.2. For sufficiently large n and X < PN , it holds that |appn(X)−X/PN | ≤ 2−2n3
.

Proof. Using the triangle inequality and the fact that xp and hp,n are elements of Zp and
consequently nonnegative, we can conclude:

|appn(X) −X/PN | =
∣∣∣ ∑
p∈Pn

xphp,nσp,n −
( ∑

p∈Pn

xphp,nPN/p
)/
PN

∣∣∣
=

∣∣∣ ∑
p∈Pn

xphp,n(σp,n − 1/p)
∣∣∣

≤
∑

p∈Pn

xphp,n

∣∣σp,n − 1/p
∣∣

The binary expansions of 1/p and σp,n are identical up to the 2n4-th bit, thus

|σp,n − 1/p| ≤ 2−2n4
.
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Since p is always less than 2n2 , |Pn| < 2n2 and xphp,n ≤ p2 ≤ 22n2 . It follows that∑
p∈Pn

xphp,n

∣∣σp,n − 1/p
∣∣ ≤ 2n2 · 22n2 · 2−2n4

= 2−2n4 +3n2
.

It remains to show that −2n4 + 3n2 ≤ −2n3 for large enough n, which follows directly from
the fact that 2n4 − 3n2 ∈ Ω(2n3), i.e. 2n4 − 3n2 grows at least as fast as 2n3 .

Theorem 6.3 ([All+09], Theorem 4.2). PosSLP ∈ PHPPPP

Proof. Let P be a SLP of size n that represents the integer W . Denote as Yn the number
22n . Since |W | ≤ Yn as a consequence of iterated squaring, the number X = W + Yn

is nonnegative. We can construct a SLP of size 2n+ 2 that represents X using iterated
squaring to compute Yn in n steps and performing the addition with the result of P . The
integer W is positive, i.e. P ∈ PosSLP, if and only if X > Yn. Owing to the fact that X
and Yn are integers, if X > Yn, then X/PN and Y/PN differ by at least

1/PN > 2−2n2+1
,

where the inequality follows from Lemma 4.9. The result of the approximation function
appn is within 2−2n3

of the actual value which is smaller than 2−2n2+1 for large enough n.
It is therefore sufficient to compare appn(X) and appn(Yn) to decide whether X > Yn.

If appn(X) > appn(Y ), there exists an integer j with 0 ≤ j ≤ 2n4 such that all bits in the
binary expansion of appn(X) and appn(Y ) before the j-th bit are equal, but the j-th bit of
appn(X) is 1 and the j-th bit of appn(Y ) is 0. More formally we can write this condition
as follows:

∃j ≤ 2n4 ∀i < j :
(
appn(X)i = appn(Y )i

)
∧

(
appn(X)j = 1 ∧ appn(Y )j = 0

)
.

Note that every nonnegative integer smaller than 2n4 can be represented using log2(2n4) = n4

bits. Instead of quantifying over the integers we can therefore quantify over bit strings of
length n4. Let us denote the binary representation of i and j as I and J , respectively.

We define A to be the language of tuples (P, I, b, 1n), where the bit at position I of the
binary expansion of appn(X) is b, X is the number represented by the SLP P and I
is given in binary. Let M be a TM having access to an A-oracle. When given an input
(PX , PYn , J, I), the machine M accepts if and only if

• the i-th bit of X and Yn are equal for i < j, i.e.

i < j ⇒
(
A(PX , I, 1, 1n) ∧A(PYn , I, 1, 1n)

)
∨

(
A(PX , I, 0, 1n) ∧A(PYn , I, 0, 1n)

)
,

• and the j-th bit of X is 1, whereas the j-th bit of Yn is 0, i.e.

A(PX , J, 1, 1n) ∧A(PYn , J, 0, 1n).

We see that X > Yn if and only if

∃J ∈ {0, 1}n4 ∀I ∈ {0, 1}n4 : M(PX , PYn , J, I) = 1.

Thus, according to Definition 2.6, whether X > Yn and therefore the language PosSLP,
can be decided in (Σp

2)A ⊆ PHA. We show that A ∈ PHPPPP in Lemma 6.4. The claim,
PosSLP ∈ PHPPPP , then follows from Lemma 2.8 since PHPHPPPP

= PHPPPP .
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Lemma 6.4 ([All+09], Lemma 4.3). A ∈ PHPPPP

Proof. A tuple (P, j, b, 1n) is in A if and only if the j-th bit of the binary expansion of
app(X) is b, where X is the integer represented by the SLP P and j is given in binary. Let
Bp denote the number xphp,nσp,n. Because of the factor σp,n it suffices to compute the first
2n4 bits of the binary expansion of the sum of the numbers Bp in order to decide A. Let B
be the language of tuples (P, j, b, p, 1n), where the j-th bit of the number Bp is b, p < 2n2 is
an odd prime, X is the number represented by the SLP P and j is given in binary. We can
construct an algorithm that fetches the bits of Bp for all odd primes p < 2n2 by querying a
B-oracle, and then computes the iterated sum of all numbers Bp. The problem of adding at
most 2n2 number having 2n4 bits each is an instance of the problem ITADD (Problem 3.24).
According to Lemma 3.27, the language BitITADD is in PHPP. Thus, determining the value
of a single bit of the sum

∑
p∈Pn

xphp,nσp,n, i.e. deciding the language A, is in PHPPB .

Lemma 6.13 states that B ∈ PHPP, thus

A ∈ PHPPPHPP
. (6.1)

Corollary 2.15 states that PPPHO

⊆ PPPO for every oracle O, hence

PPPHPP
⊆ PPPPP

. (6.2)

In conclusion:
A ∈ PHPPPHPP

⊆ PHPPPPP
= PHPPPP

,

where the inclusion follows from inserting 6.2 into 6.1 and the equation follows since
PHP = PH by Corollary 2.9.

Definition 6.5. We denote as C the language of tuples (q, g, i, p), where p is prime with
p ̸= q and i is the least number for which gi ≡ q mod p.

Lemma 6.6. C ∈ PH

Proof. We can test whether q and p are prime in polynomial time using the Agrawal–Kayal–
Saxena primality test [AKS04]. The condition that i is the least number that satisfies
gi ≡ q mod p can be written more formally as

∀j < i : gi ≡ q mod p ∧ gj ̸≡ q mod p.

The number i may be exponentially large but its binary representation still has polynomially
many bits. Instead of quantifying over integers, we can therefore instead quantify over
polynomial sized bit strings. Therefore,

x := (q, g, i, p) ∈ C ⇐⇒ ∀J ∈ {0, 1}p(|x|) : (j < i) → (gi ≡ q mod p ∧ gj ̸≡ q mod p),

where p is a polynomial and j is the number represented by J . According to Definition 2.6
C ∈ Πp

1, which is a subset of PH, if the matrix of the above formula can be decided by a
polynomial time TM. We can obviously test whether j < i in polynomial time by comparing
their binary representations. It remains to show that we can also decide the consequence of
the implication in polynomial time.

Note i may be an exponentially large number in comparison to the length of the binary
representation of i. The naïve way of computing gi needs i multiplications and is therefore

41



6. PosSLP is in the Counting Hierarchy

not feasible. To conclude the proof we introduce the so-called square-and-multiply method
which solves this problem in time logarithmic in the exponent, thus in polynomial time.

By the rules of modular arithmetic, ab mod p = (a mod p)(b mod p) mod p and therefore
ab mod p = (a mod p)b mod p for any a, b ∈ Z. Thus, we can compute gi mod p using the
following recursive formula:

gi mod p =


1 if i = 0
(g2 mod p)i/2 mod p if i is even
(g mod p)(g2 mod p)(i−1)/2 mod p if i is odd.

Note that all remainders in the above formula can be computed in polynomial time. This
method needs O(log2 i) iterations hence gi mod p is computable in polynomial time.

Definition 6.7. The function dlog : N3 → N maps a tuple (q, gp, p) to the discrete logarithm
of q to a base gp modulo a prime p, i.e. the smallest number i ∈ N such that gi

p ≡ q mod p.

Lemma 6.8. dlog ∈ #PC

Proof. Let M be a nondeterministic TM. Given numbers q, p and gp as input, M non-
deterministically guesses a number i and performs a call to the oracle C in order to test if
(q, gp, i, p) ∈ C. If the tuple (q, gp, i, p) is an element of C, i is the least number for which
gi

p ≡ q mod p and thus i is the discrete logarithm of X to the base gp modulo p. In this case
M generates i accepting paths. One way to achieve this is by non-deterministically guessing
a number j ∈ Z/iZ and accepting each result. By the Definition 2.10, a function f is in
#P if f(x) is equal to the number of accepting path of a nondeterministic polynomial-time
TM for every input x ∈ {0, 1}∗.

Definition 6.9. BitDLOG is the language of tuples (q, gp, p, j), where j is given in binary,
such that the j-th bit of the binary expansion of dlog(q, gp, p) is 1.

Corollary 6.10. BitDLOG ∈ PPP

Proof. Despite the fact that the value of j might be exponentially large in the size of
the input, the value of dlog(q, gp, p) can be represented by a polynomial number of bits.
Querying bits at indices higher than the length of dlog(q, gp, p) does not make much sense.
Therefore, we can assume that j is polynomial in the size of the input.

A TM having access to a dlog-oracle can decide BitDLOG by simply querying the result
of dlog(q, gp, p) and testing whether the j-th bit of the result is 1. Since the oracle gives
answers in constant time and j is polynomial in the size of the input, as noted above, this
is achieved in polynomial time.

Combining the results of the two preceding lemmas (6.6 and 6.8), we see that dlog ∈ #PPH,
implying that

BitDLOG ∈ P#PPH
.

Lemma 2.12 states that P#P = PPP. Therefore, P#PPH = PPPPH and PPPPH ⊆ PPPP = PPP,
by Corollary 2.15 and Lemma 2.5. In summary the following equivalences and inclusions
hold:

BitDLOG ∈ Pdlog ⊆ P#PC

⊆ P#PPH
= PPPPH

⊆ PPPP = PPP.
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Remark. Allender et al. state that the discrete logarithm of a number to a base gp modulo
p can be computed in PPP since #PC ⊆ PPP. In our understanding, this inclusion cannot
be formally correct because #P is a set of counting problems, that is functions mapping
problem instances to nonnegative integers, and P is a set of decision problems. For this
reason, we differentiate between the function dlog and the language BitDLOG.

The following lemma shows that the problem of deciding whether an element of the integers
modulo a prime p a generator of this group and in particular the least generator lies within
the polynomial hierarchy. As all finite fields, Z/pZ has no order. By saying that an element
g ∈ Z/pZ is the least generator we mean that g is less than all other generators when
viewing Z/pZ as a subset of Z. This is merely a technical detail.

Lemma 6.11. The language LG of tuples (g, p) such that p is a prime and g is the least
generator of the multiplicative group of the integers modulo p is in PH.

Proof. To simplify notation, we omit writing modulo p in all arithmetic expressions. Recall
the definition of a group generator: An element g of a group G of order m is a generator of
G if it has order m. Let Gen(g) denote the following first-order formula that is satisfied if
and only if g ∈ G is a generator:

∀i : i < m → (gi ̸≡ 1 ∧ gm = 1).

Then g is the least generator if every element less than g is not a generator, i.e.

∀g′ : g′ < g →
(
¬Gen(g′) ∧ Gen(g)

)
.

We can test whether p is prime in polynomial time using the Agrawal–Kayal–Saxena
primality test [AKS04]. To show that deciding whether g is the least generator of (Z/pZ)×
is in PH, we transform the above first-order formula into prenex normal form with alternating
quantifiers, that is all quantifiers appear at the front of the formula followed by a quantifier
free matrix and all quantifiers are alternating. In addition we show that the matrix can be
evaluated by a polynomial time TM and all quantified variables can be represented using
bit-strings of polynomial length.

Inserting the formulas for Gen(g′) and Gen(g) yields

∀g′ : g′ < g →
[
¬

(
∀i : i < m → (g′i ̸= 1 ∧ g′m = 1)

)
∧

(
∀i : i < m → (gi ̸= 1 ∧ gm = 1)

)]
.

For every formula ϕ, ¬(∃x : ϕ(x)) is equivalent to ∀x : ¬Φ(x). After moving the negation
into the matrix of Gen(g′) like above and applying De Morgan’s law we are left with

∀g′ : g′ < g →
[(

∃i : i < m ∧ (g′i = 1 ∨ g′m ̸= 1)
)

∧
(
∀i : i < m → (gi ̸= 1 ∧ gm = 1)

)]
.

Finally, after renaming the variable i in the second formula, we can move all quantifiers to
the front, yielding

∀g′ ∃i ∀j : g′ < g →
[
i < m ∧

(
g′i = 1 ∨ g′m ̸= 1

)
∧

(
j < m → gj ̸= 1 ∧ gm = 1

)]
.

It remains to show that the now quantifier-free matrix can be evaluated in polynomial time.
The powers of g′ and g can be computed using the square-and-multiply method presented
in Lemma 6.6. Evaluating the inequalities and logical connectives can also be achieved in
polynomial time. Furthermore, all quantified variables can be represented using bit-strings
of polynomial size. By Definition 2.6 the language LG is therefore in Πp

3 ⊆ PH.
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6. PosSLP is in the Counting Hierarchy

Lemma 6.12. Given a SLP of size n representing an integer X and a prime p, we can
compute xp, i.e. X mod p, in time polynomial in p and n.

Proof. Let P be a SLP of size n that represents an integer X, i.e. the last instruction yn

evaluates to X. Thus, xp = yn mod p. Since P represents an integer, it consists only of
instruction of the form:

yi := zk + zl and yi := zk × zl,

where zk and zl are either intermediate values yj for j < i or constants in {0, 1}. By
the rules of modular arithmetic, a + b mod c =

(
(a mod c) + (b mod c)

)
mod c and

ab mod c =
(
(a mod c)(b mod c)

)
mod c, for all integers a, b, c. Therefore,

yi mod p = zk ⋄ zl mod p =
(
(zk mod p) ⋄ (zl mod p)

)
mod p,

for all i ≤ n, where ⋄ is either + or ×. Note, that if we perform the modulo operation in
each step, non of the intermediate values exceeds p. Hence, each step can be performed in
time polynomial in p. Since P has exactly n instructions, computing xp can be accomplished
in time polynomial in p and n.

Lemma 6.13 ([All+09], Lemma 4.4). B ∈ PHPP.

We are not able to fully validate all steps in the proof of this statement, as given by
Allender et al. Instead, we define two assumptions and proof Lemma 6.13 relative to these
assumptions. Furthermore, we show the slightly weaker statement B ∈ PHPPPP which only
depends on one of them.

Assumption 1. The number PN/p mod p can be obtained in PPP.

Assumption 2. Computing the product xphp,nσp,n is an instance of the problem LOGITADD,
that is the product can be computed as the sum of logn many n-bit numbers.

Lemma 6.14. B ∈ PHPP relative to Assumptions 1 and 2.

Proof. A tuple (P, j, b, p, 1n) is in B if and only if j is given in binary and the following
conditions are satisfied:

1. p is an odd prime and less than 2n2 and

2. the j-th bit of the number Bp = xphp,nσp,n is b,

where X is the integer represented by the SLP P and xp = X mod p. We show that the
first condition can be tested in P and the second condition can be tested in PHPP. Since
P ⊆ PH ⊆ PHPP, this implies that B ∈ PHPP.

We can test whether p is prime in polynomial time using the Agrawal–Kayal–Saxena
primality test [AKS04]. Furthermore, whether p < 2n2 can be tested by checking if the
length of p without leading zeros is less than n2. Hence, the first condition can be decided
in P.

The second condition needs more work. We use findings from circuit complexity to show
that the product xphp,nσp,n is computable in PHPP. But first, we show how the factors xp,
σp,n can be obtained in P ⊆ PPP, and hp,n can be computed in PPP under Assumption 1:

• Lemma 6.12 shows how to compute xp in polynomial time. Since P ⊆ PPP, xp can be
obtained in PPP.
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6.1. Dropping one Assumption

• By Lemma 4.20, the j-th bit of 1/p is 1 if and only if 2j mod p is odd. To compute
the bits of σp,n we have to evaluate 2j mod p and check if the least significant bit is
1. However, the number j may be exponentially large because the only requirement
is that the binary expansion of j has polynomial length. Hence, a naïve algorithm
has to perform exponentially many multiplications. The square-and-multiply method
presented in Lemma 6.6 provides remedy. In conclusion, computing σp,n is in P and,
as already stated, P ⊆ PPP.

• The multiplicative group of the integers modulo p is cyclic, as shown in Theorem 4.19.
Hence, it is generated by a single element. We can determine the least generator
gp of (Z/pZ)× in PH using nondeterminism to guess gp and verifying that guess as
described in Lemma 6.11. PH is a subset of PPP according to Toda’s Theorem (2.13).

Each bit of the discrete logarithm of a number to the basis gp is computable in PPP

by Corollary 6.10. Allender et al. claim without proof that the number PN/p mod p
is obtained in PPP by first computing the discrete logarithm r of PN/p mod p and
then evaluating gr

p mod p. We are not able to verify their argument, since it is unclear
for us how this is accomplished without nondeterministically guessing the value
PN/p mod p. In our understanding, this requires some way to verify said guess in
polynomial time but PN/p is a double-exponentially large number.

According to Corollary 4.17 the modular inverse of any number a ∈ Z/pZ is given
by ap−2 mod p. Therefore, hp,n = (PN/p mod p)p−2 mod p, which can be computed
in polynomial time from PN/p mod p. Under Assumption 1, PN/p mod p can be
obtained in PPP, hence computing hp,n is in PPP.

Under Assumption 2, the product xphp,nσp,n is an instance of LOGITADD and therefore
computable by a uniform AC0 circuit according to Lemma 3.29. By Lemma 3.30, the value
of the j-th output of any AC0 circuit can be computed in PH. Therefore, the complete
procedure of determining the factors xp, hp,n and σp,n and then computing their product
is in PHPPP . Finally, PHP = PH by Corollary 2.9 and therefore B ∈ PHPP.

Remark. LOGITADD is the problem of computing the sum of n binary numbers of logn
bits each (see Problem 3.28). Allender et al. state without proof that LOGITADD can be
applied to compute the product xphp,nσp,n. The number σp,n has a length of 2n4 bits. Both
xp and hp,n are less than p and p is less than 2n2 . Hence, the product xphp,n is less than
22n2 . Computing the product xphp,nσp,n is equivalent to adding σp,n to itself xphp,n times,
i.e. the sum of 22n2 many 2n4 bit numbers. However, log 2n4 = n4 < 22n2 for all n ∈ N. In
our understanding, the number of summands, i.e. 22n2 , is therefore too large for this sum
to be an instance of LOGITADD. Computing the product, by adding xphp,n to itself σp,n

many times or any other combination, does not fix this problem either.

We are now able to show an important step towards the main theorem of this text.

Proof of Theorem 1.2. By Theorem 6.3, PosSLP ∈ PHPPPP and Toda’s Theorem (2.13)
states that PH ⊆ PPP. Therefore,

PosSLP ∈ PHPPPP
⊆ PPPPPPP

.

6.1 Dropping one Assumption
Besides LOGITADD, we also defined the problem ITADD in Chapter 3 (see Problem 3.24).
The task for ITADD is to compute the sum of n n-bit numbers. As explained above, we
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6. PosSLP is in the Counting Hierarchy

are unable to validate that LOGITADD can be applied to compute the product xphp,nσp,n.
However, we show that the computation of said product is an instance of ITADD. This
way, we are able to derive the following slightly weaker upper bound which depends only
on Assumption 1:

Lemma 6.15. B ∈ PHPPPP relative to Assumption 1.

Proof. Computing the product xphp,nσp,n is an instance of the problem ITADD: For n > 1,
size of each summand σp,n is 2n4 and therefore at least as large as xphp,n = 22n2 , which is
the number of summands. Hence, the product is the sum of at most 2n4 numbers, each
having a length of 2n4 bits. We show in the proof of Lemma 6.14 how factors xp, hp,n and
σp,n can be obtained in PPP under Assumption 1. By Lemma 3.27 the language BitITADD
is in PHPP. Therefore,

B ∈ PHPPPPP
⊆ PHPPPHPP

⊆ PHPPPPP
= PHPPPP

,

where the inclusions follow since P ⊆ PH, PPPH ⊆ PPP by Theorem 2.14, and PHP = PH
by Corollary 2.9.

We end the chapter by discussing how it would affect the complexity of PosSLP if
Lemma 6.15 is true but Lemma 6.14 is not, i.e.

B ∈ PHPPPP
but B ̸∈ PHPP.

Theorem 6.16. B ∈ PHPPPP =⇒ PosSLP ∈ PPPPPPPPP

Proof. We show in the proof of Lemma 6.4 that A ∈ PHPPB . Hence, in this case

A ∈ PHPPPHPPPP

.

By Corollary 2.15, PPPHPPPP
⊆ PPPPPPP

. Thus, A ∈ PHPPPPPPP

⊆ PHPPPPPP
. We show in the

proof of Theorem 6.3 that PosSLP ∈ PHA. Therefore,

PosSLP ∈ PHPPPPPP
.

Toda’s Theorem states that PH ⊆ PPP, thus

PosSLP ∈ PPPPPPPPP

.

In summary, if we need one more PP-oracle to decide B, PosSLP is the fourth level of the
counting hierarchy instead of the third.
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7. SQRT-SUM is in the Counting
Hierarchy

We present an algorithm for approximating the square root of any nonnegative integer.
This allows us to prove Theorem 1.2 (SQRT-SUM ∈ CH) using the results from previous
chapters.

7.1 Newton’s Method
As taking square roots is not available as a primitive operation in the BSS model, we are
interested in approximating this value up to arbitrary accuracy by evaluating a rational
function. Computing the square root of some a ∈ N is achieved by approximating the
positive root of the function f(x) = x2 − a using an algorithm known as Newton’s method.
We now describe Newton’s method and take a closer look at using it for the problem of
approximating square roots. More detailed expositions can be found in most introductory
textbooks on numerical analysis, e.g. [Atk89].

Suppose that x∗ ∈ R is the root of a function f ∈ C2(R) and xn ∈ R is an estimate of x∗.
The Taylor series expansion around xn is given by

f(x) = f(xn) + f ′(xn)(x− xn) +R(x)

for every x ∈ R, with a remainder term R(x) = 1
2f
′′(c)(x− xn)2 for some c between x and

xn. For x = x∗, the above formula yields

0 = f(x∗) = f(xn) + f ′(xn)(x∗ − xn) +R(x∗).

Solving for x∗ gives
x∗ = xn − f(xn)

f ′(xn) − R(x∗)
f ′(xn) .

Let xn+1 be the value obtained from the above formula by assuming the remainder is zero,
i.e.

xn+1 = xn − f(xn)
f ′(xn) .

Then the difference between the iterate xn+1 and the actual root x∗ is given by

x∗ − xn+1 = −R(x∗) = −1
2(x∗ − xn) f

′′(c)
f ′(xn)
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7. SQRT-SUM is in the Counting Hierarchy

for c between x∗ and xn. Using this formula, it it possible to show that Newton’s method
converges to x∗ if the initial estimate x0 is chosen sufficiently close to x∗ and f ′(x∗) ̸= 0
[Atk89, Theorem 2.1]. This implies that the iteration xn+1 = xn − f(xn)

f ′(xn) can be used to
approximate x∗ up to the desired accuracy under the mentioned assumptions. The proof
of convergence for the general case is out of the scope of this work. However, we show
that Newton’s method does in fact converge to

√
a or −

√
a for the function defined by

f(x) = x2 − a. In this case, the iteration formula is given by

xn+1 = xn − x2
n − a

2xn
= 1

2
(
xn + a

xn

)
.

Theorem 7.1. For every x0 ∈ R and a ∈ N0, the absolute value of the sequence defined by
the recursion xn+1 = 1

2(xn + a
xn

) converges to
√
a.

Proof. Regardless of x0, |x1| ≥
√
a because

x2
1 − a = 1

4
(
x2

0 + 2a+ a2

x2
0

)
− a

= 1
4

(
x2

0 − 2a+ a2

x2
0

)
= 1

4
(
x0 − a

x0

)2

=
(
x2

0 − a
)2

4x2
0

≥ 0,

where we use the definition of the recurrence in the first equality. Suppose |xn| ≥
√
a for

n ≥ 1. Then by the definition of the recurrence and the triangle inequality we see that

|xn+1| − |xn| = 1
2

∣∣∣xn + a

xn

∣∣∣ − |xn|

≤ 1
2

(
|xn| + a

|xn|

)
− |xn|

= a− |xn|2

2|xn|
≤ 0.

Thus, for every n ≥ 1, |xn| is decreasing and bound from below by
√
a. Hence, |xn| is

converging and its limit x = limn→∞ |xn| satisfies x =
∣∣∣1

2

(
x+ a

x

)∣∣∣. Since, as shown above,
xn ≥ 0 for all n ≥ 1, necessarily x ≥ 0 and therefore

x = 1
2

(
x+ a

x

)
⇐⇒ x = a

x
⇐⇒ x2 = a ⇐⇒ |x| =

√
a ⇐⇒ x =

√
a,

where the last equivalence also follows from x ≥ 0.

7.2 Reducing SQRT-SUM to PosSLP
Recall the definition of the decision problem SQRT-SUM: Given nonnegative integers
a1, . . . , an and δi ∈ {−1, 1} for i = 1, . . . , n decide whether

n∑
i=1

δi
√
ai ≥ 0.

Hence, the input for SQRT-SUM is a list of n nonnegative integers a1, . . . , an and factors
δ1, . . . , δn. Using Newton’s Method, the result that PosSLP ∈ CH, and the relationship
between PosSLP and the Boolean part, we are now able to show our main theorem:

SQRT-SUM ∈ CH.
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7.2. Reducing SQRT-SUM to PosSLP

Proof of Theorem 1.2. It was shown in [Tiw92] that SQRT-SUM can be decided on a
unit-cost algebraic random access machine by approximating each square root using a
polynomial number of Newton-iterations, multiplying each approximation of √

ai by the
coefficient δi ∈ {−1, 1} and adding all results. The proof that polynomially many iterations
suffice involves results from algebraic number theory and is beyond the scope of this work.
Unit-cost algebraic random access machines are to BSS-machines, like classical random
access machines to classical TMs. In particular, unit-cost algebraic RAMs have the same
computational power as BSS-machines but may offer polynomial speedup because the
read-write head does not have to be moved to access a desired cell. Therefore, SQRT-SUM
can be decided on a BSS-machine in polynomial time. The class of decision problems over
the set {0, 1}∗ decided by such machines is BP(P∅R). By Corollary 5.26, PPosSLP = BP(P∅R),
implying that SQRT-SUM ∈ PPosSLP. Theorem 1.2 states that

PosSLP ∈ PPPPPPP

and in consequence

SQRT-SUM ∈ PPPPPPPP

= PPPPPPP

where the equality follows from Lemma 2.5. By Definition 2.16 SQRT-SUM lies within the
third level of the counting hierarchy.
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