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Abstract

Route planning is a popular application for mobile devices, but still some problems
have not been solved for road networks of continental size. Major constraints are the
limited resources, that do not allow entire road networks to be held in main memory.
Only a fraction of the complete road network can be held in main memory at once –
most of the data must reside in external memory. To allow efficient computation of
shortest paths, the data must be arranged in a way that allows efficient access.

Computed routes must be optimal for a specific metric, e.g., have an optimal distance
or travel time. These metrics are likely to change frequently, e. g., as traffic data or
driving preferences have to be considered.
However, current approaches to mobile route planning, are based on metric-dependent
preprocessing of data, that is too expensive for execution on mobile devices. Hence,
they can not comply with real-world requirements, that include dynamic and user
defined metrics.

Customizable Route Planning [1, 2], is a speedup technique, that separates prepro-
cessing in two stages. As a result of metric-independent graph partitioning in a first
stage, fast metric customization is possible for arbitrary metrics afterwards.

Based on the results of Customizable Route Planning, we develop a proof-of-concept
application for mobile devices. It demonstrates, that metric customization of road
networks in external memory is possible in a few minutes. Then, the precomputed
data can be used to compute exact shortest paths.

Zusammenfassung

Straßennavigation auf mobilen Geräten ist eine beliebte Anwendung, dennoch sind
noch nicht alle Probleme für Straßennetzwerke kontinentaler Größe gelöst. Haut-
probleme sind die begrenzten Ressourcen mobiler Geräte, welche es nicht zulassen,
dass komplette Straßennetzwerke in den Hauptspeicher geladen werden können. Zur
Berechnung von Routen auf mobilen Systemen müssen daher Techniken anwendet wer-
den, welche das Problem so unterteilen, dass nur wenige Teile der Daten gleichzeitig
aus externem Speicher geladen werden.

Berechneten Routen müssen bezüglich einer Metrik, z.B. hinsichtlich ihrer Länge oder
Reisezeit, optimal sein. In der Realität sind Metriken vielfältig, da beispielsweise
die aktuelle Verkehrssituation oder benutzerspeziefischen Fahrgewohnheiten berück-
sichtigt werden müssen. Aktuelle Lösungen zur Berechnung von optimalen Routen
auf mobilen Geräten beruhen allerdings auf rechenintensiven, metrik-abhängigen
Vorberechnungen, die nicht auf mobilen Geräten durchführbar sind. Sie können
daher den realen Anforderungen, welche dynamische und benutzerdefinierte Metriken
beinhalten, nicht gerecht werden.

Customizable Route Planning [1, 2], ist eine Beschleunigungstechnik, welche die
nötigen Vorberechnungen zweiteilt. Durch geschickte Partitionierung, können metrik-
abhängige Vorberechnungen in einem zweiten, wesentlich schnelleren Schritt erfolgen.

Aufbauend auf den Ergebnissen von Customizable Route Planning zeigen wir, dass
metrik-abhängige Vorberechnungen, durch das effiziente Nutzen von externem Spe-
icher, auch auf mobilen Geräten in wenigen Minuten durchführbar sind. Die vor-
berechneten Daten können dann genutzt werden um, optimale, kürzeste Wege zu
berechnen.
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1. Introduction

The calculation of shortest paths in road networks is a well studied problem in computer
science. The basic approach is to run Dijkstra’s algorithm to calculate the shortest paths
from one vertex to all other vertices [3]. Dijkstra’s algorithm runs in almost linear time,
depending on the data structures used [4]. However, as the graph instances used to
represent road networks of continental size are large, the runtime on such graphs is still in
the magnitude of seconds on modern hardware.

For many popular applications like car and pedestrian navigation it suffices to only calculate
the shortest path between a start and an endpoint, known as the point-to-point shortest
path problem. Several speed up techniques have been developed that solve the problem for
realistic metrics orders of magnitude faster than Dijkstra’s algorithm but still maintain
correctness. Common approaches are to exploit the hierarchical nature of road networks
or to direct the search towards the goal by pruning parts of the search space. Usually
the problem is separated in an expensive metric-dependent preprocessing stage to gather
auxiliary data that will speed up shortest path queries on the other hand. Examples are
ALT [5], Arc Flags [6] or Contraction Hierarchies [7]. For an overview of research refer
to [8].

For real world applications, however, metrics are likely to change frequently, as real time
traffic data (e. g., traffic jams) is considered or when metrics should adapt to end users’
driving preferences. Moreover different metrics should be supported simultaneously (e.g
travel time and distance). To solve this particular problem Delling et al. introduced
Customizable Route Planning [1, 2, 9]. One key feature is the separation into three
stages: metric-independent preprocessing, metric-dependent customization and shortest
path queries. The relatively slow metric-independent preprocessing parts the graph into a
hierarchical multilevel partition – only topological data is used. In the customization stage
a metric-dependent overlay is computed from the partition in several seconds. Afterwards,
shortest path queries can be accelerated using a partition-aware multilevel implementation
of Dijkstra’s algorithm: whenever possible the algorithm switches to the sparse overlay
on a higher level and thus heuristically speeds up the computation. Metric dependent
customization data is kept separately from the graph and partition to support multiple
metrics with one graph instance.

Often routing algorithms are designed with a client-server model in mind, but in reality
navigation systems must support offline navigation, e. g., when no data connection is
available. Even today not every region is covered by cellular networks, still the navigation
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1. Introduction

system must be able to compute routes. Moreover, online navigation raises additional costs
for a mobile data plan so that many navigation systems do not use an online connection at
all.
When algorithms are targeted for a stand-alone implementation on mobile devices instead
of server applications additional requirements must be taken into account. Usually, mobile
devices have limitations on main memory usage and processing speed. Therefore, only
a fraction of the complete road network can be held in main memory at once – further
required data must be read from slower external memory. External memory properties
dictate that data from external storage devices – mainly flash memory – must be read
blockwise. The data must be arranged with respect to its locality and the access patterns
of the used algorithms to avoid unnecessary reads of blocks.

In this work we adapt Customizable Route Planning to provide a mobile routing imple-
mentation that is not only capable of answering shortest path queries but also to perform
the metric customization in a reasonable amount of time from external memory.

1.1 Related Work
Some of the speedup techniques for road networks have been used in an external memory
implementation for mobile devices. The earliest attempt we are aware of is an imple-
mentation of the ALT algorithm on a Pocket PC by Goldberg and Werneck in 2005 [10],
nevertheless random queries on a North America graph take several minutes to complete
in their scenario. In 2008 Sanders, Schultes and Vetter introduced a mobile version of
Contraction Hierarchies [11], bringing query times down to the dimension of milliseconds.
They use more sophisticated compression techniques to compress the stored graph and
exploit locality in the data to reduce the number of blocks read. In his diploma thesis,
Vetter showed that it is possible to build a complete routing application for mobile devices
that meets many requirements of navigation systems today [12]. In a later work mobile CH
is covered in a dynamic scenario. However, random query times increase dramatically when
the weight of many edges is changed [7]. The existing implementations have in common
that preprocessing with respect to time and memory consumption and therefore cannot be
done on mobile devices.
Another approach to mobile routing covers mobile route planning in a server scenario with
limited connectivity [13].

Beside work in the field of road planning, theoretical research on shortest paths in external
memory has been done for planer digraphs [14], [15] and Meyer et al. presented an external
memory variant of Dijkstra’s Algorithm along with an experimental evaluation in [16].
However, these results are less applicable for our scenario as they are not exploiting the
special characteristics of road networks.

A compact representation of graphs has been studied in [17], proposing some compression
techniques that are related to those we use for our external memory graph. Further,
external memory characteristics of flash storage and their impact on algorithm design
have been examined by Meyer et al. [18] and [19] analyzes the impact of storage on the
performance of mobile applications.

1.2 Outline
In this work, we adapt Customizable Route Planning, to allow exact shortest path queries
as well as metric dependent customization to be done from external memory on a mobile
device. We build a proof of concept implementation evaluating customization and queries
with respect to time, block reads and memory consumption for the metrics distance and
travel time on a mobile device.
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1.2. Outline

After the basic preliminaries in Chapter 2, we first give a detailed overview of Customizable
Route Planning in Chapter 3.

In Chapter 4 we present the details of our Customizable Route Planning variant in external
memory: After discussing the characteristics of external memory storage, we engineer an
external memory representation for the graph, partition and customization data designed
to support efficient customization and queries. Therefore, we introduce an algorithm to
reorder the original graph with respect to the multilevel partition and use compression
techniques to keep the stored size small.

We compare different representations for the customization overlay graph and present a
new algorithm to build skeleton graphs with respect to space consumption. Moreover, we
propose overlay representations that allow efficient unpacking of shortcuts. We discuss
distance queries and two different versions of shortcut unpacking along with their features
in the external memory scenario.

Afterwards, we provide an experimental evaluation of our implementation in Chapter 5
and discuss the different variants towards their usefulness in real world applications.
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2. Preliminaries

In this chapter we introduce the formal representation of road networks and and explain
how to compute shortest paths in such a network using Dijkstra’s algorithm. It provides
the basis for Customizable Route Planning in Chapter 3.

2.1 Shortest Paths in Road Networks
Road networks are directed, positively weighted graphs G = (V,E, len), where V is a set
of vertices representing intersections or points on the road, E ⊆ V × V is a set of edges
representing road segments between the source vertex u and the target vertex v. The length
function len : E → R≥0, also referred to as metric of G, assigns a positive edge weight to
all edges (u, v) ∈ E. Examples for metrics in road networks are distance or travel time.

We call G directed as edges (u, v) ∈ E are ordered tuples. The graph G is called undirected
if for each edge the reverse edge (v, u) is in E and len(u, v) = len(v, u).

For a directed weighted graph G = (V,E, len) the corresponding reverse graph is GR =
(V,ER = {(u, v)|(v, u) ∈ E}, lenR(u, v) = len(v, u)).

Shortest Paths

Paths in a graph are ordered lists of vertices p = (v1, v2, . . . , vn), v1 . . . vn ∈ V, (vi, vi+1) ∈ E.
The length of p is len(p) =

∑n−1
i=1 len(vi, vi+1), the sum of the weights of edges between

vertices in p. If for s, t ∈ V, p = (s, . . . , t) is an s-t-path and for all other p′ = (s, . . . , t) the
length of p is smaller or equal to p′, p is a shortest path. The length of shortest s-t-paths is
denoted by the distance dist(s, t). Although a shortest path is not necessarily unique it
suffices to find one solution to solve the point-to-point shortest path problem.

2.2 Dijkstra’s Algorithm
Dijkstra’s algorithm was introduced in 1959 by Edsger W. Dijkstra [3] to calculate shortest
paths in positively weighted graphs. The algorithm scans all vertices u ∈ V in the order
of their distance dist(s, u) for a given start vertex s. It builds the foundation of many
speedup techniques for the point-to-point shortest path problem.

To process vertices in the order of their distances it keeps track of a tentative distance
d[u] for each vertex, initially assumed to be ∞ for u 6= s, d[s] = 0. A priority queue holds
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2. Preliminaries

a set of vertices having a tentative distance d[u] 6= ∞. It is initialized to contain s at
the beginning. As long as the queue is not empty a vertex u is scanned: the the vertex
with the current minimum tentative distance is removed from the queue. Afterwards,
outgoing edges of u are relaxed: if for (u, v) ∈ E the tentative distance of v is larger than
d[u] + len(u, v), v is updated with its new tentative distance. Note that the distance of u
is correct as d[u] was minimal when u was removed from the queue and edge weights are
defined to be positive, in particular d[u] = dist(s, u). If not only the distance but shortest
paths should be computed, one saves the parent parent[v] = u whenever a vertex gets
updated. Afterwards parent[·] defines a shortest path tree. If only a target vertex t is
relevant, processing can be stopped as soon as t was scanned, as dist(s, t) is known to be
correct.

Algorithm 2.1: Dijkstra
Input: Graph G = (V,E, len), source vertex s
Data: Priority queue Q
Output: Distances d [v] for all v ∈ V , shortest-path tree given by parent [·]
// Initialization

1 forall v ∈ V do
2 d[v]←∞
3 parent[v]← null

4 Q.insert(s, 0)
5 d[s]← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin() // u is scanned
8 forall (u, v) ∈ E do // relax edges
9 if d[u] + len(u, v) < d[v] then // update v

10 d[v]← d[u] + len(u, v)
11 parent[v]← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, d[v])
14 else
15 Q.insert(v, d[v])

The performance of Dijkstra’s algorithm mainly depends on the type of priority queue used.
For Fibonacci heaps the runtime is inO(|V |·log(v)+|E|). As road network graphs are usually
sparse, many implementations use binary heaps to avoid the constant overhead introduced
through Fibonacci heaps. Binary heaps yield a runtime in O((|V |+ |E|) · log(|V |)) [20].

s

t

scanned

vertices

Vertices that have been scanned are also referred to as the search
space. During execution the search space grows circular around
s as the distance of scanned vertices increases.
A simple way to speed up Dijkstra for the point-to-point shortest
path problem is bidirectional search. A second Dijkstra starting
starting from t calculates distances on the reverse graph GR. The
search can be stopped as soon as the common tentative distance of forward and backward
search µ =

−→
d [u] +

←−
d [u] exceeds the sum of the minimum keys of the Queues −→Q .minKey

+ ←−Q .minKey [20].
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3. Customizable Route Planning

Customizable Route Planning by Delling et al. [1, 2, 9] is a technique for fast computation
of exact shortest paths in road networks which focuses on fast customization for arbitrary
metrics. Therefore, CRP is separated into three stages:

1. Metric-independent preprocessing: find a multilevel partition for G, dividing G in
nested cells on a fixed number of levels. Take only the graph topology as input.

2. Metric-dependent customization: use the partition to build a multilevel overlay graph
for a given metric. Store the customization data independently to support multiple
metrics for the same road network at the same time.

3. Queries: use multilevel Dijkstra to calculate shortest paths on G for a given metric.
Use the customization data containing sparse overlay cells to speed up the computation
over Dijkstra when possible.

3.1 Multilevel Partition
As nested multilevel partitions build the core of Customizable Route Planning we give a
definition for such a partition of G.

Let P = {C1, . . . , Ck} be an ordered set of disjoint Cells Ci ⊂ V such that
⋃k

i=1Ci = V ,
then P is a partition of V . Equivalent to that definition is a mapping cell : V → {1, . . . , k}
assigning a cell id to each v ∈ V defining the Cells Ci.

A multilevel partition MLP = {P 1, . . . , PL} is an ordered family of partitions having L
levels. The cell id for a vertex on level ` ∈ {1 . . . L} is given by cell`(v). MLP is a nested
multilevel partition under the constraint that

∀u, v ∈ V, l ∈ {1 . . . L− 1}, cell`(u) = cell`(v)⇒ cell`+1(u) = cell`+1(v)

which means that vertices that are in the same cell on a given level must be in the same
cell on all higher levels. This further implies that for each Cell C`

i , ` 6= L a supercell C`+1
j

with C l
i ⊆ C

`+1
j exists and that C`+1

j is the union of subcells.

Cell graph

Based on the multilevel partition, a cell graph CG`
i = (C`

i , E
`
i ) can be defined. E`

i ⊆ E is
the set of edges {e = (u, v)|e ∈ E, u, v ∈ C`

i } between vertices of that cell. Associated to
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3. Customizable Route Planning

such a cell graph CG`
i is a set of incoming and outgoing cut edges Ê`

i = {(u, v), (v, u) ∈
E| cell`(u) 6= cell`(v)} (edges that lead in and out of the cell).
A vertex u ∈ C`

i is a boundary vertex of CG`
i if an outgoing or incoming cut edge (u, v) ∈ Ê`

i

or (v, u) ∈ Ê`
i exists. We denote the set of boundary vertices by B`

i ⊂ C`
i . Whenever the

level ` it not required, we drop it from notation for better readability.

3.2 Customization
Given a source and target vertex s, t and a cell graph CG`

i : if neither s nor t are in CG`
i

and the shortest s-t-path crosses CG`
i , the path will enter and leave CG`

i over a cut edge
visiting boundary vertices u, v on cell entry and exit (note that u = v is a possible option
and that the path might cross a cell multiple times). Therefore, to find the correct distance
dist(s, t) it suffices to know the correct dist(u, v) between all boundary vertices u, v of CG`

i

and internals of the cell graph can be ignored.

This can be achieved by usage of an overlay graph of the actual cell graph in the query. An
overlay graph contains a subset of the original vertices and preserves their distances. The
goal of the customization is to calculate such an overlay graph for each cell and to preserve
the distance between their boundary vertices. The simplest way to build such an overlay is
to use a clique: add an edge (u, v) for all boundary vertices u, v having the edge weight
dist(u, v). These edges are shortcuts as they they skip vertices of the original graph.

Although the formal definition of overlay graphs requires that the distances of all its
vertices are preserved [21], it is sufficient if the distance between the boundary vertices is
preserved to maintain correctness in our scenario[1, 2]. A skeleton graph that preserves
some internal vertices but reduces the number of edges can be built. Figure 3.1 gives an
example for a clique or skeleton overlay cell. We denote such a customization cell graph by
CG`

i = (C`
i , E

`
i).
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Figure 3.1: Original cell graph and customization cell after building a clique or a skeleton.

The metric dependent customization builds these cells in a bottom up fashion. It calculates
distances between boundary vertices using cell local queries. As the the multilevel partition
is nested, upper level cells are the union of subcells linked by their cut edges. To speed up
computation, the overlay cells from the lower level can be used for the upper levels. As
building the overlay is independent for each cell, the customization is highly parallelizable.
It can be done in a few seconds on modern computers for road networks of continental
size [1, 2]. We have a detailed look into the generation of customization cells in Section 4.3.2.

Partition Features

An algorithm to find such a partition as described in 3.1 is PUNCH [22]. It uses natural
cut heuristics to find cells with a low number of cut edges. Examples of natural cuts are
rivers or country borders that are typically crossed by a low number of edges.
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3.3. Multilevel Dijkstra

As the size of overlay cells CG`
i mainly depends on the number of their boundary vertices,

a low number of boundary vertices is preferred. A maximum number of vertices U ` for
cells on a partition level characterizes the multilevel partition. It is set as a parameter to
PUNCH, the algorithm partitioning the graph. The number of cells per level is not fixed
in advance.

3.3 Multilevel Dijkstra
Multilevel Dijkstra (MLD) is a modification of Dijkstra’s algorithm, that is aware of the
multilevel partition and uses the precomputed overlay cells to heuristically speed up the
computation. Switching to the overlay breaks down to the question which edges of a vertex
should be relaxed:

Depending on the start and target vertex s, t every vertex u ∈ V has a distinct level. It is
the highest level on which it does not share a cell with neither s nor t.

uncommonLevel(u, v) =

0 if cell`(u) = cell`(v)
max

`∈{1..L}
cell`(u) 6= cell`(v) else

level(u) = min(uncommonLevel(s, u),uncommonLevel(t, u))

Algorithm 3.1: Multilevel Dijkstra
Input: Graph G = (V,E, len), source and target s, t, customization data for len,

cell mapping cell`
Output: Distances d [v], shortest-path tree containing overlay edges given by

parent [·]
// Initialization

1 forall v ∈ V do
2 d[v]←∞
3 parent[v]← null

4 Q.insert(s, 0)
5 d[s]← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin() // u is scanned
8 level← level(u)
9 cell← celllevel(u)

10 forall (u, v) ∈ E level
cell , (u, v) ∈ Ê level

cell do // relax overlay and cut edges
11 if d[u] + len(u, v) < d[v] then // update v
12 d[v]← d[u] + len(u, v)
13 parent[v]← u
14 Q.update(v, d[v]) // combined contains, insert, decreaseKey

For some vertex u, let ` be level(u) an c be the corresponding cell id cell`(u). The shortest
path between s and t might cross the level-`-cell C`

c of u, but as neither s nor t are in that
cell it is save to use the overlay, otherwise level(u) = 0 and we are using the original graph.
More precisely it is save to relax u’s level-` overlay edges in E`

i plus the cut edges of u
in Ê`

i .
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3. Customizable Route Planning

Note that the level level(v) of vertices in the same cell equals to level(u) due to the nested
property of the partition. Internal vertices are automatically skipped as they cannot be
reached by any edge.

We consider the original graph to be “level 0” and assume that the overlay edges for a
level-0 cell E0

i = E1
i equal the original edges of the corresponding level-1 cell and that the

cut edges Ê0
i = Ê1

i are the same as for level 1. It avoids a case distinction between the
original graph and the customization overlay in the pseudocode notation.

All the cells that can be reached by the query are referred to as the search graph. It is
distinct for a given s, t pair. Figure 3.2 provides an illustration: the level of the cells
around s and t grows whenever the supercell is left. In other words the lower level cells are
bounded by the supercells of s and t. The search space grows circular around s, but it gets
sparse for regions far from s and t.

s

t

Figure 3.2: MLD search graph illustrated. Cells are darker for higher levels.

As the shortest path tree computed by MLD contains shortcut edges from the overlay,
additional unpacking is required to give a complete shortest path response. The general
approach to unpacking of shortcuts is to recursively use the lower level cells and perform
unpacking queries down to original graph.

Running the query and unpacking of shortcuts takes a few milliseconds on a road network of
continental size on a modern computer. Beside fast metric customization CRP is also suited
to handle advanced requirements like turn costs or alternative routes. For an in-depth
analysis of CRP in a client-server scenario refer to [2].
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4. External CRP

In this chapter, we design an external memory variant of Customizable Route Planning
targeted at mobile devices. First, it is essential to have a look at the characteristics of
external memory and its impact on algorithm design.

4.1 External Memory
In a simplified model, memory can be classified into internal memory (RAM) and external
memory storage. In general, RAM can be considered to be fast, volatile and as its name
indicates, it is optimized for random access. On the other hand external memory is
permanent and can store data that exceeds the size of internal memory. Together, they
form a memory hierarchy: The CPU can directly operate on data in internal memory
while data in external memory must be copied to internal memory before. Access to
external memory is slow and dominates the actual computation in terms of runtime for
many applications.

If the internal memory is not large enough to hold all the required data, data must be
swapped in an out of external memory. While internal memory is usually accessible at byte
addresses, external memory is divided into larger blocks. A file system abstracts from the
raw devices and the operating system offers an interface to access these files. If an entity
that is smaller than the minimum block size, the complete block must still be fetched. But
if a larger fraction of the block is relevant, that additional data adds no additional cost.
Therefore, one principle of external memory algorithm design is to arrange data locally
to minimize the number of block reads. A fixed number of blocks can be held in internal
memory and builds the cache. To avoid the costly read of blocks it is preferred to group
data that is likely to be used together to exploit cache effects.

Storage of mobile devices is usually flash based, e. g., SD cards or internal flash memory.
The impact of flash memory for algorithm design [18] and effects of flash memory and access
patterns for application performance on mobile devices [19] have been studied: Although
flash memory is known to offer fast random reads, block access patterns are still crucial
for application performance. In fact, random access performance for both read and write
operations is significantly slower for small block sizes. To improve performance, operating
systems use a read ahead buffer combined with algorithms to detect sequential access
patterns [23]. Data that is likely to be required next is fetched in the background. To
take advantage of these effects it is recommended to access blocks sequentially if possible.
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An alternative is to use unbuffered access to files with slightly lower overhead for small
blocks on one hand, but no speed up for sequential access on the other. We provide a short
comparison in our experimental evaluation in Chapter 5.

4.2 External Graph and Overlay Data
The goal of our application is to support efficient metric customization using an external
graph, and to use the generated metric-dependent overlay to compute shortest paths
afterwards. The graph and overlay data must be efficiently accessible in external memory.
Building the external memory graph, which is available initially to the application, is part
of the metric-independent preprocessing stage and does not have to be done on a mobile
device.

First of all, consider the access patterns of customization and queries. Based on the
patterns, the data can be reordered to improve locality. To build a customization cell
either the corresponding level-1 cell of the original graph or all already customized subcells
are required. Similar patterns apply to the shortest path queries: In most cases cells are
visited completely, only cells that are located on the border of the search space might be
visited only partially. Section 3.3 showed that cells in the search graph on a certain level
are bounded by their supercell. Hence, it is likely that adjacent cells on the same level are
required simultaneously. The level can change only at the cut edges in case the region of
the supercell is left. To respect the locality for both query and customization, we store
single cells as a contiguous memory block, but also store cells that have common a supercell
consecutively in external memory as they are likely to be required together.
When cells are traversed by the query, the traversal is always leading over a cut edge. To
avoid random block access, cut edges should be stored together with the cells on every
overlay level, although that adds a small amount of redundancy. Further, the cell ids
cell`(u) of a target vertex are required to find the level level(u) for such a vertex.

4.2.1 Reordering
To arrange our input data according the access patterns, we reorder the original graph
such that the vertices of all cells on every level have a consecutive ids. We further reorder
the cell ids of the nested multilevel partition, such that cells, that build a common cell on
the next higher level, follow each other.

Therefore, we are using a modified undirected breadth-first search algorithm, that pro-
cesses entire cells first, before it continues with the next cell. Essential part is the
uncommonLevel(u, v) function defined in Section 3.3. Instead of using a single queue, our
algorithm uses L+ 1 queues to hold vertices according to their uncommon level. A Vertex
u is taken from the lowest queue containig vertices and reached vertices v are inserted in
the queue for uncommonLevel(u, v), e. g., vertices of the same level-1 cell are inserted in
queue 0 and vertices that do not have a cell in common with u on any level go to queue
L. When a queue was empty, a cell is completed. The new order of cells and vertices, is
then given by the order, in that vertices are processed and cells are completed. Algorithm
4.1 provides pseudocode notation. The algorithm is simplified, as vertices of a cell are not
guaranteed to be connected: for the actual implementation a check is required if the cell is
completed after a queue was empty – if not, the search must continue with an unprocessed
vertex of that cell. We omit that routine for simplicity.
Note that vertices can be in multiple queues at the same time: if multiple vertices v1, v2
of the same cell are in a higher level queue and v1 gets processed, v2 is reached at some
point and inserted in Queue 0 as the uncommon level has changed. We remove processed
vertices at the front of the queues before a new vertex is taken out. Figure 4.1 provides an
illustration of the new cell and vertex order after the algorithm was applied.
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Algorithm 4.1: Reorder graph (simplified)
Input: Graph G = (V,E), start vertex v, multilevel partition
Output: Mapping for vertex ids vertexMap[·], Mapping for partition cells

partitionMap[·][·]
// counter used to assign indexes

1 vertexCounter← 0
2 cellCounter[L]← {0, ..., 0}
3 activeCell[L]← {cell1(v), ..., cellL(v)}

// L + 1 queues, queue 0 for vertices of the same cell, queues
1,..,L according to their highest uncommon level

4 Queue[L+ 1]
5 Queue[0].pushBack(v)
6 finished← false
7 while not finished do

// loop over levels
8 for level ∈ {0, ..., L} do

// remove processed vertices from queue
9 while processed(Queue.front()) do

10 Queue.popFront ()
// process vertex: assign new id

11 if not Queue[level].queueEmpty() then
12 u← Queue[level].front()
13 vertexMap[u]← vertexCounter++

// the current cell changes on lower levels
14 for (i← 0; i < level; ++i) do
15 activeCell[i]← celli+1(u)

// add adjacent vertices to queue for their uncommon level
16 forall e ∈ E : e = (u, v) ∨ e = (v, u) do
17 Queue[uncommonLevel(u, v)].pushBack(v)

18 break
// queue was empty ⇒ cell completed

19 else
20 if level < L then
21 partitionMap[level][activeCell[level]]← cellCounter[level]++
22 else
23 finished← true

Cell i+1 Cell i+2 Cell i+3 Cell i+5 Cell i+6Cell i+4

Cell j+1

Cell k

Cell j

Cell i

Level 3

Level 2

Level 1 ...

...

...

ordered vertices

Figure 4.1: Vertex and cell order after reordering.
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4.2.2 Data Structures
As complete cells are required in most cases, we serialize entire cell graphs to store them
in external memory. The drawback of this approach is that random access on a vertex or
edge level is not possible, but compression is straightforward as the size of data fields can
be changed dynamically.

Our external graph data structure stores the original graph as serialized adjacency arrays of
level-1 cells. We can exploit the order we have obtained to store the cells in a compact way.
Every vertex in the original graph is identified by a global id that is given by the vertex
order. As vertices in a cell have a consecutive ids, it is sufficient to know the global id of the
first vertex, the remaining ids are given implicitly by their order. To encode the partition,
every vertex is associated with the cell id for each level – but since that information is equal
for each vertex in the same cell it needs to be stored only once per cell. The cells ids can
be efficiently encoded into a single data field by using a fixed number of bits for each level.
The the uncommonLevel(u, v), level(u), and cell`(u) functions can then be implemented
efficiently by using bit operations. Basic graph and partition information, e. g., the number
of vertices, edges, levels and the number of cells per level are encoded in the graph header.
Vertices are not associated with any distinct features in our scenario and can be encoded
implicitly: edges have a flag that indicates if they are the last edge of a vertex. Data fields
with dynamic size can significantly reduce the stored size. In many cases, edge weights are
small and fit into a single byte field. Due to the BFS ordering of vertices, ids of adjacent
vertices have a small difference. Whenever possible we store the target vertex id as offset
to the source vertex id in a single byte. Real-world navigation applications would probably
not encode edge weights for multiple metrics, but include additional data fields or flags
to classify roads into different types and to indicate restrictions, e. g., speed limits. In
combination with the edge length, various metrics, e. g. travel time, can be derived at
runtime. For our purpose, however, a proof of concept implementation, it suffices to include
a distance and a travel time metric.
A similar approach to our graph reordering and compression of vertex ids was taken by
Blandfort et al. in their experimental analysis of a compact graph representation [17].
They use a seperator tree to reorder vertices and store offsets of vertex ids in combination
with sophisticated encoding methods to keep the representation compact.
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Figure 4.2: External graph data structure overview.
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Cut edges include the cell ids of target vertices as they are required to traverse into another
cell. Random accessible maps for vertex and cell ids point to the memory addresses of
corresponding cells. The vertex map is required to find start and target cells for random
queries. Real-world applications require more complex lookup data structures, e. g., address
mappings or spatial indexes. The cell map is required for customization and cell traversal.
Alternatively, the addresses of adjacent cells could be stored locally at the cut edges, but
that would require a overlay data structure of fixed layout. Recall that the graph data is
metric-independent and must not change for different metrics. To preserve the option of
using arbitrary size overlay data and as the cell map is small and cache efficient we decided
to use the map to locate adjacent cells instead of fixed memory addresses. The overlay
data structure contains a similar cell map for multiple levels.

Unfortunately, we cannot fit cells into a fixed number of aligned blocks as the size of cells
varies and is given by the partition. In Mobile Contraction Hierarchies [11], Sanders et al.
separate their graph instance into independent accessible segments that fit exactly into
one memory block. In our scenario, the separation of cells in exactly fitting segments is
unsuited as the complete cell is required in most cases. Additionally, blocks that overlap
cell boundaries can be accessed from cache in case the next cell is required. An overview
to the entire external graph data structure is shown in Figure 4.2.

The overlay data structure is build similarly to the external graph. No vertex map is
required as cells are only addressed by their id and level. Serialization of cells works
differently: global vertex ids must be stored explicitly as only a subset of the original
vertices is included. Local indexes of the stored vertices, at least all boundary vertices of
the cell, are used to encode the internal structure. Only one edge weight must be stored
per edge as the overlay data is metric-dependent.

Loading cells. For deserialized cell graphs in internal memory we use a standard adjacency
array. We make a distinction between the local index of a vertex and the global id that is
unique for the complete graph. Multiple cells can be deserialized or copied into in a single
adjacency array by appending cells at the end, see Figure 4.3. Edge and vertex indexes
are offset by the number of vertices and edges, that currently exist in the adjacency array.
This way we can easily join subcells into a single graph for the customization or build the
search graph during the query.

For cut edges the target vertex index is unknown. It is resolved using a hash map, holding
a mapping from global id to a local vertex index for all boundary vertices – if the target
cell is loaded yet. For simplicity, the representation of vertices and edges is verbose: each
vertex stores its global id and its cell ids, the same information for target vertices is held
by edges.

Edges

Vertices

1 2 3 4 5 6 7 8

1 2 0 0 3 ? 2 4 ? 6 7 5 8 ?73

2 1 3 2 1 2 1 2 1

0

Cell A Cell B
Cell X

Figure 4.3: Adjacency array of cells in internal memory. Multiple cells can be loaded into
a single adjacency array, cut edges must be resolved using the global vertex ids.
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4.3 Customization
During the customization stage the metric-dependent overlay data structure is built from
the external graph. Overlay cells have to be built for cells on each level such that the
distance dist(u, v) for boundary vertices u, v is preserved (refer to Section 3.2). This process
must be repeated for every metric that should be used in the following query stage.

Building a customization cell consists of the following steps:

1. Obtain origin cell: for the lowest level use the cells from the graph, for all upper
levels join already customized subcells.

2. Run shortest-path queries for each boundary vertex.

3. Create a distance-preserving customization cell from the query results.

4.3.1 Parallelization
For optimal run times, the customization of cells must be parallelized. Even mobile devices
feature multi-core processors with up to four cores today. In general, the customization is
well parallelizable, as the overlay for each cell can each be computed independently. The
only constraint is that subcells of a cell are customized first, as using the overlay cells
speeds up the customization on the upper levels. The common approach is to customize
cells bottom-up and to complete lower levels first. Customization can either be parallelized
per cell or per query for each boundary vertex. But as creating the overlay cells from the
query results can take a significant amount of time, depending on the overlay representation
used, it pays to parallelize on a cell level.

As the customization reads and writes cells from and to external memory, efficient paral-
lelization is non-trivial in our scenario. I/O operations, reading and writing cells, must be
synchronized between threads and cells must be written in the order of their cell id.
The order of cells guarantees that subcells are stored consecutively. If subcells are loaded
to customize their supercell, these cells can be read sequentially. Moreover, the complete
graph or entire levels of the can be processed sequentially as we customize cells in the order
of their cell ids (recall Figure 4.1). We further do not want to change the stored order to
maintain locality for shortest path queries.
Threads should not block and waste time due to I/O (assuming that the customization
is not I/O dominated). Blocking might occur in two cases. First a thread might require
a new cell but another thread is blocking I/O, secondly a thread might wait to write a
customized cell as either the previous cell has not been written yet by another thread or
I/O is currently blocked.

Free Cells
Buffer

Customized
Cells Buffer

Origin Cells
Queue

Queries
Build overlay cell

Sort cells
Serialize, write cells

Read cells
Join subcells

data flow

synchronized buffer access

control flow

try to enter section (non-blocking)

process
complete
buffer

fill
buffer

Figure 4.4: Parallelization of the customization: data and control flow per thread. The
cell buffers are shared among all threads.
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To overcome these limitations we use a queue that holds origin cells ready to be customized
and a buffer to temporarily hold the customized cells. I/O operations are not necessarily
done before and after customizing a cell. Each thread attempts to write back the customized
cells or load new origin cells, but if that fails, it continues to customize another cell. Before
cells are written they must be ordered by their cell id. Cells that are out of order remain
in the buffer. We reasonably limit the overall number of cells being either in the work
queue or waiting for write-back to keep the memory requirements low. Therefore, we use a
fixed number of containers that hold the cell graphs. They are reused for different cells to
avoid fragmentation of internal memory. An intermediate buffer holds currently unused
containers. Figure 4.4 visualizes the data and control flow of the customization.

4.3.2 Building the Overlay
Let CGi = (Ci, Ei) be a cell graph that should be customized and Bi ⊆ ∗Ci the subset of
boundary vertices. A customization cell graph CGi = (Ci, Ei) that preserves distances
dist(u, v) for u, v ∈ Bi should be found. (Recall the definitions from Chapter 3)

Fist of all we run a shortest path query form each boundary vertex b ∈ Bi. The queries
yield a shortest path tree parentb[ · ] and distances db[ · ] for each boundary vertex. The
distance between boundary vertices u, v ∈ Bi is given by dist(u, v) = du[v]. If no path
between u and v exists the distance equals infinity du[v] =∞.

The obvious approach to construct CGi is to build a clique. Set Ci = Bi and Ei = Bi×Bi

with len(u, v) = du[v] for (u, v) ∈ Ei. For cliques, the number of edges |Ei| = |Bi|2
is quadratic in the number of boundary vertices. Cliques have been used as default
representation by Delling et al. for in CRP [1, 2]. They have a major advantage over other
overlay types: They are trivial to build and and the topology of cell graphs stays the same
for all metrics. As the topology is fixed, cliques provide performance guarantees for any
metric. Instead of an adjacency array representation, matrices can be used to store edge
weights, allowing a lightweight implementation.
However, cliques have a major drawback in the external memory scenario. A quadratic
number of edges results in a relative large stored size of the cell. I/O is expected to be the
bottleneck for shortest path queries and it pays to use more sophisticated representations
that yield a smaller stored size.

For realistic metrics like distance or travel times, road networks exhibit a strong hierarchy:
some vertices are more import than others, as they are more likely to be part of shortest
paths, e. g., highways are likely to be used for distant s and t. The same applies for
cell graphs: some of the internal vertices are part of many shortest paths between the
boundary vertices. A huge part of the vertices is not covered by any shortest paths between
boundaries at all, see Figure 4.5 for an example. The number of edges can be reduced by
preserving some of the important internal vertices.
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Figure 4.5: Original cell graph (left) and shortest paths between boundary vertices (right).
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4.3.2.1 Creating Cell Graphs for Preserved Vertices

Customization cell graphs CGi = (Ci, Ei) of the overlay must preserve the distances
dist(b, c) between their boundary vertices b, c ∈ Bi. Beside the boundary vertices Bi,
preserved vertices Ci ⊆ Ci in the overlay cell can contain internal vertices Ci \Bi of the
original cell. In the following we discuss, how to find the overlay edges Ei for a given set of
preserved vertices Ci, such that the customization cell graph CGi preserves the distances
between boundary vertices. We are only considering vertices on shortest paths pb,c between
boundary vertices b, c ∈ Bi.

Definition and Theorem. Let pb,c = (b, . . . , c) be the shortest paths between boundary
vertices b, c ∈ Bi given by the shortest path trees parentb[ · ]. We add an edge (u, v) with
len(u, v) = dist(u, v) to Ei ⊆ Ci × Ci if a subpath p′ = (u, . . . , v) exists for any pb,c and
p′ contains no other preserved vertices a ∈ Ci, a 6= u, v. Then CGi = (Ci, Ei) preserves
distances dist(b, c) for boundary vertices b, c ∈ Bi.

Proof. First of all shortest b-c-paths cannot have a smaller dist(b, c) in CGi as only edges
(u, v) of length dist(u, v) in CGi were added and the concatenation of shortest paths cannot
yield a shorter path.
We must consider two cases. Either an edge (b, c) exists in Ei, but then the length of
the edge is dist(b, c) by construction. Or the shortest path pb,c = (b, . . . , a0, . . . , an, . . . , c)
in CGi contains a finite number preserved vertices ai ∈ Ci. It can be split in subpaths
containing no further preserved vertices (these subpaths are also shortest paths). An edge
was added for each subpath and the sum of the edge lengths corresponds to dist(b, c). �

A similar approach to overlay graphs has been taken by Schulz et al. [24] and the proof of
correctness for this customization cell graph resembles the edge-min overlay graph defined
by Holzer et al. [21]. However, our customization cell graph is technically not an overlay,
as we do not preserve the distance between all preserved vertices C`

i but only between
boundary vertices. The generated graph is not necessarily edge-minimal as the shortest
paths between boundary vertices in parentb[ · ] might include different shortest subpaths
between preserved vertices. In this case redundant edges are added to Ei. The effect
should be negligible for road networks, as in most cases edge weights differ enough to make
shortest paths unique.

Algorithm. For a given set of vertices Ci, Algorithm 4.2 constructs the edges directly
from the shortest path trees parentb[ · ] and the distances db[ · ]. The shortest paths trees
parentb[ · ] contain the reverse shortest paths from any boundary vertex to boundary vertex
b. We run an outer loop over all preserved vertices and an inner loop over all shortest path
trees: if a preserved vertex a ∈ Ci is in a shortest path tree parentb[ · ], we find the reverse
subpath from a to the next preserved vertex a′ ∈ Ci. We use a map for all preserved
vertices to mark found subpaths from a to a′. As all reverse subpaths starting from a
are found successively, we can use an increasing index to mark preserved vertices a′. If a
subpath was not marked yet, an edge (a′, a) is added. The edge length is given as difference
of the distances in the shortest path trees db[a]− db[a′].

Before the cell can be serialized and stored in external memory, an adjacency array based
cell graph must be built. To built such a graph representation the number of edges must
be known in advance for each vertex and edges with identical source vertex must be stored
consecutively. Therefore, we sort the edges by their cell local source vertex index. Cut
edges Êi must be included in the cell graph.
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Algorithm 4.2: Find cell edges
Input: Cell graph CGi = (Ci, Ei), Boundary vertices Bi ⊆ Ci, preserved vertices

Ci, shortest path trees parentb[ · ] and distances db[ · ] for all boundaries
Output: Customization cell edges Ei and edge lengths len(e) for e ∈ Ei

// map to mark existing edges between preserved vertices
1 edgeMarker← 0
2 edgeMap[|Ci|]← {0, . . . , 0}

// loop over preserved vertices
3 forall a ∈ Ci do
4 edgeMarker++

// loop over boundaries
5 forall b ∈ Bi do
6 if (a 6= b and a is on shortest path in parentb[ · ]) then
7 v← parentb[a]

// find subpaths that do not contain other preserved vertices
8 while v /∈ Ci do
9 v← parentb[v]

10 if edgeMap[v] 6= edgeMarker then
11 Ei ← Ei ∪ {(v, a)} // add an edge
12 len(v, a)← db[a]− db[v] // set length
13 edgeMap[v]← edgeMarker

4.3.3 Overlay Types
Algorithm 4.2 provides a general approach to define a set of overlay types beside cliques. We
examine various variants in the context of external memory CRP. Our goal is to keep the
stored size of the overlay small, since small overlay data reduces the number of blocks that
must be loaded during shortest path queries. Hence, a speedup in run times is expected by
using more sophisticated overlay representations.
Using Algorithm 4.2 the topology of a cell graph is defined by the vertices Ci that are
preserved. At least all boundary vertices must be included.

4.3.3.1 Cliques, Reduced Cliques and Full Overlay

For cliques the number of edges |Ei| = |Bi|2 is the squared number of boundary vertices.
The main advantage of cliques are their metric-independent topology and their efficient
matrix graph representation. Therefore, we use matrices to store clique cell graphs of
metric-independent size in external memory. All other types use an adjacency structure to
serialize cell graphs.
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Two trivial ways to define Ci are either to set the preserved vertices to the boundary
vertices Ci = Bi, or to preserve all vertices that are covered by shortest paths between
boundaries. The outcome is either a reduced clique or a full overlay (see Figure 4.6).

Reduced cliques are a sparse variant of cliques. They contain shortcut edges between
boundary vertices as cliques do, but only if the the path between two boundary vertices
b, c is not leading over another boundary vertex in between.

Reduced cliques for CRP have also been examined in [1] but their approach is different.
Delling et al. build cliques first, and run local Dijkstra Queries on the complete overlay to
find redundant edges afterwards. However, for our approach to customization in external
memory, it is essential that each cell is built independently.

The full overlay preserves complete paths between boundary vertices. In other words parts
of the graph that are not relevant for shortest paths between boundaries are removed. Our
experimental evaluation in Chapter 5 show, that such a verbose overlay is not suited for
external memory CRP. Nevertheless, the resulting number of vertices and edges provide a
good indicator for the hierarchical properties of a metric.

4.3.3.2 Skeleton Graphs
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To further reduce the number of edges we propose a method to
create skeleton graphs. When internal vertices beside the boundary
vertices are preserved in the customization cell, the number of
edges changes (see Figure 4.7) compared to cliques.

Skeleton graphs have also been examined by Delling et al. in
the original CRP publication [1], but the algorithm we use for
their generation is new. The original approach was to start with
full cell graphs as defined in 4.3.3.1 and to greedily contract low
degree internal vertices. Instead of removing vertices bottom up,
we propose adding them top-down. To find a good set of vertices we formalize the change
in the number of edges if an additional vertex is preserved:

Let Ci be the set of preserved vertices and v ∈ Ci an internal vertex on a shortest path
between boundary vertices. Further v should not be preserved v /∈ Ci yet.
Ei is the set of required edges for Ci and E′i is the set for Ci∪{v}. We define the reduction
of edges

edgeReduction(v) = |Ei| − |E′i|

as a measure of v’s importance. Taking the edge reduction, we can greedily set vertices to
be preserved until the number of edges cannot be reduced further. To calculate the edge
reduction for each vertex, without running Algorithm 4.2 for each, we must specify the
edge reduction in greater detail.

To calculate the edge reduction for a vertex v, we consider the shortest paths pb,c between
boundary vertices b, c ∈ Bi. For a subpath p′ = (a1, . . . , v, . . . , a2) of any pb,c such that
a1, a2 ∈ C`

i are the only preserved vertices in p′, an edge is added to Ei (see Section 4.3.2.1).
If we further consider all such subpaths p′ of any pb,c having a distinct tuple (a1, a2),
then for each subpath an edge is created. We denote the set of all p′ leading over v by
ShortestSubpaths(v).
But if v would be a preserved vertex, an edge from each distinct a1 to v and an edge
from v to each distinct a2 would be added. Those vertices build the neighborhood of v, in
particular ←−

N (v) = {a | (a, . . .) ∈ ShortestSubpaths(v)}
−→
N (v) = {a | (. . . , a) ∈ ShortestSubpaths(v)}
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for vertices that are adjacent to v over an incoming edge or an outgoing edge. The edge
reduction is then given by

edgeReduction(v) = |ShortestSubpaths(v)| − |←−N (v)| − |−→N (v)|

Fortunately the edge reduction can be calculated by traversing the shortest path trees
parentb[ · ] for all relevant vertices. For each vertex a1 ∈ Ci (outer loop) and each boundary
vertex b ∈ Bi (inner loop) Algorithm 4.3 traverses shortest paths in parentb[ · ] from a1 until
an other preserved vertex a2 ∈ Ci is found. Subpaths p′ = (a1, . . . , a2) starting at a fixed
a1 are processed consecutively. If the path’s target vertex a2 was not in a path with source
a1 yet, the path p′ = (a, v0, . . . , vi, t) is a distinct shortest subpath for all vertices vi in
between. We use counters to calculate the number of distinct subpaths and their distinct
source and target vertices. To avoid double counts we must mark vertices for sources a1
and targets a2.

Afterwards, the vertex yielding the highest reduction of edges is added to the set of
preserved vertices. We repeat calculating the reduction of edges and preserve more vertices
until the number of edges cannot be reduced any further. Serialized vertices take less space
than edges in our case. Else the routine would have to stop as soon as the reduction falls
below a certain threshold.

4.3.3.3 Preserving Boundary Vertices on Upper Levels

With regard to edge unpacking in the following Section 4.4, we define an overlay representa-
tion that makes guarantees about preserved vertices. For CRP, the shortest paths, that are
found by the query, contain shortcuts from the overlay. To obtain a full path description,
cells must be unpacked recursively from top level cells down to level-1 on the origin graph.

To avoid recursive unpacking, boundary vertices of level 1 are preserved on all upper levels.
Therefore, we store a flag to indicate that these vertices must be preserved on all upper
levels. Many of the level-1 boundaries do not remain on higher levels as they do not appear
on shortest paths.
We can then unpack shortcut edges directly on the origin graph and reduce the number of
blocks we need to read.

Our experimental evaluation in Chapter 5 shows that level-1 boundaries are a good choice
for the preserved vertices Ci and that the resulting size of the overlay data compares to the
other overlay representations. We consider two variants with either skeletons or reduced
cliques on level-1 and preserved boundary vertices on upper levels.
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Algorithm 4.3: Find skeleton vertices
Input: Cell graph CGi = (Ci, Ei), initially preserved vertices Ci = Bi, shortest

path trees parentb[ · ]
Output: Customization vertices Ci

1 nextRound← true
2 while nextRound do

// initialize counter
3 distinctSubpaths[|Ci|]← {0 . . . 0}
4 distinctSource[|Ci|]← {0 . . . 0}
5 distinctTarget[|Ci|]← {0 . . . 0}

// maps to avoid double count
6 sourceVisited[Ci|]← {0 . . . 0}
7 targetVisited[|Ci|][|Ci|]← {false . . . false}
8 sourceMarker← 0

// loop over preserved vertices
9 forall a ∈ Ci do

10 sourceMarker++
// loop over boundaries

11 forall b ∈ Bi do
12 if (a 6= b and a is on shortest path in parentb[ · ]) then

// traverse path to find other preserved vertex (target)
13 t← parentb[a]
14 for t /∈ Ci do
15 t← parentb[t]

// if (a,t) was not processed ...
16 if sourceVisited[t] 6= sourceMarker then
17 sourceVisited[v]← sourceMarker
18 v← parentb[t]

// ... traverse again, update vertex counter
19 for v /∈ Ci do
20 distinctSubpaths[v]++
21 if sourceVisited[v] 6= sourceMarker then
22 distinctSource[v]++
23 sourceVisited[v]← sourceMarker
24 if not targetVisited[v][t] then
25 distinctTarget[v]++
26 targetVisited[v][t]← true
27 v← parentb[v]

// find vertex with max edge reduction (loop)
28 edgeRed← max v ∈ Ci : distinctSubpaths[v]−distinctSource[v]−distinctTarget[v]

// if the best vertex reduces edges, set it preserved, stop else
29 if edgeRed > 0 then
30 Ci ← Ci ∪ {v}
31 else
32 nextRound← false
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4.4 Query and Edge Unpacking
Shortest path queries are almost straightforward: We build the search graph in internal
memory during the query and load cells, from external memory, whenever a required vertex
is not yet in the search graph.

Building the search graph is done as explained in Section 4.2.2: Every vertex has a local
index in the search graph, but the local index is initially unknown for target vertices of
cut edges. Therefore, we manage a hash map to map global ids to the local index for all
boundary vertices. The mapping is updated for new boundary vertices whenever a cell is
loaded.

We run unidirectional Multilevel Dijkstra starting at a vertex s and stop the search as
soon as the target t was scanned. For given s, t, the corresponding level-1 cells from
the graph must be initially loaded. The cells are located in external memory using the
vertex map of the graph data structure (see Section 4.2.2). The cell of t is required from
the start as we need the cell id cell`(·) on each level ` for both s and t to calculate the
highest uncommon level uncommonLevel(v) for vertices v in the search graph. For details
on Multilevel Dijkstra recall Section 3.3.

Loading cells into the search graph takes place when cut edges are relaxed. The local index
of the target vertex v must be resolved in case it is unknown. Cut edges store the global id
and the cell id cell`(v) for each level ` of the target vertex. The cell required for v is the
cell on the highest uncommon level ` = uncommonLevel(v). We load the cell if it is not in
the search graph yet. Afterwards the local index of v can be resolved with the hash map.
We then store the index at the cut edge to avoid querying the hash map multiple times.

Naturally, the search graph is larger for distant s and t. However, final size of the search
graph not only depends on the number of cells that were required. The size also depends
on the overlay representation used, as their cells have a different number of vertices (at
least all boundary vertices) and edges per cell. Requirements on internal memory increase
for larger search graphs – we will evaluate that effect in our experimental evaluation in
Chapter 5.

We use a binary heap as priority queue. Vertex labels hold the distances d[ · ] and parent
pointers parent[ · ] for each vertex. These data structures can be implemented as for any
static adjacency array graph due to the local vertex indexes: the local indexes run from 0
to N (N increases during the query). Data fields can be addressed directly by the index.

4.4.1 Edge Unpacking

c

b

Figure 4.8: Unpack-
ing of a cell using the
subcells.

The shortest path ps,t found by the query contains shortcut edges
from the overlay. If not only the distance but a full path description
is required these edge must be unpacked. We consider two different
variants of edge unpacking: Recursive unpacking for the overlay
types clique, reduced cliques and skeleton overlays. It was proposed
for unpacking in the original variant of CRP [1, 2]. The alternative
is direct edge unpacking on the graph. It is possible when boundary
vertices of level 1 are preserverd on upper levels.

Recursive Edge Unpacking. The shortest path ps,t found by
the query contains subpaths pb,c between boundary vertices b, c
of a customization cell Ci. As internal vertices of that cell were
not (all) preserved, we run an unpacking query on its subcells to
recover the vertices that are missing on that level. The subpath
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4. External CRP

pb,c must be replaced by the more detailed path p′b,c found by the unpacking query. If
the cell is a level-1 cell, the query must be run on the original cell to recover all original
vertices.

This is done recursively, top down from the highest level to the cells of the original graph,
as unpacking a cell only restores the boundary vertices of the lower level. We unpack all
cells on a fixed level first before we start unpacking the lower level.

Delling et al. use a shortcut cache to speed up recursive unpacking in their server
implementation of CRP [2]. However, in a mobile scenario edge unpacking should be fast
from the beginning, when the cache could not yet be initialized. Therefore, we propose
direct unpacking to avoid additional block reads from the overlay data.

Direct Edge Unpacking. The overlay variants defined in Section 4.3.3.3 preserve bound-
ary vertices of level-1 on all higher levels if necessary. Hence, shortcut edges can be
unpacked directly using the graph cells. However, the internal vertices’ cell and vertex ids
have not been preserved. We do not need them as the distances suffice to find the correct
path. We unpack level-1 cells in the order they appear on the shortest path: the global
id and cell of the entry boundary vertex b is then available at the cut edges. To find the
entry boundary vertex d of the next level-1 cell we compare their distance found by a local
query to the distances in ps,t we already know – in most cased the distance yields a distinct
solution. On rare occasions the distance of multiple boundary vertices in adjacent cells
equals (see Figure 4.9). In these cases the search must recurse into the adjacent cells until
all but one search terminate, as the distances do not match. Our experimental evaluation
in Chapter 5 shows that these recursions are rare. The number of cells loaded from the
graph increases only marginally (in fact, the observed depth of recursion does not exceed 1
cell in our tests).

d'

d
b

?

?

dist(b,d)
= dist(b,d') distances do not

match a boundary
vertex

Figure 4.9: Direct edge unpacking: on rare occasions the search must recurse into multiple
adjacent cells as no distinct solution was found.
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In this chapter, we present an in-depth evaluation of External Memory Customizable
Route Planning in all variants we have have proposed in the previous chapter. Metric
customization and shortest path queries in an external memory scenario build the core
of our work. We rate all possible options, which include different block and cache sizes,
buffered or unbuffered I/O, and the different overlay types we have proposed. Cliques,
reduced cliques and skeletons with recursive edge unpacking and reduced cliques, skeletons
with preserved boundary vertices on higher levels and direct unpacking.

As graph instance we use the European road network made available by PTV AG for
the 9th Dimacs Implementation Challenge [25]. We use it along with a partition kindly
provided by Microsoft Research and computed by PUNCH [22]. Statistics on the graph
instance, our external graph data structure and the partition it includes are listed in Tables
5.1 and 5.2.

Table 5.1: Graph instance and the resulting size of our external graph data structure.
instance vertices edges vertex map cell map cells total

(bidirectional) [MB] [MB] [MB] [MB]

Europe (EU) 18 010 173 44 435 092 68.70 0.08 200.56 269.36

Table 5.2: Multilevel partition of the graph.
level 1 level 2 level 3

cell size limit U 210 215 220

cells 20 481 623 20
boundary vertices 328 626 34 782 2 753
cut edges 360 207 37 736 2 990

We build the external graph data structure as described in Section 4.2. We reorder the
vertices and cells in a first step and store the graph in form of serialized level-1 cells. We
include the metrics travel time in seconds and distance in meters. The distance is computed
from vertex coordinates as it was not included in the input graph data. Real world
applications would include the distance together with a road type and various restrictions
(e. g., speed limits) to derive multiple metrics at run time. Table 5.1 shows the stored size
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of our graph. The vertex and cell map are required to access the cells efficiently – the
actual graph data including both metrics is contained in the ‘cells’ section requiring 200.56
MB. The average cell size is just under 10KB (including 864 vertices and 2132 edges on
average). The entire data structure is contained in a single file – no additional data is
required to run the customization for one of the metrics.
The original partition contains 4 levels with cell sizes limited to 25, 210, 215 and 220 vertices.
We do not use the lowest level as we currently can not take advantage of cells with a
maximum of 32 vertices. The cells would take 241.6 MB instead of 200.56 MB with the
additional level included. The resulting increase in data generated per metric by the
customization is more significant (refer to Section 5.4 for more details).

To simulate a realistic scenario, we use a regular smart phone for most of our experiments.
It features a dual core ARMv7 processor with 1 Ghz clock speed (Mediatek MTK5677)
and 512 MB RAM. The operating system is Android 4.0.4. We implemented external
memory CRP with C++11 and compile it with the GNU Compiler Collection in Version
4.7.2 (Optimization Level 3). The application is statically linked against the C and C++
standard libraries glibc/gnu-libstdc++ and pthreads to parallelize the customization. We
further use the `time` command from the GNU Project to measure the maximum resident
size for queries and customization – the maximum amount of physical memory used by an
application during its runtime.

We read and write external memory data from a SanDisk 32 GB Class 10 micro SDHC
Card. The manufacturer promises sequential read speed up to 30 MB/s, but we measure
the actual characteristics under various conditions in Section 5.2. These characteristics are
essential for a proper rating of our algorithms performance.

5.1 Methodology
For both queries (optional with edge unpacking) and customization experiments we are
using an internal block cache that can hold a fixed number of memory blocks of fixed size
from the external graph or customization data. The cache uses a Least Recently Used
replacement strategy. We are only using block aligned reads/writes of a fixed size, to load
data from the external files (graph and metric-dependent data) into the cache. We count a
block access as block read if it could not be accessed from the cache.
The customization reads the entire graph and reads/writes the overlay levels in sequential
fashion. Hence, we are not providing explicit I/O statistics for the customization, but we
make measurements to determine the overall impact on run times. Unless otherwise stated
we run 1 000 random queries or 10 customization rounds and average the results. The
customization uses both cpu cores of our device but queries are single-threaded.
To obtain accurate measurements of I/O despite buffered file access, we flush the system
cache before each customization or query run. To verify the correctness of our implementa-
tion, we compared the distances of 10 000 random queries against Dijkstra’s Algorithm on
the original graph data for each overlay type.

We distinguish different types of queries, similar to the query types used for Mobile CH [11].
Whenever we compare different configurations (e. g., cliques vs. skeletons) we run the same
set of queries for each.

‘Cold’ queries start with an initially empty cache (we clear the cache before each run).
Cold queries are representative for expected run times and block reads immediately
after the program was started.

‘Warm’ queries run on an initialized cache. We initialize the cache with 1 000 queries in a
first step and measure run times and block reads of a different set of 1 000 random
queries in a second step.
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‘No I/O’ queries are used to measure the performance if all data is loaded from the
internal cache. Therefore, we run each query twice. The first query initialized the
cache with all relevant blocks. We repeat the query and measure the run time. The
results indicate the impact of I/O on run times for cold queries.

‘Static’ queries give indication on processing time for the actual query without the
overhead required for our external memory implementation (e. g. cell deserialization).
We run a query to build the search graph first (see Section 4.4). Then the same query
on the initialized search graph provides results comparable to the performance of
Dijkstra on a static graph.

Measurements for queries include the reinitialization of all required data structures (e. g.,
search graph, vertex labels and queries) but not the time to flush caches as it is only
done for the purpose of accurate measurements. We do not measure initialization times
for the complete application, e. g., allocating memory for the cache or opening graph
and customization data files, as we do not regard it as part of the actual query. On
application start a one block header is read for both graph and customization data. It
contains information about the data structure layout and basic information about the
graph instance (e. g., number of vertices).

The performance of edge unpacking is always measured along with shortest path queries to
obtain a benchmark of the overall performance. Calculating the distance is not sufficient
for the most realistic use cases on mobile devices.

5.2 External Memory Characteristics

We compare the read performance of buffered and unbuffered block reads for random
and sequential pattern in Figure 5.1. Buffered file access uses intermediate buffers of the
operating system: the operating system tries to recognize random or sequential access
patterns and prefetches data (in larger blocks) to increase the throughput. The prefetching
of data can happen asynchronously in the background and allows other computations to be
done in the meanwhile. For information on the underlying algorithms refer to [23]. Data
that was read once might remain in the system cache to speed up future reads. Unbuffered
access reduces the overhead by omitting the operating system buffers. Low level system
APIs must be used for unbuffered access as common file interfaces like <fstream> for
C++ or <stdio.h> from the C library treat files as data streams and use buffered access
internally. For better comparison, we use the low level APIs for buffered file access as well
as for unbuffered access.
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Figure 5.1: Buffered block read (left) vs. unbuffered block read (right).

27



5. Experimental Evaluation

For our measurements we created a 2 GB file and read a total of 64 MB in either random or
sequential fashion for different block sizes. The results show that the maximum throughput
of 20 MB/s (not the advertised 30 MB/s) is only reached for large block sizes or sequential
access patterns with buffered reads. Therefore, buffered access might have a significant
advantage for sequential reads. The speed difference for random and sequential reads is
negligible for unbuffered access, but results from [18] show that this does not hold for
write access due to the internals of flash devices. Our measured sequential write speed is
7.4 MB/s.

block size [KB] 0.5 1 2 4 8 16 32 64

buffered [ms] 1.42 1.42 1.43 1.43 1.55 2.13 3.22 5.52
unbuffered [ms] 0.73 0.79 0.94 1.20 1.36 1.68 2.40 3.86

Table 5.3: Latency for random block reads.

Table 5.3 shows, that latency for single block reads is smaller for unbuffered access. This
might lead to reduced run times for random access patterns. As the throughput increases,
it might pay to read larger blocks if the locality of the data is good enough. The latency
for blocks up to 4KB equals for buffered reads. It seems to bee the minimal access entity
for buffered access. We examine the impact of block size and access method on run times
and the amount of data read in the following section.

5.3 Impact of Block and Cache Size
Before examing all customization types in detail, we determine how different block sizes
with buffered or unbuffered access and different cache sizes affect the customization and
query. Recall from Section 4.2.2 that we do not align cells to block boundaries, as their
size is given by the partition. The size of our external graph and the metric-dependent
overlay data remains unaffected for different block sizes.

Customization. The customization processes the cells bottom up and completes the
lowest levels first – due to our reordering of cells (Section 4.2.1) it can read and write data
sequentially. It takes full advantage of sequential read and write speeds using buffered
access. We are not noticing any changes in run times for different block sizes. Unbuffered
file access is unsuited for the customization as sequential speed is not reached without
using very large block sizes – but large block sizes result in long periods of blocking due to
I/O and reduce the performance gain through parallelization (recall Section 4.3.1). Due to
the sequential processing, the customization does not profit from large cache sizes. We set
the cache size to 2 MB for all our experiments.

Block size for queries. Figure 5.2 (a) shows the impact of block sizes on run times for
queries with unpacking, using a skeleton overlay and travel times. The best run times are
achieved by 16 KB blocks and unbuffered file access, but the slow down for buffered reads
is only small. Buffered reads perform better for small block sizes, as unbuffered reads can
not take advantage of the locality in the data (note that block sizes below 4 KB yield equal
run times for buffered reads as the the system always fetches a 4 KB block – subsequent
reads within the same block hit the operating system cache).
In the skeleton overlay we use for the measurements, cells have an averaged size of only
700 bytes (averaged over all levels) – but it still pays to read larger blocks: Our reordering
of cells guarantees that cells, that have a common super cell, are contiguously stored in
memory. Due to the characteristics of the Multilevel Dijkstra search graph, these cells
are likely to be required together: blocks containing parts of two contiguous cells can be
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Figure 5.2: Impact of the block size on run times and the the amount of data read for
cold queries with unpacking. Customization type is skeleton, unpacking is recursive. The
results are averaged for 500 random queries. The cache size was set to 2 MB.

accessed from cache when the second cell is required. The average size of 10 KB for graph
cells might also be a dominant factor for the optimum of 16 KB blocks, but 16 KB blocks
yield the best performance for plain queries with the skeleton overlay as well.

The overall amount of data read increases for larger block sizes (Figure 5.2 b), as it is more
likely to read data, that is irrelevant for the computation. The effect is less pronounced for
small block sizes, as the locality of the data is high enough. The amount of data read is
minimal for 512 Byte blocks (345.6 KB for the plain query, 2008.8 KB for the query with
unpacking). Although the data doubles for 16 KB blocks (563.1 KB for the query and
3797.3 KB with unpacking), the run time is optimal, as the decrease in locality is lower,
than the increase in I/O throughput. It shows that, minimizing the amount of read data
does not always yield optimal solutions for external memory applications.
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Figure 5.3: Impact of cache size on warm queries with unpacking. For the left plot, the
cache was initialized with 1 000 queries, then the run times were are averaged for 1 000
additional queries. The right plot shows query times for 25 random queries, starting with
an initially empty cache of 64 MB. Reads are buffered and the block size was set to 4 KB.
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Unfortunately 16 KB blocks are not optimal in all cases, e. g., queries using a clique overlay
yield a significant better performance for buffered access (277 ms buffered vs. 355 ms
unbuffered). The reason is that clique overlay cells take significant more space and the
prefetching algorithms of the operating system can speed up sequential reads.

We restrict ourselves to block sizes of 4 KB and buffered file access for further experiments,
as the optimum block size for unbuffered reads highly depends on the specific case. 4 KB
buffered reads might not offer optimal performance in all cases, but the performance is on
a high level for any case. Future work might consider the use of adaptive block sizes, to
exploit the locality in an optimal way.

Cache size for queries. The block cache holds recently used blocks in internal memory.
In case a new block is read, the least recently used block is replaced. Figure 5.3 (a) shows
the impact of different cache sizes for warm queries with unpacking. Naturally, the query
times and the amount of data read decreases for larger cache sizes. In general, a larger
cache reduces run times but caching is a trade-off between the main memory requirements
of an application and performance. If the performance of cold queries is sufficient, a small
cache is enough to hold the data that is required for a single query.
The right plot (Figure 5.3 b) indicates that even a small number of queries that fill the
block cache yield a speedup, as some particular important parts of the data (e. g., the cell
maps or the highest level of the overlay) are immediately available for all following queries.

For further experiments, we’re using a default cache size of 64 MB for warm and 2 MB for
cold queries.

5.4 Customization

We compare the overlay types from Section 4.3.3 for the customization of travel time and
distance metrics. Summarized results are given in Table 5.4 and per level statistics are
listed in Table 5.5. The time required to build the overlay ranges from just under 2 minutes
for clique variants to 4 minutes for skeletons with travel time metric and almost 6 min for
skeletons with distance metric.

We provide the total number of vertices and edges per level for each overlay type. The full
overlay is included as indication for the hierarchical properties of the metrics. It preserves
all vertices on shortest paths boundary vertices. Only 328 995 vertices and 531 448 edges
are relevant for travel times on the highest level. The hierarchy is less pronounced for
distances, as 1 439 840 vertices and 2 490 031 edges remain.

Table 5.4: Customization total run times, stored size of the overlay and maximum resident
set size during the customization

Time Distance

Type time space RSS time space RSS
[s] [MB] [MB] [s] [MB] [MB]

full – 87.33 1255.8 – 169.7 1732.5
clique 107.9 43.6 56.9 109.4 43.6 58.7
red-clique 110.0 39.0 48.1 104.4 42.4 48.3
skeleton 228.2 14.8 42.0 326.1 22.5 45.1
red-clique-pres 102.8 30.5 81.5 106.7 36.9 175.7
skeleton-pres 137.2 16.3 81.6 156.4 26.0 142.1
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Reduced cliques take only slightly more time to compute than cliques, as the overlay contains
about one third fewer edges on all levels. This indicates, that the overhead of Algorithm
4.2, which is used to find the required edges for all overlay types, except for cliques, is
small. The stored size for cliques is 43.6 MB equally for both metrics as the topology is
metric-independent. Clique edges are stored as matrices. Due to the increased overhead for
adjacency graphs over matrices, reduced cliques can not significantly reduce the stored size.

Skeletons reduce the size of the overlay significantly. Only 2 425 additional vertices
(compared to cliques) and 23 682 total edges are needed to preserve distances on the highest
level for travel times. The number of additional vertices per level indicates the total number
of iterations that were needed to find the the vertices for the skeleton graphs (Algorithm
4.3). The algorithm greedily preserves internal vertices and terminates when no further
vertex can be preserved to reduce the number of edges. Skeletons exploit the hierarchy of
metrics, but even for artificial metrics that do not exhibit any hierarchy at all the resulting
overlay would never be worse than for reduces cliques. More vertices must be preserved for
distances, but the resulting number of edges is still very low compared to cliques. The run
time increases disproportionally on higher levels but the overall run times of 4 minutes for
travel time and 6 minutes for distances are still acceptable. The stored size reduces to only
14.8 MB or 22.5 MB.

Preserving the boundary vertices of level-1 on all higher levels (red-clique-pres and skeleton-
pres) yields fast computation times when cliques are used on the lowest level. Skeletons
on level 1 have a slightly increased run time, but the stored size of the overlay remains
almost as small as for skeletons on all levels. The number of boundary vertices that remain
on the highest level is significantly larger for the distance metrics as the hierarchy is less
pronounced compared to travel times. That number might further increase for metrics that

Table 5.5: Customization: overlay graph vertices, edges and the runtime required per
level.

Time Distance

Type level vertices edges [s] vertices edges [s]

full 1 5 167 502 10 201 986 – 7 202 699 14 791 407 –
2 1 916 286 3 513 944 – 4 194 156 7 942 225 –
3 328 995 531 448 – 1 439 840 2 490 031 –

clique 1 328 626 6 999 558 73.1 328 626 6 999 558 73.1
2 34 782 2 560 436 18.8 34 782 2 560 436 20.5
3 2 753 594 247 15.9 2 753 594 247 15.8

red-clique 1 328 626 4 222 053 83.5 328 626 4 473 322 77.8
2 34 782 1 694 671 14.7 34 782 1 703 675 15.0
3 2 753 395 801 11.8 2 753 378 336 11.6

skeleton 1 473 315 1 874 653 120.1 483 066 2 550 713 127.8
2 60 378 275 494 49.1 66 029 460 436 82.4
3 5 178 23 682 59.0 5 767 43 770 115.8

red-clique-pres 1 328 626 4 222 053 80.9 328 626 4 473 322 76.8
2 127 997 520 144 13.4 228 996 904 667 13.9
3 28 355 63 647 8.6 90 783 205 628 16.0

skeleton-pres 1 473 315 1 874 653 118.5 483 066 2 550 713 127.7
2 128 011 520 076 10.1 229 013 904 677 12.6
3 28 353 63 644 8.6 90 789 205 628 16.2
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are not well-behaved like travel times or distances. In the worst case all boundary vertices
of level-1 are preserved on the highest level.

For each overlay type, we measure the maximum resident set that was required to build
the customization. It is a indicator for the practicability in a real environment, as main
memory is a limited resource on mobile devices. Most of the customization data structures
exist per thread – the memory usage is therefore only representative for two threads. A
full overlay cannot be computed on our device as memory usage is to high. We made the
measurements on a desktop computer. Recall from Section 4.3.2 that we need |Bi| · |Ci|
(boundary vertices times cell vertices) vertex labels to store parent pointers and distances
for the customization queries. Although only 8 Byte per label are required, the memory
consumption is too high if many vertices are preserved on the higher levels. The same
effect is significant for red-clique-pres with preserved boundary vertices: 175.7 MB for the
distance metric is within the limits of our device but the memory consumption might be
too high if considered that other mobile applications also require some of the total memory
in a multitasking environment. However, the memory requirements for the other overlays
types should be no be problem for mobile devices.

To measure the impact of I/O operations on run times, we run the customization from the
same SD Card, that we use with the smart phone, on a desktop computer. It features a
quad core AMD processor with 3.2 GHz clock speed. The times to build reduced cliques for
travel times are 14.6 s, or 7.9 s if we use a ram disk instead of the SD Card. The difference
is basically the time required to sequentially read the graph and to write the overlay data.
It shows that the customization on mobile devices is not limited by I/O although the entire
graph must be processed.

Building the overlay on the lowest level takes the most time for all types. Cells for the
lowest level are built from the graph cells – higher level cells are built from the overlay cells
of the lower level. Results from Delling et al. [1, 2] show, that the cost for the lowest level
can be reduced when a shadow level with smaller cell sizes is used (e. g., the level with up
to 25 vertices per cell we do not use). The shadow level is then only used to speed up the
customization but not included as overlay for the queries.
If we include the additional level in our current implementation the customization time
increases from 110 s to 159 s for reduced cliques and travel times, probably due increased
I/O. The overlay size grows from 39 MB to 169 MB (even 141 MB for skeletons as the
number of edges can not be significantly reduced on the lowest level). The slowdown of
queries is marginal, despite the increased size. Only a small part from the lowest overlay
level is required for each query.

Further optimizations to the customization on a CPU instruction level were proposed in [9].
They are less suited for mobile applications as they typically must be supported on various
CPU architectures (ARM CPUs do not support the required instructions at all).

5.5 Queries and Edge Unpacking

The last section showed, that building a metric-dependent overlay is a matter of minutes on
mobile devices. But in the end, the fast computation of shortest paths is most important
for the usability of Customizable Route Planning in a real-world mobile application. The
computation of shortest paths must be fast from a end user perspective, e. g., fast enough
to start car navigation immediately after selecting the destination. For details on our query
and edge unpacking refer to Section 4.4. As for the customization, we compare the travel
time and distance metric.
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Queries without edge unpacking may seem unrealistic in a mobile scenario at first glance,
nevertheless some use cases exist. The Multilevel Dijkstra search graph (Section 3.3)
contains the original cell for the source and target vertex. Hence, the found path contains
all details to the point where the start cell is left. First driving directions can be generated
immediately. Further, no edge unpacking is required to find the minimum distance for
nearby points of interest.

Table 5.6 lists the query results for all overlay types. Queries using a skeleton overlay yield
the best run times for cold queries: 89.5 ms for travel times and 107.7 ms for the distance
metric. Queries using cliques and reduced cliques show only a small difference to each other:
the run times for cold queries are just under 300ms. As cliques and reduced cliques do not
exploit the hierarchy of metrics, their results show no significant difference for distances
and travel times.
The performance gap between the distance metric and travel times is more significant for
clique-reduced-pres and skeleton-pres. The performance is good for travel times but can
not compare to the skeleton overlay when distances are used. The difference between a
skeleton or a reduced clique overlay on the lowest level is small – cliques on the lowest level
should be preferred as the customization is faster.

In general, the run times are reflected in the number of block reads. Queries using skeletons
require the fewest blocks for travel times (99.1 blocks / 396.4 KB) and distances (151.9 /
607 KB). About six times more data is required for cliques with travel times, but the run
time does not increase proportionally as the I/O throughput grows when larger cells are
read.

The warm query requires approximately 10 blocks reads for all overlay types – the result is
obvious as each overlay fits into the 64 MB cache and only two graph cells are required per
query. The speedup for queries which would not require any I/O is small. It strikes that
the run time is still high compared to the same queries on a static graph. The overhead
required for the external memory implementation (e. g., cell deserialization) dominates the
static processing.

The number of vertex scans is close to the number of vertices in the search graph for all
overlay types, as our search graph grows dynamically when cells are required. The search

Table 5.6: Query statistics: number of vertex scans, average search graph vertices and
edges, run times and read blocks.

cold warm no I/O static

Type metric vertex graph graph time read time read time time
scans vert. edges [ms] blocks [ms] blocks [ms] [ms]

clique time 6 317 7 477 665 953 285.9 688.9 110.8 11.3 102.5 35.1
dist 6 285 7 325 648 719 272.4 671.7 108.2 11.3 99.8 34.6

clique-red time 6 317 7 477 443 963 270.0 683.3 92.0 10.1 84.0 25.1
dist 6 285 7 325 421 951 260.8 654.1 89.1 10.9 80.5 24.5

skeleton time 9 997 11 657 48 623 89.5 99.1 31.4 7.8 24.0 7.8
dist 10 707 12 315 78 266 107.7 151.9 36.9 8.2 29.6 10.1

clique-red-pres time 26 396 31 935 101 641 133.0 168.5 53.0 8.9 45.1 20.4
dist 68 447 81 858 228 041 225.2 379.9 107.3 9.9 100.6 55.6

skeleton-pres time 26 762 32 338 95 021 119.5 157.9 50.6 7.8 43.8 20.3
dist 68 828 82 269 222 912 220.2 371.7 105.9 8.4 100.0 56.3
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graph for skeleton overlays has significant less edges than for cliques, still the number of
additional vertices is low. It shows in the static run time for skeletons which is significant
lower than for all other overlay types.

Edge Unpacking. We evaluate two different variants of edge unpacking to retrieve a full
path description: the common approach is recursive unpacking, as it is used by Delling et
al. in their implementation of CRP [2]. As a second variant we proposed direct unpacking
on the graph for the overlay types clique-red-pres and skeleton-red-pres in Section 4.4.1. It
allows unpacking of paths without recursion on the overlay, that requires only the original
cells of the graph. Hence, no additional block reads for the overlay are required for cold
queries.

Results for queries with unpacking are listed in Table 5.7. For cold queries, the variants
with direct edge unpacking (clique-red-pres and clique-red-pres) yield the best run times:
about 450 ms for travel times and 550 ms with the distance metric are required for a query
with subsequent unpacking. The performance gap between both metrics is the result of
different query times: compared to Table 5.6, it shows that the overhead for unpacking is
almost equal for travel times and distances. Cold queries with unpacking using a clique or
reduced clique overlay require significant more block reads, but the run times just under 1 s
might still be fast enough for real-world applications. Due to the compact overlay, the cold
run times with a skeleton overlay with about 600 ms for both metrics are still significant
lower.

The advantage for direct unpacking reduces for warm or no I/O queries. The recursions on
the overlay are less expensive when the corresponding blocks are available from the cache.
Hence, the skeleton overlay does not perform significant worse if the cache is initialized.
Due to the stronger hierarchy of travel times, the number of required graph cells to unpack
edges of the lowest overlay level is slightly higher for the distance metric (93.3 vs. 105.7).
Note that the number of graph cells, that are required for direct edge unpacking increases
only marginally. The slight increase is caused by recursions, that are required when the

Table 5.7: Queries with edge unpacking: recursive edge unpacking is used for clique,
clique-red and skeletons. Edges are unpacked directly with the graph cells using clique-red-
pres and skeleton-pres overlays. The column ‘graph cells’ shows the number of cells that
were required to unpack edges on the graph. The maximum resident set size was measured
for 1 000 queries including 2 MB cache.

cold warm no I/O

Type metric graph time read time read time RSS
cells [ms] blocks [ms] blocks [ms] [MB]

clique time 93.9 946.6 1 600.0 339.4 99.0 271.1 32.6
recursive distance 105.7 883.1 1 511.3 455.1 265.7 285.0 31.9

clique-red time 93.9 896.6 1 550.6 298.4 83.9 238.9 22.6
recursive distance 105.7 871.7 1 488.6 425.7 259.9 255.9 21.6

skeleton time 93.8 566.1 613.5 170.1 36.9 144.3 6.5
recursive distance 105.7 617.6 731.0 304.9 183.5 179.5 8.0

clique-red-pres time 94.1 454.3 507.9 175.5 48.7 141.1 11.7
direct distance 106.0 551.7 736.3 319.5 167.5 209.8 18.4

skeleton-pres time 94.1 440.4 497.2 166.1 37.1 138.8 10.8
direct distance 106.0 546.9 728.1 313.2 156.4 208.8 17.5
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5.5. Queries and Edge Unpacking

computed distances of cell internal vertices are not sufficient to find a distinct solution.
However, these recursions are very rare and have no significant impact on the overall cost.

The hierarchical properties of the metrics show in the cache efficiency: although the overlay
size is equal for cliques, the unpacking requires significant less blocks for warm travel time
queries. Hence, the run times are faster, although the overlay is metric-independent. The
graph cells, that are crossed by shortest paths seem to be more random for the distances
metric than for travel times.

As for the customization, we measured the maximum resident set size that was required
during 1 000 queries with edge unpacking, to test if our solution is suitable for real-world
applications. The values include a 2 MB cache (as for cold queries). If the performance of
warm queries is required the memory consumption would increase accordingly. The results
in Table 5.7 show, that the memory consumption is not significant above 32 MB for all
variants – the difference between the overlay types has its main reason in the different
sizes of the query search graph (see Table 5.6), which is dynamically built in internal
memory. Edge unpacking has only little effect on the total memory consumption as only
the cells, that are required to unpack edges in the super cell must be hold in internal
memory simultaneously.

Overall, it becomes apparent that unpacking on the graph is the most expensive part of edge
unpacking. However, it is still fast enough for practical usage in a mobile application. In a
real-world application the graph might need more space to store the required information
for various metrics (e. g., speed limits or road types). To further stress the practicability of
unpacking, we increased the the stored size for each edge in the graph by 8 bytes: the total
size for the serialized cells of the external graph increases from a 205.56 MB to 540.37 MB.
Query times without edge unpacking remains largely unaffected as only 2 cells are required
per query. To retrieve a full path description with a clique-red-preserve overlay, the time
increases from 454.3 ms (our default configuration) to 939.2 ms with larger cells. We
believe, that run times just under 1 s for a query with edge unpacking, are still acceptable
for most mobile applications.

35





6. Conclusion

We developed a proof-of-concept application, that makes use of external memory, to adapt
the core features of Customizable Route Planning for a mobile device: it enables efficient
metric customization in only few minutes, and allows subsequent shortest path queries
in less than 150 ms on a European road network for a distance or travel time metric.
Retrieving a complete path description is possible in less than 600 ms.

Therefore, we engineered an external graph data structure, that includes the nested
multilevel partition required for Customizable Route Planning, and stores the graph as
serialized, independent cells. To increase the locality for query and customization, we
reordered partition cells with respect to the multilevel partition, such that cells, that build
a supercell on the next higher level, follow each other and occupy a continuous block in
external memory.

The key to fast metric customization in external memory is the completely independent
processing of cells: only a small fraction of the graph instance must be hold in internal
memory simultaneously to generate a metric-dependent overlay. Our reordering of partition
cells, allows fast sequential read and write patterns on external memory, that do not limit
the processing speed of mobile devices.
As query times are dominated by I/O, we compared different overlay types, and implemented
a variant of skeleton graphs, that reduces the overlay data to only 14.8 MB for travel times.
Hence, we were able to reduce the on average required data to less than 400 KB for random
queries.
Further, we made sure, that the main memory consumption does not exceed reasonable
limits for mobile applications. In fact, our algorithms can be used to run the customization
or queries with less than 64 MB main memory.

Future Work. Further optimizations, that exceed the scope of this work, are waiting
for future work: the amount of necessary data and the run time for the queries could be
further reduced by using bidirectional search. Another possible optimization for future
work is the implementation of a shadow level, to make the customization faster.

For our work, we only considered a travel time and a distance metric. However, the results
suggest, that our proposed methods can be used to implement Customizable Route Planning
in a real-world mobile, stand-alone application, that supports efficient metric-customization
and shortest path queries for arbitrary metrics. Such metrics can be user defined metrics,
metrics that adapt to user’s driving preferences or metrics that include dynamic traffic
information.

37





Bibliography

[1] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable Route
Planning,” in Proceedings of the 10th International Symposium on Experimental
Algorithms (SEA’11) (P. M. Pardalos and S. Rebennack, eds.), vol. 6630 of Lecture
Notes in Computer Science, pp. 376–387, Springer, 2011.

[2] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable Route
Planning in Road Networks.” Submitted for publication, 2013.

[3] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[4] A. V. Goldberg, “A Practical Shortest Path Algorithm with Linear Expected Time,”
SIAM Journal on Computing, vol. 37, pp. 1637–1655, 2008.

[5] A. V. Goldberg and C. Harrelson, “Computing the Shortest Path: A* Search Meets
Graph Theory,” in Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pp. 156–165, SIAM, 2005.

[6] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling, “Fast Point-to-Point Shortest
Path Computations with Arc-Flags,” in Demetrescu et al. [25], pp. 41–72.

[7] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact Routing in Large Road
Networks Using Contraction Hierarchies,” Transportation Science, vol. 46, pp. 388–404,
August 2012.

[8] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering Route Planning
Algorithms,” in Algorithmics of Large and Complex Networks (J. Lerner, D. Wagner,
and K. A. Zweig, eds.), vol. 5515 of Lecture Notes in Computer Science, pp. 117–139,
Springer, 2009.

[9] D. Delling and R. F. Werneck, “Faster Customization of Road Networks,” in Proceedings
of the 12th International Symposium on Experimental Algorithms (SEA’13), vol. 7933
of Lecture Notes in Computer Science, pp. 30–42, Springer, 2013.

[10] A. V. Goldberg and R. F. Werneck, “Computing Point-to-Point Shortest Paths from
External Memory,” in Proceedings of the 7th Workshop on Algorithm Engineering and
Experiments (ALENEX’05), pp. 26–40, SIAM, 2005.

[11] P. Sanders, D. Schultes, and C. Vetter, “Mobile Route Planning,” in Proceedings of
the 16th Annual European Symposium on Algorithms (ESA’08), vol. 5193 of Lecture
Notes in Computer Science, pp. 732–743, Springer, September 2008.

[12] C. Vetter, “Fast and Exact Mobile Navigation with OpenStreetMap Data,” Master’s
thesis, Karlsruhe Institute of Technology, 2010.

[13] D. Delling, M. Kobitzsch, D. Luxen, and R. F. Werneck, “Robust Mobile Route
Planning with Limited Connectivity,” in Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments (ALENEX’12), pp. 150–159, SIAM, 2012.

39



Bibliography

[14] D. Hutchinson, A. Maheshwari, and N. Zeh, “An external memory data structure
for shortest path queries (extended abstract),” in Computing and Combinatorics
(T. Asano, H. Imai, D. Lee, S.-i. Nakano, and T. Tokuyama, eds.), vol. 1627 of Lecture
Notes in Computer Science, pp. 51–60, Springer Berlin Heidelberg, 1999.

[15] L. Arge and L. Toma, “External data structures for shortest path queries on planar
digraphs,” in Algorithms and Computation (X. Deng and D.-Z. Du, eds.), vol. 3827 of
Lecture Notes in Computer Science, pp. 328–338, Springer Berlin Heidelberg, 2005.

[16] U. Meyer and V. Osipov, “Design and implementation of a practical i/o-efficient
shortest paths algorithm,” in ALENEX, pp. 85–96, 2009.

[17] D. K. Blandford, G. E. Blelloch, and I. A. Kash, “An Experimental Analysis of a
Compact Graph Representation,” in Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX’04), pp. 49–61, SIAM, 2004.

[18] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing the performance of
flash memory storage devices and its impact on algorithm design,” in Experimental
Algorithms (C. McGeoch, ed.), vol. 5038 of Lecture Notes in Computer Science,
pp. 208–219, Springer Berlin Heidelberg, 2008.

[19] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smartphones,” Trans.
Storage, vol. 8, pp. 14:1–14:25, December 2012.

[20] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox.
Springer, 2008.

[21] M. Holzer, F. Schulz, and D. Wagner, “Engineering Multilevel Overlay Graphs for
Shortest-Path Queries,” ACM Journal of Experimental Algorithmics, vol. 13, pp. 1–26,
December 2008.

[22] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, “Graph Partition-
ing with Natural Cuts,” in 25th International Parallel and Distributed Processing
Symposium (IPDPS’11), pp. 1135–1146, IEEE Computer Society, 2011.

[23] W. Fengguang, X. Hongsheng, and X. Chenfeng, “On the design of a new linux
readahead framework,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 75–84, July 2008.

[24] F. Schulz, D. Wagner, and C. Zaroliagis, “Using Multi-Level Graphs for Timetable
Information in Railway Systems,” in Proceedings of the 4th Workshop on Algorithm
Engineering and Experiments (ALENEX’02), vol. 2409 of Lecture Notes in Computer
Science, pp. 43–59, Springer, 2002.

[25] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, eds., The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, vol. 74 of DIMACS Book. American
Mathematical Society, 2009.

40


	Contents
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Preliminaries
	2.1 Shortest Paths in Road Networks
	2.2 Dijkstra's Algorithm

	3 Customizable Route Planning
	3.1 Multilevel Partition
	3.2 Customization
	3.3 Multilevel Dijkstra

	4 External CRP
	4.1 External Memory
	4.2 External Graph and Overlay Data
	4.2.1 Reordering
	4.2.2 Data Structures

	4.3 Customization
	4.3.1 Parallelization
	4.3.2 Building the Overlay
	4.3.2.1 Creating Cell Graphs for Preserved Vertices

	4.3.3 Overlay Types
	4.3.3.1 Cliques, Reduced Cliques and Full Overlay
	4.3.3.2 Skeleton Graphs
	4.3.3.3 Preserving Boundary Vertices on Upper Levels


	4.4 Query and Edge Unpacking
	4.4.1 Edge Unpacking


	5 Experimental Evaluation
	5.1 Methodology
	5.2 External Memory Characteristics
	5.3 Impact of Block and Cache Size
	5.4 Customization
	5.5 Queries and Edge Unpacking

	6 Conclusion
	Bibliography

