
Mixed Page Number
of Planar Directed Acyclic Graphs

Bachelor Thesis of

Deborah Haun

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
T.T.-Prof. Dr. Thomas Bläsius

Advisors: Laura Merker, M.Sc.

Time Period: 24th November 2022 – 24th March 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, March 24, 2023

iii

Abstract

A q-queue s-stack layout consists of a topological ordering of the vertices of a graph
and a partition of its edges into q sets of edges, called queues, and s sets of edges,
called stacks, such that any two edges in the same queue do not nest and any two
edges in the same stack do not cross. Here, two edges nest if the endpoints of one
edge are located between the endpoints of the other edge. Two edges cross if their
endpoints alternate in the topological ordering. The minimum number q +s of queues
and stacks required for a q-queue s-stack layout is called the mixed page number.
We investigate the mixed page number of upward planar graphs and directed acyclic
2-trees. We find a subclass of upward planar bipartite graphs whose mixed page
number is bounded by a constant. In addition, we give a lower bound of 3 on the
mixed page number of upward planar bipartite graphs and find an upward planar
bipartite graph, whose mixed page number is strictly smaller than its stack and
queue number. For directed acyclic 2-trees, we show that the mixed page number is
unbounded. In contrast, we present a family of directed acyclic 2-trees with bounded
mixed page number but unbounded stack and queue number.

Deutsche Zusammenfassung
Ein q-Queue s-Stack Layout besteht aus einer topologischen Sortierung der Knoten
eines Graphen und einer Partition dessen Kanten in q Kantenmengen, die Queues
genannt werden, und s Kantenmengen, die Stacks genannt werden, sodass je zwei
Kanten in der gleichen Queue nicht verschachtelt sind und je zwei Kanten in dem
gleichen Stack sich nicht kreuzen. Hierbei sind zwei Kanten verschachtelt, wenn die
Endpunkte der einen Kante zwischen den Endpunkten der anderen Kante liegen. Zwei
Kanten kreuzen sich, wenn ihre Endpunkte alternieren bezüglich der topologischen
Knotenordnung. Die minimale Anzahl q + s an Queues und Stacks, die für ein
q-Queue s-Stack Layout benötigt werden, wird Mixed Page Number genannt.
Wir untersuchen die Mixed Page Number von upward planaren Graphen und
gerichteten azyklischen 2-Bäumen. Wir finden eine Unterklasse von upward planaren
bipartiten Graphen, deren Mixed Page Number durch eine Konstante beschränkt
ist. Zusätzlich geben wir eine untere Schranke von 3 für die Mixed Page Number
von upward planaren bipartiten Graphen an und finden einen upward planaren
bipartiten Graphen mit einer Mixed Page Number echt kleiner als dessen Stack und
Queue Number. Für gerichtete azyklische 2-Bäume zeigen wir, dass die Mixed Page
Number unbeschränkt ist. Im Gegensatz dazu geben wir eine Familie von gerichteten
azyklischen 2-Bäumen mit beschränkter Mixed Page Number, aber unbeschränker
Stack und Queue Number an.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Applications . 2
1.3 Related Work . 3
1.4 Contribution . 6
1.5 Outline . 8

2 Preliminaries 9
2.1 Upward Planar Graphs . 9
2.2 Directed Acyclic 2-Trees . 10
2.3 Linear Layouts . 11

3 Upward Planar Graphs 19
3.1 Cycles and Kelly graphs . 19
3.2 Grids and N-Grids . 23

4 Upward Planar Bipartite Graphs 31
4.1 Upper Bound . 31
4.2 Lower Bound . 34

5 Directed Acyclic 2-Trees 37
5.1 A Directed Acyclic 2-Tree with Unbounded Stack and Queue Number but

Bounded Mixed Page Number . 37
5.2 The Mixed Page Number of General Directed Acyclic 2-Trees 41

6 Conclusion 55

Bibliography 57

vii

1. Introduction

First suggested by Heath and Rosenberg in 1992 [HR92], the mixed page number combines
the concept of queue numbers, which they newly introduced, with the concept of stack
numbers, which has been studied before since it was introduced by Bernhart and Kainen in
1979 [BK79]. Even though the stack and queue numbers have been investigated extensively
over the past decades, works on the mixed page number are still scarce, especially regarding
planar directed graphs, on which we focus in this thesis.
Stack, queue, and mixed page numbers are all properties of graphs that relate to linear
layouts. A linear layout of a graph consists of a total vertex ordering and a partition of
the edges into sets with certain properties. If no two edges of such a set cross with respect
to the vertex ordering, the set is called a stack. Here, two edges cross if their endpoints
alternate in the vertex ordering. The edge set is called a queue, if no two edges from the set
nest with respect to the ordering, i.e., the endpoints of one edge are not located between
the endpoints of the other edge. If we only allow the edges to be partitioned into stacks,
the minimum number of stacks required is called the stack number. If we analogously
only allow queues, the minimum number of queues required is called the queue number. A
mixed linear layout of a graph allows each set of edges to form either a stack or a queue.
The minimum number of such sets is then called the mixed page number. An example
of a graph’s mixed linear layout is given by Figure 1.1. In this thesis we investigate the
mixed page number of special classes of planar directed acyclic graphs, shortly planar
DAGs. Before we introduce the basic concepts in more detail, we give a brief overview of
the current research and some applications that motivate the topic of this thesis.

v1 v2 v3 v4 v5 v6

Figure 1.1: A mixed linear layout. The vertex ordering is given from left to right. The
edges are partitioned into one queue (orange) and one stack (green).

1

1. Introduction

1.1 Motivation
Stack and queue layouts form an important research topic, which has been studied ex-
tensively in the past few decades [FFRV13, FUW21, HPT99, JMU22a, JMU22b, KMU18,
NP89, NP21, Pup23]. One intriguing question in this field is whether the stack number
of upward planar graphs is bounded by a constant. This question was first raised by
Nowakowski and Parker in 1989 [NP89], and although it remains unanswered, there is much
work on answering this question [FFRV13, JMU22a, JMU22b, NP21]. But also directed
acyclic 2-trees have been studied recently [JMU22b]. Regarding queue layouts, one of the
most important problems is to find a bound on the queue number of posets in terms of
their width (see Section 1.3). Mixed linear layouts provide a generalisation of stack and
queue layouts that allows us to investigate those layouts under a different perspective.
Nevertheless, mixed linear layouts are also of great interest in its own right, although they
have mainly been studied for undirected graphs so far. For instance, originally, it was
conjectured that every undirected planar graph admits a 1-queue 1-stack layout [HR92].
However, this conjecture was refuted [Pup18], and it does not even hold for the subclass of
undirected 2-trees [ABKM22].
In contrast to stack and queue layouts, there is not much work on mixed linear layouts
of directed graphs. Therefore, we initiate the study of mixed page numbers of planar
DAGs. In doing so, we investigate exactly those graph classes that are of great interest
in terms of stack layouts, namely upward planar graphs and directed acyclic 2-trees. The
expectations are that studying mixed linear layouts could be an intermediate step on the
way to answering questions about stack layouts, such as whether the stack number of
upward planar graphs is bounded by a constant. For directed acyclic 2-trees, the stack
number is known to be unbounded [JMU22b]. However, an unbounded mixed page number
would strengthen this proposition.

1.2 Applications
One recurrent issue in computer science is the comparison of stacks and queues regarding
their properties and power in several applications. Stack and queue numbers as graph
parameters can be used to measure the power of stacks and queues with regard to the given
graph [HLR92]. If the stack number is strictly smaller than the queue number, then we
can infer that stacks are more powerful in a given context. Since graphs are often used to
model practical applications, the stack and queue numbers are not only of graph-theoretical
interest, but also tell us something about the power of stacks and queues in these practical
applications. Beyond this, there are applications that in total need less stacks and queues
when using both mixed together. Here, the mixed page number comes into play.
One application is permuting elements using parallel stacks and queues. Tarjan [Tar72]
asked which permutations are possible to sort depending on the number of stacks or queues
used. Given are a source queue, in which an initial permutation of numbers π = (p1, . . . , pn)
with π(i) = pi is placed, a sink queue, and m additional stacks or queues. In each step,
one number is moved from one stack or queue to another with the aim of getting all
numbers ordered in the sink queue. By doing so, only the first number that has been
inserted can be removed from a queue, and only the last number that has been inserted
can be removed from a stack. The problem now asks for the number of stacks or queues
required to sort a specific permutation. This question can be modelled using graphs, and
in particular stack and queue layouts, which is what Chung, Leighton, and Rosenberg
did [CLR87], although only with stacks and not with queues. For this, they constructed
a bipartite graph Gn = (Vn, En) with vertices Vn = {a1, . . . , an} ∪ {b1, . . . , bn} and edges
En = {ai, bi | 1 ≤ i ≤ n}. The problem of sorting the permutation π with m stacks is then
equivalent to embedding the graph Gn in a stack layout with m stacks and the fixed vertex

2

1.3. Related Work

ordering a1, . . . , an, bπ(1), . . . , bπ(n). However, the initial question asked by Tarjan [Tar72]
also referred to queues. Here, we can apply the same approach as for stacks to queues.
Then, sorting π with m queues is equivalent to finding a queue layout with m queues and
the same fixed ordering. Additionally, we extend the problem by allowing both stacks and
queues for sorting the permutation, which correlates with using a mixed linear layout for
Gn.
For linear layouts of directed graphs, scheduling of parallel processors is one important
application, as described by Heath, Lenwood, and Rosenberg [HLR92]. In this scenario, we
consider a data manager consisting of queues, where again only the first element inserted
can be removed. Every process takes its input from these queues when it starts and places
its output there when it terminates. Thus, when a process starts, all of its inputs have to be
at the heads of the queues. This problem can be transferred to a graph problem, where the
vertices represent the processes and the directed edges represent the dependencies between
those processes. Then, the queues from the data manager can be abstracted as the queues
of a queue layout of the graph, whereby the queue number of the graph is equivalent to
the minimum number of queues required in the data manager. Again, it is also conceivable
to allow stacks in the data manager, where only the last element inserted can be removed.
With only stacks in the data manager, this would correspond to a stack layout of the graph.
With both stacks and queues the data manager would correlate to a mixed linear layout.
Another prominent application for linear layouts of graphs is Very Large-Scale Integration
(VLSI) design. The Diogenes approach, proposed by Rosenberg [Ros83], is a strategy for
designing testable fault-tolerant arrays of processors that is equivalent to our graph layout
problem. Thereby, processing elements are arranged on a physical or logical line, which
can be modelled as vertices of a graph in a fixed vertex ordering. The processing elements
are connected with bundles of wires, which are organised and function as stacks or queues
and can be modelled as such in the graph layout. The number of bundles should now
be minimised, which is equivalent to finding the mixed page number, i.e., the minimum
number of stacks and queues required for the graph layout. The Diogenes approach was
the main motivation to investigate queues and mixed linear layouts, and not only stack
layouts [HR92].
Furthermore, there are several other applications of linear layouts that are worth mentioning
here. For instance, stack layouts are used in computational biology to describe RNA
structures [CDD+12], whereby bases are represented by vertices and base pairs as edges.
Then, a stack of edges corresponds to a secondary structure. Finally, stack layouts have
applications in complexity theory, since the reachability problem over graphs embedded
on three pages is NL-complete, while it can be solved with logarithmic space for graphs
embedded on two pages [PTV12]. Here, NL denotes the class of decision problems that
can be solved by a nondeterministic Turing machine on logarithmic space.

1.3 Related Work
A significant part of the related work refers to undirected graphs. For instance, Yannakakis
proved that four stacks suffice for each undirected planar graph [Yan89], which is in fact
a tight upper bound [BKK+20, Yan20]. Meanwhile, a bound on the queue number for
undirected planar graphs ranges between 4 [ABG+20] and 42 [BGR23]. Since the mixed
page number is always at most the stack or queue number, the upper bound of 4 also
applies to the mixed page number. Here, it is not known whether this bound is tight. In
1992 Heath and Rosenberg [HR92] even conjectured that every planar graph admits a
1-queue 1-stack layout. However, Pupyrev [Pup18] disproved this conjecture in 2018, but
conjectured that the same holds for planar bipartite graphs (definition see Section 2.1). In
turn, this conjecture was also refuted [FKM+23]. Nevertheless, the mixed page number of

3

1. Introduction

l1
l2

l3
. . .

lk

rk

. . .
r3

r2
r1

l1 l2 l3 . . . lk r1 r2 r3 . . . rk

.

Figure 1.2: A planar DAG Gk on 2k vertices (left) with stack number at least k, since there
is a k-twist in the unique topological ordering (right). For Gk k stacks are also
sufficient.

planar bipartite graphs is at most 2 since this is a tight upper bound on the stack number
[dFOdMP95, Ove98]. Again, for the queue number no tight upper bound is known, but it
ranges between 2 and 28 [FKM+23]. Furthermore, there are other classes of undirected
graphs that are not necessarily planar, for which mixed linear layouts were explicitly
studied, such as complete and complete bipartite graphs [ABG+22b].
However, we focus on planar directed acyclic graphs in this thesis. Studying linear layouts
of DAGs was first proposed by Nowakowski and Parker in 1989 [NP89]. The main difference
from linear layouts of undirected graphs is that the vertex ordering additionally has to
be topological (definition see Section 2.3). As a consequence, not every vertex ordering
is valid, which makes it harder to partition the edges into few stacks and queues. Hence,
if k stacks or queues suffice for a linear layout of a directed graph, they also suffice for
the underlying undirected graph, but the converse does not apply. For instance, unlike for
undirected planar graphs, the stack number of planar DAGs is unbounded, i.e., there are
planar DAGs with n vertices that require Θ(n) stacks. An example for such a planar DAG
was provided by Heath, Pemmaraju, and Trenk [HPT99], and is illustrated in Figure 1.2.
However, the stack number is known to be bounded by a constant for some subclasses of
planar DAGs. The goal is now to find such subclasses with bounded stack numbers that
are as large as possible. Two of those subclasses currently under investigation are upward
planar graphs (see Section 2.1) and directed acyclic 2-trees (see Section 2.2), which will
also play a major role in this thesis.
One of the most important and long-standing open questions regarding linear layouts is
whether the stack number of upward planar graphs is bounded by a constant. The question
was first raised by Nowakowski and Parker in 1989 [NP89], and there was not much progress
in answering this question until recently, despite some effort on subclasses of upward planar
graphs. One simple example of upward planar graphs with bounded stack number are
directed trees, or more general, directed forests, whose stack number is 1 [NP89]. Further,
upward planar 3-trees have a bounded stack number [FFRV13]. Moreover, it is known that
unicyclic DAGs have stack number 2 [HPT99], and that the stack number of outerpath
DAGs [NP21] and outerplanar DAGs [JMU22b] is bounded by a constant. By restricting
these graph classes to upward planar graphs, we obtain subclasses of upward planar graphs
with bounded stack number. Definitions of the graph classes mentioned here are given in
the respective paper.
The first non-trivial, sublinear upper bound on the stack number sn(G) ∈ O((n log n)2/3) ⊆
o(n) for all upward planar graphs G with n vertices was recently given by Jungeblut,
Merker, and Ueckerdt [JMU22a]. However, there is no upward planar graph known that
requires more than five stacks [JMU22a], which motivates the search for a better upper
bound to close this gap between upper and lower bound. Although a major part of the
current research in the field of linear layouts is devoted primarily to the stack number, a

4

1.3. Related Work

study of mixed linear layouts, to which this thesis is dedicated, has often been proposed
[HR92, NP21]. Apart from the variety of applications that require mixed linear layouts,
another reason to study them is that this could also make a significant contribution to the
investigation of stack and queue layouts. For the upward planar graphs considered here,
it is not known whether the mixed page number is bounded, neither is it for the stack
number. However, the queue number is known to be unbounded, as we will see in examples
given in Section 3.1.
In contrast to upward planar graphs, it is meanwhile indeed known that the stack number of
directed acyclic 2-trees is unbounded, as Jungeblut, Merker, and Ueckerdt recently showed
[JMU22b]. Simultaneously, they proved that the stack number is bounded by a constant
for the subclass of directed acyclic 2-tress, where at most one vertex is stacked onto each
edge, except for the base edge, onto which up to two vertices are stacked (definitions
see Section 2.2). This graph class is equivalent to the class of directed acyclic maximal
outerplanar graphs. From this, it follows that the stack number is bounded for upward
outerplanar graphs, as already mentioned above. Outerplanar graphs are graphs that admit
a crossing-free embedding into the plane with all vertices incident to the outer face (see
Section 2.1). Notably, this is one of the largest upward planar graph classes for which
the stack number is known to be bounded. However, the upper bound that they give is
24776, while at the same time there is no known outerplanar DAG that requires more than
four stacks [NP21]. Again, this motivates further investigation of outerplanar DAGs and
the related class of 2-trees to lower this upper bound to close the gap to the lower bound.
Further, it is easy to see that the queue number is unbounded for directed acyclic 2-trees.
For this, an example is given in Proposition 5.3. However, for the mixed page number it
is only known that there are directed acyclic 2-trees that do not admit a 1-queue 1-stack
layout [ABKM22]. Hence, it is still open whether the mixed page number of directed
acyclic 2-trees is bounded by a constant.
As already mentioned, for the classes of planar DAGs considered here, namely upward
planar graphs and directed acyclic 2-trees, the queue number is unbounded. Nevertheless,
there are indeed classes of planar DAGs with bounded queue number. For instance, the
queue number of planar partially ordered sets, shortly planar posets, is bounded by a
linear function of their width. A poset P = (M, ≺) is a set of elements M with a binary,
asymmetric, and transitive relation ≺. For a, b ∈ M , a relation a ≺ b is a cover if it is not
implied by transitivity. Then, the directed graph GP = (M, E) with E = {(a, b) | a ≺ b is
a cover relation in P} is called the cover graph of P. We remark that the cover graph of
a planar poset is additionally upward planar. A queue (or stack) layout of a poset P is
then a queue (or stack) layout of its cover graph Gp. Two elements a, b ∈ M are called
comparable if a ≺ b or b ≺ a, and incomparable otherwise. The width of a poset denotes
the maximum number of pairwise incomparable elements. Then, the queue number of a
poset with width w is at most 3w − 2 [KMU18]. A lower bound on the queue number of
planar posets is also given by their width, as there are planar posets with width w and
queue number exactly w [KMU18].
Further, also general posets that are not necessarily planar are currently under investigation.
Similar as for the planar posets, their queue number is also bounded by a function of
the poset’s width. Precisely, the queue number of a poset with width w is at most
(w − 1)2 + 1 [ABG+22a]. Asymptotically, this matches the best known lower bound of w2/8
[FUW21]. For two-dimensional posets (definition see [Pup23]), the upper bound could even
be improved to w(w + 1)/2 [Pup23]. Note that the queue number of (planar) posets can
be unbounded if their width is unbounded.
In addition, other variations such as simultaneous stack-queue layouts and local and union
variants are of great interest. A simultaneous q-queue s-stack layout consists of a vertex

5

1. Introduction

ordering ≺, a partition of the edges into q queues with respect to ≺, and a partition of
the edges into s stacks with respect to ≺. The existence and size of such a simultaneous
layout then correlates with some other graph properties. For instance, the class of graphs
admitting a simultaneous q-queue s-stack layout with s, q ∈ O(1) coincides with the class
of graphs with pathwidth in O(1) [Pup20]. The following local and union variants of stack
and queue layouts are also worth mentioning here. Introduced by Merker and Ueckerdt
[MU19], a s-stack layout (or a q-queue layout) is called k-local if every vertex has incident
edges in at most k stacks (or queues). Then, the local stack (or queue) number of a graph G
is the minimum k, such that G admits a k-local stack (or queue) layout. In this context, the
familiar stack and queue layouts are referred to as global stack and queue layouts. Clearly,
the local stack or queue number is always at most the global stack or queue number. One
open problem regarding these local variants is whether there are planar graphs with a
local stack number of 4. As already mentioned, there are planar graphs with global stack
number 4 [BKK+20, Yan20], but the largest known local stack number of a planar graph
is 3 [MU19]. Further, local queue layouts are also under investigation. While the global
queue number of planar graphs ranges between 4 [ABG+20] and 42 [BGR23], an upper
bound on the local queue number could be localised between 3 and 4 [MU20]. Moreover,
the local queue number is known to be bounded in terms of a graph’s treewidth [MU20].
Further, also local stack and queue numbers of directed acyclic graphs have been studied
recently [Gro21]. Another interesting concept are k-union stack layouts (or queue layouts),
also proposed by Merker and Ueckerdt [MU19]. Here, a vertex ordering with a partition
of the edges into k stacks (or queues) is searched for, where no two edges of the same
connected component cross (or nest) within a stack (or queue).

1.4 Contribution

One of the most important questions in the field of linear layouts is whether the stack
number of upward planar graphs is bounded by a constant. An intermediate step on
the way to answering this question is to find subclasses of upward planar graphs with a
bounded stack number that are as large as possible. In Section 4.1, we give such a subclass
of upward planar graphs with a constant upper bound on their stack number. Precisely,
we show that upward planar bipartite graphs G = (A ∪ B, E) with E ⊆ A × B, i.e., with
all edges oriented from a vertex in A to a vertex in B, have stack number at most 56 (see
Corollary 4.4). Further, in Proposition 4.2 we show that the queue number is also at most
56.
One approach to answering the question, whether the stack, queue, or mixed page number
of a graph class is bounded by a constant, is to fix a vertex ordering, for example “from
left to right”, and try to use this for all graphs of the given graph class. However, we show
in Proposition 4.1 that this does not work for upward planar bipartite graphs, since the
mixed page number can become arbitrarily large with respect to the fixed ordering.
Further, also lower bounds are of great interest. After all, the goal is always to close the gap
between the smallest known upper bound and the largest known lower bound. Since the
mixed linear layouts are widely unexplored, there is no lower bound known for the mixed
page number of upward planar graphs. Therefore, we consider very specific graph families
in Chapter 3 and Chapter 4, for which we find some linear layouts. Thereby, we give a
lower bound of 3 on the mixed page number, firstly for general upward planar graphs (see
Proposition 3.10), later even for upward planar bipartite graphs (see Proposition 4.5). In
addition, we show for both graph classes that there are graphs with a mixed page number
strictly smaller than the stack and queue number (see Corollary 3.9 and Proposition 4.6)
This motivates the further investigation of mixed linear layouts in the first place.

6

1.4. Contribution

Stack Number Queue Number Mixed Page Number
l. b. u. b. l. b. u. b. l. b. u. b.

upward planar graphs 5 1 ? unbounded 2 3 3 4 ?
upward planar bipartite
graphs G = (A ∪ B, E)

with E ⊆ A × B 5 3 6 56 7 3 6 56 8 ? 56 7 8

upward planar
bipartite graphs

with fixed vertex ordering unbounded 9 unbounded 9 unbounded 9

upward planar
bipartite graphs 3 6 10 ? unbounded 3 3 10 ?

directed acyclic 2-trees unbounded 11 unbounded 12 unbounded 13

Table 1.1: Lower bounds (l.b.) and upper bounds (u.b.) on the stack, queue, and mixed
page number of graph classes considered in this thesis.

Another class of planar DAGs considered in this thesis are directed acyclic 2-trees. In
contrast to the upward planar graphs, the stack number of directed acyclic 2-trees is known
to be unbounded [JMU22b]. However, up until now, it is not known if the same applies to
the mixed page number. While investigating the only family of directed acyclic 2-trees,
for which the stack number is known to be unbounded [JMU22b], we find out that this
graph family has unbounded stack and queue number but bounded mixed page number
(see Theorem 5.1). Nevertheless, we show that the mixed page number of general directed
acyclic 2-trees is unbounded. The results for these graph classes, upward planar graphs
and directed acyclic 2-trees, are summarised in Table 1.1.
However, we do not only investigate the mixed page number of planar directed acyclic
graphs, but also of sets of edges with a fixed ordering of their endpoints, called edge
patterns (see Section 2.3). There, we determine two edge patterns which we call t-crossing
rainbow and t-nesting twist that force the mixed page number to become large. Similar
edge patterns, called t-twist and t-rainbow, are already known for the stack and queue
number. Those patterns can then be recognised within a linear layout of a concrete graph.
In this case, it follows that the mixed page number of the graph is at least the size of the
recognised pattern with respect to the vertex ordering. This can be useful for arguing that
the mixed page number of a graph is large, not only concerning planar DAGs but any
graph. Further, we ask whether the mixed page number is bounded by a function in the
size t of a largest t-crossing rainbow or t-nesting twist, as it is for the stack and queue
number with t-twists and t-rainbows, respectively. Although this question remains open,
we find an edge pattern that requires a number of pages quadratic in the size of a largest

1see [JMU22a]
2see Proposition 3.5
3see Corollary 3.9
4see Proposition 3.10
5Note that all edges of G = (A ∪ B, E) are oriented from a vertex in A to a vertex in B.
6see Proposition 4.6
7see Corollary 4.4
8see Proposition 4.2
9see Proposition 4.1

10see Proposition 4.5
11see [JMU22b]
12see Theorem 5.1
13see Theorem 5.4

7

1. Introduction

t-crossing rainbow or t-nesting twist (see Proposition 2.15). It follows that such a function
– if it exists – is at least a quadratic function.

1.5 Outline
Before we start investigating graphs, we define and explain notions that are used throughout
this thesis. In Chapter 2, we introduce upward planar graphs and directed acyclic 2-trees
and describe linear layouts more detailed.
In Chapter 3 we investigate some concrete families of upward planar graphs, and thereby
give a lower bound on the mixed page number of upward planar graphs. Further, we
observe that there are graphs with a mixed page number strictly smaller than the stack
and queue number.
Then, in Chapter 4, we restrict the class of upward planar graphs and consider only those
graphs which are additionally bipartite. There we find another subclass of upward planar
bipartite graphs with bounded stack, queue, and mixed page number. In contrast to that,
we show that the mixed page number is unbounded for upward planar bipartite graphs
with fixed vertex ordering. Additionally, we again give a lower bound on the mixed page
number of upward planar bipartite graphs and observe that it can be strictly smaller than
the stack and queue number for some graphs.
Finally, in Chapter 5 we investigate another class of planar DAGs, namely directed acyclic
2-trees. In this chapter, we even find a 2-tree with unbounded stack and queue number but
bounded mixed page number, and show that the mixed page number of directed acyclic
2-trees is unbounded.

8

2. Preliminaries

The following chapter provides some basic concepts and notations, which we will use
throughout this thesis. In particular, we introduce the two main graph classes of this thesis,
upward planar graphs and directed acyclic 2-trees, and define stack, queue and mixed page
numbers.
If not stated otherwise, we assume graphs to be directed, finite, and simple, i.e., they
contain neither loops nor multiple edges. We denote an edge e as e = (u, v) if it is oriented
from u to v. We only consider directed acyclic graphs (DAGs), which are directed graphs
with no directed cycle C = (v1, . . . , vk), k ≥ 2, with (vi, vi + 1) ∈ E for i = 1, . . . , k − 1 and
(vk, v1) ∈ E.

2.1 Upward Planar Graphs

To define upward planar graphs, we consider embeddings of graphs G = (V, E) into the
Euclidean plane R2. In such an embedding, vertices v ∈ V are placed at pairwise distinct
points in the Euclidean plane and edges (u, v) ∈ E are represented by injective, continuous
Jordan curves f(u,v) : [0, 1] → R2 with f(u,v)(0) = u and f(u,v)(1) = v, where f(u,v) does not
go through any other points on which another vertex lies. We call an embedding planar
if no two edges cross in this embedding, i.e., fe(x) ̸= fe′(x′) for any two edges e, e′ ∈ E
and 0 < x, x′ < 1. If additionally f(u,v) is strictly y-monotone for every edge (u, v), i.e., all
edges are oriented upwards, the embedding is called upward planar. Therefore, if no edge
directions are drawn in figures of upward planar embeddings in this thesis, we assume all
edges to go from bottom to top. A graph G is called (upward) planar if there exists such
an (upward) planar embedding of G. Note that all upward planar graphs are DAGs, and in
particular acyclic, since there is an embedding with all edges going from bottom to top.
Given an embedding of a planar graph, the connected components of R2 after removing all
edges and vertices, are called faces. There is exactly one unbounded face, the area outside
the whole graph, which is called the outer face. All other faces are called inner faces.
A graph G = (V, E) is called bipartite if the set of vertices V can be partitioned into two
subsets V = A∪̇B, such that there are no edges within the two subsets, i.e., for all edges
(u, v) ∈ E it is either u ∈ A and v ∈ B or u ∈ B and v ∈ A. A graph that is both bipartite
and upward planar is called an upward planar bipartite graph.

9

2. Preliminaries

u

v

x

(i) Cyclic.

u

v

x

(ii) Transitive.

u

v

x

(iii) Monotone,
incoming in x.

u

v

x

(iv) Monotone,
outgoing at x.

Figure 2.1: The four possible options to orient the edges between a child x and its parents
u and v with the parent edge (u, v) when constructing a directed 2-tree.

2.2 Directed Acyclic 2-Trees
In the following section we introduce the graph class of directed acyclic 2-trees. Therefore,
we first consider undirected 2-trees, whereby an undirected edge between the vertices u
and v is denoted as {u, v}.

Definition 2.1. An undirected 2-tree is defined inductively as follows:
• A single edge is a 2-tree. This first edge in the construction sequence of a 2-tree is

called the base edge.
• If G = (V, E) is a 2-tree and {a, b} ∈ E is an edge in G, then G′ = (V ′, E′) with

V ′ = V ∪ {x} and E′ = E ∪ {{a, x}, {b, x}} is a 2-tree. Then, we say x is stacked
onto the edge (a, b).

Note that there are various construction sequences for the same 2-tree. In fact, there is a
construction sequence for each edge e, such that e is the base edge. Further, even with a
fixed base edge, there are different construction sequences for the same 2-tree. However, if
we fix a base edge, we determine uniquely for each vertex x ∈ V onto which edge {u, v} ∈ E
it is stacked (apart from the endpoints of the base edge). Then, {u, v} is called the parent
edge of x, the vertices u and v are called the parents of x and x is called a child of u and v.
In some cases, we distinguish the two parents u and v by calling u the left parent and v
the right parent of x. A vertex y is called a descendant of the edge (u, v) or of the vertices
u and v if y is a child of u and v or if y is a child of y′ and y′ is a descendant of (u, v).
Conversely, if y is a descendant of (u, v), then u and v are called ancestors of y and (u, v)
is called ancestor edge. The subgraph induced by an edge e and its descendants is again a
2-tree, called a subtree, with base edge e. Note that every construction sequence of a 2-tree
G contains only one unique base edge of the graph G, but every edge is a base edge for
the subtree induced by itself and its descendants. We now consider directed 2-trees with a
fixed base edge. Then, there are four possibilities to orient the edges between a child x and
its parents u and v with the parent edge (u, v) directed from u to v (see Figure 2.1):

(i) If (x, u), (v, x) ∈ E, then (u, v, x) forms a directed cycle and x is called cyclic.
(ii) If (u, x), (x, v) ∈ E, x is called transitive.
(iii) If (u, x), (v, x) ∈ E, then both edges are incoming in x and x is called monotone.
(iv) If (x, u), (x, v) ∈ E, then both edges are outgoing at x and x is also called monotone.

Since a cyclic vertex forms a directed cycle with its parent, a graph containing a cyclic
vertex is not acyclic. Moreover, a directed 2-tree is acyclic, and hence a DAG, if and only
if no vertex is cyclic, independent from the choice of the base edge. According to this, we
define a directed acyclic 2-tree as a directed 2-tree, where every construction sequence only
uses the options (ii), (iii) and (iv), and thus, where every vertex, except for the base edge’s
endpoints, is either transitive or monotone. We remark that every directed acyclic 2-tree is

10

2.3. Linear Layouts

a

b
b2

b3

b1

a2 a3a1

(a) This embedding is not even planar.

a

b
b2

b3

b1

a2

a3a1

(b) In this embedding not all edges are
oriented in an upward way.

Figure 2.2: Two options to embed the same directed acyclic 2-tree, which is not upward
planar.

also a planar graph, but not necessarily upward planar. Figure 2.2 illustrates a directed
acyclic 2-tree G which is not upward planar. At least two of the three vertices b1, b2 and b3

are on the same side of the base edge (a, b), here b2 and b3. Now, consider the vertex a2

that is adjacent to b2, which is here the vertex of the two that is closer to the base edge.
There are only two faces of the subgraph G − a2 (G without a2 and all edges incident to
a2), into which a2 can be embedded in a planar way: between (a, b) and (a, b2) or between
(a, b2) and (a, b3). In both cases, the edge (a2, a) that is incoming in a is located between
two edges outgoing from a. This is a contradiction to the bimodality property of upward
planar embeddings that states that the sets of incoming and outgoing edges are separated
from each other in the cyclic ordering of the edges at each vertex. Therefore, G cannot be
embedded in an upward planar way.
Furthermore, a directed acyclic 2-tree is called transitive if there is a choice for the base
edge (a, b), so that every vertex except a and b is transitive. Analogously, if there is a
choice for the base edge (a, b), such that every vertex except a and b is monotone, we
call the 2-tree monotone. In this case, we call x a right child of u and v, if the edges are
directed from u and v to x as in (iii). Otherwise, if the edges are directed from x to its
parents u and v as in (iv), we call x a left child of u and v. That is, because x is to the
right or respectively left of its parents in any topological vertex ordering (see Section 2.3).

2.3 Linear Layouts

In this section we formalise the concepts of linear layouts, particularly, stack, queue, and
mixed layouts. A linear layout of a graph consists of a total vertex ordering ≺ and a
partition of the edges into sets, here into stacks and queues. We say, u is to the left of v
and v is to the right of v if u ≺ v. If there is no vertex ordering specified within a set of
vertices A, we use the notations u ≺ A or A ≺ u if u ≺ v or v ≺ u, respectively, for each
v ∈ A. Additionally, for a directed graph we require that the vertex ordering is topological.
That is, for every edge (u, v) oriented from u to v, it holds that u ≺ v. Therefore, if no
edge directions are drawn in figures of linear layouts of directed graphs in this thesis, we
assume all edges to be oriented from left to right. Note that a directed graph G admits
a topological vertex ordering if and only if G is acyclic, which is why we only consider
directed acyclic graphs in this thesis.

11

2. Preliminaries

(i) Two crossing edges. (ii) Two nesting edges.

Figure 2.3: Forbidden edge constellations in (a) stacks and (b) queues.

Definition 2.2. Given a fixed vertex ordering ≺, a stack S is a set of edges, such that the
endpoints of any two edges (u1, v1), (u2, v2) ∈ S do not alternate with respect to ≺, i.e., it
is neither u1 ≺ u2 ≺ v1 ≺ v2 nor u2 ≺ u1 ≺ v2 ≺ v1.

Definition 2.3. An s-stack layout of a graph G is a linear layout of G where the edges
are partitioned into s stacks.

Definition 2.4. The stack number sn(G) of a graph G is the minimum number s, such
that G admits an s-stack layout.

Originally, stack layouts were referred to as book embeddings, where the vertices are imagined
to lie orderly on the spine of a book and the edges are drawn on the pages of the book,
such that no two edges on the same page cross [BK79]. A page is thereby a half-plane
with the spine as boundary. As illustrated in Figure 2.3, two edges cross if and only if
their endpoints alternate with respect to the vertex ordering. Thus, stacks and pages are
equivalent. Therefore, in this thesis, we also say that two edges (u1, v1), (u2, v2) cross with
respect to the ordering ≺, if and only if u1 ≺ u2 ≺ v1 ≺ v2 or u2 ≺ u1 ≺ v2 ≺ v1. Apart
from that, we prefer the terminologies associated with stacks as a counterpart to the queues,
which we also consider in this thesis and define in the following.

Definition 2.5. Given a fixed vertex ordering ≺, a queue Q is a set of edges such that for
any two edges (u1, v1), (u2, v2) ∈ Q it is neither u1 ≺ u2 ≺ v2 ≺ v1 nor u2 ≺ u1 ≺ v1 ≺ v2.

Definition 2.6. A q-queue layout of a graph G is a linear layout of G where the edges are
partitioned into q queues.

Definition 2.7. The queue number qn(G) of a graph G is the minimum number q, such
that G admits a q-queue layout.

It is also possible to imagine a queue layout as a book embedding, where no two edges
on the same page nest. Then, a page is equivalent to a queue (see Figure 2.3). Thus,
it became increasingly reasonable to distinguish the two concepts by the different terms
stack and queue layout with introduction of the queue number [HR92]. However, we also
use the expression that two edges nest in this thesis. Precisely, we say that two edges
(u1, v1), (u2, v2) nest, if and only if u1 ≺ u2 ≺ v2 ≺ v1 or u2 ≺ u1 ≺ v1 ≺ v2. Moreover,
the notions of books and pages are well suited to talk about mixed linear layouts, which
we define below. In this thesis the term page denotes both, stacks and queues, if it is not
exactly specified which of the two is meant.

Definition 2.8. A q-queue s-stack layout is a linear layout of G where the edges are
partitioned into q queues and s stacks.

Definition 2.9. The mixed page number mpn(G) of a graph G is the minimum number
s + q of stacks and queues, such that G admits a q-queue s-stack layout.

12

2.3. Linear Layouts

u1 u2 . . . ut v1 v2 . . . vt

(a) A t-twist.

u1 u2 . . . ut vt . . . vt−1 v1

(b) A t-rainbow.

Figure 2.4: (a) requires at least t stacks. (b) requires at least t queues.

Note that q = 0 or s = 0 is possible, such that the mixed linear layout becomes a stack or
queue layout, respectively. Therefore, a q-queue layout is also a q-queue 0-stack layout,
and a s-stack layout is a 0-queue s-stack layout. It follows that mpn(G) ≤ sn(G), qn(G)
for each graph G. For s, q ̸= 0, a q-queue s-stack layout is also simply described as a mixed
linear layout.
Given a vertex ordering, we observe that t pairwise crossing edges, which we call a t-twist
(see Figure 2.4), require at least t stacks in a pure stack layout, and t pairwise nesting edges,
called t-rainbow (see Figure 2.4), require at least t queues in a queue layout. Moreover, a
large t-twist (or t-rainbow) is indeed necessary for a large stack number (or queue number).
As Davies showed, the stack number is bounded by a function of the size t of the largest
twist [Dav22].

Theorem 2.10 (Davies, 2022 [Dav22]). Given a vertex ordering with a largest twist of
size t, the edges can be partitioned into

2t log2(t) + 2t log2(log2(t)) + 10t

stacks.

As Heath and Rosenberg proved [HR92], for the queue number a large t-rainbow is indeed
the only reason to be large, since the queue number is bounded by the size t of the largest
rainbow.

Theorem 2.11 (Heath, Rosenberg, 1992 [HR92]). Given a vertex ordering with a largest
rainbow of size t, the edges can be partitioned into t queues.

It follows that sn(G) ∈ Θ(t log(t)) and qn(G) ∈ Θ(t) for each graph G with a largest twist
or respectively rainbow of size t in a linear layout. We call such an edge set E with the
respective endpoints and a fixed vertex ordering ≺, like a t-twist or a t-rainbow, an edge
pattern P = (V, E, ≺). A q-queue s-stack layout of an edge pattern is a partition of the
edges into q queues and s stacks with the same vertex ordering as in the pattern. The
mixed page number mpn(P) of an edge pattern P is the minimum number of pages q + s
required for a q-queue s-stack layout of the pattern.
By combining t-twists and t-rainbows, we identify two edge patterns that cause the mixed
page number to become large. To define these two patterns, we say that two rainbows r1
and r2 cross, when all edges from r1 cross all edges from r2 (see Figure 2.5). Analogously,
we say that two twists t1 and t2 nest, when all edges from t1 nest with all edges from t2
(see Figure 2.5). Then, one of the two patterns with large mixed page number consists of t
rainbows of the size t that cross with each other. We call such an edge pattern a t-crossing
rainbow (see Figure 2.6). For a t-crossing rainbow at least t pages are required in a mixed
linear layout, since any queue contains at most one edge of each of the t rainbows and any
stack contains at most one whole rainbow, but no two edges from different rainbows. Thus,
each page contains at most t edges, but there are t2 edges in total, so at least t pages are

13

2. Preliminaries

u1 u2 u3 u4 u5 u6 v3 v2 v1 v6 v5 v4

Two 3-rainbows that cross.

u4 u5 u6 u7 u8 u9 v7 v8 v9 v4 v5 v6

Two 3-twists that nest.

Figure 2.5: The edge patterns t-twist and t-rainbow combined to crossing rainbows and
nesting twists.

u1 u2 u3 u4 u5 u6 u7 u8 u9 v3 v2 v1 v6 v5 v4 v9 v8 v7

Figure 2.6: A 3-crossing rainbow, for which at least 3 pages are required.

required. Further, t pages are sufficient for a t-crossing rainbow as we use one stack per
rainbow or put one edge of each rainbow into a queue. Hence, a t-crossing rainbow admits
a t-stack layout and a t-queue layout.
On the other hand, for an edge pattern consisting of t twists of the size t that pairwise
nest, called t-nesting twist, also at least t pages are required (see Figure 2.7), since any
queue contains at most one whole twist, but no two edges from different twists, and any
stack contains at most one edge of each of the t twists. Hence, there are at most t edges in
each page, but t2 edges in the t-nesting twist, so that in total t pages are necessary. Again,
a t-nesting twist admits a t-stack layout and a t-queue layout, since we can put one edge
of each twist into a stack or we can use one queue for each twist. As we show below, for
t-crossing rainbows and for t-nesting twists, t pages suffice indeed only in a stack or queue
layout, but not in a mixed linear layout, where we require at least one stack and one queue
each.

Observation 2.12. For each q-queue s-stack layout of a t-crossing rainbow or a t-nesting
twist it holds that q ≥ t or s ≥ t.

Proof. First, consider a q-queue s-stack layout of a t-crossing rainbow with q < t. We
show that s ≥ t follows. Each queue contains at most one edge per rainbow. Since the
rainbows have size t and there are less than t queues, there is at least one edge left from
each rainbow. The edges of different rainbows pairwise cross, and therefore the remaining
edges form a t-twist, for which at least t stacks are required.
Now, let s < t, and we show that q ≥ t follows. Each stack contains at most one rainbow
but no two edges from different rainbows. Since there are t rainbows but less than t stacks,
one complete t-rainbow remains. For this, at least t queues are required.
Next, we consider a q-queue s-stack layout of a t-nesting twist with q < t. Similar to the
previous cases, each queue contains at most one twist but no two edges from different twists,

u1 u2 u3 u4 u5 u6 u7 u8 u9 v7 v8 v9 v4 v5 v6 v1 v2 v3

Figure 2.7: A 3-nesting twist, for which at least 3 pages are required.

14

2.3. Linear Layouts

u1 u2 u4 u5 u7 u8 u9 v2 v1 v5 v4 v9 v8 v7

Figure 2.8: A 2-crossing rainbow, whose edges all cross every edge of a single 3-rainbow.
For this edge pattern 3 pages are already required.

since they nest. Again, there are t twists but less than t queues, so that one complete
t-twist remains, which requires at least t stacks.
Lastly, we assume s < t and show that q ≥ t follows. Analogously to above, each stack
contains at most one edge per twist. Since there are t twists but less than t stacks, at least
one edge per twist remains. The edges of different twists pairwise nest, and thus form a
t-rainbow altogether. Therefore, at least t queues are additionally necessary.

It follows that even if we have t − 1 queues, t additional stacks would be necessary for a
t-crossing rainbow or a t-nesting twist, although t stacks alone are already sufficient. Thus,
there is no reason to use the t − 1 queues, or any queue at all. Conversely, using t − 1 or
less stacks is not reasonable, since then t queues are still required, even though t queues
alone would already suffice. Therefore, whenever a t-crossing rainbow or a t-nesting twist
occurs, we may assume its edges to be partitioned into t stacks or into t queues.
The question that now arises is, whether the mixed page number only depends on the size
of the largest t-crossing rainbow or t-nesting twist, similarly as for the stack and queue
number with t-rainbows and t-twists. One first observation that we make is that a slightly
smaller edge subset of t-crossing rainbows or t-nesting twists already requires at least t
stacks.

Observation 2.13. A (t − 1)-crossing rainbow, whose edges all cross every edge of a single
t-rainbow, requires at least t pages.

Proof. Consider such a (t − 1)-crossing rainbow that crosses a single t-rainbow (see Fig-
ure 2.8). Assume that t − 1 pages suffice. We observe that the pattern consists of
(t − 1)(t − 1) + t edges, namely (t − 1)(t − 1) edges from the (t − 1)-crossing rainbow and
t edges from the additional t-rainbow. By pigeonhole principle, one of the t − 1 pages
contains at least ⌈(t − 1)(t − 1) + t

t − 1

⌉
=

⌈
t − 1 + t

t − 1

⌉
= t + 1

edges. However, a stack contains at most one rainbow but no two edges from two distinct
rainbows, as they cross each other. Since the largest rainbow has size t, there is no stack
with t + 1 edges. Similarly, a queue contains at most one edge per rainbow, and thus not
more than t edges in total. This is a contradiction to the assumption that t − 1 pages
suffice.

Similar arguments also apply to nesting twists, which leads to the following observation.
The edge pattern considered in Observation 2.14 is illustrated in Figure 2.9.

Observation 2.14. A (t − 1)-nesting twist, whose edges all nest with every edge of a single
t-twist, requires at least t pages.

To get even closer to answering the question, we aim to find a function f in the size t
of the largest t-crossing rainbow or t-nesting twist in a pattern P , such that the mixed

15

2. Preliminaries

u1 u2 u4 u5 u7 u8 u9 v7 v8 v9 v4 v5 v1 v2

Figure 2.9: A 2-nesting twist, whose edges all nest with every edge of a single 3-twist. For
this edge pattern 3 pages are already required.

u1 u2 u3 u4 u5 u6 u7 u8 v2 v1 v4 v3 v6 v5 v8 v7

Figure 2.10: A 4-crossing 2-rainbow consisting of four 2-rainbows that pairwise cross.

page number is bounded by this function, i.e., mpn(P) ≤ f(t). In the following, we give
a lower bound on this function, if it exists, by proving that f(t) ∈ Ω(t2). To do this, we
first generalise the edge patterns t-crossing rainbow and t-nesting twist by allowing that
the size t of the rainbows or twists may differ from the number of t-rainbows or t-twists
in the edge pattern, respectively. Precisely, k pairwise crossing t-rainbows are called a
k-crossing t-rainbow (see Figure 2.10) and analogously, k pairwise nesting t-twists are called
a k-nesting t-twist (see Figure 2.11). We observe that for these two patterns min{k, t}
pages still suffice. For instance, a k-crossing t-rainbow with k < t admits a k-stack layout,
where each stack contains one of the t-rainbows. Conversely, with t < k the pattern admits
a t-queue layout, where every queue contains one edge per t-rainbow. Analogous arguments
also apply to k-nesting t-twists. For k = t the two patterns are simply t-crossing rainbows
or t-nesting twists, for which we know that t pages suffice. In particular, it follows that a
k-crossing t-rainbow or a k-nesting t-twist does not contain a (t + 1)-crossing rainbow or a
(t + 1)-nesting twist for each k ∈ N because then at least t + 1 pages would be required.
We now use these patterns to construct an even larger pattern that still contains neither a
(t + 1)-crossing rainbow nor a (t + 1)-nesting twist, but requires at least t2 pages.

Proposition 2.15. For each t ≥ 1 there is an edge pattern that contains neither a
(t + 1)-crossing rainbow nor a (t + 1)-nesting twist, and requires at least t2 pages.

Proof. For t = 1, the proposition is true, since a single edge already requires one page. For
t ≥ 2, consider t pairwise crossing t2-nesting t-twists (see Figure 2.12). We number the
t2-nesting t-twists, which we call subpatterns, from left to right and label these subpatterns
nti for i = 1, . . . , t. Before we prove that this pattern requires at least t2 pages, we first
show that it does neither contain a (t + 1)-crossing rainbow nor a (t + 1)-nesting twist. For

u1 u2 u3 u4 u5 u6 u7 u8 v7 v8 v5 v6 v3 v4 v1 v2

Figure 2.11: A 4-nesting 2-twist consisting of four 2-twists that pairwise nest.

16

2.3. Linear Layouts

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

v7

v8

v5

v6

v3

v4

v1

v2

v15

v16

v13

v14

v11

v12

v9

v10

Figure 2.12: Two pairwise crossing 4-nesting 2-twists that contain neither a 3-crossing
rainbow nor a 3-nesting twist but require at least 4 pages. The edge pattern
can be partitioned into the two subpatterns nt1 (green) and nt2 (orange),
which are the two 4-nesting 2-twists.

17

2. Preliminaries

this, we first observe that two edges from different subpatterns nti, ntj with i ̸= j do not
nest, since they all pairwise cross.
Now, we show that the pattern does not contain a (t + 1)-crossing rainbow. To do this,
we consider two disjoint rainbows r1, r2. Since edges from two different subpatterns do
not nest, we may assume that r1 and r2 are each completely contained in one subpattern.
Thus, let r1 be contained in nti and r2 in ntj . If they are contained in the same subpattern,
i.e., i = j, then they do not cross, since the subpatterns are nesting twists and no two
rainbows cross within a nesting twist. Hence, only rainbows from different subpatterns
nti, ntj with i ≠ j can cross. Since there are only t of these subpatterns nti (i = 1, . . . , t),
there are at most t disjoint pairwise crossing rainbows. Thus, the pattern does not contain
a (t + 1)-crossing rainbow.
Next, we show that the pattern does not contain a (t + 1)-nesting twist. A (t + 1)-nesting
twist can also be described as a (t + 1)-rainbow, whose edges are each crossed by a t-
twist that does not cross any other edges from the (t + 1)-rainbow. Each edge from the
(t + 1)-rainbow forms a (t + 1)-twist with the t-twist, by which it is crossed (see Figure 2.7).
Therefore, we consider a (t + 1)-rainbow r, and show that the edges in r are not crossed
by t-twists in a way that they form a (t + 1)-nesting rainbow. Let r be contained in the
subpattern nti, and let e be one edge from the rainbow r. We now investigate the edges
that cross e. Edges from a different subpattern that cross e also cross all other edges from
r. Only edges from the same subpattern nti cross e and no other edges from r. Since nti is
a t2-nesting t-twist, it does not contain a twist of size larger than t. Therefore, there are
only t − 1 edges from the same subpattern as e that cross e and no other edges from r. It
follows that r does not form a (t + 1)-nesting twist with any t-twists.
Finally, we show that t pairwise crossing t2-nesting t-twists require at least t2 pages. First,
we observe that each t-twist contains t edges. Thus, each t2-nesting t-twist contains t3

edges. Since there are t of them in our pattern, we have t4 edges in total. Now, we assume
that t2 − 1 pages suffice. It follows after pigeonhole principle that one of those pages
contains at least ⌈

t4

t2 − 1

⌉
> t2

edges. A stack contains only edges from one subpattern because the subpatterns pairwise
cross. Furthermore, within a subpattern a stack contains only one edge per t-twist, and
thus at most t2 edges in total. On the other hand, a queue contains at most one t-twist
from each subpattern, and hence also at most t2 edges. This is a contradiction to the
assumption that t2 − 1 pages suffice.

We remark that t2 pages are indeed sufficient for this pattern, since it admits a t2-stack
layout. Here, we use t stacks for each of the t subpatterns, which are t2-nesting t-twists.
Each of these stacks then contains one edge per t-twist. Hence, it remains open if there are
patterns that require more than t2 pages with t the size of a largest t-crossing rainbow or
t-nesting twist in the pattern. Moreover, it is still open whether the mixed page number
even depends only on the size of a largest t-crossing rainbow or t-nesting twist.

18

3. Upward Planar Graphs

In the following chapter we observe a few s-stack q-queue layouts and thereby give some
bounds on the stack, queue, and mixed page number of special upward planar graph
families. For instance, cycles, grids, and N-grids are considered. Furthermore, we find a
lower bound on the mixed page number of upward planar graphs and observe that the
mixed page number of some graphs is strictly smaller than the stack and queue number.
The results of this chapter are summarized in Table 3.1.

3.1 Cycles and Kelly graphs
Many graphs contain a cycle as a subgraph. Therefore, we first give a lower bound on the
stack number for cycles, which we use in the following for other graphs.

Proposition 3.1. For each cycle with an even number of vertices and with alternating
incoming and outgoing edges at the vertices, at least two stacks are necessary.

Proof. Let C = [v1, v2, . . . , vn, v1] be a cycle with an even number of vertices and alternating
incoming and outgoing edges. Now, we try to find a topological ordering where all edges fit
into one stack. Without loss of generality we assume that v1 has two outgoing edges, i.e., v2
and vn each have two incoming edges, one of which comes from v1. Thus, in any topological
ordering ≺ of the vertices v1 ≺ v2 and v1 ≺ vn holds. Due to symmetry, we can assume that
v1 ≺ v2 ≺ vn. As v3v2 and v1vn may not cross, the order is v1 ≺ v3 ≺ v2 ≺ vn. Analogous
arguments lead to the vertex ordering v1 ≺ v3 ≺ · · · ≺ vn−1 ≺ vn−2 ≺ · · · ≺ v2 ≺ vn, where
vn−1vn and v1v2 cross (see Figure 3.1).

Stack Number Queue Number Mixed Page Number
Cycle ≥ 2

Kelly Graph Gk = 2 unbounded = 2
Grid Gridm,n ≥ 3 ≤ 2 ≤ 2
N-Grid Nm,n ≥ 5 ≤ 4 ≤ 4
Nm,n + Rk ≥ 5 unbounded ≤ 4
Nm,n + Gk ≥ 5 unbounded ≤ 4

Table 3.1: Lower and upper bounds on the stack, queue and mixed page number of the
graphs considered in Chapter 3.

19

3. Upward Planar Graphs

v1

v2

v3

v4

v5

v6

v1 v3 v5 v2 v4 v6

Figure 3.1: Left: A cycle with six vertices and alternating incoming and outgoing edges.
Right: The same graph with the vertex ordering from the proof of Proposi-
tion 3.1

.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

z1

w1

z2

w2

z3

w3

z4

w4

z5

w5

Figure 3.2: The graph G6 containing a cycle with alternating incoming and outgoing edges
(orange).

One example for graphs that contain such a cycle with alternating incoming and outgoing
edges, are the graphs Gk for k ≥ 2 following Kelly’s construction [Kel81]. For each k ≥ 2
the graph Gk consists of vertices {ai | 1 ≤ i ≤ k} ∪ {bi | 1 ≤ i ≤ k} ∪ {wi | 1 ≤ i ≤
k − 1} ∪ {zi | 1 ≤ i ≤ k − 1}. The edges are partitioned into six subsets. Outgoing on
the vertices ai, we have the two edge sets {(ai, wi−1) | 2 ≤ i ≤ k}, called a-w-edges, and
{(ai, zi) | 1 ≤ i ≤ k − 1}, called a-z-edges. Analogously, incoming on the vertices bi we
have the w-b-edges {(wi, bi) | 1 ≤ i ≤ k − 1} and the z-b-edges {(zi, bi+1) | 1 ≤ i ≤ k − 1}.
Additionally, the vertices wi and zi are connected by w-edges {(wi, wi−1) | 2 ≤ i ≤ k − 1}
and z-edges {(zi, zi+1) | 1 ≤ i ≤ k − 2} respectively. The graph G6 is shown in Figure 3.2.
Note that a Kelly graph Gk is a planar poset, as we mentioned in Section 1.3.
Since every Kelly graph contains such a cycle with alternating incoming and outgoing
edges, for instance [a2, z2, z1, b2, w2, w1, a2] as illustrated in Figure 3.2, the corollary below
follows.

Corollary 3.2. For each Gk with k ≥ 3 at least two stacks are necessary.

Considering Kelly’s construction further, we observe that 2 stacks are sufficient for each
Gk (k ≥ 2), i.e., the stack number equals 2 (for k ≥ 3).

Proposition 3.3. Each Gk with k ≥ 2 admits a 2-stack-layout.

20

3.1. Cycles and Kelly graphs

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

z1

w1

z2

w2

z3

w3

z4

w4

z5

w5

Figure 3.3: The graph G6 with the edges partitioned into the set E1 of a-w-edges, a-z-edges,
z-b-edges and z-edges (green) and the set E2 of w-b-edges and w-edges (orange).

Proof. Let k ≥ 2 be an integer. We choose the vertex ordering ≺ with ai, wi ≺ bj , zj for
each 1 ≤ i, j ≤ k. Furthermore, we have ai ≺ wi−1 ≺ ai−1 (i = 2, . . . , k) and bi ≺ zi ≺ bi+1
(i = 1, . . . , k − 1). In total, we obtain the ordering

ak ≺ wk−1 ≺ ak−1 ≺ · · · ≺ a2 ≺ w1 ≺ a1 ≺ b1 ≺ z1 ≺ b2 ≺ · · · ≺ bk−1 ≺ zk−1 ≺ bk

(see Figure 3.4). Now, we partition the edges into two sets, for which we prove that they
satisfy the stack property. In the first edge set E1 we have the a-w-edges, the a-z-edges,
the z-b-edges, and the z-edges. The second edge set E2 contains the remaining w-b-edges
and the w-edges (see Figure 3.3).
For E1 we observe that the endpoints of the a-w-edges (ai, wi−1) and the z-b-edges (zi, bi+1)
are neighbours in the vertex ordering. Thus, they do not cross any other edges and do not
need to be considered further. Hence, we only need to show that there are no crossings
within the sets of a-z- and z-edges and that no a-z-edge crosses a z-edge. First, we observe
that the ai are in descending order and the zi in ascending order. Thus, for two a-z-edges
(ai, zi), (aj , zj) with ai ≺ aj zj ≺ zi holds, so no two a-z-edges cross. Analogously, for two
z-edges (zi, zi+1), (zj , zj+1) with zi ≺ zj it follows that zi ≺ zi+1 ≼ zj ≺ zj+1, so there are
no crossings within the set of z-edges. Lastly, we consider an a-z-edge (ai, zi) and a z-edge
(zj , zj+1). Since all vertices ai precede all vertices zj , we have ai ≺ zi, zj , zj+1. The vertex
zi is not located between zj and zj+1 and therefore the a-z-edges do not cross the z-edges.
Similarly, we show that there are no crossings within E2 consisting of the w-b- and w-edges.
We observe that the wi are in descending order and the bi are in ascending order and
all vertices wi precede all vertices bi. With the same arguments as above it follows that
there are no crossings within the sets of w-b- and w-edges and that no w-b-edge crosses a
w-edge.

Shifting all vertices ai forward by one position in the ordering, we obtain a 1-queue 1-stack
layout as illustrated in Figure 3.5. To conclude the consideration of Kelly graphs, we lastly
show that their queue number is unbounded. For this, we use the following Erdős-Szekeres
theorem [ES35].

21

3. Upward Planar Graphs

an wn−1 an−1 wn−2 an−2 wn−3 . . . a2 w1 a1 b1 z1 b2 . . . zn−3 bn−2 zn−2 bn−1 zn−1 bn

Figure 3.4: A 2-stack layout of Gk with the two stacks E1 (blue) and E2 (orange).

an an−1 wn−1 an−2 wn−2 an−3 . . . w2 a1 w1 b1 z1 b2 . . . zn−3 bn−2 zn−2 bn−1 zn−1 bn

Figure 3.5: A 1-queue (orange) 1-stack (blue) layout of Gk.

Theorem 3.4 (Erdős, Szekeres, 1935 [ES35]). Given r, s ∈ N, any sequence of distinct real
numbers of length at least (r −1)(s−1)+1 contains a monotonically increasing subsequence
of length r or a monotonically decreasing subsequence of length s.

Intuitively, a large sequence of numbers always contains a large monotonically increasing
or a large monotonically decreasing subsequence.

Proposition 3.5. For each t ≥ 1 there is a Kelly graph Gk with qn(Gk) ≥ t.

Proof. Let t ≥ 1 be an integer. We choose k = (t− 1)2 + 3 and consider the Kelly graph Gk.
Now, we show that every topological ordering of the vertices of Gk contains a t-rainbow, and
thus requires at least t queues in a queue layout. For this, we consider a fixed topological
ordering ≺. Due to the w- and z-edges, we know that wi+1 ≺ wi and zi ≺ zi+1 for each
i = 1, . . . , k − 2, i.e., the wi are in decreasing order of their indices, and the zi in increasing
order. However, the vertices bi are allowed to be in any order. Let bσ(1) ≺ bσ(2) ≺ · · · ≺ bσ(k)
be the order of the bi for i = 2, . . . , k − 1, where σ : {1, . . . , k − 2} → {2, . . . , k − 1} is
some permutation of the indices i = 2, . . . , k − 1. Thus, σ is a sequence of integers of size
k − 2 = (t − 1)2 + 1. By the Erdős-Szekeres theorem (see Theorem 3.4), it follows that σ
contains a monotonically increasing subsequence of size t or a monotonically decreasing
subsequence of size t. In the following, we investigate these two cases separately.
In the former case, let σ′ : {1, . . . , t} → {2, . . . , k − 1} be the monotonically increasing
subsequence of size t, i.e., σ′(i) < σ′(j) for each 1 ≤ i < j ≤ t. Here, we consider the
w-b-edges. Due to the decreasing order of the wi with respect to their indices, i.e., wi ≻ wj

for 1 ≤ i < j ≤ t, and the edge (wσ′(1), bσ′(1)), it follows that

wσ′(t) ≺ wσ′(t−1) ≺ · · · ≺ wσ′(1) ≺ bσ′(1) ≺ · · · ≺ bσ′(t−1) ≺ bσ′(t).

Hence, the t w-b-edges (wσ′(i), bσ′(i)) for i = 1, . . . , t pairwise nest and form a t-rainbow.
In the latter case, let σ′ : {1, . . . , t} → {2, . . . , k − 1} be the monotonically decreasing
subsequence of size t, i.e., σ′(i) > σ′(j) for each 1 ≤ i < j ≤ t. In this case, we consider the
z-b-edges. Due to the increasing order of the zi with respect to their indices, i.e., zi ≺ zj

for 1 ≺ i < j ≺ t, and the edge (zσ′(1)−1, bσ′(1)), it follows that

zσ′(t)−1 ≺ zσ′(t−1)−1 ≺ · · · ≺ zσ′(1)−1 ≺ bσ′(1) ≺ · · · ≺ bσ′(t−1) ≺ bσ′(t).

Similar to the first case, the t z-b-edges (zσ′(i)−1, bσ′(i)) for i = 1, . . . , t pairwise nest and
form a t-rainbow. Therefore, Gk requires at least t queues in a queue layout.

22

3.2. Grids and N-Grids

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

Figure 3.6: A 3 × 4 upward grid with left edges (green), right edges (blue) and vertical
edges (orange).

3.2 Grids and N-Grids
In this section we investigate the mixed page number for grids and N-grids, following the
definitions of Jungeblut, Merker, and Ueckerdt [JMU22a].
Let m, n > 0 be integers. An m × n upward grid Gridm,n consists of vertices (l, r) and
an edge set which can be partitioned in three subsets. Edges of the form ((l, r), (l + 1, r))
for each 1 ≤ l ≤ m − 1 and 1 ≤ r ≤ n are called left edges. Analogously, we have right
edges ((l, r), (l, r + 1)) for each 1 ≤ l ≤ m and 1 ≤ r ≤ n − 1. The third edge subset is the
set of vertical edges ((l, r), (l + 1, r + 1)) for each 1 ≤ l ≤ m − 1 and 1 ≤ r ≤ n − 1 (see
Figure 3.6).
Adding an additional vertex, called N-vertex, in each inner face of Gridm,n and for each
N-vertex edges to all three vertices incident to the respective face, we obtain an m × n
N-grid Nm,n as illustrated in Figure 3.7. Specifically, for every two triangles sharing a
vertical edge and consisting of the vertices (l, r), (l + 1, r), (l, r + 1), and (l + 1, r + 1), we
insert a-vertices al,r to the left triangle and b-vertices bl,r to the right triangle, if l−r is even,
and c-vertices cl,r to the left and d-vertices dl,r to the right triangle, if l − r is odd. Then,
we insert the N-edges of the form (al,r, (l + 1, r + 1)) and ((l, r), bl,r) or (cl,r, (l + 1, r + 1))
and ((l, r), dl,r) respectively. Finally, we add the remaining non-N-edges to the other two
vertices in each face ((l, r), al,r), (al,r, (l +1, r)), ((l, r +1), bl,r) and (bl,r, (l +1, r +1)) in the
first case or ((l, r), cl,r), (cl,r, (l, r + 1)), ((l + 1, r), dl,r) and (dl,r, (l + 1, r + 1)) in the second
case. The vertices and edges of Gridm,n are called grid vertices and grid edges respectively.
The best known lower bound on the stack number of upward planar graphs is 5, provided
by Jungeblut, Merker, and Ueckerdt with an N -grid [JMU22a]. However, we reduce the
number of pages needed for N -grids by admitting queues. Before we get to the N -grids,
we first observe the grids, as they are subgraphs of the N -grids.

Proposition 3.6. For each m × n upward grid with m ≥ 2 and n ≥ 4, at least three stacks
are necessary.

Proof. Let Grid2,4 be a 2 × 4 upward grid with vertices (l, r) for each 1 ≤ l ≤ 2 and
1 ≤ r ≤ 4. Now, we try to find a topological ordering ≺, where all edges fit into
two stacks. In any topological ordering we have (1, 1) ≺ (1, 2) ≺ (2, 2) ≺ (2, 3) and
(1, 2) ≺ (1, 3) ≺ (2, 3) ≺ (2, 4) with the edges ((1, 1), (2, 2)), ((1, 2), (2, 3)) and (1, 3), (2, 4)),
which require at least two stacks. If we additionally claim that (1, 3) ≺ (2, 2), we get
(1, 1,) ≺ (1, 3) ≺ (2, 2) ≺ (2, 4). Thus, no two of these three edges can share the same stack
and at least three stacks are necessary.

23

3. Upward Planar Graphs

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

a1,1

b1,1

c1,2

d1,2

a1,3

b1,3

c2,1

d2,1

a2,2

b2,2

c2,3

d2,3

Figure 3.7: A 3 × 4 N-grid consisting of a 3 × 4 upward grid (black), N-edges (orange) and
non-N-edges (green).

Now, let (2, 2) ≺ (1, 3) and thereby (1, 1) ≺ (1, 2) ≺ (2, 2) ≺ (1, 3) ≺ (2, 3) ≺ (2, 4).
If ((1, 2), (2, 3)) and ((2, 2), (2, 3)) are in two different stacks, we need a third stack for
((1, 3), (2, 4)), which crosses both of the other edges in the given ordering. On the other
hand, if we have ((1, 2), (2, 3)) and ((2, 2), (2, 3)) in the same stack, a second stack for
((1, 2), (1, 3)) crossing ((2, 2), (2, 3)) is required but then a third stack is necessary for
((1, 1), (2, 2)), which crosses ((1, 2), (1, 3)) as well as ((1, 2), (2, 3)).
Note that Grid2,4 is a subgraph of all m × n upward grids with m ≥ 2 and n ≥ 4, which
leads to the statement of Proposition 3.6.

We remark that a 1 × 4 and a 2 × 3 upward grid admits a 2-stack layout, which makes
Grid2,4 a minimal counterexample.
Having a lower bound on the stack number of grids, we improve this by admitting queues
and give an upper bound on the mixed page number of grids.

Proposition 3.7. Each m × n upward grid admits a 2-queue layout and a 1-queue 1-stack
layout.

Proof. Let Gridm,n be an m × n upward grid with vertices (l, r) for each 1 ≤ l ≤ m and
1 ≤ r ≤ n. Consider the vertex ordering ≺ where v = (lv, rv) ≺ (lw, rw) = w if and only if
lv < lw or lv = lw and rv < rw as shown in Figure 3.8. The first queue contains the left
edges and the vertical edges, the second queue or stack contains the remaining right edges.
First, we prove that the set of left and vertical edges actually is a queue, before we show
the stack and queue properties for the set of right edges.
Let (v, v′) = ((lv, rv), (l′v, r′

v)), (w, w′) = ((lw, rw), (l′w, r′
w)) be two arbitrarily chosen edges

from the set of left and vertical edges with v ≺ w. We distinguish the two cases lv < lw

24

3.2. Grids and N-Grids

(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4)

Figure 3.8: The 2-queue or 1-queue 1-stack layout of Grid3,4. The set of left and vertical
edges (green and orange) satisfies the queue property, the set of right edges
(blue) the queue property as well as the stack property.

and lv = lw. In the first case, considering only left and vertical edges, we have l′v = lv + 1 <
lw + 1 = l′w, which leads to v′ ≺ w′. The latter case lv = lw is equivalent to rv < rw and
therefore r′

v ≤ rv + 1 ≤ rw ≤ r′
w. With l′v = lv + 1 = lw + 1 = l′w, we get v′ ≼ w′. Hence, in

both cases the queue property is satisfied.
For the right edges, we observe that the endpoints of each edge ((l, r), (l, r + 1)) are
neighbours in the vertex ordering. Thus, the stack and queue properties are satisfied for
this set of edges.

It follows that qn(Gridm,n) ≤ 2 and mpn(Grida,b) ≤ 2. Having a stack number sn(Gridm,n)
≥ 3 (see Proposition 3.6), the queue number and the mixed page number are strictly
smaller than the stack number. This also applies to the N-grids as shown below.

Proposition 3.8. Each m × n N-grid admits a 4-queue layout and a 3-queue 1-stack
layout.

Proof. Let Nm,n be an m × n N-grid. For the grid vertices, we choose the ordering ≺ where
v = (lv, rv) ≺ (lw, rw) = w if and only if lv < lw or lv = lw and rv < rw as in the proof of
Proposition 3.7. This ordering of the grid vertices is partitioned into m blocks of n vertices,
where block l contains all vertices (l, r) for r = 1, . . . , n. Then, we place the N-vertices
in between as follows. Vertices cl,r and dl,r are as far left as possible, namely cl,r directly
after (l, r) and dl,r directly after (l + 1, r). For each 1 ≤ l < m we place the N-vertices
al,r and bl,r between the block of vertices (l, r) and (l + 1, r) for r = 1, . . . , n, precisely
(l, n) ≺ al,r, bl,r ≺ (l + 1, 1) for each 1 ≤ r ≤ n, so that we obtain blocks of grid vertices
with c- and d-vertices inside and blocks of a- and b-vertices alternatingly. Furthermore,
we have the ordering al,r ≺ bl,r ≺ al,r′ ≺ bl,r′ if and only if r < r′. Overall, we obtain the
ordering

(1, 1)(1, 2)c1,2(1, 3)(1, 4)c1,4 . . . (1, n)a1,1b1,1a1,3b1,3 . . .

(2, 1)c2,1(2, 2)d1,2(2, 3)c2,3(2, 4)d1,4 . . . a2,2b2,2a2,4b2,4 . . .

(see Figure 3.18). Having the same vertex ordering for the grid vertices, we can reuse the
2-queue layout or the 1-queue 1-stack layout for the induced subgraph Gridm,n as shown in
Proposition 3.7 and thus only need to prove that two additional queues are sufficient. For
this, we partition the edges of Nm,n into four sets for which we show that they satisfy the
queue property. The first set E1 is the set of left and vertical edges from Gridm,n, which
satisfies the queue property as shown before (see Figure 3.10). The right edges share the
edge set E2 with E′

2 = {((l, r), cl,r), ((l + 1, r), dl,r), (cl,r, (l, r + 1)), (dl,r, (l + 1, r + 1)) | 1 ≤
l ≤ m − 1, 1 ≤ r ≤ n − 1}, the non-N-edges incident to the c- and d-vertices, whereby
E2 also satisfies the stack property as is shown in the following. The third edge set E3
contains the edges incident to the a- and b-vertices and E4 contains the remaining N-edges
incident to the c- and d-vertices. An N-grid with the vertex ordering and the four edge
sets highlighted is illustrated in Figure 3.9.

25

3. Upward Planar Graphs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 3.9: A 3 × 4 N-grid with the edges partitioned into the set E1 of left and vertical
edges from Gridm,n (black), the set E2 of right edges with the non-N-edges
incident to cl,r and dl,r (orange), the set E3 of N-edges incident to cl,r and dl,r

(blue), and the set E4 of edges incident to al,r and bl,r (green). The vertices
are numbered as they appear in the 4-queue or 3-queue 1-stack layout in the
proof of Proposition 3.8

.

(1, 1)(1, 2) c1,2 (1, 3)(1, 4) a1,1 b1,1 a1,3 b1,3 (2, 1) c2,1 (2, 2) d1,2 (2, 3) c2,3 (2, 4) a2,2 b2,2 (3, 1) d2,1 (3, 2)(3, 3) d2,3 (3, 4)

Figure 3.10: The set E1 of left and vertical edges from Grid3,4 in the 4-queue or 3-queue
1-stack layout of N3,4, which forms a queue.

26

3.2. Grids and N-Grids

(1, 1)(1, 2) c1,2 (1, 3)(1, 4) a1,1 b1,1 a1,3 b1,3 (2, 1) c2,1 (2, 2) d1,2 (2, 3) c2,3 (2, 4) a2,2 b2,2 (3, 1) d2,1 (3, 2)(3, 3) d2,3 (3, 4)

Figure 3.11: The set E2 of right edges from Grid3,4 and non-N-edges incident to the c- and
d-vertices in the 4-queue or 3-queue 1-stack layout of N3,4, which forms a
queue or a stack.

(l, r) (l, r + 1) (l, r′) (l, r′ + 1) . . . xl,r yl,r′

Figure 3.12: The incoming edges at the a- or b-vertices xl,r and yl,r′ in the case that r < r′.

First, we observe that the endpoints of each edge from E′
2 are neighbours in the vertex

ordering, so they do not nest with each other. The right edges of Gridm,n connect two
consecutive grid vertices, between which there is at most one N-vertex with the edges from
E′

2 to its two neighbours. Thus, these edges do not nest or cross with the right edges and
the stack and queue properties are satisfied (see Figure 3.11).
Now, we consider the vertices al,r and bl,r and the edge set E3 with their incident edges
as illustrated in Figure 3.16. We observe that all of these edges are between a block of
N-vertices and the preceding or succeeding block of grid vertices. Therefore, we only
need to consider edges from the same block to the succeeding block. Let xl,r ≺ yl′,r′ with
x, y ∈ {a, b} be two N-vertices from the same block, so l = l′ and r ≤ r′. We distinguish the
two cases that the edges are incoming or outgoing at the two vertices. In the first case we
have at most the edges ((l, r), xl,r), ((l, r + 1), xl,r), ((l, r′), yl,r′), and ((l, r′ + 1), yl,r′). If we
assume r < r′, we obtain (l, r) ≺ (l, r + 1) ≼ (l, r′) ≺ (l, r′ + 1) (see Figure 3.12), otherwise
we have x = a and y = b and the edge ((l, r + 1), xl,r) does not exist, so that the actually
existing edges satisfy the queue property with (l, r) = (l, r′) ≺ (l, r′ + 1) (see Figure 3.13).
In the second case we consider the edges (xl,r, (l + 1, r)), (xl,r, (l + 1, r + 1)), (yl,r, (l + 1, r′)),
and (yl,r, (l + 1, r′ + 1)). Again, we observe that the queue property holds for r < r′ and
r = r′ separately. For r < r′ we have (l + 1, r) ≺ (l + 1, r + 1) ≼ (l + r, r′) ≺ (l + 1, r′ + 1)
(see Figure 3.14), and for r = r′ the edge (yl,r′ , (l + 1, r′)) does not exist and we have
(l + 1, r) ≺ (l + 1, r + 1) = (l + 1, r′ + 1) for the relevant endpoints (see Figure 3.15).
Lastly, we consider E4, the set of N-edges at the c- and d-vertices as shown in Figure 3.17.
The N-edges within one square of Gridm,n consisting of two triangles that share a vertical
edge do not nest. Within one such square there are the N-edges ((l, r), dl,r) and (cl,r, (l +
1, r + 1)) with (l, r) ≺ cl,r ≺ (l + 1, r) ≺ dl,r ≺ (l + 1, r + 1). The N-edges of different such
squares satisfy the queue property as well because all the involved vertices of one square
are separated from all of the vertices of the other square in the vertex ordering.

(l, r) = (l, r′) (l, r + 1) = (l, r′ + 1) . . . xl,r yl,r′

Figure 3.13: The incoming edges at the a- or b-vertices xl,r and yl,r′ in the case that r = r′.

27

3. Upward Planar Graphs

xl,r yl,r′ . . . (l + 1, r) (l + 1, r + 1)(l + 1, r′)(l + 1, r′ + 1)

Figure 3.14: The outgoing edges at the a- or b-vertices xl,r and yl,r′ in the case that r < r′.

xl,r yl,r′ . . . (l + 1, r) = (l + 1, r′) (l + 1, r + 1) = (l + 1, r′ + 1)

Figure 3.15: The outgoing edges at the a- or b-vertices xl,r and yl,r′ in the case that r = r′.

(1, 1)(1, 2) c1,2 (1, 3)(1, 4) a1,1 b1,1 a1,3 b1,3 (2, 1) c2,1 (2, 2) d1,2 (2, 3) c2,3 (2, 4) a2,2 b2,2 (3, 1) d2,1 (3, 2)(3, 3) d2,3 (3, 4)

Figure 3.16: The set E3 of edges incident to the a- and b-vertices, in the 4-queue or 3-queue
1-stack layout of N3,4, which forms a queue.

(1, 1)(1, 2) c1,2 (1, 3)(1, 4) a1,1 b1,1 a1,3 b1,3 (2, 1) c2,1 (2, 2) d1,2 (2, 3) c2,3 (2, 4) a2,2 b2,2 (3, 1) d2,1 (3, 2)(3, 3) d2,3 (3, 4)

Figure 3.17: The set E4 of N-edges incident to the c- and d-vertices in the 4-queue or
3-queue 1-stack layout of N3,4, which forms a queue.

(1, 1)(1, 2) c1,2 (1, 3)(1, 4) a1,1 b1,1 a1,3 b1,3 (2, 1) c2,1 (2, 2) d1,2 (2, 3) c2,3 (2, 4) a2,2 b2,2 (3, 1) d2,1 (3, 2)(3, 3) d2,3 (3, 4)

Figure 3.18: The complete 4-queue or 3-queue 1-stack layout of N3,4 consisting of the queues
E1 (black), E2 (orange), E3 (blue) and E4 (green), whereby E2 also satisfies
the stack property.

28

3.2. Grids and N-Grids

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 3.19: The rainbow graph R10.

This leads to the upper bounds qn(Nm,n) ≤ 4 and mpn(Nm,n) ≤ 4 for the queue number and
for the mixed page number. Note that the stack number of each sufficiently large N-grid is
at least 5 [JMU22a], which is why the queue number and the mixed page number are strictly
smaller than the stack number here. Since the queue number is unbounded for upward
planar graphs, we can construct an upward planar graph G with mpn(G) < sn(G), qn(G)
by combining an N-grid with an upward planar graph with high queue number but small
stack number.

Corollary 3.9. There is an upward planar graph with mpn(G) < sn(G), qn(G).

Proof. Consider a rainbow graph Rk consisting of the path (v1, v2, . . . , vk) with the ad-
ditional non-path-edges {(vi, vk−i+1) | 1 ≤ i ≤ ⌊k

2 ⌋} (see Figure 3.19). The topological
ordering is clearly given by the path. In this ordering the edges do not cross but all of
the non-path-edges nest with each other. Thus, the stack number of Rk equals 1, while
the queue number is at least ⌊k

2 ⌋. Therefore, G = Nm,n + Rk has sn(G) ≥ 5 and a queue
number linear in the number of edges. However, we still have mpn(G) ≤ 4.

The rainbow graph now also serves as an example for an upward planar graph with
unbounded queue number. Instead of the rainbow graph Rk, we could have also chosen a
Kelly graph Gk, for which we also know that the queue number is unbounded according to
Proposition 3.5. Note that Rk is additionally bipartite for an even k, since then all edges
are between a vertex with an even label and a vertex with an odd label. It follows that the
queue number of upward planar bipartite graphs is also unbounded.
Also starting from the grids, we now give a lower bound on the mixed page number
of upward planar graphs by constructing a graph G with mpn(G) ≥ 3 that contains a
subgraph of Gridm,n.

Proposition 3.10. There is an upward planar graph G with mpn(G) ≥ 3.

Proof. The graph G with mpn(G) ≥ 3 considered here is illustrated in Figure 3.20. It
consists of a path (v1, v2, v3, v4, v5, v6, v7, v8), whereby v4 and v5 are not connected by an
edge but by the graph G′ (green). Note that G′ is a subgraph of a grid. Additionally, there
are the edges (v1, v7), (v2, v8), (v3, v5), and (v4, v6) parallel to the path, called parallel edges.
For G′ it is known that it contains a 3-twist in each possible topological ordering [JMU22a].
The ordering of the path is unique, whereby the parallel edges form two 2-twists. These

29

3. Upward Planar Graphs

v1

v2

v3

v4

a

b

c

d

e

f

g

h

v5

v6

v7

v8

An upward planar graph G with mpn(G) ≥
3.

v1 v2 v3 v4 G′ v5 v6 v7 v8

A linear layout of G with only the relevant
edges.

Figure 3.20: The subgraph G′ (green) contains a 3-twist in each topological ordering that
nests with the two other nesting 2-twists.

2-twists and the 3-twist from G′ nest with each other (see Figure 3.20) and we obtain a
pattern as already investigated in Observation 2.14, for which we know that it requires at
least three pages. More detailed, we only consider the seven edges of the pattern consisting
of 2- and 3-twists in the following. Assume that two pages are sufficient. By pigeonhole
principle, at least four of these seven edges have to be on the same page. However, in a
stack there is at most one edge per twist, i.e., not more than three edges in total. Similarly,
in a queue there is at most one complete twist and no two edges from different twists as
they are nesting. Thus, there are also at most three edges in one queue and at most six
edges in two pages.

30

4. Upward Planar Bipartite Graphs

After having considered very specific graphs in the previous chapter, we now investigate
the mixed page number of the larger class of upward planar bipartite graphs. First, we give
upper bounds on the mixed page number for upward planar bipartite graphs with a fixed
vertex ordering and with all edges directed from one vertex set to the other. Then, we show
that the lower bound of 3, that we found for general upward planar graphs in Chapter 3,
also holds for upward planar bipartite graphs, and that there are upward planar bipartite
graphs with a mixed page number strictly smaller than the stack and queue number.

4.1 Upper Bound
In this section, we focus on upward planar bipartite graphs with some further constraints
and find upper bounds on the mixed page number in these special cases. One approach to
find bounds on the mixed page number is to fix a vertex ordering, for instance “from left
to right”, and try to use this ordering for all graphs. However, this leads to an unbounded
number of pages as we show below.

Proposition 4.1. For each t ≥ 0 there is an upward planar bipartite graph Gt and a fixed
topological ordering ≺, so that at least t pages are necessary.

Proof. We construct an upward planar bipartite graph G = (V, E) that contains a t-
nesting twist in the fixed topological ordering of the vertices, which we also define. The
graph G consists of vertices V = {ai,j | 1 ≤ i, j ≤ t} ∪ {bi,j | 1 ≤ i, j ≤ t} and edges
E = {(ai,j , bi,j) | 1 ≤ i, j ≤ t}. The fixed vertex ordering is defined as follows: For each
1 ≤ i, j, i′, j′ ≤ t it holds that ai,j ≺ bi′,j′ , i.e., all ai,j are to the left of the bi′,j′ . Further, it
is ai,j ≺ ai′,j′ if and only if i < i′ or i = i′ and j < j′, so the ai,j are sorted lexicographically
in ascending order by their vertex label. For the bi,j the ordering is bi,j ≺ bi′,j′ if and only
if i > i′ or i = i′ and j < j′. In total, we obtain the ordering

a1,1 ≺ a1,2 ≺ · · · ≺ a2,1 ≺ · · · ≺ at,t ≺ bt,1 ≺ bt,2 ≺ · · · ≺ b2,t ≺ · · · ≺ b1,t−1 ≺ b1,t.

Note that there is an upward planar embedding of G, where all vertices are arranged
in the ordering ≺ from bottom left to top right (see Figure 4.1), which makes ≺ an
ordering “from left to right”. G consists of 2 × t groups of t vertices each, whereby all
vertices Ai = {ai,j | 1 ≤ j ≤ t} with fixed i form a group, and analogously, all vertices
Bi = {bi,j | 1 ≤ j ≤ t} with fixed i form a group. The edges go from group Ai to group Bi,
whereby the ordering of groups Bi is the reverse of that of the groups Ai. Precisely, if i < i′

31

4. Upward Planar Bipartite Graphs

it holds for each bi,j ∈ Bi, bi′,j′ ∈ Bi′ that bi′,j′ ≺ bi,j , while for ai,j ∈ Ai, ai′,j′ ∈ Ai′ it holds
that ai,j ≺ ai′,j′ . Due to this reverse ordering, the edges of different groups pairwise nest.
Within the groups Ai, Bi, edges are between ai,j and bi,j , whereby the vertex ordering is
the same within Ai and Bi, i.e., if j < j′, it holds that ai,j ≺ ai,j′ and bi,j ≺ bi,j′ . Thus, it
follows that the edges of the same group pairwise cross. Since these crossing edges pairwise
nest with the crossing edges of the other groups, we obtain a t-nesting twist, which requires
at least t pages.

However, the mixed page number is bounded for the subclass of upward planar bipartite
graphs, where all edges are oriented from one of the two vertex sets to the other. For this
subclass, we observe that it is always a valid topological ordering to put all vertices of one
set separated from all the vertices of the other set.

Proposition 4.2. Each upward planar bipartite graph G = (A ∪ B, E) with E ⊆ A × B
has qn(G) ≤ 56.

Note that all edges of G = (A ∪ B, E) are oriented from a vertex in A to a vertex in B.

Proof. Let −→
G = (A ∪ B, E) be an upward planar bipartite graph with E ⊆ A × B and G

the underlying undirected graph. Förster, Kaufmann, Merker, Pupyrev, and Raftopoulou
[FKM+23] proved that the queue number of undirected bipartite planar graphs is at most
28. We now use a queue layout Γ of G with vertex ordering ≺ to construct a queue layout
Γ′ of −→

G . For the vertex ordering ≺′ of Γ′ we choose a ≺′ b for each a ∈ A, b ∈ B. Since we
only have edges (a, b) with a ∈ A, b ∈ B in the directed graph −→

G , the ordering is indeed
topological. Within the vertex sets A and B, we leave the ordering as it is for Γ. More
precisely, we define u ≺′ v if and only if u ≺ v for each u, v ∈ A or u, v ∈ B. Then, we take
a queue Q from Γ and partition it into two queues Q1, Q2 for Γ′, whereby Q1 contains all
edges (a, b) ∈ Q with a ≺ b and Q2 contains all edges (a, b) ∈ Q with b ≺ a. Next, we show
that Q1 and Q2 satisfy the queue property.
Suppose, Q1 is not a queue. Then Q1 contains two nesting edges (a1, b1), (a2, b2) with
a1 ≺′ a2 ≺′ b2 ≺′ b1. According to the construction of ≺′, it follows that a1 ≺ a2 and
b2 ≺ b1. It also follows from the definition of Q1 that a2 ≺ b2, and thus a1 ≺ a2 ≺ b2 ≺ b2,
so the two edges also nest in Γ, which is a contradiction.
Similarly, we now assume Q2 is not a queue, and hence contains two nesting edges (a1, b1),
(a2, b2) with a1 ≺′ a2 ≺′ b2 ≺′ b1. Same as for Q1, it follows from the construction of ≺′

that a1 ≺ a2 and b2 ≺ b1 and from the definition of Q2 that b1 ≺ a1. Therefore, we have
b2 ≺ b1 ≺ a1 ≺ a2 and the two edges also nest in Γ, which is again a contradiction.
Thus, we have shown that for each queue of Γ, at most two queues are necessary in Γ′.
Having at most 28 queues in Γ, 56 queues are sufficient for Γ′.

Thereby, we have not only shown that a 56-queue layout exists for every upward planar
bipartite graph G = (A ∪ B, E) with E ⊆ A × B, but also that there exists such a layout
with first all vertices from A and then all vertices from B. Dujmović, Pór, and Wood
observed that such an ordering can be reversed so that stacks are converted to queues and
queues are converted to stacks [DPW04]. Thus, the stack and queue number are equivalent
in this special case. We prove this observation in the following.

Lemma 4.3. For each upward planar bipartite graph G = (A ∪ B, E) with E ⊆ A × B
and fixed topological ordering ≺ with a ≺ b for each a ∈ A, b ∈ B holds: If G admits a
q-queue layout with the given ordering ≺, there is also an ordering ≺′, for which G admits

32

4.1. Upper Bound

a1,1

a1,2
. .

.
a1,t

a2,1

a2,2
. .

.
a2,t

. .
.

at,1

at,2
. .

.
at,t

bt,1

bt,2
. .

.
bt,t

. .
.

b2,1

b2,2
. .

.
b2,t

b1,1

b1,2
. .

.
b1,t

Figure 4.1: An upward planar bipartite graph Gt, for which at least t pages are necessary if
we choose a vertex ordering from left to right. The grey boxes mark the vertex
groups Ai and Bi for i = 1, . . . , t.

33

4. Upward Planar Bipartite Graphs

a q-stack layout, and if G admits a s-stack layout with the given ordering ≺, there is also
an ordering ≺′, for which G admits a s-queue layout.

Here, all edges are oriented from a vertex in A to a vertex in B, too.

Proof. Let G = (A∪B, E) be an upward planar bipartite graph with E ⊆ A×B and vertex
ordering ≺ with a ≺ b for each a ∈ A, b ∈ B. In such an ordering each pair of different
edges either crosses or nests. Consider two edges (a1, b1), (a2, b2) with a1 ≺ a2. There are
two valid orderings for the four vertices. It is either b1 ≺ b2 and thus a1 ≺ a2 ≺ b1 ≺ b2
and the two edges cross, or it is b2 ≺ b1 and hence a1 ≺ a2 ≺ b2 ≺ b1 and the two edges
nest. While leaving the ordering of the vertices from A, we now reverse the ordering of the
vertices from B to obtain ≺′. We show that two edges that nest in the ordering ≺ cross in
the new ordering ≺′ and vice versa.
Let (a1, b1), (a2, b2) be two nesting edges, so without loss of generality a1 ≺ a2 ≺ b2 ≺ b1.
Thus, we have a1 ≺′ a2 ≺′ b1 ≺′ b2 and the two edges cross in the new vertex ordering
≺′. Now, let (a1, b1), (a2, b2) be two crossing edges, i.e., a1 ≺ a2 ≺ b1 ≺ b2. Hence, it is
a1 ≺′ a2 ≺′ b2 ≺′ b1 and the edges nest in the reversed ordering ≺′.
In a queue from the original layout there are no nestings, so each pair of different edges
crosses. Hence, in the changed ordering each pair of different edges nests but there are
no crossings and the previous queue now satisfies the stack property. The same argument
applies in the reversed case and the claim follows.

This lemma allows us to infer from the queue number to the stack number and vice versa
in some cases. For instance, the following corollary can be concluded.

Corollary 4.4. Each upward planar bipartite graph G = (A ∪ B, E) with E ⊆ A × B has
sn(G) ≤ 56.

Again, all edges are oriented from a vertex in A to a vertex in B.

4.2 Lower Bound
Förster, Kaufmann, Merker, Pupyrev, and Raftopoulou [FKM+23] constructed an undi-
rected bipartite planar graph Gd(w) with d ≥ 3 and w ≥ 154 that does neither admit a
2-queue layout nor a 1-queue 1-stack layout. The graph Gd(w) is constructed by starting
with two vertices, called depth-0 vertices. For each 0 ≤ i ≤ d − 1, w vertices, called
depth-(i + 1) vertices, are added into each inner face of Gi(w) to obtain Gi+1(w), except
for i = 0, where the depth-1 vertices are added into the unique outer face. If the face
has two depth-i vertices, the new depth-(i + 1) vertices are connected with them. Else,
if the face has only one depth-i vertex v, the depth-(i + 1) vertices are connected with
v and with the other vertex on the boundary of the face, that is not adjacent to v. The
subgraph of G3(154) which is considered below is illustrated in Figure 4.2. Following this
approach, we orient all edges such that we obtain an upward planar bipartite graph −→

Gd(w)
with mpn(−→Gd(w)) ≥ 3.

Proposition 4.5. There is an upward planar bipartite graph G with mpn(G) ≥ 3.

Proof. Consider the bipartite planar graph Gd(w). Since G3(154) already does not admit
a 2-queue layout or a 1-queue 1-stack layout in the undirected case, it also does not do
so when we orient the edges. To give the lower bound of 3 on the mixed page number
of upward planar bipartite graphs, we only need to show that after all edges have been

34

4.2. Lower Bound

v
0

u

0

1
xi

1
xj

1 1
2

ai,j

2 2

Figure 4.2: A subgraph G of the upward planar bipartite graph −→
G3(154) with mpn(G) ≥ 3.

The numbers above and below the vertices indicate the depth of the respective
vertex.

oriented in an upward way, the obtained graph −→
G3(154) does not admit a 2-stack layout.

Therefore, we consider a subgraph of G3(154) with two depth-0 vertices as in G3(154), but
where only four depth-1 vertices, one depth-2 vertex, and no depth-3 vertices are added into
the respective faces (see Figure 4.2). The edges of the considered subgraph of the directed
graph −→

G3(154) = (V,
−→
E) are oriented from bottom to top in the fixed embedding illustrated

in Figure 4.2. All other edges of −→
G3(154) are arbitrarily oriented such that −→

G3(154) is
upward planar. Let u and v be the two depth-0 vertices and xi for i = 1, . . . , 4 the depth-1
vertices. The depth-2 vertex adjacent to xi and xj is called ai,j . Then, the edges are
oriented from u to the xi and from the xi to v, i.e., (u, xi), (xi, v) ∈

−→
E for i = 1, . . . , 4.

Further, the edges between depth-1 and the depth-2 vertices are oriented from ai,j to xi

and xj . Precisely, we have (ai,j , xi), (ai,j , xj) ∈
−→
E for i, j = 1, . . . , 4. Therefore, in any

topological ordering ≺ it is u ≺ xi ≺ v for each i = 1, . . . , 4. The four depth-1 vertices xi

are numbered according to the order in which they occur in ≺, i.e., x1 ≺ x2 ≺ x3 ≺ x4 (see
Figure 4.3).
Now, we fix such a topological ordering ≺ and prove that 2 stacks are not sufficient. To
do this, we assume that 2 stacks suffice and consider a 2-stack layout with stacks S1, S2.
Then, we show that all but at most one edge of the form (u, xi) are in the same stack S1,
and all but at most one edge of the form (xi, v) are in the other stack S2. Without loss of
generality, we assume that the edge (u, x4) is in S1. Thus, all edges crossing (u, x4), i.e.,
all edges (xi, v) for i = 1, . . . , 3, are in S2. Hence, all edges crossing (x1, v), i.e., all edges
(u, xi) for i = 2, . . . , 4, are in S1. Only the edges (u, x1) and (v, x4) are in any of the two
stacks.
Lastly, we consider the depth-2 vertices. For this, we only consider the depth-2 vertex a2,3,
which is adjacent to the depth-1 vertices x2 and x3. As we showed before, it is (u, x2) ∈ S1
and (x3, v) ∈ S2. Next, we show that (a2,3, x3) crosses edges from both S1 and S2, and
thus cannot be embedded in the 2-stack layout. It holds that a2,3 ≺ x2 ≺ x3 ≺ x4 ≺ v,
whereby the edges (a2,3, x3) and (x2, v) cross. Since (x2, v) is in S2, (a2,3, x3) is in S1. Now,
we distinguish the two cases a2,3 ≺ u and u ≺ a2,3. In the former case the edge (a2,3, x3)
crosses the edge (u, x4). As (u, x4) is in S1, this is a contradiction. Similarly, in the latter
case the edges (a2,3, x3) and (u, x2) cross, which is again a contradiction because both of
the edges are in S1.

Up until now, we considered an upward planar bipartite graph, for which two pages are
not sufficient, neither when we use stacks nor queues nor both of them. Now, we focus on
another upward planar bipartite graph, that also does not admit a 2-queue and a 2-stack

35

4. Upward Planar Bipartite Graphs

vu x1 x2 x3 x4a2,3 a2,3

Figure 4.3: The linear layout of the subgraph of −→
G3(154) considered in Proposition 4.5

with the two stacks S1 (green) and S2 (orange). In any topological ordering
the edge (ai,j , xj) crosses both edges from S1 and S2.

Figure 4.4: An upward planar bipartite graph G with mpn(G) < sn(G), qn(G) and all
edges directed from black to white verties.

layout but does admit a 1-queue 1-stack layout. This graph G = (A ∪ B, E) is illustrated
in Figure 4.4. We verified by using a SAT-solver that sn(G), qn(G) ≥ 3 and mpn(G) ≤ 2
[BHKM20]. From this, the proposition below follows.

Proposition 4.6. There is an upward planar bipartite graph G with mpn(G) < sn(G),
qn(G).

We remark that G is not our first example for an upward planar graph with mixed page
number strictly smaller than stack and queue number as we showed in Corollary 3.9 but
our first example that is additionally bipartite. Note that all edges are directed from
black to white vertices, i.e., E ⊆ A × B. This makes G an example for the graph class
considered in Section 4.1, for which we have an upper bound on the stack and queue
number sn(G), qn(G) ≤ 56.

36

5. Directed Acyclic 2-Trees

In contrast to upward planar graphs, the stack number of directed acyclic 2-trees is known
to be unbounded [JMU22b]. Up until now, it is not known whether the same applies to the
mixed page number. Since an unbounded mixed page number strengthens the proposition
of an unbounded stack number, we focus on the mixed page number of directed acyclic
2-trees in the following chapter. First, we investigate the only known directed acyclic
2-tree with unbounded stack number [JMU22b] in hope to find an answer to this question.
Surprisingly, the mixed page number of this concrete graph family is bounded by a constant,
although the queue number is unbounded as is the stack number. Therefore, we choose a
different approach in Section 5.2, where we finally show that the mixed page number of
directed acyclic 2-trees is unbounded.

5.1 A Directed Acyclic 2-Tree with Unbounded Stack and
Queue Number but Bounded Mixed Page Number

Alam, Bekos, Gronemann, Kaufmann, and Pupyrev [ABG+22b] asked whether graphs with
bounded mixed page number have bounded stack or queue number. We answer this question
in the negative by giving a graph family with bounded mixed page number but unbounded
stack and queue number. This family of directed acyclic 2-trees Gk was constructed by
Jungeblut, Merker, and Ueckerdt [JMU22b], who also showed that sn(Gk) ≥ k for each
k ≥ 1. We show in the following that this additionally monotone 2-tree Gk also has an
unbounded queue number, but that the mixed page number is bounded by the constant 3.
This leads to the theorem below.

Theorem 5.1. There is a family of directed acyclic (monotone) 2-trees with unbounded
stack and queue number but constant mixed page number.

To prove this theorem, we show both that the queue number is unbounded and that the
mixed page number is bounded, below. But first, we describe the construction of Gk.
Let N be an enormous, but constant integer. How large N is exactly is only relevant for the
stack number but not for the queue and mixed page number. Therefore we do not need to
specify an exact value for N here. For k ≥ 0 the graph Gk is defined inductively as follows:
The graph G0 only contains the unique base edge (a, b) in the here described construction
sequence and has the corresponding endpoints a and b. We define M0 := {(a, b)}. In
general, for k ≥ 0 the edge set Mk is a subset of the edges of Gk used to construct Gk+1. We
define this subset Mk in the following more precisely. The edges in Mk are called matching

37

5. Directed Acyclic 2-Trees

a

b b1 b2 b3

a1

a2

a3

Figure 5.1: The 2-tree obtained from the base edge (a, b) after one step with three left and
right descendants. The edges are partitioned into the matching edges E1 (red),
the set E2 of edges from left descendants ai to their left ancestor a (dark green),
the set E3 of edges from a to its right descendants bi (blue), the set E4 with the
edge from b to its right child and first descendant b1 (orange), and the set E5
of edges between the right descendants of the same ancestor edge (light green).

edges. By constructing Gk for k ≥ 1, the edges Mk−1 from Gk−1 serve as base edges for
the subtrees newly added in this step. Starting with such a matching edge (ai, bi) ∈ Mk−1,
we add a set of N vertices b1

i , . . . , bN
i , whereby bj

i is a right child of the edge (ai, bj−1
i) and

b0
i = bi. Then, we add N vertices a1

i , . . . , aN
i , whereby aj

i is a left child of (ai, bj
i). The

edges E((ai, bi)) = {(aj
i , bj

i) | 1 ≤ j ≤ N} become the new matching edges, i.e.,

Mk :=
⋃

(ai,bi)∈Mk−1

E((ai, bi)).

The graph G2 obtained after one step is illustrated in Figure 5.1. We call the vertices aj
i

left descendants and the vertices bj
i right descendants of the matching edge (ai, bi) and

its two end points ai and bi. Conversely, ai and bi are called the ancestors of aj
i and

bj
i and (ai, bi) the ancestor edge. In some cases we also distinguish the two ancestors ai

and bi by calling ai the left ancestor and bi the right ancestor. Note that in the context
of the definition of Gk the terms descendant and ancestor always refer to the matching
edge in Mk−1, below which the subtree with the here considered vertex was attached by
constructing Gk. Vertices and edges added by constructing Gk are said to be in level k.
Precisely, each matching edge (ai, bi) ∈ Mk is in level k and for each edge (ai, bi) ∈ Mk in
level k all newly added descendants aj

i , bj
i and all edges incident to aj

i and bj
i are in level

k + 1.

Proposition 5.2. The monotone 2-tree Gk has mixed page number mpn(Gk) ≤ 3 for each
k ≥ 0.

Proof. We give a 1-queue 2-stack layout of G, and thereby show that mpn(G) ≤ 3. We
start constructing the topological vertex ordering ≺ again with G0, which consists of the
base edge (a, b). For this, it holds that a ≺ b. For each k > 0 the newly added vertices
from Gk, i.e., those in level k, are attached to the left and right of the previous ordering as
follows: Vertices aj

i of level k are added to the left of all vertices with smaller levels, and
vertices bj

i of level k are added to the right of all vertices with smaller levels, so that the
levels become larger towards the outside of the layout. Left descendants aj

i , aj′

i′ of different
ancestors ai, bi and ai′ , bi′ in the same level with ai ≺ ai′ are added in such a way that

38

5.1. A Directed Acyclic 2-Tree with Unbounded Stack and Queue Number but Bounded
Mixed Page Number

a ba1a2 b1 b2a1
1a2

1a1
2a2

2 b1
1 b2

1 b1
2 b2

2

Figure 5.2: The complete 1-queue 2-stack layout of G consisting of the stacks E1 (red)
and E3 ∪ E5 (blue and light green) and the queue E2 ∪ E4 (dark green and
orange). The edge (a, b) is the original base edge. The vertices a1, a2 are the
left descendants of (a, b) and b1, b2 are the right descendants of (a, b). The
vertices aj

i , bj
i are the left and right descendants of the matching edges (ai, bi)

for i, j ∈ {1, 2}.

aj
i ≺ aj′

i′ . Analogously, for descendants bj
i , bj′

i′ of different ancestors ai, bi and ai′ , bi′ in the
same level with bi ≺ bi′ , it holds that bj

i ≺ bj′

i′ . Thus, left descendants of different ancestors
are in the same order as their left ancestor, and right descendants of different ancestors
are in the same order as their right ancestor. Furthermore, it follows that left descendants
of the same ancestors are consecutive in the ordering, and the same applies to the right
descendants. Moreover, we define for descendants of the same ancestor edge (ai, bi) that
aj′

i ≺ aj
i and bj

i ≺ bj′

i if j < j′, i.e., the left descendants are in the reverse order of the right
descendants (see Figure 5.2).
Next, we partition the edges of G into five sets as illustrated in Figure 5.1. For these five
edge sets, we prove the stack or queue property, before we union some of them, so that we
finally have three pages. The first edge set E1 contains the matching edges of all levels, i.e.,
E1 = ⋃k

i=0 Mi. All edges from left descendants aj
i to their left ancestor ai are in E2, and

analogously all edges from left ancestors ai to their right descendants bj
i are in E3. In the

fourth edge set E4 are the edges from vertices bi to their only child and first descendant
b1

i . The last set E5 contains the remaining edges from one right descendant bj
i to the next

right descendant bj+1
i of the same ancestors for j = 1, . . . , N − 1. The sets E1 and E3 both

are stacks, and E2 and E4 both are queues. The last set E5 satisfies both the stack and
the queue property. We prove this in the following by showing that no two edges from
different levels, no two edges in the same level, where the endpoints are descendants from
different ancestors, and no two edges, where the endpoints are descendants from the same
ancestors, nest or cross respectively for each edge set.
First, we show that E1 is a stack, i.e., no two edges from E1 cross with respect to ≺ (see
Figure 5.3). Let (ai, bi), (ai′ , bi′) ∈ E1 be two edges from different levels. Without loss of
generality, we assume that (ai, bi) is in level l and (ai′ , bi′) is in level l′ with l < l′. Since the
levels become larger towards the outside of the linear layout, we have ai′ ≺ ai ≺ bi ≺ bi′ and
the edges do not cross. Now, consider two edges (aj

i , bj
i), (aj′

i′ , bj′

i′) ∈ E1 in the same level,
but where the endpoints are descendants of different ancestors ai, bi and ai′ , bi′ with ai ≺ ai′

and thus bi′ ≺ bi. It follows that aj
i ≺ aj′

i′ ≺ bj′

i′ ≺ bj
i . Lastly, let (aj

i , bj
i), (aj′

i , bj′

i) ∈ E2 be
two edges where the endpoints are descendants of the same ancestors and j < j′. Due to
the reverse ordering of the left descendants in comparison to the right descendants, we
have aj′

i ≺ aj
i ≺ bj

i ≺ bj′

i . Hence, there are no crossings within the set E1. We remark that
the edges from E1 all pairwise nest, and thus form a large rainbow.

39

5. Directed Acyclic 2-Trees

a ba1a2 b1 b2a1
1a2

1a1
2a2

2 b1
1 b2

1 b1
2 b2

2

Figure 5.3: The set E1 of matching edges in the 1-queue 2-stack layout of G.

a ba1a2 b1 b2a1
1a2

1a1
2a2

2 b1
1 b2

1 b1
2 b2

2

Figure 5.4: The queue consisting of the edge sets E2 (dark green), which contains edges from
left descendants aj

i to their left ancestor ai, and E4 (orange), which contains
edges from vertices bi to their right child b1

i in the 1-queue 2-stack layout of G.

Next, we show that E2 is a queue, so no two edges from E2 nest in the linear layout (see
Figure 5.4). Again, we first consider edges (aj

i , ai), (aj′

i′ , ai′) ∈ E2 from different levels l and
l′ with l < l′, i.e., aj

i is in level l, ai in level l − 1, aj′

i′ in level l′ and ai′ in level l′ − 1. From
l < l′ it follows that l − 1 < l ≤ l′ − 1 < l′, which leads to aj′

i′ ≺ {ai′ , aj
i } ≺ ai, as the levels

become larger towards the outside of the linear layout. With this ordering, the two edges
do not nest. Now, let (aj

i , ai), (aj′

i′ , ai′) be two edges from the left descendants aj
i and aj′

i′

to their respective left ancestor ai or ai′ in the same level with ai ≺ ai′ . Descendants are
always in a larger level than their ancestor, which is why left descendants are always to
the left of their left ancestors. Since further left descendants of different ancestors are in
the same ordering as their left ancestors, it follows that aj

i ≺ aj′

i′ ≺ ai ≺ aj′ and the edges
do not nest. Finally, edges from the left descendant aj

i to the common ancestor ai are all
incident to the same vertex ai, and thus do not nest.
Similarly, we show that E3, which contains all edges from vertices ai to their right descen-
dants bj

i , is a stack (see Figure 5.5). Consider two edges (ai, bj
i), (ai′ , bj′

i′) ∈ E3 of different
levels l and l′ with l < l′, i.e., bj

i is in level l, bj′

i′ in level l′, ai is in level l − 1, and ai′ in level
l′ − 1. Since the levels become larger towards the outside of the linear layout, it follows
that ai′ ≺ ai ≺ bj

i ≺ bj′

i′ and the edges do not cross. Next, let (ai, bj
i), (ai′ , bj′

i′) ∈ E3 be two
edges of the same level with ai ≺ ai′ . Due to the reverse ordering of right descendants in
comparison to the left descendants, it follows that bi′ ≺ bi. Since right descendants are in
the same ordering as their right ancestors, it holds that ai ≺ ai′ ≺ bj′

i′ ≺ bj
i . Analogously

to E2, edges from the same ancestor ai to its descendants bj
i are all incident to the same

vertex ai, and therefore do not cross.
Now, we show that the set of edges from vertices bi to their only child and first right
descendant b1

i , E4, satisfies the queue property (see Figure 5.4). First, we consider edges
(bi, b1

i), (bi′ , b1
i′) ∈ E4 of different levels l, l′ with l < l′, i.e., b1

i is in level l, b1
i′ in level l′, bi

in level l − 1 and bi′ in level l′ − 1. It holds that l − 1 < l ≤ l′ − 1 < l′. Since the levels
become larger towards the outside of the linear layout, it follows that bi ≺ {b1

i , bi′} ≺ b1
i′

and the edges do not nest. Next, let (bi, b1
i), (bi′ , b1

i′) ∈ E4 be two edges of the same level
with bi ≺ bi′ . Since right descendants of different ancestors are in the same ordering as
their right ancestors, it holds that bi ≺ bi′ ≺ b1

i ≺ b1
i′ and the edges do not nest. Lastly, for

each parent vertex bi there is only one edge to its right child in E4, so there are no two
edges from the same parent, and thus no nestings.

40

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

a ba1a2 b1 b2a1
1a2

1a1
2a2

2 b1
1 b2

1 b1
2 b2

2

Figure 5.5: The stack consisting of the edge sets E3 (blue), which contains edges from
vertices ai to their right descendants bj

i , and E5 (light green), which contains
edges from one right descendant bj

i to the next right descendant bj+1
i of the

same ancestors, in the 1-queue 2-stack layout of G.

The set E5 contains edges from one right descendant to the next right descendant of the
same ancestors, which are consecutive in the vertex ordering. Thus, the edges do not cross
or nest with each other and satisfy the stack and queue property (see Figure 5.5).
Since the endpoints of the edges in E5 are consecutive in ≺, it also follows that the edges
from E5 do not cross any other edge from another edge set, particularly not from E3.
Hence, E5 ∪ E3 is still a stack (see Figure 5.5). We remark that the endpoints of the edges
in E2 are all separated from the endpoints of the edges in E4. Thus, these two edge sets
can also be combined to one larger queue E2 ∪ E4 (see Figure 5.4). In total only three
pages are necessary, namely the stacks E1 and E3 ∪ E5 and the queue E2 ∪ E4.

Proposition 5.3. The monotone 2-tree Gk has queue number qn(Gk) ≥ k + 1.

Proof. We consider a subgraph G′ of G with only one left and right descendant per
matching edge. The graph G′ only consists of the vertices ai and bi for i = 0, . . . , k,
whereby ai and bi are the only left and right descendants of the matching edge (ai−1, bi−1),
respectively. In every topological ordering it is ai ≺ ai−1 because of the edge (ai, ai−1), and
analogously bi−1 ≺ bi because of the edge (bi−1, bi). Due to the matching edge (ai−1, bi−1)
it is ai ≺ ai−1 ≺ bi−1 ≺ bi for each i = 1, . . . , k. In total, we obtain the vertex ordering
ak ≺ · · · ≺ a2 ≺ a1 ≺ b1 ≺ b2 ≺ · · · ≺ bk, where the edges (ai, bi) pairwise nest for each
i = 0, . . . , k, so that we have a k + 1-rainbow. Hence, at least k + 1 queues are necessary
for G′.

Now, we not only have graph families with mixed page number strictly smaller than stack
and queue number, but also with constant mixed page number and arbitrarily large stack
and queue number. The question that now arises is whether all directed acyclic 2-trees
have a mixed page number bounded by a constant. In the following section, we answer
this question in the negative.

5.2 The Mixed Page Number of General Directed Acyclic
2-Trees

Even though the graph constructed by Jungeblut, Merker, and Ueckerdt [JMU22b] to
prove the unbounded stack number of directed acyclic 2-trees does not serve as an example
for a graph family with an unbounded mixed page number, we sketch a proof that the
mixed page number is nevertheless unbounded in the following section.

Theorem 5.4. The mixed page number of directed acyclic 2-trees is unbounded, i.e., for
each k ≥ 1 there is a directed acyclic 2-tree Gk with mpn(Gk) ≥ k.

41

5. Directed Acyclic 2-Trees

a b

Figure 5.6: A rainbow R = (VR, ER), where all children of a rainbow’s edge (a, b) ∈ ER are
between their parent edge (a, b) and its two neighbouring rainbow edges as in
Case (i), i.e., here all children of (a, b) are in the red area around a and b.

a1 a2 a3 . . . ar br
. . . b3 b2 b1 cr . . . c3 c2 c1

Figure 5.7: An r-rainbow R = (VR, ER) (black), whose edges all have a right child. Those
right children ci of edges (ai, bi) ∈ ER are to the right of the rainbow in the
reversed ordering as their left parents ai as in Case (ii), such that the edges
(ai, ci) form an r-rainbow (red).

Proof Sketch

To prove Theorem 5.4, we construct an enormous directed acyclic 2-tree G, from the outset
with a topological vertex ordering. Since the queue number of directed acyclic 2-trees is
unbounded (see Proposition 5.3), we may start our construction with a large rainbow. For
this, we only need to assume that G contains a subgraph with an unbounded queue number,
and thus unbounded size of a rainbow in any topological vertex ordering (see Theorem 2.11).
Specifically, the r-rainbow R = (VR, ER) consists of vertices VR = {ai | 1 ≤ i ≤ r} ∪
{bi | 1 ≤ i ≤ r} and edges ER = {(ai, bi) | 1 ≤ i ≤ r} with a1 ≺ · · · ≺ ar ≺ br ≺ · · · ≺ b1.
Next, we add children to the edges of this rainbow R and consider different cases for the
vertex ordering, until we obtain a large crossing rainbow or a large nesting twist in each of
those cases. As a consequence of Ramsey’s theorem [Ram30], there are only the following
three cases to be considered for children ci of edges (ai, bi) ∈ ER. If R is a twist, there are
the same cases to be considered, which we will also need later.

(i) Children ci can be close to their parent edge, i.e., ai−1 ≺ ci ≺ ai+1 or bi+1 ≺ ci ≺ bi−1,
if R is a rainbow (see Figure 5.6), or bi−1 ≺ ci ≺ bi+1, if R is a twist, for i = 2, . . . , r−1.

(ii) Right children ci can be to the right of R in the reversed ordering as their left parents,
i.e., cr ≺ · · · ≺ c1 (see Figure 5.7). Symmetrically, left children ci can be to the left of
R in the reversed ordering as their right parents, i.e., c1 ≺ · · · ≺ cr. Then, for right
children, edges (ai, ci) pairwise nest, while for left children, the edges (ci, bi) pairwise
nest.

(iii) Right children ci can be to the right of R in the same ordering as their left parents,
i.e., c1 ≺ · · · ≺ cr (see Figure 5.8). Symmetrically, left children ci can be to the left
of R in the same ordering as their right parents, i.e., cr ≺ · · · ≺ ci. Then, for right
children, edges (ai, ci) pairwise cross, and for left children, edges (ci, bi) pairwise
cross.

In truth, not all children and edges behave according to the same case. We choose the case
that fits to the majority of children and ignore all other vertices and edges. Thus, if we
apply these cases repeatedly, we always obtain a smaller but still very large rainbow or

42

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

a1 a2 a3 . . . ar′ br′ . . . b3 b2 b1 c1 c2 c3. . . cr′

Figure 5.8: An r-rainbow R = (VR, ER) (black), whose edges all have a right child. Those
right children ci of edges (ai, bi) ∈ ER are to the right of the rainbow in the
same ordering as their left parents ai as in Case (iii), such that the edges (ai, ci)
form an r-twist (red).

twist. In this regard, we go into detail later. For simplification, we now assume that one of
these cases always applies to all children of the considered rainbow’s or twist’s edges.
In the following lemmas, we investigate these possible cases more detailed, first separately,
before we later combine them. Particularly, we now assume that only one of the three cases
occurs repeatedly in a row. Here, we first consider Case (i) and assume that all descendants
of the rainbow R behave according to Case (i). Lemma 5.5 below follows from the proof of
Theorem 4 in [JMU22b].

Lemma 5.5. Let R = (VR, ER) be an r-rainbow with ordered vertices a1 ≺ · · · ≺ ar ≺ br ≺
· · · ≺ b1 and edges ER = {(ai, bi) | 1 ≤ i ≤ r}. For each t > 0, there is a set of edges Ei,t,
whose endpoints in Di,t are descendants of the edge (ai, bi) ∈ ER, such that the following
holds: If those descendants behave according to Case (i), i.e., it holds that ai−1 ≺ c ≺ ai+1
or bi+1 ≺ c ≺ bi−1 for each c ∈ Di,t, then those edges in Ei,t form a t-twist.

Now, consider such an r-rainbow R = (VR, ER) with descendants of an edge (ai, bi) localised
between ai−1 and ai+1 or between bi+1 and bi−1, such that they form a t-twist. For two
edges (ai, bi), (aj , bj) ∈ ER that are not neighbours in R, i.e., |i − j| > 1, the regions where
their descendants are localised are disjoint. Therefore, if we only consider every second
edge of R with its descendants forming a t-twist as in Lemma 5.5, we obtain r/2 pairwise
nesting t-twists. It follows that Case (i) may not occur arbitrarily often in a row without
generating a large nesting twist. In particular, an r/2-nesting t-twist always contains
an r/2-rainbow, i.e., after placing some descendants of the rainbow’s edges close to their
ancestor edge from ER as in Case (i), we still have a large rainbow of size r/2, onto which
further right children can be stacked applying Cases (ii) and (iii). The start and end points
of such a new r/2-rainbow are approximately at the same place as the start and end points
of the original rainbow R. This observation is recorded below. We will later go into more
detail what “approximately” means.

Observation 5.6. Let R = (VR, ER) be an r-rainbow with ordered vertices a1 ≺ · · · ≺ ar ≺
br ≺ · · · ≺ b1 and edges ER = {(ai, bi) | 1 ≤ i ≤ r}. If we apply Case (i) (repeatedly) to
R, we obtain an r/2-rainbow R′ = (V ′

R, E′
R) with ordered vertices a′

1 ≺ · · · ≺ a′
r/2 ≺ b′

r/2 ≺
· · · ≺ b′

1 and edges E′
R = {(a′

i, b′
i) | 1 ≤ i ≤ r/2}, for which it holds that a2i−1 ≺ a′

i ≺ a2i+1
and b2i+1 ≺ b′

i ≺ b2i−1 for each i = 1, . . . , r/2.

Next, we consider Case (ii) and repeat this case several times in a row. Due to symmetry,
we only consider right children. Those right children of a rainbow’s edge are placed outside
the rainbow, so that the edges (ai, ci) from left parents to the right children pairwise nest.
Specifically, we start again with our r-rainbow, which we call R0 = (V0, E0) here. R0 consists
of ordered vertices a1 ≺ · · · ≺ ar ≺ c0

r ≺ · · · ≺ c0
1 and edges E0 = {(ai, c0

i) | 1 ≤ i ≤ r}. For

43

5. Directed Acyclic 2-Trees

a1 a2 a3 a4 a5 a6 c0
6 c0

5 c0
4 c0

3 c0
2 c0

1 c1
6 c1

5 c1
4 c1

3 c1
2 c1

1 c2
6 c2

5 c2
4 c2

3 c2
2 c2

1

rainbow rainbow rainbow

Figure 5.9: A 6-rainbow R (black), onto whose edges right children are stacked repeatedly.
Those right children are placed to the right of their parent’s rainbow, such that
the edges from their left parents to them (red and blue) pairwise nest, as in
Case (ii). The outer third of R, the middle third of the red rainbow, and the
inner third of the blue rainbow pairwise cross and form a 3-crossing 2-rainbow.

j = 1, . . . , k, let cj
i be a right child of (ai, cj−1

i). As we always apply Case (ii), the vertex
ordering is cj

i ≺ cj′

i′ for each j < j′ or j = j′ and i > i′, i.e.,

a1 ≺ · · · ≺ ar ≺ c0
r ≺ · · · ≺ c0

1 ≺ c1
r ≺ · · · ≺ c1

1 ≺ · · · ≺ ck
r ≺ · · · ≺ ck

1

(see Figure 5.9). The pattern that we obtain contains the rainbows Rj = (Vj , Ej) with
ordered vertices a1 ≺ · · · ≺ ar ≺ cj

r ≺ · · · ≺ cj
1 and edges Ej = {(ai, cj

i) | 1 ≤ i ≤ r}
for j = 1, . . . , k. In total, these rainbows Rj form the edge pattern P = (V, E, ≺) with
V = ⋃k

j=0 Vj and E = ⋃k
j=0 Ej .

Lemma 5.7. The edge pattern P contains a (k + 1)-crossing ⌊r/(k + 1)⌋-rainbow.

Proof. We show that each rainbow Rj contains a rainbow R′
j with ⌊r/(k + 1)⌋ edges, such

that those smaller rainbows R′
j pairwise nest (see Figure 5.9). Let R′

j = (V ′
j , E′

j) be the
⌊r/(k + 1)⌋-rainbow with ordered vertices

aj⌊r/(k+1)⌋+1 ≺ aj⌊r/(k+1)⌋+2 ≺ · · · ≺ a(j+1)⌊r/(k+1)⌋ ≺

cj
(j+1)⌊r/(k+1)⌋ ≺ · · · ≺ cj

j⌊r/(k+1)⌋+2 ≺ cj
j⌊r/(k+1)⌋+1

and the respective edges E′
j = Ej ∩ (V ′

j × V ′
j). Intuitively, each of the r-rainbows Rj is split

into k + 1 parts of the same size from the outside to the inside, where we only consider the
j-th part of each rainbow Rj . Now, we consider two of these ⌊r/(k + 1)⌋-rainbows R′

j , R′
l

with j < l and show that they cross. It holds that

aj⌊r/(k+1)⌋+1 ≺ · · · ≺ a(j+1)⌊r/(k+1)⌋ ≺ al⌊r/(k+1)⌋+1 ≺ · · · ≺ a(l+1)⌊r/(k+1)⌋,

since (j +1)⌊r/(k +1)⌋ < l⌊r/(k +1)⌋+1. Furthermore, we have the ordering ai ≺ cj
i′ ≺ cl

i′′

for each 1 ≤ i, i′, i′′ ≤ r. Thus, the start points of edges in R′
j are all to the left of the start

points of R′
l, which are all to the left of the endpoints of edges in R′

j , which are all to the
left of the endpoints of edges in R′

l. Hence, these ⌊r/(k + 1)⌋-rainbows R′
j pairwise cross

for j = 0, . . . , k, and thereby form a (k + 1)-crossing ⌊r/(k + 1)⌋-rainbow.

Again, it follows that Case (ii) may not occur arbitrarily often in a row, since this would
result in a large crossing rainbow. After having applied Case (ii), we obtain the new
rainbows Rj , onto which further children can be stacked. The range over which such a
rainbow Rj spans is larger than for R0 and includes the complete range over which R0
spans. As we need this to later combine the three cases, we record this observation in the
following.

44

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

a0
i b0

i b1
ia1

i b2
ia2

i b3
ia3

i

Figure 5.10: Starting with an edge (a0
i , b0

i) (red), if we repeatedly stack right children bj
i

onto each edge (aj−1
i , bj−1

i) and left children aj
i onto each edge (aj−1

i , bj
i) for

j = 1, . . . , 3, we obtain a 4-rainbow (red and blue).

Observation 5.8. For each j = 1, . . . , k, Rj forms an r-rainbow, whose edges have the
same start points as the edges in Ej−1, and endpoints to the right of the endpoints in Ej−1,
i.e., with cj−1

i ≺ cj
i′ for each 1 ≤ i, i′ ≤ r.

Lastly, we investigate Case (iii). In this case, we stack further right children onto the edges
of the resulting twist, i.e., each edge (ai, ci) gets a right child c1

i . For those right children,
we need to consider all three Cases (i), (ii), and (iii) again. Specifically, we once apply Case
(iii) to our r-rainbow R. Then, we investigate the three subcases that Case (i), (ii), or (iii)
is applied to the resulting twist very often in a row. Once more, we start with Case (i),
and assume all descendants of a twist’s edge to be close to their ancestor from the twist.

Lemma 5.9. Let T = (VT , ET) be a t-twist with ordered vertices a1 ≺ · · · ≺ at ≺ b1 ≺
· · · ≺ bt and edges ET = {(ai, bi) | 1 ≤ i ≤ t}. For each r > 0, there is a set of edges Ei,r,
whose endpoints in Di,r are descendants of the edge (ai, bi) ∈ ER, such that the following
holds: If those descendants behave according to Case (i), i.e., it holds that ai−1 ≺ c ≺ ai+1
or bi−1 ≺ c ≺ bi+1 for each c ∈ Di,r, then, those edges in Ei,r form an r-rainbow.

Proof. Consider a t-twist T = (VT , ET) with respect to the vertex ordering ≺ and an
edge (ai, bi) ∈ ET . For r > 0, let Di,r = {aj

i | 1 ≤ j ≤ r − 1} ∪ {bj
i | 1 ≤ j ≤ r − 1}

be a set of descendants, where bj
i is a right child of (aj−1

i , bj−1
i) and aj

i is a left child of
(aj−1

i , bj
i) with ai = a0

i and bi = b0
i for each j = 1, . . . , r − 1. It follows that the edges from

left children to their left parent (aj
i , aj−1

i) and the edges from right parents to their right
child (bj−1

i , bj
i) for j = 1, . . . , r − 1 exist. This leads to the topological vertex ordering

ar−1
i ≺ · · · ≺ a0

i ≺ b0
i ≺ · · · ≺ br−1

i . With respect to this ordering, the edges (aj
i , bj

i) from
left children to their right parent pairwise nest for j = 0, . . . , r − 1, and thus form an
r-rainbow (see Figure 5.10).

Similar as for Lemma 5.5, we consider such a t-twist T = (VT , ET), whose edges (ai, bi) have
descendants localised between ai−1 and ai+1 or between bi−1 and bi+1 for i = 2, . . . , t − 1,
such that their incident edges form an r-rainbow. For any two edges (ai, bi), (aj , bj) ∈ ET

that are not neighbours in T , i.e., with |i − j| > 1, the regions where their descendants
are placed, are disjoint. Therefore, if we only consider every second edge of T with its
descendants forming an r-rainbow as in Lemma 5.9, we obtain t/2 pairwise crossing r-
rainbows. Again, it follows that Case (i) may not occur arbitrarily often in a row as a
subcase of Case (iii). Particularly, a t/2-crossing r-rainbow contains a t/2-twist, i.e., after
placing some descendants of a twist edge close to their ancestor from ET as in Case (i), we
still have a large twist of size t/2, onto whose edges further children can be stacked applying
Cases (ii) and (iii). The start and endpoints of such a new t/2-twist are approximately at
the same place as the start and endpoints of T . This observation will later be useful for
combining the three cases.

45

5. Directed Acyclic 2-Trees

a1 a2 a3 a4 a5 a6 b6 b5 b4 b3 b2 b1 c1
1 c1

2 c1
3 c1

4 c1
5 c1

6 c2
6 c2

5 c2
4 c2

3 c2
2 c2

1

Figure 5.11: Given an r-rainbow R (black). If we first apply Case (iii) to obtain an r-twist T
(red), and then apply Case (ii) to this r-twist, then we obtain a new r-rainbow
with the same start points as R and T and endpoints to the right of the
endpoints from R and T .

Observation 5.10. Let T = (VT , ET) be a t-twist with ordered vertices a1 ≺ · · · ≺ at ≺
b1 ≺ · · · ≺ bt and edges ER = {(ai, bi) | 1 ≤ i ≤ t}. If we apply Case (i) (repeatedly) to T ,
we obtain a t/2-twist T ′ = (V ′

T , E′
T) with ordered vertices a′

1 ≺ · · · ≺ a′
t/2 ≺ b′

1 ≺ · · · ≺ b′
t/2

and edges E′
R = {(a′

i, b′
i) | 1 ≤ i ≤ t/2}, for which it holds that a2i−1 ≺ a′

i ≺ a2i+1 and
b2i−1 ≺ b′

i ≺ b2i+1 for each i = 1, . . . , t/2.

Next, we consider subcase (ii). Here, we investigate the resulting edge pattern, when we
start with our r-rainbow R, then apply Case (iii) once, and then apply Case (ii) to the
obtained r-twist T (see Figure 5.11). In this case, we only obtain a new r-rainbow R′,
whose edges have the same start points as the edges of the r-twist T obtained after applying
Case (iii), and as the original r-twist R. The endpoints of the edges of R are all to the
right of the endpoints of the r-twist T . Thus, the range over which the r-rainbow R spans,
includes the complete range over which T spans. To this r-rainbow R the three cases can
again be applied. We need this observation for combining the cases later.

Observation 5.11. Applying Case (ii) to an r-twist T = (VT , ET), we obtain an r-rainbow
R, whose edges have the same start points as the edges from T , and endpoints to the right
of the endpoints from ET .

Lastly, we consider Subcase (iii) of Case (iii), i.e., we assume that starting with the r-
rainbow R only Case (iii) occurs several times in a row. Due to symmetry, we only consider
right children. Thus, we assume the right children of R’s edges to behave according to Case
(iii) (see Figure 5.8), and the right children of the resulting twist to behave according to Case
(iii) (see Figure 5.12), repeatedly. Specifically, we start with an r-rainbow R = (VR, ER)
with ordered vertices a1 ≺ · · · ≺ ar ≺ br ≺ · · · ≺ b1 and edges ER = {(ai, bi) | 1 ≤ i ≤ r}.
For j = 2, . . . , k, let cj

i be a right child of (ai, cj−1
i) and let c1

i be a right child of (ai, bi)
with the vertex ordering cj

i ≺ cj′

i′ for j < j′ or j = j′ and i < i′. As we apply Case (iii) k
times, we obtain the topological vertex ordering

a1 ≺ · · · ≺ ar ≺ br ≺ · · · ≺ b1 ≺ c1
1 ≺ · · · ≺ c1

r ≺ · · · ≺ ck
1 ≺ · · · ≺ ck

r

(see Figure 5.12). The resulting pattern contains the r-twists Tj = (Vj , Ej) with ordered
vertices a1 ≺ · · · ≺ ar ≺ cj

1 ≺ · · · ≺ cj
r and edges Ej = {(ai, cj

i) | 1 ≤ i ≤ r} for j = 1, . . . , k.
In sum, these twists Tj form the edge pattern P = (V, E, ≺) with V = ⋃k

j=1 Vj and
E = ⋃k

j=1 Ej .

Lemma 5.12. The edge pattern P contains a k-nesting ⌊r/k⌋-twist.

46

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

a1 a2 a3 a4 a5 a6 b6 b5 b4 b3 b2 b1 c1
1 c1

2 c1
3 c1

4 c1
5 c1

6 c2
1 c2

2 c2
3 c2

4 c2
5 c2

6

twist twist

Figure 5.12: A 6-rainbow (black), onto whose edges right children are stacked accordingly
to Case (iii), i.e., the children are to the right of their parent’s rainbow, such
that the edges from their left parents to them (red) pairwise cross. Onto this
resulting twist, right children are stacked, again as in Case (iii), such that the
edges from left parents to the right children (blue) pairwise cross. The left
half of the blue twist nests with the right half of the red twist, such that they
form a 2-crossing 3-rainbow.

Proof. We show that each twist Tj contains a twist T ′
j with ⌊r/k⌋ edges, such that those

smaller twists T ′
j pairwise nest (see Figure 5.12). Let T ′

j = (V ′
j , E′

j) be this ⌊r/k⌋-twist
with ordered vertices

a(k−j)⌊r/k⌋+1 ≺ a(k−j)⌊r/k⌋+2 ≺ · · · ≺ a(k−j+1)⌊r/k⌋ ≺

cj
(k−j)⌊r/k⌋+1 ≺ cj

(k−j)⌊r/k⌋+2 ≺ · · · ≺ cj
(k−j+1)⌊r/k⌋

and the respective edges E′
j = Ej ∩ (V ′

j × V ′
j). Intuitively, each of the r-twists Tj is split

into k parts of the same size from left to right, where we only consider the (k − j + 1)-th
part of each twist Tj . Now, we consider two of these ⌊r/k⌋-twists T ′

j and T ′
l with j < l and

show that they nest. Since (k − l + 1)⌊r/k⌋ < (k − j)⌊r/k⌋ + 1, we have the vertex ordering

a(k−l)⌊r/k⌋+1 ≺ · · · ≺ a(k−l+1)⌊r/k⌋ ≺ a(k−j)⌊r/k⌋+1 ≺ a(k−j+1)⌊r/k⌋.

Moreover, the vertex ordering is ai ≺ cj
i′ ≺ cl

i′′ for each 1 ≤ i, i′, i′′ ≤ r. Thus, the start
points of edges in T ′

l are all to the left of the start points of edges in T ′
j , which are all to the

left of the endpoints of edges in T ′
j , which are all to the left of endpoints in T ′

l . Therefore,
these ⌊r/k⌋-twists T ′

j pairwise nest for j = 1, . . . , k, and form a k-nesting ⌊r/k⌋-twist.

Again, it follows that this case cannot occur arbitrarily often in a row. Similar as for Case
(ii), the edges of the newly obtained r-twist T ′ have the same start points as the edges from
the original rainbow R and the edges from the twists obtained in previous steps. Thus, the
range over which T ′ spans includes the complete range of all previous twists and of the
original rainbow R. This is an important observation for combining the three cases later.

Observation 5.13. Applying Case (iii) to an r-twist or an r-rainbow P = (VP , EP), we
obtain a new r-twist T , whose edges have the same start points as the edges in EP , and
endpoints to the right of the endpoints from EP .

After having considered all cases separately, we are finally ready to combine them. Now,
we assume that the three cases occur alternately in an arbitrary order. Here, we show
that by applying Case (iii) very often – not necessarily in direct succession – we obtain
a large nesting twist that forces the mixed page number to become large. To show that
Case (iii) does not necessarily have to occur several times in direct succession to result in
a large nesting twist, we need to show that the resulting nesting twist (see Lemma 5.12)
is not affected by Cases (i) and (ii). That the nesting twist is not affected by Case (ii),

47

5. Directed Acyclic 2-Trees

is visualised in Figure 5.13. Furthermore, we show that Case (iii) certainly occurs very
often, even if not in direct succession. For this, we show that Case (i) does not affect the
crossing rainbow resulting from Case (ii) (see Lemma 5.7). Thus, Cases (i) and (ii) may not
even alternately occur arbitrarily often in a row. Hence, Case (iii) must occur in between
repeatedly.
Specifically, we start with an r0-rainbow P0. For i = 1, . . . , k, we apply one of our three
cases to the edge pattern Pi−1 in each step to obtain a new edge pattern Pi, where Pi is
either a rainbow or a twist. In step i, Pi is called the active edge pattern. Here, the size ri of
these patterns Pi becomes smaller with every step, i.e., ri−1 ≥ ri for each i = 1, . . . , k. That
is, for one thing because we ignore edges and children that do not behave accordingly to
the respective case as already mentioned, and secondly because after applying Case (i), we
obtain only a rainbow or twist of half the size (see Observation 5.6 and Observation 5.10).
However, we assume r0 to be sufficiently large, such that rk still is a very large integer. We
do not specify an exact value for r0 here, as well as for the number k of steps.
We say that the start points (or endpoints) of edges of two edge patterns Pi, Pj with i < j
are approximately at the same place if for any two start points (or endpoints) of Pj it holds
that one of them is also start point (or endpoint) of an edge from Pi or there is another
start point (or endpoint) x from Pi with u ≺ x ≺ v or v ≺ x ≺ u. Intuitively, this means
that in each subset of Pj ’s range, there is at least the same number of vertices from Pi (or
one less) (see Figure 5.14). By Observation 5.6 it holds that after applying Case (i) to an
r-rainbow R = (VR, ER) with ordered vertices a1 ≺ · · · ≺ ar ≺ br ≺ · · · ≺ b1 and edges
ER = {(ai, bi) | 1 ≤ i ≤ r}, we obtain an r/2-rainbow R′ = (V ′

R, E′
R) with ordered vertices

a′
1 ≺ · · · ≺ a′

r/2 ≺ b′
r/2 ≺ · · · ≺ b′

1 and edges E′
R = {(a′

i, b′
i) | 1 ≤ i ≤ r/2}, for which it

holds that a2i−1 ≺ a′
i ≺ a2i+1 and b2i+1 ≺ b′

i ≺ b2i−1 for each i = 1, . . . , r/2. Consider two
vertices a′

i, a′
i+1 ∈ V ′

R that are neighbours in the r/2-rainbow R’ with respect to ≺. It holds
that a′

i ≺ a2i+1 = a2(i+1)−1 ≺ a′
i+1, i.e., there is one start point of R between any two start

points of R′. The same also applies to endpoints. By Observation 5.10 it follows that the
same also holds if we start with a twist. If we apply Case (ii) or Case (iii) to a rainbow
or twist P , the start points of the newly obtained rainbow or twist are exactly the same
as the start points of P (see Observation 5.8, Observation 5.11, and Observation 5.13).
Particularly, they are also approximately at the same place. If we apply Case (i) more
than once, we will have to ignore again half of the edges in order to keep the property
that the start points are all approximately at the same place. To compensate this, we
need to choose the value of r0 accordingly large. Here, we will not go into more detail.
However after ignoring those edges, it follows that if the start points (or endpoints) of Pi

are approximately at the same place as the start points (or endpoints) of Pj , and the start
points (or endpoints) of Pj are approximately at the same place as the start points (or
endpoints) of Pl, then the same applies to Pi and Pl for i < j < l, which we will use in the
following. Later, we will also need that arguments used in the proofs of Lemma 5.7 and
Lemma 5.12 are applicable for patterns, where the start points of the rainbows or twists
are not exactly the same but approximately at the same place. Here, we will also not go
into more detail.
Now, we first show that the nesting twist that results from several applications of Case (iii)
is not affected by applications of Cases (i) and (ii) in between, which is recorded in the
lemma below. Since we always start again with a rainbow similar as the original rainbow
after having applied Case (i) or Case (ii), we may assume without loss of generality that
we apply Case (iii) in the first step.

Lemma 5.14. Let P0 be the first active edge pattern, which is an r0-rainbow. If we apply
the three cases k times in any order to the respective active edge pattern so that Case (iii)
is applied in the first step and at least t times in total, we obtain a t-nesting ⌊rk/t⌋-twist.

48

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

a1

a2

a3

a4

a5

a6

b6

b5

b4

b3

b2

b1

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c2
6

c2
5

c2
4

c2
3

c2
2

c2
1

c3
1

c3
2

c3
3

c3
4

c3
5

c3
6

twist

twist

Figure 5.13: A 6-rainbow (black), onto whose edges right children have been stacked
repeatedly. The right children of the rainbow’s edges behave accordingly to
Case (iii) (red). In turn, their children behave accordingly to Case (ii) (blue),
and their children again behave accordingly to Case (iii) (orange). The two
twists (red and orange) form a 2-nesting 3-twist. In particular, this nesting
twist is not affected by Case (ii) in between.

49

5. Directed Acyclic 2-Trees

Figure 5.14: Two rainbows, whose start points are approximately at the same place. As the
green rainbow is smaller than the black rainbow, there is at least one black
start point between any two green start points or one of the green start points
is also a black start point.

Proof. We assume that we have already applied the three cases l times in a fixed order σl

for a fixed l ∈ {1, . . . , k}, where we have applied Case (iii) t(σl) times in total, firstly in
step 1 and lastly in step f(σl) for t(σl), f(σl) ≤ l. Then, we show per induction over l that
the obtained edge patterns Pi for i = 1, . . . , l altogether contain t(σl) large twists of size
at least rf(σl) with start points approximately at the same place and endpoints separated
from each other. We call this edge pattern T ∗

t(σl),f(σl). To show that this pattern T ∗
t(σl),f(σl)

is obtained, we show that with each application of Case (iii) a new twist is added with start
points approximately at the same place as for previous ones and endpoints to the right, even
if Cases (i) and (ii) were applied in between. Then, the edge pattern T ∗

t(σl),f(σl) only consists
of twists obtained by application of Case (iii). A similar edge pattern with exactly the same
start points for all twists is illustrated in Figure 5.12. Similar arguments as in the proof
of Lemma 5.12 lead to the fact that T ∗

t(σl),f(σl) contains a t(σl)-nesting ⌊rf(σl)/t(σl)⌋-twist.
Here, we split the rf(σl)-twists into t(σl) parts of the same size and consider the leftmost
part of the twist with the rightmost endpoints, the second leftmost part of the twist with
the second rightmost endpoints, and so forth. Then, those ⌊rf(σl)/t(σl)⌋-twists pairwise
nest (see Figure 5.12). Furthermore, we show in each step that the active pattern Pl

includes approximately the complete range over which T ∗
t(σl),f(σl) spans. In detail, we show

that the start points of edges in Pl are approximately at the same place as the start points
of edges in T ∗

t(σl),f(σl) and that the endpoints of edges in Pl are approximately at the same
place or to the right of the endpoints of edges in T ∗

t(σl),f(σl).

For l = 1, we have already applied Case (iii) once, where we obtained the r1-twist P1 (see
Figure 5.8). If we apply Case (iii) again, we obtain another r2-twist P2 (see Figure 5.12).
Together with P1, there are two twists of size at least r2 with the same start points
and separated endpoints, i.e., they form T ∗

2,2. Note that in this case after increasing
l it holds that t(σ2) = t(σ1) + 1 = 2 = f(σ1) + 1 = f(σ2), i.e., T ∗

2,2 is the required
edge pattern. Here, P2’s endpoints are to the right of P1’s endpoints. If we apply Case
(i) or Case (ii), the edge pattern T ∗

1,1 consisting of P1 still suffices, since we still have
t(σ2) = t(σ1) = 1 = f(σ1) = f(σ2). In Case (i), the start and endpoints of P2 are
approximately at the same place as the start and endpoints of T ∗

1,1 (see Observation 5.10).
In Case (ii) (see Figure 5.11), the start points are approximately at the same place and the
endpoints are to the right compared to T ∗

1,1 (see Observation 5.11).
For any fixed 1 < l ≤ k and any fixed order σl of previously applied cases, we assume to
have such an edge pattern T ∗

t(σl),f(σl) after l steps, where Case (iii) occurred t(σl) ≤ l times,
lastly in step f(σl) ≤ l. Further, we assume that T ∗

t(σl),f(σl)’s range in the vertex ordering
is included in the range of the active edge pattern Pl. Note that Pl is the rainbow or twist
added in step l. Then, we distinguish which of the three cases is applied in step l + 1.
First, we assume that Case (i) is applied in step l + 1. As we do not apply Case (iii), we
still have t(σl+1) = t(σl) and f(σl+1) = f(σl), i.e., the required edge pattern T ∗

t(σl+1),f(σl+1)
in step l + 1 is the same as the edge pattern T ∗

t(σl),f(σl) from step l. By Observation 5.6

50

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

and Observation 5.10, it follows that we obtain a twist or rainbow Pl+1 of half the size
of Pl, depending on whether Pl is a twist or a rainbow. The start and endpoints of Pl+1
are approximately at the same place as the start and endpoints of Pl. It follows from the
prerequisite that the endpoints of edges in Pl+1 are approximately at the same place as the
start points of T ∗

t(σl+1),f(σl+1) and that the endpoints of edges in Pl+1 are approximately at
the same place or to the right of the endpoints of T ∗

t(σl+1),f(σl+1).

Next, we assume that Case (ii) is applied in step l + 1 (see Figure 5.13). Again, as we do
not apply Case (iii), we still have t(σl+1) = t(σl) and f(σl+1) = f(σl), i.e., the required
edge pattern T ∗

t(σl+1),f(σl+1) in step l + 1 is the same as the edge pattern T ∗
t(σl),f(σl) from

step l. By Observation 5.8 and Observation 5.11, it follows that we obtain a rainbow Pl+1
with the same start points as Pl and endpoints to the right of the endpoints of Pl. As Pl’s
start points are approximately at the same place as the start points of T ∗

t(σl+1),f(σl+1), the
same applies to Pl+1. Since Pl’s endpoints are approximately at the same place or to the
right of the endpoints of T ∗

t(σl+1),f(σl+1), Pl+1’s endpoints are to the right.

Finally, we assume that Case (iii) is applied in step l + 1 (see Figure 5.13). Consider the
edge pattern T ∗

t(σl),f(σl) from step l. The start points of edges in Pl are approximately
at the same place as the start points of edges in T ∗

t(σl),f(σl), and the endpoints are also
approximately at the same place or to the right. By Observation 5.13, it follows that the
start points of Pl+1 are also approximately at the same place and the endpoints are to the
right. Therefore, Pl+1 is an rl+1-twist with start points approximately at the same place
as T ∗

t(σl),f(σl) and endpoints to the right. Thus, together with T ∗
t(σl),f(σl), we obtain the

pattern T ∗
t(σl)+1,l+1, i.e., t(σl) + 1 twists of size at least rl+1 with start points approximately

at the same place and endpoints separated from each other. As we have applied Case (iii),
it holds that t(σl+1) = t(σl) + 1 and f(σl+1) = l + 1. Therefore, the obtained edge pattern
T ∗

t(σl)+1,l+1 is equivalent to the required edge pattern T ∗
t(σl+1),f(σl+1).

In sum, we showed that we obtain the edge pattern T ∗
t(σl),f(σl) after l steps with the

fixed ordering σl of the cases for each l = 1, . . . , k if Case (iii) occurs t(σl) times in σl,
firstly in step 1 and lastly in step f(σl). It follows that after k steps, where Case (iii)
occurred t(σk) = t times, firstly in step 1 and lastly in step f(σk) ≤ k, we obtain the
edge pattern T ∗

t,f(σk). Since particularly rk ≤ rf(σk), this edge pattern contains a t-nesting
⌊rk/t⌋-twist.

Now, we have shown that several applications of Case (iii) result in a large nesting twist,
even if they are not in direct succession. Finally, we only need to show that Case (iii)
certainly occurs very often in order to avoid a large crossing rainbow, if we choose the
number k of steps large enough.

Lemma 5.15. Let P0 be the first active edge pattern, which is an r0-rainbow. If we apply
the Cases (i) and (ii) k times in any order to the respective active edge pattern so that
Case (ii) is applied at least t times, we obtain a (t + 1)-crossing ⌊rk/(t + 1)⌋-rainbow.

Proof. Again, we assume that we have already applied Cases (i) and (ii) l times in a fixed
order σl for a fixed l ∈ {0, . . . , k}. Thereby, we further assume that Case (ii) has been
applied t(σl) times in total, lastly in step f(σl) for t(σl), f(σl) ≤ l. Then, we show per
induction over l that the obtained edge patterns Pi for i = 1, . . . , l altogether contain
t(σl) + 1 rainbows of size at least rf(σl) with start points approximately at the same place
and endpoints separated from each other. We call this edge pattern R∗

t(σl)+1,f(σl). To
show that this pattern R∗

t(σl)+1,f(σl) is obtained, we show that with each application of
Case (ii) a new rainbow is added with start points approximately at the same place as
for previous ones and endpoints to the right, even if Case (i) was applied in between.

51

5. Directed Acyclic 2-Trees

Then, the edge pattern R∗
t(σl)+1,f(σl) only consists of rainbows obtained by application of

Case (ii). A similar edge pattern, with exactly the same start points for all rainbows, is
illustrated in Figure 5.9. With similar arguments as in the proof of Lemma 5.7 it follows
that R∗

t(σl)+1,f(σl) contains a (t(σl) + 1)-crossing ⌊rf(σl)/(t(σl) + 1)⌋-twist. Here, we split
the rf(σl)-rainbows into t(σl) + 1 parts of the same size and consider the outermost part
of the rainbow with the leftmost endpoints, the second outermost part of the rainbow
with the second leftmost endpoints, and so forth. Then, those ⌊rf(σl)/(t(σl) + 1)⌋-rainbows
pairwise cross (see Figure 5.9). Further, we show in each step that the active pattern Pl

includes approximately the complete range over which R∗
t(σl),f(σl) spans. More detailed, we

show that the start points of edges in Pl are approximately at the same place as the start
points of edges in R∗

t(σl)+1,f(σl) and that the endpoints of edges in Pl are approximately at
the same place or to the right of the endpoints of edges in R∗

t(σl)+1,f(σl).

For l = 0, we start with the rainbow P0. If we apply Case (ii) in the first step, we obtain an
r1-rainbow P1. Together with the original r0-rainbow P0, they form the edge pattern R∗

2,1,
i.e., two rainbows of size at least r1 with the same start points and endpoints separated
from each other. Note that in this case after increasing l it holds that t(σ1) = t(σ0) + 1 =
1 = f(σ0)+1 = f(σ1), so R∗

2,1 is the required edge pattern. Here, the endpoints of P1 are to
the right of the endpoints of R∗

2,1. If we apply Case (i), the original r0-rainbow P0 already
forms the required pattern R∗

1,0, since we still have t(σ1) = t(σ0) = 0 = f(σ0) = f(σ1). In
this case, P1 has start and endpoints approximately at the same place as R∗

1,0.
For any fixed l > 0 and any fixed ordering σl of previously applied cases, we assume that
the edge patterns Pi altogether contain the edge pattern R∗

t(σl)+1,f(σl) for i = 1, . . . , l, where
Case (ii) occurred t(σl) ≤ l times, lastly in step f(σl) ≤ l. Further, we assume that the
start points of the active pattern Pl are approximately at the same place as the start points
of R∗

t(σl)+1,f(σl) and that the endpoints of Pl are approximately at the same place or to the
right of endpoints of R∗

t(σl)+1,f(σl). Now, we distinguish which of the two cases is applied
in step l + 1.
First, we assume that Case (i) is applied in step l + 1. As we do not apply Case (ii), we still
have t(σl+1) = t(σl) and f(σl+1) = f(σl), i.e., the required edge pattern R∗

t(σl+1)+1,f(σl+1)
in step l + 1 is the same as R∗

t(σl)+1,f(σl) from step l. By Observation 5.6, it follows
that we obtain a rainbow Pl+1 of half the size of Pl with the start and endpoints of Pl+1
approximately at the same place as the start and endpoints of Pl. It follows from the
prerequisite that the start points of edges in Pl+1 are approximately at the same place as the
start points of R∗

t(σl+1)+1,f(σl+1) and that the endpoints of edges in Pl+1 are approximately
at the same place or to the right of the endpoints of R∗

t(σl+1)+1,f(σl+1).

Finally, we assume that Case (ii) is applied in step l + 1. Consider the edge pattern
R∗

t(σl)+1,f(σl) from the last step l. By prerequisite, the start points of edges in Pl are
approximately at the same place as the start points of edges in R∗

t(σl)+1,f(σl), and the
endpoints are also approximately at the same place or to the right. By Observation 5.13,
it follows that the start points of Pl+1 are also approximately at the same place and
the endpoints are to the right. Therefore, Pl+1 is an rl+1-rainbow with start points
approximately at the same place as R∗

t(σl)+1,f(σl) and endpoints to the right. Thus, together
with R∗

t(σl)+1,f(σl), we have t(σl) + 2 rainbows of size at least rl+1 with start points
approximately at the same place and endpoints separated from each other. Therefore, we
obtain the pattern R∗

t(σl)+2,l+1. As we have applied Case (ii), we now have t(σl+1) = t(σl)+1
and f(σl+1) = l + 1, i.e., the obtained edge pattern R∗

t(σl)+2,l+1 is equivalent to the required
pattern R∗

t(σl+1)+1,f(σl+1).
Now, we showed that we obtain the edge pattern R∗

t(σl)+1,f(σl) after l steps with the fixed
ordering σl of the cases for each l = 1, . . . , k, if Case (ii) occurs t(σl) times, lastly in step

52

5.2. The Mixed Page Number of General Directed Acyclic 2-Trees

f(σl). It follows that after k steps, where Case (ii) occurs t(σk) = t times, lastly in step
f(σk) ≤ k, we obtain the edge pattern R∗

t+1,f(σk). Since particularly rk ≤ rf(σk), this edge
pattern contains a (t + 1)-nesting ⌊rk/(t + 1)⌋-twist.

If we only consider Cases (i) and (ii), since Case (i) may not occur arbitrarily often in a
row (see Lemma 5.5), Case (ii) occurs repeatedly. Precisely, in order that Case (i) does not
occur to often in a row, for each t > 0, there is a number of steps k, such that Case (ii)
occurs at least t times. By Lemma 5.15, this results in a t-crossing rainbow, if we choose
the size r0 of the original r0-rainbow P0 sufficiently large. Thus, in order to avoid this large
crossing rainbow, Case (iii) has to occur frequently. However, by Lemma 5.14, this results
in a t-nesting twist, if we choose the parameters k and r0 large enough. It follows that
there is no way to avoid both large crossing rainbows and large nesting twists. Therefore,
the mixed page number of directed acyclic 2-trees is unbounded.

53

6. Conclusion

Building on the present work on the mixed page number of undirected graphs and the
stack and queue numbers of DAGs, we initiated the study of the mixed page number of
planar DAGs. In particularly, we investigated the mixed page number of upward planar
graphs and directed acyclic 2-trees.
Before we turned to planar DAGs, we first investigated the mixed page number more
generally for edge patterns, i.e., for edge sets with a fixed vertex ordering. In Chapter 2, we
investigated two edge patterns that force the mixed page number to become large, namely
t-crossing rainbows and t-nesting twists. Similar edge patterns, called t-twist and t-rainbow,
are known for the stack and queue numbers. There, the stack and queue numbers only
depend on the size of a largest t-twist or t-rainbow, respectively [Dav22, HR92]. However,
it is not known whether the mixed page number of an edge pattern depends only on the
size of a largest t-crossing rainbow or t-nesting twist, and this question still remains open.

Open question 6.1. Does the mixed page number of an edge pattern only depend on the
size of a largest t-crossing rainbow or t-nesting twist?

What we could answer is that if there is a function f(t) in the size of a largest t-crossing
rainbow or t-nesting twist in an edge pattern P , such that mpn(P) ≤ f(t), then this
function f is at least a quadratic function. This contrasts with the stack number being in
Θ(t log(t)) [Dav22] and the queue number being in Θ(t) [HR92]. The question concerning
an upper bound or even a tight upper bound on f remains, nevertheless, unanswered.

Open question 6.2. If there is a function f(t) in the size t of a largest t-crossing rainbow
or t-nesting twist in an edge pattern P , such that mpn(P) ≤ f(t) – what is f?

In Chapter 3 we finally started our investigation of planar DAGs with upward planar
graphs. First, we considered very specific graph families, for instance cycles, Kelly graphs,
grids, and N-grids. In doing so, we gave a lower bound of 3 on the mixed page number of
upward planar graphs and presented a graph, whose mixed page number is strictly smaller
than its stack and queue number. One of the most important open questions in the field
of linear layouts is whether the stack number of upward planar graphs is bounded by a
constant. However, the slightly weaker question, whether the same applies to the mixed
page number, is also open.

Open question 6.3. Is the mixed page number of upward planar graphs bounded by a
constant?

55

6. Conclusion

After having considered those specific graph families, we turned to the class of upward
planar bipartite graphs in Chapter 4. Open question 6.3 is also unanswered for this subclass
of upward planar graphs.

Open question 6.4. Is the mixed page number of upward planar bipartite graphs bounded
by a constant?

However, we were able to answer this question for another subclass of upward planar
bipartite graphs. We showed that the stack, queue, and mixed page numbers of upward
planar bipartite graphs G = (A ∪ B, E) with all edges oriented from a vertex in A to
a vertex in B is bounded by the constant 56. In contrast, we showed that these graph
parameters are all unbounded if we choose a fixed vertex ordering, such as “from left to
right”. Additionally, we gave again a lower bound of 3 on the mixed page number of upward
planar bipartite graphs and presented an upward planar bipartite graph with mixed page
number strictly smaller than stack and queue number.
In Chapter 5, we investigated another class of planar DAGs. There, we presented a directed
acyclic 2-tree with unbounded stack and queue number but bounded mixed page number.
Nevertheless, we showed that the mixed page number of general directed acyclic 2-trees is
also unbounded.

56

Bibliography

[ABG+20] Md. Jawaherul Alam, Michael A. Bekos, Martin Gronemann, Michael Kauf-
mann, and Sergey Pupyrev. Queue Layouts of Planar 3-Trees. Algorithmica,
82(9):2564–2585, 2020. doi: 10.1007/s00453-020-00697-4.

[ABG+22a] Md. Jawaherul Alam, Michael A. Bekos, Martin Gronemann, Michael Kauf-
mann, and Sergey Pupyrev. Lazy Queue Layouts of Posets. Algorithmica,
2022. doi: 10.1007/s00453-022-01067-y.

[ABG+22b] Md. Jawaherul Alam, Michael A. Bekos, Martin Gronemann, Michael Kauf-
mann, and Sergey Pupyrev. The mixed page number of graphs. Theoretical
Computer Science, 931:131–141, 2022. doi: 10.1016/j.tcs.2022.07.036.

[ABKM22] Patrizio Angelini, Michael A. Bekos, Philipp Kindermann, and Tamara
Mchedlidze. On mixed linear layouts of series-parallel graphs. Theoretical
Computer Science, 936(10):129–138, 2022. doi: 10.1016/j.tcs.2022.09.019.

[BGR23] Michael A. Bekos, Martin Gronemann, and Chrysanthi Raftopoulou. An Im-
proved Upper Bound on the Queue Number of Planar Graphs. Algorithmica,
85(2):544–562, 2023. doi: 10.1007/s00453-022-01037-4.

[BHKM20] Michael A. Bekos, Mirco Haug, Michael Kaufmann, and Julia Männecke.
An online framework to interact and efficiently compute linear layouts of
graphs. CoRR, abs/2003.09642, 2020. doi: 10.48550/arXiv.2003.09642; online
version http://algo.inf.uni-tuebingen.de/linearlayouts; source code
available at https://github.com/linear-layouts/SAT.

[BK79] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal
of Combinatorial Theory Series B, 27(3):320–331, 1979. doi: 10.1016/0095-
8956(79)90021-2.

[BKK+20] Michael A. Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev,
Chrysanthi Raftopoulou, and Torsten Ueckerdt. Four pages are indeed
necessary for planar graphs. Journal of Computational Geometry, 11(1):332–
353, 2020. doi: 10.20382/jocg.v11i1a12.

[CDD+12] Peter Clote, Stefan Dobrev, Ivan Dotu, Evangelos Kranakis, Danny Krizanc,
and Jorge Urrutia. On the page number of RNA secondary structures with
pseudoknots. Journal of Mathematical Biology, 65(6–7):1337–1357, 2012. doi:
10.1007/s00285-011-0493-6.

[CLR87] Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg.
Embedding graphs in books: A graph layout problem with applications to
VLSI design. SIAM Journal on Algebraic and Discrete Methods, 8(1):33–58,
1987. doi: 10.1137/0608002.

[Dav22] James Davies. Improved bounds for colouring circle graphs. Proceed-
ings of the American Mathematical Society, 150(12):5121–5135, 2022. doi:
10.1090/proc/16044.

57

http://dx.doi.org/10.1007/s00453-020-00697-4
http://dx.doi.org/10.1007/s00453-022-01067-y
http://dx.doi.org/10.1016/j.tcs.2022.07.036
http://dx.doi.org/10.1016/j.tcs.2022.09.019
http://dx.doi.org/10.1007/s00453-022-01037-4
http://dx.doi.org/10.48550/arXiv.2003.09642
http://algo.inf.uni-tuebingen.de/linearlayouts
https://github.com/linear-layouts/SAT
http://dx.doi.org/10.1016/0095-8956(79)90021-2
http://dx.doi.org/10.1016/0095-8956(79)90021-2
http://dx.doi.org/10.20382/jocg.v11i1a12
http://dx.doi.org/10.1007/s00285-011-0493-6
http://dx.doi.org/10.1007/s00285-011-0493-6
http://dx.doi.org/10.1137/0608002
http://dx.doi.org/10.1090/proc/16044
http://dx.doi.org/10.1090/proc/16044

Bibliography

[dFOdMP95] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-first
search algorithm for planar graphs. Discrete & Computational Geometry,
13(3):459–468, 1995. doi: 10.1007/BF02574056.

[DPW04] Vida Dujmović, Attila Pór, and David R. Wood. Track Layouts of Graphs.
Discrete Mathematics and Theoretical Computer Science, 6(2):497–522, 2004.
doi: 10.46298/dmtcs.315.

[ES35] Paul Erdős and George Szekeres. A combinatorial problem in geometry.
Compositio Mathematica, 2:463–470, 1935. doi: 10.1007/978-0-8176-4842-8_-
3.

[FFRV13] Fabrizio Frati, Radoslav Fulek, and Andres J. Ruiz-Vargas. On the Page
Number of Upward Planar Directed Acyclic Graphs. Journal of Graph
Algorithms and Applications, 17(3):221–244, 2013. doi: 10.7155/jgaa.00292.

[FKM+23] Henry Förster, Michael Kaufmann, Laura Merker, Sergey Pupyrev, and
Chrysanthi Raftopoulou. Linear Layouts of Bipartite Planar Graphs.
Technical report, 2023. http://i11www.ira.uka.de/extra/publications/
fkmpr-llbpg-23.pdf.

[FUW21] Stefan Felsner, Torsten Ueckerdt, and Kaja Wille. On the Queue-Number
of Partial Orders. In Helen C. Purchase and Ignaz Rutter, editors, Graph
Drawing and Network Visualization, pages 231–241, Cham, 2021. Springer
International Publishing. doi: 10.1007/978-3-030-92931-2_17.

[Gro21] Tim Groß. Local Page Number und local Queue Number von gerichteten
azyklischen Graphen. Bachelor thesis, ITI Wagner, Department of Infor-
matics, Karlsruhe Institute of Technology (KIT), October 2021. https:
//i11www.iti.kit.edu/_media/teaching/theses/ba-gross-22.pdf.

[HLR92] Lenwood S. Heath, Frank Thomson Leighton, and Arnold L. Rosenberg.
Comparing queues and stacks as machines for laying out graphs. SIAM
Journal on Discrete Mathematics, 5(3):398–412, 1992. doi: 10.1137/0405031.

[HPT99] Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and
Queue Layouts of Directed Acyclic Graphs: Part I. SIAM Journal on
Computing, 28(4):1510–1539, 1999. doi: 10.1137/S0097539795280287.

[HR92] Lenwood S. Heath and Arnold L. Rosenberg. Laying Out Graphs Us-
ing Queues. SIAM Journal on Computing, 21(5):927–958, 1992. doi:
10.1137/0221055.

[JMU22a] Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. A Sublinear Bound
on the Page Number of Upward Planar Graphs. In Proceedings of the 2022
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’22), pages
963–978. Society for Industrial and Applied Mathematics, January 2022. doi:
10.1137/1.9781611977073.42.

[JMU22b] Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. Directed Acyclic
Outerplanar Graphs Have Constant Stack Number, November 2022. doi:
10.48550/ARXIV.2211.04732.

[Kel81] David Kelly. On the dimension of partially ordered sets. Discrete Mathematics,
35(1):135–156, 1981. doi: 10.1016/0012-365X(81)90203-X.

[KMU18] Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. The Queue-Number of
Posets of Bounded Width or Height. In Therese Biedl and Andreas Kerren,
editors, Graph Drawing and Network Visualization, pages 200–212, Cham,
2018. Springer International Publishing. doi: 10.1007/978-3-030-04414-5_14.

58

http://dx.doi.org/10.1007/BF02574056
http://dx.doi.org/10.46298/dmtcs.315
http://dx.doi.org/10.1007/978-0-8176-4842-8_3
http://dx.doi.org/10.1007/978-0-8176-4842-8_3
http://dx.doi.org/10.7155/jgaa.00292
http://i11www.ira.uka.de/extra/publications/fkmpr-llbpg-23.pdf
http://i11www.ira.uka.de/extra/publications/fkmpr-llbpg-23.pdf
http://dx.doi.org/10.1007/978-3-030-92931-2_17
https://i11www.iti.kit.edu/_media/teaching/theses/ba-gross-22.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-gross-22.pdf
http://dx.doi.org/10.1137/0405031
http://dx.doi.org/10.1137/S0097539795280287
http://dx.doi.org/10.1137/0221055
http://dx.doi.org/10.1137/0221055
http://dx.doi.org/10.1137/1.9781611977073.42
http://dx.doi.org/10.1137/1.9781611977073.42
http://dx.doi.org/10.48550/ARXIV.2211.04732
http://dx.doi.org/10.48550/ARXIV.2211.04732
http://dx.doi.org/10.1016/0012-365X(81)90203-X
http://dx.doi.org/10.1007/978-3-030-04414-5_14

Bibliography

[MU19] Laura Merker and Torsten Ueckerdt. Local and Union Page Numbers. In
Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network
Visualization, pages 447–459, Cham, 2019. Springer International Publishing.
doi: 10.1007/978-3-030-35802-0_34.

[MU20] Laura Merker and Torsten Ueckerdt. The Local Queue Number of Graphs
with Bounded Treewidth. In David Auber and Pavel Valtr, editors, Graph
Drawing and Network Visualization, pages 26–39, Cham, 2020. Springer
International Publishing. doi: 10.1007/978-3-030-68766-3_3.

[NP89] Richard Nowakowski and Andrew Parker. Ordered sets, pagenumbers and
planarity. ORDER, 6:209–218, 1989. doi: 10.1007/BF00563521.

[NP21] Martin Nöllenburg and Sergey Pupyrev. On Families of Planar DAGs with
Constant Stack Number, July 2021. doi: 10.48550/ARXIV.2107.13658.

[Ove98] Shannon Overbay. Generalized Book Embeddings. PhD thesis, Colorado
State University, Department of Mathematics, May 1998. https://dl.acm.
org/doi/book/10.5555/335806.

[PTV12] Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the Power
of Unambiguity in Logspace. computational complexity, 21(4):643–670, 2012.
doi: 10.1007/s00037-012-0047-3.

[Pup18] Sergey Pupyrev. Mixed Linear Layouts of Planar Graphs. In Fabrizio Frati
and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization, pages
197–209, Cham, 2018. Springer International Publishing. doi: 10.1007/978-3-
319-73915-1_17.

[Pup20] Sergey Pupyrev. Book Embeddings of Graph Products. CoRR,
abs/2007.15102, 2020. doi: 10.48550/arXiv.2007.15102.

[Pup23] Sergey Pupyrev. Queue Layouts of Two-Dimensional Posets. In Patrizio
Angelini and Reinhard von Hanxleden, editors, Graph Drawing and Network
Visualization, pages 353–360, Cham, 2023. Springer International Publishing.
doi: 10.1007/978-3-031-22203-0_25.

[Ram30] F. P. Ramsey. On a Problem of Formal Logic. Proceedings of the London
Mathematical Society, s2-30(1):264–286, 1930. doi: 10.1112/plms/s2-30.1.
264.

[Ros83] Arnold L. Rosenberg. The Diogenes Approach to Testable Fault-Tolerant
Arrays of Processors. IEEE Transactions on Computers, C-32(10):902–910,
1983. doi: 10.1109/TC.1983.1676134.

[Tar72] Robert Tarjan. Sorting Using Networks of Queues and Stacks. Journal of
the ACM, 19(2):341–346, 1972. doi: 10.1145/321694.321704.

[Yan89] Mihalis Yannakakis. Embedding planar graphs in four pages. Journal
of Computer and System Sciences, 38(1):36–67, 1989. doi: 10.1016/0022-
0000(89)90032-9.

[Yan20] Mihalis Yannakakis. Planar graphs that need four pages. Journal of Combi-
natorial Theory Series B, 145:241–263, 2020. doi: 10.1016/j.jctb.2020.05.008.

59

http://dx.doi.org/10.1007/978-3-030-35802-0_34
http://dx.doi.org/10.1007/978-3-030-68766-3_3
http://dx.doi.org/10.1007/BF00563521
http://dx.doi.org/10.48550/ARXIV.2107.13658
https://dl.acm.org/doi/book/10.5555/335806
https://dl.acm.org/doi/book/10.5555/335806
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1007/978-3-319-73915-1_17
http://dx.doi.org/10.1007/978-3-319-73915-1_17
http://dx.doi.org/10.48550/arXiv.2007.15102
http://dx.doi.org/10.1007/978-3-031-22203-0_25
http://dx.doi.org/10.1112/plms/s2-30.1. 264
http://dx.doi.org/10.1112/plms/s2-30.1. 264
http://dx.doi.org/10.1109/TC.1983.1676134
http://dx.doi.org/10.1145/321694.321704
http://dx.doi.org/10.1016/0022-0000(89)90032-9
http://dx.doi.org/10.1016/0022-0000(89)90032-9
http://dx.doi.org/10.1016/j.jctb.2020.05.008

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Applications
	1.3 Related Work
	1.4 Contribution
	1.5 Outline

	2 Preliminaries
	2.1 Upward Planar Graphs
	2.2 Directed Acyclic 2-Trees
	2.3 Linear Layouts

	3 Upward Planar Graphs
	3.1 Cycles and Kelly graphs
	3.2 Grids and N-Grids

	4 Upward Planar Bipartite Graphs
	4.1 Upper Bound
	4.2 Lower Bound

	5 Directed Acyclic 2-Trees
	5.1 A Directed Acyclic 2-Tree with Unbounded Stack and Queue Number but Bounded Mixed Page Number
	5.2 The Mixed Page Number of General Directed Acyclic 2-Trees

	6 Conclusion
	Bibliography

