
Algorithms for the Pagination
Problem on Public Transit Networks

Bachelor Thesis of

Moritz Halm
At the Department of Informatics
Institute of Theoretical Informatics

Reviewers Advisors
Prof. Dr. Dorothea Wagner Jonas Sauer, M. Sc.
Prof. Dr. Peter Sanders Tobias Zündorf, M. Sc.

November 22, 2018–March 21, 2019





Statement of Authorship

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text. I also declare that I have read
the Satzung zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für
Technologie (kit).

Karlsruhe, March 21, 2019

iii





Abstract

We study how public transit profiles can be computed in applications featuring pagi-
nation. Pagination is the concept of splitting a profile into pieces (pages) which are
computed and output subsequently. We show that the way in which journeys are
ordered plays a crucial role regarding the usefulness of a paginated profile. To this
end, we discuss ordering journeys by their departure time and arrival time. We further
propose the earliest time after which a journey is optimal as an alternative ordering
criterion. We present different approaches based on the raptor algorithm in order
to support computing journeys with respect to each of these orderings. Initially, we
adapt the profile algorithm by Wagner and Zündorf (2017) by changing the order in
which forward and backward raptor searches are performed appropriately. However,
faster running times can be achieved by running the rraptor algorithm on a reversed
network instance to obtain journeys ordered by their arrival time. For other orderings,
we reached slight speed-ups combining both approaches. We experimentally evaluated
the performance of our algorithms on the public transit network of Switzerland.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Frage, wie Reiseprofile auf öffentlichen Verkehrs-
netzwerken unter Einsatz von Paginierung berechnet werden können. Paginierung
bedeutet hier das Aufteilen eines Profiles in Abschnitte (Seiten), die nacheinander be-
rechnet und ausgegeben werden. Dabei hat die Sortierung der Reisen innerhalb eines
Profils entscheidenden Einfluss auf die Nützlichkeit des Ergebnisses. Wir vergleichen
Sortierungen von Reisen nach Ankunfts- und Abfahrtszeit, und schlagen außerdem vor,
Reisen nach dem frühesten Zeitpunkt, von dem an sie optimal sind, zu sortieren. Wir
stellen verschiedene auf dem raptor Algorithmus basierende Ansätze vor, wie Rei-
sen in einer jeder dieser Sortierungen entsprechenden Reihenfolge berechnet werden
können. Zunächst beschreiben wir, wie der von Wagner und Zündorf (2017) vorgestell-
te Profilalgorithmus jede dieser Sortierungen liefert, wenn man die Reihenfolge der
durchgeführten Vorwärts- und Rückwärtssuchen in geeigneter Weise anpasst. Spezi-
ell für die Sortierung nach Ankunftszeit, können allerdings kürzere Laufzeiten durch
den Einsatz von rraptor erreicht werden, indem man den Algorithmus auf einem um-
gekehrten Netzwerk ausführt. Für die anderen beiden Sortierungen erreichten wir
leichte Geschwindigkeitsvorteile durch eine Kombination beider Ansätze. Wir haben
die Laufzeit unserer Algorithmen anhand von Experimenten auf dem öffentlichen Ver-
kehrsnetzwerk der Schweiz gemessen.

v





Contents

1 Introduction 1

2 Preliminaries 5
2.1 Public Transit Network . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Journeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Single Departure Time . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Departure Time Ranges (Profile Queries) . . . . . . . . . . . . 9

2.4 Bicriteria Problem Algorithm: raptor . . . . . . . . . . . . . . . . . . 11
2.5 Profile Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 rraptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Alternating raptor . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Pagination Problem 19
3.1 Ordering Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Earliest Optimal Departure Time . . . . . . . . . . . . . . . . 20
3.1.2 Partial Orders on Journeys . . . . . . . . . . . . . . . . . . . . 20

3.2 Pagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Formal Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Trade-offs between Different Orderings . . . . . . . . . . . . 21
3.2.3 Pagination Framework . . . . . . . . . . . . . . . . . . . . . . 23

4 Algorithms 25
4.1 Alternating raptor-based Approaches . . . . . . . . . . . . . . . . . 25

4.1.1 Ordering by Arrival Time (ararr) . . . . . . . . . . . . . . . . 26
4.1.2 Ordering by Departure Time (ardep) . . . . . . . . . . . . . . 27
4.1.3 Ordering by Earliest Optimal Departure Time (are) . . . . . . 29

4.2 rraptor-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Ordering by Arrival Time (rrarr) . . . . . . . . . . . . . . . . 31

vii



Contents

4.2.2 Ordering by Departure Time (rrdep) . . . . . . . . . . . . . . 34
4.2.3 Ordering by Earliest Optimal Departure Time (rre) . . . . . . 39

5 Experimental Evaluation 41
5.1 Experimental Data and Setup . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Earliest Optimal Departure Time . . . . . . . . . . . . . . . . . . . . . 43
5.3 Performance of Profile Queries . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Performance per Rank . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Parameterizing rrdep and rre . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 53

List of Algorithms 55

List of Tables 55

List of Figures 56

Bibliography 57

viii



1. Introduction

There has been much progress in the field of route planning on public transportation
networks in recent years. Optimal journeys from one stop to another in a metropolitan
scale public transit network can be computed within a few milliseconds [Bas+15].
Journeys of interest are the ones which are optimal in a Pareto sense, i.e., that minimize
not only the travel time but also the number of trips, the ticket price or other criteria.
For instance, passengers might favor a journey with a later arrival time if it requires
less switching between trips.

One is often interested in finding Pareto optimal journeys not just for a single departure
time but rather for a time range. Such profile queries are especially relevant in end user
applications such as the online timetable information offered by railway operators, e.g.,
bahn.de. Typical users do not have a specific minimal departure time in mind. Instead,
they prefer to get an overview of different journeys over a more general period of time,
e.g., throughout the morning.

While there are already well-known algorithms, such as rraptor, that answer profile
queries efficiently, practical implementations lack explicit handling of pagination.
Pagination is the concept of splitting a result, here a list of journeys, into pages. When
the user enters a minimum departure time τ , the earliest journeys departing after τ
are presented to them. Later ones are computed and shown only if the user demands
to see more journeys. This technique has the main advantage of spreading the costly
computation of the profile over multiple pages and thus decreasing the response time
until a user first sees results. Furthermore, a user is less overwhelmed by too many,
possibly not very relevant results. However, current algorithms do not take advantage

1



1 Introduction

of pagination in their computation, but always generate complete results for the entire
time range.

When using pagination, the way in which journeys are ordered can have crucial impact
on the user’s decision making and must thus be carefully chosen. Suppose, for instance,
journeys are ordered by departure time which can lead to the first journey on page
two having an earlier arrival time than the last journey on page one. Despite being
a relevant travel option, this journey is likely not to be noticed since a user does not
expect earlier arriving journeys being listed on later pages. G

Related Work. While the problem of finding fastest routes in road networks is well
understood, routing in schedule-based public transportation networks poses funda-
mentally different challenges. Public transit networks are inherently time-dependent,
as passengers may only travel with vehicles that depart and arrive at fixed points in
time. Existing algorithms differ in the way in which they model timetables.

Common solutions model public transportation networks as graphs (see [Mül+04]
for an overview). Finding fast journeys is then reduced to the problem of finding
shortest paths. This approach seems promising at first glance, since the shortest-
path problem can be efficiently solved by Dijkstra’s algorithm [Dij59] and further
optimized using various speedup techniques [DPW09]. However, Dijkstra searches
benefit less from these speedup techniques when applied to public transit networks due
to the different structure of a public transit graph [Bas09]. Asking for journeys that are
Pareto-optimal with respect to travel time and number of transfers further complicates
the problem [Ber+09]. A very fast graph-based technique are the so-called Transfer
Patterns [Bas+10]. On the downside, they require extensive precomputation.

The relatively new raptor algorithm (introduced by Delling et al. [DPW12]) employs
a dynamic programming approach to compute Pareto-optimal journeys. Due to more
efficient memory access patterns, raptor performs significantly faster than other,
graph-based multicriteria algorithms such as Layered Dijkstra [BJ04] or the Multicri-
teria Label-Setting algorithm [MS07]. Similarly, the Connection Scan Algorithm (csa)
[Dib+18], which scans all connections in a network in order, achieves running times
even faster than raptor. However, it optimizes the arrival time as the only criterion
for single departure time queries. There are variants of both raptor and csa that an-
swer profile queries as well. The raptor based variant, called rraptor, makes use of a
technique called self-pruning. However, both algorithms have limitations regarding the
incorporation of footpaths between stops. In order to answer profile queries with unre-
stricted walking between stops, Wagner and Zündorf [WZ17] proposed an algorithm
(referred to as Alternating raptor in this thesis) that computes profiles by alternately

2



running forward and backward raptor searches. For a more detailed overview of
public transit routing algorithms we refer the reader to an extensive survey by Bast et
al. [Bas+15].

The pagination problem has not been subject to research so far.

Contributions. In this thesis, we study the problems arising from computing profiles
in the context of pagination. We discuss the advantages and drawbacks of different
orderings. Apart from the obvious ordering criteria, i.e., the departure and arrival time
of a journey, we also propose to order journeys by the earliest time after which they are
optimal. This criterion, called earliest optimal departure time, combines the advantages
of ordering by departure time and ordering by arrival time.

Since we are interested in journeys that are Pareto optimal with regard to arrival time
and number of trips, we focus on the raptor algorithm and its profile variant, rraptor.
Our objective is to employ these well-known algorithms to obtain journeys page-wise
and already ordered by each of the aforementioned criteria. To this end, Alternating
raptor can be adapted quite straightforwardly by changing the order in which forward
and backward searches are performed. However, faster running times are achieved
using rraptor. We propose to run rraptor on a reverted network instance which
yields journeys ordered by their arrival time. To make use of rraptor’s performance
advantage for the orderings by departure time or earliest optimal departure time as
well, we combine the rraptor approach with the Alternating raptor approach. We
evaluate the developed algorithms experimentally on data of the public transportation
network in Switzerland.

Outline. The remainder of this thesis is structured as follows: In Chapter 2, we
introduce the basic notation we use to describe a public transit network and journeys
in it. We define the problems of finding Pareto-optimal journeys for single departure
times and departure time ranges, and describe in detail how these problems can be
solved using the raptor algorithm. In Chapter 3, we state formal requirements for
correct pagination and present a generic framework for pagination algorithms. We
also define the earliest optimal departure time of a journey as an alternative ordering
criterion and discuss the advantages and drawbacks of different orderings. Chapter 4
presents algorithms that compute profiles page-wise and with respect to the previously
defined orderings. It is divided into the approaches based on Alternating raptor (4.1)
and those based on rraptor (4.2). An experimental evaluation of the algorithms can
be found in Chapter 5. Finally, we summarize our insights and give an outlook on
possible future work in Chapter 6.

3





2. Preliminaries

In this chapter, we introduce basic concepts and notations related to public transit
routing. In particular, we describe how public transit networks are modeled, define
common routing problems and describe the existing raptor based algorithms to solve
these problems.

The models used in this thesis apply to any public transport vehicles with a fixed
schedule, e.g., trains, buses, ferries or planes. Since all these vehicles are modeled in
the same way, a network may combine several different transport types. For ease of
reading, however, we refer to all vehicles as trains.

2.1 Public Transit Network
All algorithms presented in this thesis take a timetable of a public transit network as
input. The formalization of timetables we present here is very similar the one originally
introduced along with the raptor algorithm [DPW12]. A timetable describes where
and when trains operate and how passengers can enter, exit and transfer between
trains. More precisely we define a timetable N as a tuple N = (Π,S,T ,R, F ).

Π ⊂ N0 is the period of operation, the time interval in which all trains operate. Typically,
we only consider an interval consisting of one or two consecutive days. S is the set of
stops. A stop is a location where trains stop and passengers can board or get off a train,
i.e., a train station. A certain train, i.e., a physical vehicle, traveling along a sequence of
stops at a specific time is called a trip. T is the set of all trips. For every stop s , visited
by a trip tr, we denote the time the train arrives at the stop as τarr(tr, s) ∈ Π and the
time at which it departs as τdep(t, s) ∈ Π, with τarr(tr, s) ≤ τdep(tr, s). The arrival time

5



2 Preliminaries

at the first stop and the departure time at the last stop of a trip are undefined. A set
containing all trips that visit exactly the same sequence of stops is called a route. Trips
can not overtake one another, i.e., there is a ordering of the trips tri of a route r , such
that for every stop s on r τdep(tri , s) ≤ τarr(tri+1, s) holds true. The set R contains all
routes.

Usually there are many trips per route. For example, a subway line in a city could be a
route with a trip every 10 minutes. Note that a route in our model is not necessarily
equivalent to a line in the network map of a city: Some trains of the line S1 in Karlsruhe,
for example, drive as far as Bad Herrenalb while others already end at Ettlingen (which
lies on the same track as Bad Herrenalb). The S1 would be modeled as two different
routes, since all trips on one route must have the exact same stop sequence.

Entering a train at a stop can require some time (due to long distances between different
platforms for example). To take this into account, a departure buffer time τbuf(s) is
associated with every stop s ∈ S. The departure buffer time τbuf(s) models the time a
passenger arriving at s needs to walk to a platform and to enter a train there. On big
train stations the walking distance between platforms can differ noticeably. In order
to allow preciser buffer times where possible, such train stations can be modeled as
multiple stops with footpaths between them.

Footpaths allow passengers to move to another stops by walking. They are defined
by a directed graph G = (S, F ), where the nodes S are the train stops, and the edges
F ⊆ S × S are footpaths. Each footpath (s1, s2) ∈ F is associated with a constant
walking time `(s1, s2) ∈ N. We require the transfer graph to be transitively closed
and to satisfy the triangle inequality, i. e., if there is a footpath from s1 to s2 and
from s2 to s3, there also must be one between s1 and s3 (transitively closed), and
`(s1, s3) ≤ `(s1, s2) + `(s2, s3) must hold (triangle inequality). This requirement can
result in rather large transfer-graphs, since every connected component forms a clique.
Hence, it is a common restriction to initially only consider real-world footpaths with a
“short” walking time in order to keep the size of the transitive closure small.

2.2 Journeys

The objective of every routing algorithm considered in this thesis is to compute one or
more journeys between a source stop s and a target stop t ∈ S. A journey describes
a way of traveling from s to t . It consists of trips (traveling by train) and footpaths
(walking between stops) in the order of travel. Formally, a journey can be defined as a
sequence of trip segments. A trip segment is a tuple (tr,u,v), where tr is a trip in T and
u and v are stops in S served by tr, such that u is reached before v . Every trip segment

6



2.2 Journeys

then describes a part of the journey, in which a passenger enters tr at u and exits tr at
v . A transfer between subsequent trip segments is defined implicitly as the footpath
between the exiting stop of the first trip and the entering stop of the following trip.
For the same reason, the entering stop of the first trip segment in a journey and the
exiting stop of the last segment do not need to be s or t , respectively.

We are only interested in valid s-t-journeys. A journey is considered valid if it is possible
to transfer between all involved trains “in time” and to get from s to t . Formally,
given s, t ∈ S, a journey J = ((tr1,u1,v1), . . . , (trk ,uk ,vk )) is valid iff the following
conditions hold:

• If J contains the subsequent trip segments (tri ,ui ,vi ) and (tri+1,ui+1,vi+1) and

– if vi , ui+1, it must be possible to walk from vi to ui+1, i.e., (vi ,ui+1) ∈ F .
Furthermore, the time span between the arrival of tri and the departure of
tri+1 must be large enough with respect to the walking time fromvi to ui+1
and the departure buffer time at ui+1, i.e., τdep(tri+1,ui+1) − τarr(tri ,vi ) ≥
`(vi ,ui+1) + τbuf(ui+1).

– ifvi = ui+1, it must be possible to change trains in time, i.e., τdep(tri+1,vi )−
τarr(tri ,vi ) ≥ τbuf(vi ).

• If u1 , s , there must be a footpath from s to u1, i.e., (s,u1) ∈ F .

• If vk , t , there must be a footpath from vk to t , i.e., (vk , t) ∈ F .

• If J is an empty sequence, there must be a footpath from s to t . We call such a
journey a pure walking journey.

Journey Properties

Given a non-empty s-t-journey J = ((tr1,u1,v1), . . . , (trk ,uk ,vk )), we define several
properties of J . The departure time τdep(J ) of J is the time at which a passenger has to
leave at s in order to arrive at u1 and catch the first trip there: τdep(J ) = τdep(tr1,u1) −
τbuf(u1)−`(s,u1). If s = u1, the walking time is omitted, so τdep(J ) = τdep(tr1, s)−τbuf(s).
The arrival time τarr(J ) of J is the time at which a passenger arrives at t . If they have
to walk the last part to t , i.e.,vk , t , it is defined as τarr(J ) = τarr(tk ,vk ) + `(vk , t).
Otherwise, if t = vk the arrival time of J is simply the arrival time of the last trip
segment: τarr(J ) = τarr(tk , t). The travel time τt(J ) of J is the difference between arrival
and departure time: τt (J ) = τarr(J ) − τdep(J ). The number of trips (or trip-count) |J | is
the number of trip segments k used by J .

7



2 Preliminaries

We are often only interested in journeys that depart no earlier than a given minimal
departure time τmin, i.e., τdep(J ) ≥ τmin. In that case, we call these journeys feasible.

2.3 Problems

This thesis’ focus lies on public transit profile queries. Profile queries ask for optimal
journeys within an interval of possible departure times. It is a generalization of the
more basic problem of finding optimal journeys for a single departure time, which we
introduce first. In both cases we will only consider one-to-one problems, i.e., finding
journeys from a single source stop s to a single target stop t .

2.3.1 Single Departure Time

The simplest routing problem is to fin an s-t-journey that minimizes the arrival time at
the target stop t .

2.1 Definition Earliest Arrival Problem. Given a public transit network N = (Π,
S,T ,R, F ), a source stop s ∈ S, a target stop t ∈ S, and a departure time τmin ∈ Π, find
a journey J among all feasible journeys with the earliest arrival time τarr (J ).

There may be several journeys with this arrival time. In this case, any of them is a
valid solution, since arrival time is the only criterion. Alternatively, one could define
the number of trips as a secondary criterion such that the earliest arriving journey
with the lowest number of trips is the unique solution. This takes into account that
many passengers consider a high number of transfers as inconvenient.

However, the earliest arrival time is not the only interesting primary criterion. Consider
a scenario in which the earliest arriving journey requires many transfers, but there is
another journey with fewer transfers but a slightly later arrival time. Some passengers
would opt for the second journey, while others would prefer the first one. In such cases
users should be able to decide on their own which journey they prefer. Hence, we ask
for a set of journeys, such that each journey has the earliest arrival time with respect
to its number of trips. Such a set is called a Pareto set. Pareto sets are a commonly used
tool for multicriteria optimization problems ,for instance, in the field time-independent
routing [Mar84]. A Pareto set is defined as follows:

Given a set S containing possible solutions and functions f1, ..., fk : S → R to be
minimized, a solution s ∈ S is said to dominate another solution s ′, if it is not worse
than s ′ regarding all objectives, i.e., fi (s) ≤ fi (s

′) (1 ≤ i ≤ k). A solution s ∈ S is further
considered Pareto optimal, if any other solution in S that dominates s is equivalent

8



2.3 Problems

to s according to all objectives. A Pareto set is a minimal set P ⊆ S of Pareto optimal
solutions such that every s ′ ∈ S is dominated by at least one solution s ∈ P .

In our scenario, the objectives are arrival time and number of trips. This leads to the
following definition for domination:

2.2 Definition Bicriteria Domination. A journey J bicriteria dominates a journey
J ′, if τarr (J ) ≤ τarr (J

′) and |J | ≤ |J ′ |.

The definitions of Pareto optimal journeys and Pareto sets of journeys follow natu-
rally.

2.3 Definition Bicriteria Problem. Given a public transit network N = (Π,S,T ,R,
F ), a source stop s ∈ S, a target stop t ∈ stops , and a departure time τmin ∈ Π, find a
Pareto set of feasible s-t-journeys, i.e., a minimal set of s-t-journeys that dominate every
other feasible journey. We call these journeys bicriteria-optimal.

Note that according to our definition of Pareto optimality there can be multiple Pareto
optimal journeys with the same arrival time and number of trips. However, only one
of them is included in the Pareto set since we require it to be of minimal size. The
solution to the Bicriteria Problem is therefore ambiguous.

2.3.2 Departure Time Ranges (ProfileQueries)

Users often are not interested in a specific minimal departure time, but rather have a
vague time period in mind during which they want to depart. We model this period
as a discrete time interval I and ask for optimal journeys in the sense of the Bicriteria
Problem (Definition 2.3) for any point of time in this interval. In other words: for any
point of time τdep in I and any number of trips n ∈ N0 we ask for a journey with earliest
possible arrival time departing no later than τdep and using no more than n trains.

2.4 Definition Range Problem.We are given a public transit network N = (Π,S,T ,
R, F ), a source stop s ∈ S, a target stop t ∈ S, and a time interval I = [τmin, τmax] ⊆ Π.
For each τdep ∈ I we ask for a Pareto set containing all bicriteria-optimal s-t-journeys
departing no earlier than τdep . A set of journeys P of minimal size containing such a
Pareto set for every τdep ∈ I as a subset is called a profile.

If there are several journeys with the same arrival time and number of trips but
different departure times, the profile contains only the latest departing journey. This
property follows from the minimality of the profile: Let J and J ′ be two journeys
with τarr (J ) = τarr (J

′), |J | = |J ′ | and τdep (J ) > τdep (J
′) . Then there is a time τ B

9



2 Preliminaries

1

2

3

nu
m
be
r
of

tr
ip
s

12:00

14:49

time
10:00 11:00

12:00 13:00

12:20 12:5011:30

13:00 13:30

(a) Sample Profile Diagram

�arr
�dep�e

(b) Legend

Figure 2.1 – Visualization of a fictional travel profile. There is one time line for each possible
number of trips (a). Each time line is partitioned in intervals such that for each interval there is
at most one journey solving the earliest arrival problem for this number of trips. Each interval
begins with the earliest time after which that journey J is bicriteria-optimal, τe(J ), and ends
with its departure time τdep(J ). The arrival time, τarr(J ) of the journey is written above the
respective interval (b). A dotted time line indicates that the optimal journey for this time
interval involves less than n trips. It is represented by some interval in a lower time line. A
dotted time interval in the time line for one trip means that it is either not possible at all to
get from s to t in this interval using one trip or that walking directly would be faster.

τdep (J
′) + ε ≤ τdep (J ) (ε > 0) for which J is feasible, but J ′ not anymore. Choosing J

makes J ′ redundant and therefore results in a smaller profile. This observation shows
that a profile can also be interpreted as a Pareto set of s-t-journeys regarding arrival
time, number of trips and departure time as objective functions. Note that in contrast
to the other two functions the departure time is maximized.

A profile P may contain journeys departing after τmax. This is because for the departure
times at the end of the interval optimal journeys often only depart after τmax.

In theory, a profile could possibly contain as many journeys as there are time units in
I : If there is a footpath (s, t) ∈ F , then for any point of time τ ∈ I starting a walk from
s to t at τ is an optimal journey for zero trips. In practice, if a pure walking journey
exists, we therefore output it only once per profile rather than listing all |I | walking
journeys explicitly.

10



2.4 Bicriteria Problem Algorithm: raptor

Profile Visualization

We visualize profiles using the following consideration: For every number of trips n,
the profile can be partitioned into a sequence of non-empty time intervals, such that
for the duration of each interval there is at most one optimal journey using at most
n trips. Such an interval always ends with the departure time of the journey. This
observation can be proven easily by contradiction: Assume the interval ends at a time
τ < τdep(J ). Then there must be a journey J ′ with |J ′ | < |J | and τdep(J

′) ≥ τ which
dominates J , i.e., τarr(J ′) ≤ τarr(J ). In this case J ′ would have already dominated J for
the time before τ , so J is either not part of the profile at all or the interval for which
J is optimal starts after τdep(J ′). With this observation, we can visualize profiles by
drawing a timeline for every n, for which at least one bicriteria-optimal s-t-journey
exists. For an example, see Figure 2.1.

2.4 Bicriteria Problem Algorithm: raptor

In this section we present the basic variant of the raptor (Round bAsed Public Transit
Optimized Router) algorithm that was introduced by Delling et al. [DPW12]. The
following description is analogous to the one given in the original paper.

raptor solves the Bicriteria Problem (Definition 2.3) as well as the Earliest Arrival
Problem (Definition 2.1) for a single departure time. In contrast to other approaches
(see Chapter 1 for an overview), raptor does not solve the public transit routing
problem as a shortest-path problem in a graph, which models the public transit network.
Instead, it uses dynamic programming to iterate over all stops that are reachable in a
round, i.e., reachable with an increasing number of trips from the source stop s , and
updates their earliest arrival time. This procedure is then repeated for several rounds.
raptor can solve one-to-all queries, i.e., compute the Pareto set for every stop in the
network for a single departure stop. However, when only considering a single target
stop (one-to-one query), target pruning can be used to speed up the computation.

The raptor algorithm runs for multiple rounds. Round k computes the earliest arrival
time τarr(v,k) for every possible target stop v using exactly k trips. A round consists of
two phases: scanning routes and relaxing transfers. In every round we only consider
arrivals that decrease the arrival time at the stop that was found in previous rounds.
This ensures we only find Pareto-optimal journeys.

In the first phase, only routes containing an updated stop are scanned. A stop is called
updated if its arrival time was improved in the previous round. We iterate over all
stops in a route in increasing order, beginning with the first stop that was updated.

11



2 Preliminaries

For each stop, we determine the earliest trip on the route that can be reached with the
current arrival time at this stop. We then check for all subsequent stops on the route
if their arrival time can be improved by using this trip and update them accordingly.
In the second phase, we relax transfers. For every stop updated in the first phase, we
relax all outgoing edges in the footpath graph, i.e., we update the arrival time of the
stop at the other end if it is improved by taking the footpath. Since the footpath graph
is transitively closed and satisfies the triangle inequality, scanning a single edge is
sufficient to find a shortest walking path. Running rounds is repeated until no more
stops have been updated by scanning routes in a round. This break condition is correct,
since any potential bicriteria-optimal journey found in a later round would involve
changing trains at one stop whose arrival time was improved in this round.

Pseudocode for raptor is given in Algorithm 2.1. The main data structure is a two-
dimensional array, the round table R[·][·]. It stores the earliest arrival time for every
round and stop. More precisely, for every stop v ∈ S, R[k][v] denotes the earliest time
at which v can be reached using at most k trips. Ur and Ut contain stops that were
updated by a trip or a transfer, respectively. C is an associative array that maps a route
to the first updated stop on it.

We initialize the round table for every new round with the value of the previous round.
In the first round, we set all entries to∞, except for R[0][s], which is set to the departure
time τmin. We then begin by relaxing transfers, since a passenger can walk from s to
another stop where they enter a train. All stops that were updated by transfer are
stored inUt . In order to scan routes, we need to determine the first stop on each route
that was updated. We do this by iterating over every stopv inUt and look up all routes
r containingv . If there already is a stop u for r inC we replace it byv ifv comes before
u on r . Otherwise we store the mapping from r to v in C .

In the route scan phase (Algorithm 2.2), we look at all routes in C in an arbitrary order.
For every route r with v B C(r ) we call the function et to determine the earliest trip
tr that can still be entered at v with regard to the earliest arrival time found so far and
the departure buffer time. This trip can be found by scanning all trips operating on r

in decreasing order. We iterate over all stops u on r . We check for each stop u whether
its arrival time is improved by tr, i.e., τarr(tr,u) < R[k][u]. If this is the case, we update
the arrival time for this round R[k][u] and insert u inUr . For every stop, we replace tr
by an even earlier trip, if possible. This may occur if a stop was reached by a different
route or transfer in a previous round and thus has an earlier arrival time.

After the route phase is finished,Ur contains all updated stops. IfUr is empty, there was
no progress made by taking any trip and we can terminate the algorithm. Otherwise we
relax transfers (Algorithm 2.3). To do this, we iterate over every stop v in Ur and relax

12



2.4 Bicriteria Problem Algorithm: raptor

Algorithm 2.1: raptor
Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop

t ∈ S, departure time τmin ∈ Π.
Data: Round table R[·][·], stops updated by transferUt , stops updated by

routeUr , routes containing updated stops C
Output: Round table R[·][·]

// Initialization

1 forall v ∈ S do
2 R[0][v] ← ∞

3 R[0][s] ← τmin
4 Ur .insert(s)
5 relaxTransfers(0)
6 forall k ← 1, 2, 3... do
7 forall v ∈ S do
8 R[k][v] ← R[k − 1][v]

// Collect updated routes

9 C .clear()
10 forall v ∈ Ut do
11 forall routes r containing v do
12 if r ∈ C then
13 C(r ) ← minindexr (v,C(r ))

14 else
15 C(r ) ← v

16 scanRoutes(k)
17 ifUr = ∅ then break
18 relaxTransfers(k)

all outgoing edges (v,u) ∈ F . We update u if its arrival time by transfer is improved
by walking from v to u, i.e., R[k][v] + `(v,u) < τt (u).

Journey Extraction

So far our implementation only computes the arrival time, the departure time and
the number of trips of a journey, but not the actual trips and transfers. However, this
can easily be achieved by changing the definition of the round table. We now store

13



2 Preliminaries

Algorithm 2.2: scanRoutes
1 Function scanRoutes(k):
2 Ur .clear()
3 forall (r ,u) ∈ C do
4 tr ← ⊥

5 forall v on r beginning with u do
6 if tr , ⊥ then
7 if τarr(tr,v) < min(R[k][v],R[k][t]) then
8 Ur .insert (v)
9 R[k][v] ← τarr(tr,v)

10 τ ← R[k][v] + τbuf(v) // earliest possible departure time

11 if tr = ⊥ ∨ τ < τdep(tr,v) then
12 tr ←et(r ,v, τ )

labels consisting of the arrival time and the trip segment that was taken in a round,
i.e., R[k][v] = (τarr, (tr,u,w)). If w , v , the journey also contains the footpath (w,v).
In the route scanning phase, we have to keep track not only of the current trip tr of a
route, but also of the stop u where tr was entered. Whenever updating the arrival time
at a stop v we then set the trip segment entry of v to (tr,u,v). When arriving at a stop
v ′ by footpath from v , we simply copy the trip segment entry of R[k][v]. Journeys can
later be extracted by backtracking through the trip-segment entries.

Running Time

The worst case running time of raptor can be bounded as follows: In every round
we traverse every route r ∈ R at most once, which takes constant time per stop.
This sums up to

∑
r ∈R |stops(r )|, where stops(r ) are the stops on a route r . Note

that
∑

r ∈R |stops(r )| ≥ |S| as one stop can be part of multiple routes. The same cost is
required to determine the earliest updated stop per route, since for each updated stop
v we look up all routes that contain v . If all routes are numbered consecutively, we
can implement C as an array with constant access time.

The procedure to find the earliest reachable trip at a stop, et, can be efficiently imple-
mented by maintaining a pointer to the current trip. Note that et is only called if the
earliest possible departure time at a stop is smaller than the departure time of the cur-
rent trip. Thus, the trip pointer may only decrease throughout the route and the total

14



2.5 Profile Algorithms

Algorithm 2.3: relaxTransfers
1 Function relaxTransfers(k):
2 Ut .clear()
3 forall v inUr do
4 forall (v,u) ∈ F do
5 τarr ← R[k][v] + `(v,u)

6 if τarr < min(R[k][u],R[k][t]) then
7 Ut .insert (u)
8 R[k][u] ← τarr

running time of et is bounded by |r |, the number of trips per route. Hence, we consider
every trip at most once per round. Each footpath (v,u) ∈ F is relaxed at most once per
round. Thus, in total the running time is bounded by O(K(

∑
r ∈R |stops(r )|+ |T |+ |F |)),

where K is the number of rounds.

Target Pruning

The basic raptor algorithm computes Pareto sets for every stop in S. However, since
we are only interested in the arrival times at a single target stop t , we can exploit the
following observation: If in any round k the arrival time R[k][u] at a stop u , t is
greater than or equal to the arrival time R[k][t] at the target, this arrival cannot be part
of a Pareto-optimal s-t-journey. The lower arrival time at t was already reached with a
lower or equal number of trips than the arrival time at u. Any journey containing this
arrival at u would therefore be dominated. Hence, we can skip updating stops if they
are dominated by the target arrival time. This decreases the search space and running
time significantly. The pseudocode for Algorithm 2.2 and Algorithm 2.3 features target
pruning.

2.5 Profile Algorithms

2.5.1 rraptor

The raptor algorithm as described in 2.4 can be adapted easily to answer profile queries,
which has been defined in Section 2.3.2. Delling et al. [DPW12] introduced also a profile
variant, rraptor (r stands for range), in the same paper as single departure time raptor.
In this section, we describe rraptor along with two optimization techniques.

15



2 Preliminaries

Essentially, rraptor runs a raptor query for every possible departure time in the dis-
crete departure time range I = [τmin, τmax]. Its efficiency results from reusing the round
table from previous runs to reduce the amount of scanned trips in subsequent runs.
This technique is based on the idea of the Self-pruning Connection-Setting algorithm
[DKP12].

For simplification, we first describe rraptor without considering footpaths from s .
Every possible s-t-journey must then begin with a trip tr that serves s . Let Ψ be the
set containing the departure times at s within I of all such trips. It then is sufficient
to perform a single departure time raptor query for each τ ∈ Ψ to find all bicriteria-
optimal journeys for any time point in I . We call such a raptor query a run. However,
since an optimal journey for τ with τ ∈ Ψ does not necessarily have to use tr but can
also start with a trip departing later on another route, these runs find many duplicate
journeys, which have to be removed in a post-processing step. Furthermore, if there
are two journeys J and J ′ with τarr(J ) = τarr(J

′) and |J | = |J ′ |, but τdep(J ) > τdep(J
′),

only J may be included in the profile, so J ′ has to be removed as well. Due to the high
degree of redundancy, this approach is rather costly.

rraptor makes use of the observation that a journey departing at τ1 can also be
bicriteria-optimal for earlier departure times τ2 < τ1. It can thus dominate a journey
departing at τ2 but not vice-versa. rraptor scans the departure times in Ψ in decreasing
order. The round table is preserved between different raptor runs. Suppose the arrival
time τarr at a stop v of a s-v-journey J is greater than or equal to the one already stored
in R [k] [v]. Since R[k][v] was set in a previous run there must be a later departing
s-v-journey J ′ that dominates J . Hence, J can safely be pruned.

It remains to describe how initial footpaths are considered. Journeys can not only start
with trips departing at s , but also at any other stop v that is reachable from s by a
footpath. Let τs (tr,v) B τdep(tr,v)−τbuf(v)−`(s,v) be the time at which it is necessary
to leave s in order to enter a trip tr that departs atv at τdep(tr,v). If we started a raptor
run for every such τs (tr,v) with (s,v) ∈ F , all stops u reachable from s by footpath
would be updated during the initial transfer phase of every run. However, we can use
the fact that each stop u is scanned in any case by the raptor run for τs (tr,u). We can
thus skip the initial transfer phase. Instead, we have to storev together with τs (tr,v) in
Ψ. To start a raptor run we then set R[0][v] = τs (tr,v) + `(s,v), and insert v into Ut .
The raptor run then begins with scanning routes. Note that it is still important to scan
departures in order of the departure time at s (not atv) to ensure correct self-pruning.

16



2.5 Profile Algorithms

Lazy Round Table Propagation

Suppose a raptor run for a certain departure time τi ∈ Ψ terminates after n rounds,
whereas the subsequent raptor run for τi−1 < τi only performsm < n runs. If the
round table entry R[m][v] of a stop v has been updated in the second run, we have
to propagate its arrival time to all higher-round entries R[k][v] form < k ≤ n. This
is necessary because further runs could require more rounds and access such entries
R[k][v].

However, we can avoid updating the round table in advance by using timestamps. We
associate each entry in R with a timestamp, denoting the raptor run in which it was
updated. When accessing a round table entry R[k][v], we first check if its timestamp
belongs to the current run. If not, we recursively check lower rounds R[j][v] (j < k)
until we find an entry R[i][v] with a current timestamp. We then propagate its value
to all entries R[j][v] (i < j ≤ k) and update their timestamps. If the profile table entry
R[0][v] for round 0 has an expired timestamp, it can be set to τdep + `(s,v), where τdep
is the departure time at s for this run, or∞, if (s,v) < F .

Trip Pruning

When determining the earliest trip et(r ,v, τarr) of a route r that can be entered at a stop
v with arrival time τarr = R[k][v], we iterate over all trips of this route in decreasing
order. In the context of rraptor we can make use of the observation that the arrival
time τarr at any stop can only decrease throughout raptor runs. As a consequence,
the earliest trip may only decrease as well. We can thus speed up the look-up of trips
by maintaining a pointer to the earliest trip per round, stop, and route and preserving
it across runs.

2.5.2 Alternating raptor

Another algorithm to answer profile queries was introduced by Wagner and Zündorf
[WZ17]. They studied the problem of public transit queries with unrestricted walking
between stops. An unrestricted walking graph contains further vertices apart from
stops. It is not transitively closed and there is no restriction on the maximum length of
walking paths passengers can use. Since having walking paths to almost all stops in the
network results in a large number of possible departure labels rraptor is impractical
in this context.

The main idea of Alternating raptor is to find an earliest arrival time τarr by running
a basic raptor search (see Section 2.4) and to find the journey departing latest that
arrives at τarr by running a subsequent backward raptor search. Given a departure

17



2 Preliminaries

time interval I = [τmin, τmax], Alternating raptor first performs a raptor search with
departure time τmin. This query yields a Pareto set of s-t-journeys with minimal arrival
time for their respective number of trips. However, these journeys are not necessarily
part of a profile, as for every journey J there could be another journey J ′ departing later
with the same arrival time. This is because raptor always takes the earliest reachable
trip at every stop. For every journey J we found, we therefore run a backward raptor
search from t , starting with the arrival time τarr(J ). The backward query then finds a
journey J ′ with the latest possible departure time τdep for arrival time τarr(J ) and |J |
trips. J ′ is then part of the profile. The profile is now complete for |J ′ | trips and the
interval I ′ = [τmin, τdep]. Figure 2.1a shows how a profile is composed of such intervals.
We then perform another forward search with departure time τdep + ε , followed by
backward searches for all found arrival times. ε is the smallest time unit in Π, typically
one second. This procedure is repeated until journeys departing at τmax or later have
been found. In this case no subsequent forward search is performed.

When running raptor queries, we have to explicitly exclude journeys with zero trips.
If direct walking from s to t is possible, then for every τ ∈ I there is one Pareto-optimal
journey J with zero trips and τdep(J ) = τ . If a forward search found such a pure
walking journey for departure time τmin, the backward search would find the same
journey and the next forward search would be started for τmin + ε . We would in total
perform two raptor queries for every time unit in the departure time range I and
find the same walking journey |Π | times. To prevent this, we modify the basic raptor
algorithm to avoid reaching t in the initial relax transfers phase. However, if one can
walk directly from s to t , the walking time `(s, t) is used to prune longer journeys J ′

that are dominated by walking., i.e., τt(J ′) > `(s, t). Since a pure walking journey is
time independent it is then sufficient to output only one such journey.

A backward search can be implemented by reversing the input data (Π,S,T ,R, F ). For
every trip tr ∈ T serving a stop v ∈ S, the departure time τdep(tr,v) and arrival time
τarr(tr,v) are replaced by −τarr(tr,v) and −τdep(tr,v), respectively. Footpaths (u,v) ∈ F
are inverted. In order to find the latest departing journeys for an arrival time τarr we
have to run the raptor algorithm on the reversed network with t as source stop, s as
target stop and −τarr as departure time.

It remains to describe in which order the forward and backward searches are performed.
A priority queue is used to sort arrival times that were found by forward searches in
ascending order. In every step the minimal arrival time τarr is extracted from the queue.
We then run a backward search for τarr. We add every journey J that was found by the
backward search to the profile and immediately start a forward search for τdep(J ) + ε .

18



2.5 Profile Algorithms

To avoid doing two forward searches for the same departure time, we have to keep
track of the times for which we already performed a forward search.

The total running time of Alternating raptor is bounded by the number of journeys in
the profile. For each journey the basic raptor algorithm is invoked at most twice.

Alternating raptor already computes journeys ordered increasingly by their arrival
time due to the priority queue. Thus, it can easily be used to compute a profile page-
wise. rraptor, in contrast, finds journeys from latest to earliest. However, the reuse
of the round table (self-pruning) in rraptor results in a lower degree of redundancy,
which is why it performs better than Alternating raptor when computing a whole
profile at once.

19





3. Pagination Problem

Modeling the use case of end user applications (like bahn.de) as profile queries as
defined in Section 2.4 is not quite realistic. The upper end of the time interval is
often not known a priori. Rather, a user enters s , t and a minimum departure time
τmin and the application presents them some “early” journeys from the profile. If the
user cannot find a journey that satisfy their needs, they can click a button such as
“Later journeys” in order to compute another batch of journeys. Every such batch is
called a page. The technique of splitting a result, in this case a profile, into pieces is
called pagination. Pagination has two main advantages: The user is not overwhelmed
by too many journeys, but sees the most relevant journeys first. The costly profile
computation can be split and new journeys are computed on demand.

A crucial aspect when using pagination is the way journeys are ordered. Journeys on
later pages are more likely not to be seen by a user, which is how ordering introduces
a certain bias to their decision making.

In this chapter, we formally define ordering on profiles (Section 3.1.2) and how ordered
profiles might be split into pages (Section 3.2.1). We then discuss the advantages
of different ordering criteria for profiles in the context of pagination (Section 3.2.2).
Additionally to the obvious criteria, i.e., ordering journeys by their arrival or departure
time, we introduce an alternative criterion, the earliest optimal departure time of a
journey (Section 3.1.1). Finally, we describe the general framework most pagination
algorithms in this thesis follow.

21



3 Pagination Problem

3.1 Ordering Profiles

3.1.1 Earliest Optimal Departure Time

We define the earliest optimal departure time of a journey as another property of a
journey. In contrast to the properties already defined in Section 2.2, this property does
not depend solely on the journey itself, but rather describes how a journey is embedded
in a profile.

3.1Definition Earliest Optimal Departure Time. Given a time interval I = [τmin, τmax]

⊆ Π and a profile P over I and a journey J ∈ P , the earliest optimal departure time τe (J )
is defined as the earliest time τ ∈ I for which J is bicriteria-optimal.

In profile diagrams such as Figure 2.1 τe (J ) is simply the starting point of the time
interval for which J is optimal.

3.1.2 Partial Orders on Journeys

When using pagination it is crucial to define in which way journeys are ordered. We
define an ordering on a profile using a partial order. In general, a binary relation � on
a set S is a partial order if, and only if � is reflexive, transitive, and anti-symmetric, i.e.
∀a,b, c ∈ S : a � a, a � b ∧ b � c ⇒ a � c , and a � b ∧ b � a ⇒ a = b.

In this thesis we consider three partial orders. Each partial order uses a different
journey property, e.g. departure time, arrival time or earliest optimal departure time,
as the primary sorting criterion. To describe a partial order we use a triple of functions
(f1, f2, f3), each of which maps a journey to a natural number. Formally, the partial
order � is defined as J � J ′⇔ (f1(J ), f2(J ), f3(J )) ≤ (f1(J

′), f2(J
′), f3(J

′)). The tuples
are compared lexicographically, i.e., J � J ′ ⇔ ∀i (fi (J ) > fi (J

′) ⇒ ∃j < i : fj (J ) <

fj (J
′)).

• Ordering by departure time �dep:
J �dep J ′⇔ (τdep(J ), τarr(J ), |J |) ≤ (τdep(J

′), τarr(J
′), |J ′ |)

• Ordering by arrival time �arr:
J �arr J

′⇔ (τarr(J ), |J |, τdep(J )) ≤ (τarr(J ), |J |, τdep(J ))

• Ordering by earliest optimal departure time �e:
J �e J

′⇔ (τe(J ), τarr(J ), |J |) ≤ (τe(J
′), τarr(J

′), |J ′ |])

22



3.2 Pagination

All of the above relations naturally define a partial order on a profile. For each of the
above partial orders we further define a relation ≈ on journeys, such that J ≈ J ′ if J
and J ′ are equal with respect to the primary sorting criterion, i.e., J ≈ J ′ ⇔ f1(J ) =

f1(J
′).

To simplify notation, we also define for any partial order � on journeys the respective
total order ≺ as J ≺ J ′⇔ J � J ′ ∧ ¬(J ′ � J ).

The above orderings are well-defined on arbitrary journeys. However, when ordering
journeys in profiles, i.e., in solutions for the Range Problem (Definition 2.4), it is
not possible that a comparison of two journeys by the third tuple function occurs. If
two journeys J and J ′ are equal with regard to the first two functions, one of them
necessarily dominates the other journey: If τdep(J ) = τdep(J

′) ∧ τarr(J ) = τarr(J
′), the

journey with the lower number of trips dominates the other. Likewise, if τarr(J ) =
τarr(J

′) ∧ |J | = |J ′ |, the later departing journey dominates the earlier journey. If
τe(J ) = τe(J

′) ∧ τarr(J ) = τarr(J
′), the journey with the lower number of trips dominates

the other journey. In any of these three cases only one of the journeys would be
included in the profile at all.

3.2 Pagination

3.2.1 Formal Prerequisites

Suppose (�,≈) is an ordering on a profile P . We call a finite sequence (Ji )1≤i≤ |P |
containing every journey in P with Jj � Jj+1 (∀1 ≤ j ≤ |P |) an ordered profile. Given
the total number of pages, m, pages are defined by using indices jk (1 ≤ k ≤ m)

such that each page Pk is a contiguous subsequence of the ordered profile: Pk B
(Ji )jk ≤i<jk+1(j1 = 1, jm+1 = |P | + 1). Given a page size n and a profile P we require a
pagination withm pages to have the following properties:

• Every page but the last page contains at least n journeys, i.e., jk+1 − jk ≥ n

(1 ≤ k ≤ m − 1).

• Journeys that are equal with respect to the primary sorting criterion are always
on the same page, i.e., Ji ≈ Ji+1 ⇒ ∃k : jk ≤ i < i + 1 < jk+1.

• If a page contains more than n journeys, the additional journeys on the page
are all equal with respect to the primary sorting criterion, i.e., jk+1 − jk > n ⇒

∀jk + n ≤ i < jk+1 : Ji ≈ Jjk+n(1 ≤ k ≤ m).

23



3 Pagination Problem

τdep(J ) τarr(J ) |J | τe(J )

Ja 10:45:48 13:52:00 3 10:45:00
Jb 10:45:48 15:39:25 2 10:45:00
Jc 10:47:02 12:52:00 4 10:45:00
Jd 10:47:02 14:39:25 3 10:45:49
Je 11:10:48 16:09:25 2 10:45:49

Jf 11:45:48 14:52:00 3 10:47:03
Jд 11:45:48 16:39:25 2 11:10:49
Jh 11:47:02 13:52:00 4 10:47:03
Ji 11:47:02 15:39:25 3 11:45:49
Jj 12:10:48 17:09:25 2 11:45:49

(a) Profile ordered by departure time.

τdep(J ) τarr(J ) |J | τe(J )

Jc 10:47:02 12:52:00 4 10:45:00
Ja 10:45:48 13:52:00 3 10:45:00
Jh 11:47:02 13:52:00 4 10:47:03
Jd 10:47:02 14:39:25 3 10:45:49
Jf 11:45:48 14:52:00 3 10:47:03
Jk 12:47:02 14:52:00 4 11:47:03

Jb 10:45:48 15:39:25 2 10:45:00
Ji 11:47:02 15:39:25 3 10:47:03
Jl 12:45:48 15:52:00 3 11:48:03
Jm 13:46:03 15:52:00 4 12:47:03
Je 11:10:48 16:09:25 2 10:45:49

(b) Profile ordered by arrival time.

τdep(J ) τarr(J ) |J | τe(J )

Jc 10:47:02 12:52:00 4 10:45:00
Ja 10:45:48 13:52:00 3 10:45:00
Jb 10:45:48 15:39:25 2 10:45:00
Jd 10:47:02 14:39:25 3 10:45:49
Je 11:10:48 16:09:25 2 10:45:49

Jh 11:47:02 13:52:00 4 10:47:03
Jf 11:45:48 14:52:00 3 10:47:03
Jд 11:45:48 16:39:25 2 11:10:49
Ji 11:47:02 15:39:25 3 11:45:49
Jj 12:10:48 17:09:25 2 11:45:49

(c) Profile ordered by earliest optimal de-
parture time (τe).

Table 3.1 – Example profile for traveling from Meggen, Schlössli to Weisslingen, Mühle with
the departure time range [10:45, 14:00]. Only the journeys on the first two pages of the profile
for a page size of n = 5 are listed. The horizontal line indicates a page break. Each table shows
the journeys for a different ordering.

3.2.2 Trade-offs between Different Orderings

Sorting journeys by specific orderings has different trade-offs, especially in the context
of pagination. The following example query on the Swiss railway network gives a
good illustration. Consider traveling from Meggen, Schlössli to Weisslingen, Mühle at

24



3.2 Pagination

a minimum departure time of 10:45 a.m. Table 3.1 shows the journeys on the first two
pages of a profile for the time interval from 10:45 to 14:00 with a page size of 5 and
different orderings.

Ordering the pages by departure time (Table 3.1a) might seem intuitive at first glance.
The main advantage is that each page corresponds to a minimum departure time. The
first page contains the earliest departing journeys after 10:45. The last journey on page
1, Je , departs at 11:10:48. Hence, the second page can be interpreted as the first page
of a different profile query with 11:10:49 as minimum departure time. This allows a
stateless implementation of end user applications, e.g., web interfaces: The computation
of each page also yields the minimum departure time for the following page (departure
time of the last journey on the page plus ε). This can be used as a URL parameter for
the next page. The server does not need to store any state about the specific user’s
query. However, in this example Jh , which departs at 11:47:02 and arrives at 13:52:00
(using 4 trips), does not appear on the first page, even though it features the second
earliest arrival time. Users will likely ignore it, as they do not expect such a journey
being listed after journeys arriving as late as 16:09:25 (Je ), and hence do not look at the
second page.

If journeys are ordered by their arrival time (Table 3.1b) we encounter the inverse
problem: Early departing journeys might not appear on the first page, e.g., Jb , which
departs at 10:45:48 and involves 2 trips. In fact, no journey with two trips is listed on
the first page. However, early arriving journeys presumably have a higher relevance for
users, especially, if they want to choose the latest departing journey such that the still
arrive before a certain time. Note that ordering by arrival time lacks the statelessness
of departure time order pagination.

We introduced the criterion of the earliest optimal departure time (Definition 3.1) to
address the issue of journeys with an early departure or arrival time being pushed
to rather late positions in the profile. It represents a compromise between departure
time ordering and arrival time ordering, respectively. If this ordering is used, journeys
are grouped by the first time for which they are part of a bicriteria-optimal solution.
In other words: Every position i in a profile, that corresponds to an earliest optimal
departure time τi , answers the question “Which journeys are worth considering if
I want to depart at τ or later?”, as those journeys are precisely the ones listed from
position i onward.

Ordering by earliest optimal departure time is stateless in the same sense as ordering
by departure time: Let τ be the earliest optimal departure time of the latest journey on
a page. Then the next page is identical to first page of a profile query with τmin = τ +ε .

25



3 Pagination Problem

Algorithm 3.1: pagination
Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop

t ∈ S, departure time range I = [τmin, τmax] ⊆ Π.
1 initialize()
2 while ¬profileComplete() do
3 P ← ∅

4 while |P | < n ∧ ¬profileComplete() do
5 P ← P ∪ computeJourneys()

6 output P
7 if user requests next page, continue. else break

3.2.3 Pagination Framework

In end-user applications the use of profile algorithms is follows a certain structure.
The profile algorithm must compute a single page of journeys, then stop computation
and continue computing later journeys when the user requests to see the next page.
Given a profile algorithm that computes journeys in ascending order with regard to an
ordering (�, ≈) (see Section 3.1.2), pages are retrieved using the following scheme (as
described by Algorithm 3.1): After the algorithm is initialized (initialize()), journeys
are computed iteratively. As long as not all journeys of the profile have been computed,
which is checked by profileComplete(), the procedure computeJourneys is called
repeatedly. computeJourneys outputs a set S of journeys such that ∀J , J ′ ∈ S : J ≈ J ′.
The journeys in S are then added to the current page P . When P is full, i.e., |P | ≥ n

with page size n, it can be output and the computation can be continued.

Formally, a profile algorithm is considered pagination-conform for an ordering (�,
≈), if the following two conditions hold true. First, journeys returned when calling
computeJourneys precede journeys returned by later calls of computeJourneys
according to �. Second, all journeys that are equal with regard to ≈ are returned by
the same call to computeJourneys. This property ensures that journeys with the same
arrival, departure, or earliest optimal time are listed on the same page.

All algorithms presented in this work that rely on modified versions of Alternating
RAPTOR (Section 2.5.2) as well as the rRAPTOR variant that computes journeys ordered
by arrival time conform to the above scheme. However, variants, namely rrdep and
rre, that mix rRAPTOR with Alternating RAPTOR compute all journeys of a page at
once.

26



4. Algorithms

Certainly, a trivial approach to achieve pagination as described in Chapter 3 is to
use an arbitrary profile algorithm, e.g., rraptor, to first compute the whole profile at
once. The profile is then sorted according to the required criterion and split into pages
afterwards. However, this would lead to a very high response time before the first page
can be output. Furthermore, not all pages might eventually be requested by the user
and thus journeys are computed superfluously. Instead, we strive to already compute
journeys in the required order, such that the computation cost is split over the pages.

In this chapter, we show how Alternating raptor and rraptor can be adapted to
compute profiles page-wise for each of the orderings we introduced in Section 3.1.2.

4.1 Alternating raptor-based Approaches

The Alternating raptor (AR) algorithm (Section 2.5.2) can be modified in a rather
straightforward way in order to obtain different orderings. We present three variants,
ararr, ardep, and are, which produce the orderings �arr, �dep, and �e, respectively.
Each variant uses the principle of running forward raptor searches to find earliest
arrival times and then running backward raptor searches to find the latest departing
journeys for these arrival times. The order of the returned journeys results solely from
the order in which forward and backward searches are performed. Since Alternating
raptor uses the raptor algorithm as a building block for solving the Bicriteria Problem,
the concepts described hereafter work with any other basic algorithm that computes
bicriteria-optimal journeys as well.

27



4 Algorithms

Algorithm 4.1: ararr

Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop
t ∈ S, departure time range I = [τmin, τmax] ⊆ Π.

Data: Priority queue Q of arrival labels (τ ,k) ordered by arrival times τ
1 Function initialize():
2 forwardSearch(s, t, τmin, τmin)

3 Function profileComplete():
4 return Q = ∅

5 Function computeJourneys():
6 P ← ∅

7 (τarr,k) ← Q .min()
8 B ←backwardRaptor(t, s, τarr)
9 do
10 (τarr,k) ← Q .popMin()
11 J ← journey in B with k trips
12 P ← P ∪ {J }

13 forwardSearch(s, t, τdep(J ) + ε)
14 while Q , ∅ ∧ τarr = τarr(Q .min())
15 return P

16 Function forwardSearch(s, t, τmin, τarr):
17 if already performed forward search for τmin then return
18 J ← forwardRaptor(s, t, τmin)
19 for J ∈ J do
20 if τarr(J ) ≥ τarr then Q .insert((τarr(J ), |J |))

4.1.1 Ordering by Arrival Time (ararr)

Alternating raptor orders journeys already by their arrival time, i.e., �arr. In Algorithm
4.1 we give pseudocode that shows how it can be adapted to obey the generic scheme
for pagination algorithms. The algorithm maintains a priority queue that contains
arrival labels, i.e., tuples (τarr,k) of arrival time τarr and number of trips k . When
computeJourneys is called, a backward search is performed for the arrival time
τarr of the earliest arrival label in Q . Then all labels with the same arrival time τarr
are extracted from Q and the respective latest departing journeys are looked-up in
the backward search results. These journeys are then added to the profile. For each

28



4.1 Alternating raptor-based Approaches

such journey J , a forward search for the subsequent departure time, i.e., τdep(J ) + ε
is performed. Let J be the set of all journeys that are found by the forward search.
For each journey in J that arrives not before τarr the respective arrival label is then
inserted into Q . Note that the forward search, however, can find journeys that arrive
exactly at τarr. In this case the respective arrival labels are processed within the same
call of computeJourneys.

It remains to show why we can ignore all journeys in J that arrive before τarr. We do
so by showing that every “new” journey J ∈ J , i.e., a journey that has not previously
been found by another forward search, arrives not before τarr. Since J is found for the
first time, there must exist some journey J ′ with τarr(J

′) = τarr and τdep(J ′) < τdep(J )

that dominates J for any point of time up to τdep(J ′), inclusively. Hence J ′ has equal or
less trips than J . If |J | = |J ′ |, J must arrive later than τarr, since the backward search
for τarr has found J ′ as the latest departing journey with |J | trips arriving at τarr. If
|J | > |J ′ | and τarr(J ) < τarr, J ′ would not have dominated J , hence J must depart at τarr
or later.

4.1.2 Ordering by Departure Time (ardep)

We can modify Alternating raptor in order to compute journeys by their departure
time. The main idea is that the priority queue holds already found journeys ordered by
their departure time instead of arrival time as in ararr.

Initially, we perform a forward raptor search starting at s with departure time τmin.
This forward search solves the Bicriteria Problem for τmin. For every journey J we
find we perform a backward raptor search starting at t for τarr(J ) to find the latest
departing journey J ′ with |J | = |J ′ | trips that arrives at τarr(J ). Thus J ′ is part of the
profile and we insert it into the queue.

On every call of computeJourneys, we remove all journeys with minimal departure
time τdep from the queue. We add these journeys to the profile. We then again perform
a forward search for τdep + ε and backward searches for the respective arrival times
as we did before for τmin. To achieve a correct ordering of the returned journeys, we
must ensure that only journeys departing strictly later than τdep are added to the queue.
Since we start the forward search with minimum departure time τdep + ε , we can only
find journeys departing after τdep. Note that when the forward search finds a journey
J and we perform a backward search for τarr(J ), we are only interested in a journey
J ′ with |J | trips, since other journeys could depart before τdep + ε or are not part of a
profile.

29



4 Algorithms

Algorithm 4.2: ardep

Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop
t ∈ S, departure time range I = [τmin, τmax] ⊆ Π

Data: Priority queue Q of journeys ordered by �dep, Map M of departure
time to set of journeys

1 Function initialize():
2 forwardBackwardSearch(τmin)

3 Function profileComplete():
4 return Q = ∅

5 Function computeJourneys():
6 P ← ∅

7 do
8 J ← Q .min()
9 P ← P ∪ {J }

10 Q .popMin()
11 while Q , ∅ ∧ τdep(J ) = τdep(Q .min())
12 if τdep ≤ τmax then forwardBackwardSearch(τdep(J ) + ε)
13 return P

14 Function forwardBackwardSearch(τmin):
15 J ←forwardRaptor(s, t, τmin)
16 for J ∈ J do
17 if τarr(J ) < M then
18 M[τarr(J )] ←backwardRaptor(t, s, τarr(J ))

19 ifM[τarr(J )][|J |] , ⊥ then
20 J ′← M[τarr(J )][|J |]

21 M[τarr(J )][|J |] ← ⊥

22 Q .insert(J ′)

The algorithm as described so far can find the same journeymultiple times. For example,
consider a scenario, where for one trip there is a possible journey J that departs at a
rather late time τdep ∈ I . In this case all forward searches before τdep will find J . To
avoid adding it to the profile multiple times, we have to keep track of journeys that
have already been added to the profile. This can be done using a set data structure.

30



4.1 Alternating raptor-based Approaches

However, caching backward search results, as described in the following paragraph,
allows us to mark journeys that have already been considered.

1

2
nu

m
be
r
of

tr
ip
s

time
7:00 9:008:00

10:00

9:00 10:00

Figure 4.1 – This profile contains one journey with one trip: 08:00 – 10:00 (J1,1), and two
journeys with two trips: 08:00 – 09:00 (J2,1), 09:00 – 10:00 (J2,2). If backward search results are
not cached, the backward search for 10:00 would be performed twice.

Caching Backward Search Results. It can occur that we perform multiple back-
ward searches for the same arrival time. For an example, consider the profile depicted
in Figure 4.1. There is an s-t-journey from 08:00 to 10:00 (J1,1), and there are two addi-
tional s-t-journeys from 08:00 to 09:00 (J2,1) and from 09:00 to 10:00 (J2,2), respectively.
In this example, the first forward search would find J1,1 and J2,1 and perform backward
searches for 10:00 and 09:00, respectively. The next forward search for 08:00:01 would
find J2,2 and would then perform a backward search for 10:00 again. However, we can
avoid this by caching the results of every backward search. To do this, we maintain a
data structure M that maps each arrival time to a list of journeys. When performing a
backward search for an arrival time τarr, the resulting journeys are stored in M[τarr].
This way, we can avoid running an identical backward search later. Instead, if a journey
J was found by the forward search, and τarr(J ) is already stored in M , we look up the
respective journey J ′ ∈ M[τarr] with |J ′ | = |J | and add it to the queue. We then remove
J ′ from M[τarr] to indicate that this journey was already found. Since a profile can
contain at most one journey per arrival time and number of trips, we thereby ensure
that J ′ is not added to the result twice. Furthermore, the total number of backward
searches is decreased compared to ararr, since for any arrival time of a journey in the
profile at most one backward search is performed.

4.1.3 Ordering by Earliest Optimal Departure Time (are)

We can adapt ardep slightly in order to output journeys according to their earliest
optimal departure time, i.e., journeys that are ordered by �e. Recall that we defined the

31



4 Algorithms

1

2

nu
m
be
r
of

tr
ip
s

time
8:00 10:009:00

10:00 10:30 11:15

9:45 10:45

Figure 4.2 – This profile contains three journeys with one trip: 8:30 – 10:00 (J1,1), 9:15 – 10:30
(J1,2), 10:00 – 11:15 (J1,3), and two journeys with two trips: 8:45 – 9:45 (J2,1), 10:00 – 10:45 (J2,2).
Note that J2,2 is dominated by J1,2 before 9:15.

earliest optimal departure time τe(J ) of a journey J as the earliest time after which on
J is a bicriteria-optimal journey. If this time lies before the start of the query interval
τmin, τe(J ) is defined as τmin.

For an example that illustrates how τe results in different constellations, see Figure
4.2. The journeys that are found by a forward search for τmin have an earliest optimal
departure time τe = τmin per definition (e.g. J1,1 and J2,1 in Figure 4.2). For any other
journey J in a profile, J ’s earliest optimal departure time τe(J ) is the point at which
the last journey J ′ that dominated J previously departs, i.e., τe(J ) = τdep(J ′) + ε . This
journey, J ′, can either have the same number of trips as J (such as with J1,1 and J1,2)
or a lower number of trips, e.g., J1,2 dominates J2,2 for all times until 9:15. We observe
that in any case the earliest optimal departure time τe(J ) is identical to the departure
time with which the first forward search that found J was performed.

ardep performs a forward search for τdep + ε when τdep is extracted from the queue. The
journeys found by this forward search and the subsequent backward searches hence
have an earliest optimal departure time τe = τdep + ε and can immediately be added
to the profile. The departure times are extracted from the queue in ascending order,
which also ensures a correct ordering of the journeys by earliest optimal departure
time. Note that the only difference between are and ardep is that for are journeys
are added to the result before they are added to the priority queue, whereas for ardep
journeys are added when they are taken from the queue. Hence, for are it is sufficient
to maintain a queue which does not store journeys, but only departure times instead.

32



4.2 rraptor-based Approaches

4.2 rraptor-based Approaches

As already stated, Alternating raptor was originally developed to answer profile
queries on public transit networks that allow unlimited walking between stops. In
this scenario, any departure of a trip tr at a stop v results in a possible departure at
the source stop s for the time τdep(tr,v) − τbuf(v) − `(s,v). Due to the huge amount of
possible departures, using rraptor (see Section 2.5.1), which scans all departures at s
from latest to earliest, becomes inefficient. However, when applied to networks with
limited walking, rraptor performs faster than Alternating raptor.

rraptor collects possible departures at s and scans them from latest to earliest departure
time. After the departure for time τ ∈ I is scanned, the profile is complete for the
interval [τ , τmax]. In the context of pagination, however, we are interested in computing
journeys from earliest to latest. The rough idea is to run rraptor on a reverted route
network (see Section 2.5.2 for a definition of reverted networks). In a first step, we
collect all possible arrival times at the target stop t (in the original network) into a
set Ψ and sort them by their arrival time in ascending order. Then, for every arrival
time τarr ∈ Ψ, we perform a raptor search on the reverted network that finds the
latest departure time at s for arrival time τarr and for each numbers of trips. All raptor
searches work on the same round table such that the self-pruning property just as in
rraptor is ensured. Here, a round table entry R[k][v] denotes the latest departure time
at which one must depart at v to reach t with k trips not after the current arrival time.
After τarr has been scanned, the profile already contains all optimal journeys arriving
in the interval [τmin, τarr].

In this section, we describe in detail how the aforementioned idea can be used to obtain
profiles in different orderings. While the algorithm for ordering by arrival time (rrarr)
follows straightforwardly, ordering profiles by their departure time or earliest optimal
departure time requires some additional work.

4.2.1 Ordering by Arrival Time (rrarr)

Pseudocode for the rrarr algorithm is given in Algorithm 4.3. Because arrivals are
scanned in ascending order, the results are naturally ordered by their arrival time.

Collecting Arrivals

Given a departure time interval I = [τmin, τmax], we start with determining the interval
I ′ = [τmin

arr , τ
max
arr ] of possible arrival times. The earliest possible arrival time τmin

arr at t is
the earliest possible arrival time of a journey starting at s no earlier than τmin. We find
τmin
arr by performing a forward raptor search from s for τmin. The latest possible arrival

33



4 Algorithms

Algorithm 4.3: rrarr

Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop
t ∈ S, departure time range I = [τmin, τmax] ⊆ Π

Data: sorted list of arrivals A, set Jlatest bicriteria-optimal journeys for τmax,
RAPTOR algorithm instance backwardRAPTOR, latest scanned
arrival time τarr

1 Function initialize():
2 F ←forwardRAPTOR(s, t, τmin)
3 Jlatest ← latest departing journeys for arrival times in F

4 τmin
arr ←minJ ∈Fτarr(J )

5 L←forwardRAPTOR(s, t, τmax)
6 τmax

arr ← maxJ ∈L τarr(J )

7 A←
{
(τ , s)

�� tr ∈ T ∧ τ = τarr(tr, t) ∧ τ ∈ [τmin
arr , τ

max
arr ]

}
8 A← A ∪{

(τ ,v)
��v ∈ S ∧ (v, t) ∈ F ∧ tr ∈ T ∧ τ = τarr(tr,v) + `(v, t) ∧ τ ∈ [τmin

arr , τ
max
arr ]

}
9 sort A by τ

10 Function profileComplete():
11 return A = ∅

12 Function computeJourneys():
13 do
14 (τarr,v) ← A.popMin()
15 backwardRAPTOR.setArrivalTime(v, τarr − `(v, t))
16 while A , ∅ ∧ τarr = τarr(A.min())
17 backwardRAPTOR.setArrivalTime(t, τarr)
18 J ←backwardRAPTOR.run() // No initial transfers, preserve

round table

19 P ← ∅

20 for J ∈ J do
21 if τdep(J ) ≥ τmin ∧ J not dominated by any journey in Jlatest then
22 P ← P ∪ {J }

23 P ← P ∪ { J ∈ Jlatest | τarr(J ) = τarr}

24 return P

time τmax
arr at t is the arrival time of the latest arriving journey that is bicriteria-optimal

for τmax. This is the journey with the fewest trips that is found by a forward raptor

34



4.2 rraptor-based Approaches

1

2

nu
m
be
r
of

tr
ip
s

time
23:00 01:0000:00

01:30 02:00

00:50 01:50

Figure 4.3 – Depicted are two journeys with one trip, J1,1 and J1,2, from 23:05 to 01:30 and
from 00:05 to 02:00, respectively, and journeys with two trips from 00:10 to 00:50 (J2,1) and
from 1:10 to 01:50 (J2,2). For latest departure time τmax = 00:00, J1,1, J1,2 and J2,1 are part of a
profile, but J2,2 is not.

search from s for τmax. We then iterate over all trips tr arriving at t and save the arrival
time τarr(tr, t) ∈ I ′. To avoid relaxing initial footpaths for every backward raptor
search we also scan the trips that arrive at stops v with (v, t) ∈ F and collect the
arrival time at t which is τarr(tr,v) + `(v, t) (for a more precise description, see Section
2.5). We skip any arrival time outside I ′. Arrivals are stored in a list A. We sort A
ascendingly by arrival time.

Alternatively, arrivals can be precomputed for every stop v ∈ S and the total time
interval Π. For every profile query, we can then find the relevant range of arrivals
I ′ by performing a binary search for τmin

arr and τmax
arr . However, this approach requires

O(
∑
v ∈S(|Tv |+

∑
(u ,v)∈F |Tu |)) space, where Tv is the set of trips that servev . For every

set of stops C ⊆ S that form a clique in the footpath graph (∀u,v ∈ C : (u,v) ∈ F ),
O(

∑
v ∈C |Tv | · |C |) arrivals must be stored.

Processing Arrivals

Scanning journeys is straightforward: On every call of computeJourneys we consider
all arrivals (τarr,v) ∈ A with the minimum arrival time τarr. For each arrival label
we update the round table entry R[0][v] of v with arrival time τarr − `(v, t) (using
the function setArrivalTime). This allows us to skip the initial transfer phase as
we already discussed in the context of rraptor in Section 2.5.1. We then perform a
backward raptor search with s as target. The raptor search has found a new journey
if it updated the round table entry R[k][s] for the source stop s and some round k . If
there is any such journey, we add it to the profile.

35



4 Algorithms

Optimal Journeys at the End of the Interval

In practice, application users typically do not have a latest departure time in mind
when they are looking for a journey. Thus, τmax is commonly set to the end of the day.
However, the definition of the range problem (Definition 2.4) requires that a profile
contains all bicriteria-optimal journeys for every time in a finite time interval I . In
order to find journeys that arrive after τmax, we chose the latest arrival time of a journey
which is bicriteria-optimal for τmax as the upper bound τmax

arr for the arrival interval.
It is thus possible that multiple journeys departing after τmax for a certain number
of trips are found. Consider the example depicted in Figure 4.3. 02:00 would be the
latest arrival time τmax

arr and rraptor would thus find J2,2 even though it is not part of
the profile. To avoid this, we ignore all journeys found by rraptor with a departure
time greater than or equal to τmax. We compute all journeys Jlatest that are bicriteria-
optimal for τmax explicitly by an extra forward search for τmax and respective backward
searches. We output a journey in Jlatest when its respective arrival time is scanned.
We must also disregard every journey arriving after τmax if it is dominated by a journey
in Jlatest.

4.2.2 Ordering by Departure Time (rrdep)

Ordering journeys by arrival time is an inherent property of rrarr, which was discussed
in the last section. In this section, we present an approach, rrdep, that augments
rraptor with forward and backward searches as in Alternating raptor to find journeys
ordered by their departure time �dep. rrdep uses a heuristic approach: While rrdep
always computes correct solutions, its efficiency depends on properties of the profile.
More precisely, we use the observation that for a partial profile, i.e., only for those
journeys of a profile with the same number of trips k , the relative order of journeys
is the same regardless whether the profile is ordered by arrival or by departure time.
Let J and J ′ be two journeys in a partial profile. Say J departs after J ′. Then J must
also arrive later than the J ′ since it would otherwise dominate J ′ and they would not
be both in the profile. The intuition behind rrdep is to compute a variable number of
journeys using rrarr “on the off chance” in a first phase. In a second phase, the partial
profiles, which consist of journeys found in the first phase, are merged. To do this,
we take in each step the earliest departing journey among all partial profiles. If the
next earlier journey of a partial profile is unknown, we determine it by forward and
backward raptor searches such as in Alternating raptor.

Pseudocode for rrdep is given in Algorithm 4.4. One can think of rrdep as a wrapper for
rrarr. It does not satisfy the scheme for pagination algorithms we introduced in Section
3.2.3. Instead, the computation for each page is split into two phases: In the first phase,

36



4.2 rraptor-based Approaches

the algorithm computes a number of journeysm by using a reversed rraptor as we
did for rrarr. The variablem ∈ N is a tuning parameter that must be no less than the
page size n. Sensible choices form are discussed in a later paragraph. The journeys
we found are stored in a priority queue Q ordered by their departure time. For each
number of trips k we also store the departure time τ latest

dep (k) of the latest journey with
k trips we have found so far.

In the second phase, we consider the earliest departing journey J in Q as a candidate
for the next earliest journey to be output. Before adding J to the page P , we check for
every possible (for details, see below) number of trips k other than |J | whether we have
already found a journey with k trips that departs later than J , i.e., τ latest

dep (k) > τdep(J ). If
so, we can be sure that all journeys with k trips have already been output and J must
now be output. If not, we perform a forward and backward raptor search for τ latest

dep (k).
We repeat this until these searches either find a journey J ′ with k trips departing after
τ latest
dep (k) or discovered that no journey that departs earlier than J exits. If a journey
J ′ is found, it is added to Q . If J ′ departs before J , we further consider J ′ as the new
candidate. For higher number of trips k > |J ′ | we thus have to compare τ latest

dep (k)

against τdep(J ′). The earliest departing journey is then added to the page and we repeat
the above procedure until at least n journeys have been added to the page.

In the following paragraphs, we discuss special cases that can occur in certain steps of
the algorithm as well as optimization techniques in greater detail.

Filling up Partial Profiles

To add a journey to a partial profile for k trips we perform a forward raptor search
starting from s for departure time τ latest

dep (k) + ε (see Algorithm 4.5). There are several
cases to consider:

• A journey J with exactly k trips is found. We then perform a backward raptor
search for τarr(J ) to find the latest departing journey J ′ arriving at τarr. We add
J ′ to Q and update τ latest

dep (k) to τdep(J
′). However, there is not necessarily an

optimal journey with k trips for τ latest
dep (k) (see next case).

• A journey J with k ′ < k trips is found. We determine the latest departing journey
J ′ for τarr(J ′) and set τ latest

dep (k) = τdep(J
′). Note that we here use τ latest

dep (k) to
indicate the latest time for which we have already found an optimal journey
with at most k trips. We repeat this procedure until either a journey with k trips
was found or it is guaranteed that no journey with k trips exists that departs
before τdep, i.e., until τ latest

dep (k) > τdep(min(Q)).

37



4 Algorithms

Algorithm 4.4: rrdep

Input: Public transit network (Π,S,T ,R, F ), source stop s ∈ S, target stop
t ∈ S, departure time range I = [τmin, τmax] ⊆ Π, page size n,
parameterm

Data: Algorithm rrarr, priority queue Q of journeys ordered by departure
time, maximum number of trips kmax, vector τ latest

dep of size kmax

1 Function initialize():
2 kmax ← 0

3 rrarr.initialize()

4 Function profileComplete():
5 return rrarr.profileComplete ∧Q = ∅

6 Function computePage():
7 while ¬rrarr.profileComplete() ∧|Q | < m do
8 J ← rrarr.computeJourneys()
9 for J ∈ J do
10 Q .insert(J )
11 if |J | > kmax then
12 for kmax < k < |J | do τ latest

dep (k) ← τmin

13 kmax ← |J |

14 τ latest
dep (|J |) ← τdep(J )

15 P ← ∅

16 while Q , ∅ ∧ (|P | < n ∨ τdep(nextJourney()) = maxJ ∈P (τdep(J )) do
17 P ← P ∪ {nextJourney()}
18 Q .popMin()

19 return P

20 Function nextJourney():
21 J ← Q .min()
22 k ← kmax
23 if τarr(J ) ≤rrarr.τarr then k ← |J |

24 for k ′ = 1, ...,k do
25 while τ latest

dep (k) ≤ τmax ∧ τ
latest
dep k ≤ τdep(J ) do

26 if forwardBackwardSearch(k) then break

27 J ← Q .min()
28 if τarr(J ) ≤rrarr.τarr then k ← |J |

29 return J

38



4.2 rraptor-based Approaches

Algorithm 4.5: forwardBackwardSearch
1 Function forwardBackwardSearch(k):
2 J ← forwardBackwardSearch(τ latest

dep (k) + ε,k)
3 if ∃J ∈ J with |J | = k then
4 J ′← backwardSearch(τarr(J ),k)
5 τ latest

dep (k) ← τdep(J
′);

6 if τt(J ) < `(s, t) then
7 Q .insert(J ′)
8 return true

9 else if ∃J ∈ J with |J | < k then
10 J ′← backwardSearch(τarr(J ), |J |)
11 τ latest

dep (k) ← τdep(J
′);

12 else
13 τ latest

dep (k) ← ∞

14 if ∃J ∈ J with |J | > kmax then
15 J ′← backwardSearch(τarr(J ),k)
16 τ latest

dep (k) ← τdep(J
′);

17 kmax ← |J |

18 if τt(J ) < `(s, t) then
19 Q .insert(J ′)

20 return false

• If the forward search finds no journey with k or less than k trips, we set τ latest
dep (k)

trip to∞.

• Any journey found with k ′ trips, where k < k ′ ≤ kmax, can be ignored, as it
cannot be optimal for k trips. If the partial profile for k ′ trips is empty, there
will be a separate forward and backward search for k ′ trips with departure time
τ latest
dep (k

′) + ε .

• However, it is possible that a journey J with k ′ > kmax trips is found. We then
find the respective latest departing journey J ′ and add it to Q .

39



4 Algorithms

Optimizing Forward and Backward Searches

Note that multiple forward searches are likely to be performed for the same departure
time. We thus cache the results of a forward or backward search in an associative data
structure, indexed by the respective departure time. In Algorithm 4.4 the look-up and
caching is implicitly done by forwardSearch. The same applies to backward searches
which are cached by backwardSearch.

As we discussed in Section 2.5.2, finding optimal journeys with forward and backward
raptor searches can become inefficient if one can walk directly from s to t . To avoid
this, we adapt the raptor search to not find journeys with zero trips. If the travel
time of a journey J is longer than the direct walking time from s to t , we still update
τ latest
dep (|J |) with its departure time τdep(J ), but do not add J to the page.

Checking for Earlier Journeys

To find the next earliest departing journey (see Function nextJourney in Algorithm
4.4), we first extract the earliest departing journey J from the queue. We then check
for all numbers of trips k ′ < kmax other than k = |J | if there can possibly be a
journey departing earlier than J we have not found yet. To do this, we test whether
τ latest
dep (k

′) > τdep(J ), and perform a forward and backward search otherwise. However,
this can be further optimized. Let τarr be the arrival time of the latest arrival that was
scanned by rrarr. If J arrives before τarr, it is sufficient to consider numbers of trips
k ′ < k . We prove this by showing that any optimal journey with more trips than k

departing earlier than J has already been found.

Suppose there is another optimal journey J ′ with more than k trips that departs before
J . J ′ must arrive before τarr(J ), since otherwise it would be dominated by J and thus
would not be part of the profile. If J ′ arrives before J , it must in particular arrive before
the latest scanned arrival time τarr and thus has already been found by rraptor. Hence
J ′ has been already output before J . Note that journeys that were found in the second
phase, i.e., by a forward and backward search, can possibly arrive after τarr. If so, we do
have to check for all number of trips k for which we have previously found journeys if
τ latest
dep (k) < τdep(J ).

Look-ahead Factor (Choosingm)

A worst case scenario for rrdep is as follows: Let Xarr ⊂ P be the subset of a profile P
that contains them earliest arriving journeys in P . Suppose all other journeys in the
profile depart before the journeys in Xarr (and thus have a lower number of trips). In
this scenario, rrdep would find the journeys in Xarr in the first phase using rraptor

40



4.2 rraptor-based Approaches

and all journeys in P\Xarr in the second phase using forward and backward searches.
If |P | �m the total cost of rrdep is near the combined cost for running both rrarr and
Alternating raptor for the complete profile.

However, in real-world profiles, the set of earliest arriving journeys Xarr is likely to
contain some of the earliest departing journeys as well. In the aforementioned worst
case scenario, the earliest arriving journeys in the profile are also the latest departing
ones and thus the journeys with the shortest travel times. Real-world travel times,
however, are bounded by limitations such as the average speed of trains and can thus
not be arbitrarily small. Furthermore, most profiles are to some degree periodic, which
makes it even more unlikely that these journeys only appear for departure times near
the end of the departure time interval. Finally, the experiments discussed in Chapter 5
support our assumption.

The next earliest departing journeys, which ought to be on the first page, but are not
in Xarr, must be found by forward and backward searches in the second phase. To
decrease the number of such journeys, we run rrarr in the first phase until a number
ofm > n journeys are stored in Q . Having a larger pool of already found journeys
increases the probability that the n next earliest departing journeys have already
been found in the first phase. Choosingm = ∞ would effectively result in doing a
complete rrarr search on the first call of computePage and then sorting all journeys
by departure time, which contradicts the whole idea of pagination. The choice ofm
is thus a trade-off between less overhead by forward and backward searches (large
values ofm) and computing unnecessary journeys in the rrarr phase, especially for
the first page (small values ofm). In our implementation, we choosem relative to the
page size n. The ratio betweenm and n is described by a constant lf , the look-ahead
factor, such thatm = blf · nc . In Section 5.4 we compare the performance of rrdep for
different look-ahead factors.

4.2.3 Ordering by Earliest Optimal Departure Time (rre)

For computing an order by earliest optimal departure time, i.e., �e, we can make use of
the same observation that we used for rrdep: Partial profiles are always ordered by their
earliest optimal departure time. Hence, we use the same data structures as for rrdep,
but change the comparison function of the priority queue to �e, i.e., to order journeys
ascending by their earliest optimal departure time. Furthermore, when nextJourney
is called and J is the candidate for the next journey, i.e., the minimum element in the
queue, for all k ′ , |J | ∧k ′ < kmax (or even k ′ < |J | if τarr(J ) is less than the latest arrival
time that was scanned by rraptor) we have to check if there might be a journey J ′

with k ′ trips and τe(J ′) < τe(J ) that we have not found yet. Here, it is sufficient to test

41



4 Algorithms

whether τ latest
dep (k

′) > τe(J ). If so, the earliest optimal departure time for the next later
journey with k ′ trips is bounded by τ latest

dep (k
′). If not, the next later journey for k ′ trips

could have an earliest optimal departure time greater than τ latest
dep (k

′) and we need to
determine it by a forward and backward search.

The aforementioned techniques, however, presume that we can identify the earliest
optimal departure time of any journey. As we have shown in Section 4.1.3, the ear-
liest optimal departure time of any journey J in a profile P is always equal to the
departure time of the latest departing journey J ′ in P that has dominated J previously,
increased by one time unit ε . Thus τe(J ) can formally be expressed as follows: τe(J ) =
max

{
τdep(J

′)
�� J ∈ Je (J )} + ε , where Je (J ) B { J ′ ∈ P | |J ′ | ≤ |J | ∧ τarr(J ′) < τarr(J )}.

We can therefore compute τe(J ) by iterating over the respective journeys in Je .

It remains to show that at any point in our algorithm where a journey J is found for
the first time, all journeys J ′ ∈ Je (J ) have already been found. Suppose J is found by
rraptor in the first phase. We then know that all journeys departing before J have
already been found, so the journeys in Je (J ) have been found in particular. Otherwise
J is found by a forward and backward search in the second phase of the algorithm.
If so, let τe be the earliest optimal departure time of the minimal journey in Q . The
forward search that finds J is started if τ latest

dep (|J |) ≤ τe. τ latest
dep (|J |) was either set as

the departure time of the previous journey with |J | trips or as the departure time of a
journey J ′ with less than |J | trips if a forward search has not found a journey for |J |
trips. However, all relevant numbers of trips k ′ < |J | have been checked before such
that for every such k ′ all journeys that depart before τe have already been found. In
particular, J ′ must have been found, since τdep(J ′) = τ latest

dep (|J |) ≤ τe < τ latest
dep (|J

′ |).

42



5. Experimental Evaluation

In this chapter, we describe several experiments to evaluate the concepts and algorithms
we have developed. Fist, we describe our test data based on the Swiss public transit
network and the generation of random queries (Section 5.1). We then present an
experiment that demonstrates the usefulness of ordering journeys by earliest optimal
departure time (Section 5.2). We further report the running times of the algorithms
presented in Chapter 4 we measured in different scenarios. The results are discussed
in Section 5.3. Section 5.4 looks in detail at rrdep and rre. In particular, it addresses
the question of finding sensible values for the look-ahead factor.

5.1 Experimental Data and Setup
The experimental setup is based on the work in [WZ17] and [Sau18]. We use the
public transit network of Switzerland, which is publicly available (http://gtfs.geops.
ch/). The period of operation Π is a time interval of 48 hours. Under the simplifying
assumption that the timetable is periodic, Π was obtained by duplicating the schedule
data for single business day (30th of May 2017). The footpath graph F was constructed
in several steps. Based on the footpaths and roads in the OpenStreetMap data of
Switzerland, the minimum walking time – assuming a constant walking speed of
4.5 km/h – between any two stops of the public transit network was determined. As
discussed in Chapter 2.1, the resulting walking graph must be transitively closed and
of reasonable size. To this end, edges were only inserted between such stops with a
walking time distance of no more than 15 minutes. The transitive closure of these edges
was then constructed, which lead to an average vertex degree of approximately 100 in
the resulting footpath-graph. For a more detailed description, we refer the reader to

43

http://gtfs.geops.ch/
http://gtfs.geops.ch/


5 Experimental Evaluation

Stops Routes Trips Stop Events Edges

25 426 13 934 369 534 4 740 929 215 360

Table 5.1 – Size of the Switzerland public transit network that was used in our experiments.

[Sau18]. Statistics regarding the size of the resulting public transit network instance
are listed in Table 5.1.

Queries

Picking source and target stops s, t ∈ S uniformly at random leads to not quite realistic
queries. Since there are many less frequented stops in rural areas, a random query is
likely to involve such stops. However, there are more passengers traveling from and
to such stops that are also served by many trips (e.g., Zürich HB). We thus assigned
a probability proportional to the number of stop events, i.e., arriving and departing
trains, to each stop. Source stop s and target stop t were then chosen at random with
regard to this probability distribution.

Moreover, the running time of raptor increases if s and t are far apart, because in this
case the search space is typically larger and more raptor rounds are required. As an
approximate distance measure we use the rank of a target stop. The rank r (t) of a stop
t denotes its position in a list of all vertices in an unrestricted walking graph sorted by
their walking distances to s . As walking graph we again use the graph of roads and
footpaths in the OpenStreetMap data of Switzerland. To generate multiple queries,
we first pick a random source stop s ∈ S and for any e > 7 a random target stop t

with a rank between 2e and 2e+1. To indicate that a target stop was chosen within this
range, we write r (t) ≈ 2e . Note that “picking a random stop” here means randomly
choosing with regard to the number of trip events per stop as described above. Since
the walking graph that we used to determine ranks has 603,910 vertices, the highest
rank we consider is 18.

Unless otherwise stated, we use I = [00:00, 24:00] as the departure time range for
the queries. This ensures that the nighttime parts of timetables, which are typically
sparse, are considered as well as daytime periods, during which trips operate more
frequently.

Note that while for most algorithms the page size does not impact the number of
computations that are actually performed, rrdep and rre are likely to perform extra
forward and backward raptor searches whenever a page is returned (for more insight

44



5.2 Earliest Optimal Departure Time

on what influences the performance of these approaches, see Section 5.4). Choosing
a large page size, e.g., 1000, would lead to the whole profile being contained in the
first page and thus is an unrealistic scenario. For our experiments we chose a default
page size of 5, which is quite a common value, e.g., is used for the online timetable
information of the Swiss national railway company (http://sbb.ch).

Setup

We implemented all algorithms in C++17 and compiled them with GCC 7.3.1 using the
optimization flag -O3. The experiments were conducted on a machine equipped with
two quad-core Intel Xeon E5-430 processors clocked at 2.66 GHz and 32 GiB of DDR2
RAM. All queries were run on a single core.

5.2 Earliest Optimal Departure Time

In Section 3.1.1 we introduced the earliest optimal departure time τe(J ) of a journey
J as a sorting criterion for profiles. To understand the usefulness of this ordering,
suppose a user scrolls through a profile ordered by earliest optimal departure time.
Every position i in the profile with the respective earliest optimal departure time τe(Ji ),
where Ji is the journey at position i , then answers the question “Which journeys are
worth considering if I want to depart at τe(Ji ) or later?”. These journeys are precisely
the journey Ji and its successors.

In this experiment, we study to which extent this property is satisfied by the other or-
derings, �arr and �dep. More precisely, if two journeys J and J ′ are bicriteria-optimal for
the same time interval, i.e., [τe(J ), τdep(J )] ∩ [τe(J ′), τdep(J ′)] , ∅, they should be listed
“close” to each other in the profile. The further the distance between the two journeys
in the sorted profile, the more likely it is that they appear on different pages. In such a
case, a user could possibly not notice one of them even though they are both relevant
candidates. To measure the extent of this problem, we consider a simplified variant.
We are interested in the maximum distance two journeys with the same earliest optimal
departure time can have in a profile. To this end, we define the τe-distance δi , j of two
journeys Ji and Jj in profile with τe(Ji ) = τe(Jj ) and j > i as the number of journeys that
are listed between Ji and Jj and have a different earliest optimal departure time, i.e.,
δi , j B | { Jk | i < k < j ∧ τe(Jk ) , τe(Ji )} |. The. τe-distance δ (P) of a profile P is then
defined as the maximum distance among all pairs of journeys with the same earliest op-
timal departure time, i.e., δ (P) = max

{
δi , j

�� Ji ∈ P ∧ Jj ∈ P ∧ j > i ∧ τe(Ji ) = τe(Jj )
}
.

Wemeasured the τe-distances δ (P) for 100 profiles per rank. The profiles were computed
for source-target-queries generated as described in Section 5.1. We sorted the profiles

45

http://sbb.ch


5 Experimental Evaluation

Rank 27 29 211 213 215 217

Order by Arrival Time (�arr) 0.1 0.4 1.3 4.3 6.5 12.0
Order by Departure Time (�dep) 0.0 0.4 1.0 3.2 4.2 10.0

Table 5.2 – The average τe-distance δ (P) over 100 profile queries per rank.

afterwards by departure time and by arrival time. Table 5.2 shows the average τe-
distance over all 100 profiles for each rank and for both orderings.

While for low ranks journeys with the same earliest departure time are mostly grouped
together (δ (P) close to 0), on higher ranks there are large gaps between two journeys
with the same earliest optimal departure time. On average, a profile for rank 217

contains at least one pair of journeys Ji , Jj with the same earliest optimal departure
time τe for which 10 journeys with earliest optimal departure times other than τe are
listed between Ji and Jj . Since δi , j does not consider other journeys between Ji and Jj
with earliest optimal departure time τe, the effective distance j − i is even larger. Thus,
it is likely, even for page sizes of 10 or 15 journeys, that Ji and Jj are listed on different
pages.

There aremultiple reasons why such large values for δ (P) can occur. For one thing, most
trips operate periodically, e.g., hourly, which leads to a certain degree of periodicity of
the profile. For instance, assume most of the journeys from a source stop s to a target
stop t require at least 3 trips. If there is, however, a single train that only operates once
per day, this train can make a single journey with 2 trips possible. Even though this
journey might depart quite late, it is bicriteria-optimal from τmin onward, since it is the
only journey with 2 trips in the profile. This results in a large distance to other, much
earlier departing journeys with the same earliest optimal departure time.

Moreover, many journeys throughout the day share the same earliest optimal departure
time as well. This can be due to the fact that especially for large travel distances many
journeys share the same first trip. For instance, one may have to take a certain bus
to the main station at which there is a greater variety of possible trains to enter. All
journeys that involve taking the same bus share the same departure time τdep. This
departure time is then also the earliest optimal departure time of succeeding journeys
even though they may have, for instance, very different arrival times. Furthermore,
if one journey dominates several later departing optimal journeys, they all share the
same earliest optimal departure time as well.

46



5.3 Performance of Profile Queries

Algorithm Collect Arrivals Init CR SR RE Total

ararr – 234.5 544.6 940.1 243.5 1956.0
ardep – 233.8 544.5 939.4 242.3 1954.1
are – 233.7 544.4 939.3 242.2 1953.8
rrarr 102.5 46.5 310.0 332.0 173.0 946.1
rrdep 1.5 102.3 138.0 541.7 719.6 273.0 1757.2
rre 1.5 102.3 111.3 459.3 595.9 240.1 1491.6

Table 5.3 – The average running time in milliseconds of each algorithm over 1000 queries with
random source and target stops. The running times of the basic raptor searches used within
the profile algorithms are added up for each phase of raptor: initialization (init), collecting
routes (CR), scanning routes (SR) and relaxing edges (RE). For rraptor-based algorithms, the
time required to collect arrivals when the profile algorithm is listed as well.

In total, we conclude that the intuitively more comprehensible orders by arrival time or
departure time show some serious drawbacks on higher rank queries. It is very likely
that multiple journeys that are optimal for the same departure time and thus solve the
same bicriteria problem appear on different pages.

5.3 Performance of ProfileQueries

In this section, we measure the performance of the algorithms developed in Chapter
4. To this end, we are interested in the total time it takes each algorithm to compute
a profile as well as the time required to compute each page. rrdep and rre were
parameterized with a look-ahead factor of 1.5. Why this value is a sensible choice is
discussed in Section 5.4. We conducted two different experiments. The first experiment
gives an overview of the overall performance of the algorithms, whereas the second
one breaks down the running time by different distance ranks.

5.3.1 Overall Performance

For the first experiment we chose 1000 source and target stops randomly with regard
to the number of stop events per stop, as described in Section 5.1. We measured the
running time the algorithms took to compute the entire profile. This time is split into the
times required for the different phases of the raptor algorithm (initialization, collecting
routes, scanning journeys and relaxing transfers). For each phase the times were
summed up over all runs of the basic raptor algorithms that are performed within a
profile algorithm.

47



5 Experimental Evaluation

Algorithm Forward & Backward raptor rraptor

rrarr 72.6 789.0
rrdep-1.5 868.7 803.6
rre-1.5 615.5 791.2

Table 5.4 – Average running times in milliseconds split into the time consumed by forward
and backward raptor searches and by rraptor searches, respectively.

Table 5.3 shows the average running times over the 1000 queries. Since the source and
target stops are randomly selected nodes, the expected distance is roughly half the
size of the distance graph, which corresponds to a rank of 17. For all rraptor-based
algorithms 5.4 further denotes how much running time was consumed by forward and
backward raptor searches and by rraptor searches, respectively.

We observe that the running times of the Alternating raptor-based algorithms are
almost identical. This was to be expected as all three algorithms perform the same
number of forward and backward searches. Recall that a backward raptor search is
performed for every arrival time of an earliest arriving journey and a forward search
for every departure time of a journey found by a backward search. The number of
required raptor searches are hence solely determined by the journeys in the profile
itself. Since running the basic raptor algorithm accounts for the vast majority of the
total running time, there are few to no differences between the Alternating raptor
approaches.

The rraptor-based algorithm rrarr performs about twice as fast as the respective
Alternating raptor approach ararr. rrarr mainly benefits from its self-pruning property:
All backward raptor runs operate on the same round table. The latest found departure
time for every stop and number of rounds is only decreased throughout runs. Even
though many raptor searches are started (over 4400 on average), the majority of non-
optimal journeys from s to a stopv are pruned early, if there is already a later departure
time in the round table for stopv (local pruning) or for the target stop t (target pruning).
By contrast, every raptor search performed in Alternating raptor starts “from scratch”
and the same journeys may be pursued multiple times. Note that about 8 % of rrarr’s
running time is consumed by the forward and backward raptor searches required to
find journeys at the begin and the end of the departure time interval.

Apart from lacking the self-pruning property, Alternating raptor also has a larger
overhead for clearing and initializing data structures, most notably the round table.
The round table has to be cleared every time a new forward or backward raptor search

48



5.3 Performance of Profile Queries

is run, whereas all raptor searches in rraptor operate on the same round table. This
work counts among the time for the raptor initialization phase, which requires about
four times as much time in ararr compared to rrarr.

The running time of the mixed approaches rrdep and rre lies between rrarr and ararr
raptor. The performance benefit due to rraptor is outweighted by the overhead of the
forward and backward searches. In fact, rrdep spends more time on the second phase,
i.e., performing forward and backward raptor searches in the style of Alternating
raptor, then on the first phase. By contrast, rre requires about 25 % less running time
for forward and backward searches. Reasons for this are discussed in detail in Section
5.4.

5.3.2 Performance per Rank

For this experiment, we considered 100 source and target stop pairs per distance rank.
For each query, every algorithm was run five times and the running time per page was
measured. We then reported the average running time per page over the five runs.
Figure 5.1 shows the total time running time of different algorithms; the running time
for the first pages is shown by Figure 5.2. Note that the performance we measured
for ardep and are was not plotted since the running times were nearly identical to the
running times of ararr.

Again, we observe quite a significant performance difference between ararr and rrarr.
On queries with lower ranks the median of the running times of ararr is about three
times higher than the median of the running times of rrarr. On higher ranks the
difference decreases to a factor of about 1.5. This decline can be explained by the
overhead of ararr at the raptor initialization phase. The cost of clearing the round
table mainly depends on the number of stops in the network and thus accounts for
a higher proportion of the running time of ararr on lower ranks, where little time is
consumed by the other phases of raptor.

Themixed approaches rrdep and rre have higher running times than rrarr. This relation
is inevitable, as rrdep and rre use rrarr as a building block and must therefore do at
least the work that rrarr does. Compared to the Alternating raptor-based approaches
they are still about two times faster on lower ranks. However, on higher ranks, the
benefit due to the use of rrarr disappears as the relative advantage of rrarr compared
to Alternating raptor decreases.

Regarding the time required to compute the first few pages, the response time of an
algorithm is of special interest. The response time combines the running time of the
initialization phase with the running time of the first page. It thus represents the time

49



5 Experimental Evaluation

ararr rrarr rrdep-1.5 rre-1.5

27 28 29 210 211 212 213 214 215 216 217 218

101

102

103

104

Rank

Ti
m
e
[m

s]

Figure 5.1 – The diagram shows the total running time different algorithms took to compute
complete profiles. Each box plot shows the running times of 100 queries for an algorithm and
distance rank. The running times for ardep and are are not depicted since they are very similar
to ararr.

span after which users see results of the first time. In contrast to Alternating raptor,
the rraptor-based algorithms have to collect arrivals during the initialization phase.
For rank 29, this overhead is balanced by the shorter running time for the first page, such
that both approaches have a similar response time in total. However, from the second
page onward all rraptor based algorithms are about 2 times as fast as Alternating
raptor. This difference is presumably due to the reduced overhead for initializing the
round table, which only occurs once during the first page.

As already discussed above, the relative difference due to the initialization overhead is
reduced on higher ranks. This matches the observation that for high ranks the response
time of rraptor-based algorithms is above the response time of ararr. However, on
later pages the relative performance of the algorithms is similar to the relation of the
running times for entire profiles.

50



5.4 Parameterizing rrdep and rre

ararr rrarr rrdep-1.5 rre-1.5

Init 1 2 3 4

10−1

100

101

102

Page

Ti
m
e
[m

s]

r ≈ 29

Init 1 2 3 4

100

101

102

103

Page

r ≈ 217

Figure 5.2 – The running times of different algorithms on 100 queries for the first four pages
of a profile. The left diagram shows the running time for queries with a distance rank 29,
the right diagram for queries with rank 217. Init denotes the time for initializing the profile
algorithm, which manly consists of collecting arrivals in rRAPTOR based algorithms.

5.4 Parameterizing rrdep and rre
In this experiment, we study the influence different parameters have on the performance
of rrdep and rre in detail. In particular, we are interested in finding sensible values for
the look-ahead factor.

We consider different scenarios with regard to distance rank and page size. More
precisely, we used 50 random queries with a rather low rank, i.e., r ≈ 29, and 50 queries
with a rather high rank, i.e., r ≈ 217. Both algorithms were run for different look-ahead
factors between 1.0 and 2.5 and for page sizes n = 5 and n = 10. Again, we report the
average running time over 5 runs for each combination.

Figure 5.3 shows the results of our experiments. In favor of a simplified representation,
only the median running times over the 50 queries for each configuration are plotted.
Apart from the total running time it took the algorithm to compute a profile, we also
look at the response time, i.e., time required for initialization and to compute the first
page.

51



5 Experimental Evaluation

rrdep (initialization and first page) rrdep (total time)
rre (initialization and first page) rre (total time)

1 1.2 1.5 2.0 2.5
0

50

100

150

a) n = 5, r ≈ 29

1 1.2 1.5 2.0 2.5
0

50

100

150

b) n = 10, r ≈ 29

1 1.2 1.5 2.0 2.5
0

500

1,000

1,500

2,000

c) n = 5, r ≈ 217

1 1.2 1.5 2.0 2.5
0

500

1,000

1,500

2,000

d) n = 10, r ≈ 217

Figure 5.3 – The diagrams show the median running times of rrdep and rre computing 50
profile queries for distance ranks r , page sizes n and look-ahead factors. The y-axis of each
diagram denotes the running time in milliseconds, while the x-axis is labeled with different
look-ahead factors. The green and yellow bar show the median running time required to
compute the entire profile of rrdep and rre, respectively. The darker part of each bar denotes
the corresponding response time. The page size used for computation of the profile and
distance rank of the queries are written above the respective chart.

First, we observe that both algorithms, rrdep and rrarr, have a shorter total running
time when used with a page size of 10 instead of 5. The reason for this effect can be
easily explained. The overhead for the forward and backward searches occurs in the
second phase of the algorithm every time a page is returned. A larger page size means
less pages for the same profile and thus less running time overhead.

52



5.4 Parameterizing rrdep and rre

Increasing the look-ahead factor from 1.0 to 1.5, which means that rraptor is run
in the first phase of the algorithm until 7 (or 15, for n = 10) journeys are cached,
results in a decrease in the total running time of rrdep of about 25%. While for low
rank queries look-ahead factors greater than 1.5 do not influence the running time
noticeably, for a high rank, more caching – up to a look-ahead factor of 2.5 – still
improves the performance, especially for a low page size. This effect is presumably due
to the different structure of the profiles for different ranks. For short travel distances,
there are typically just a few possible routes that lead to bicriteria-optimal journeys.
Thus, there are only a few numbers of trips for which optimal journeys exist, whereas
higher rank profiles typically contain optimal journeys of a greater variety regarding
their number of trips. This leads to a stronger influence of the ordering criterion on
the order of the profile. Thus, more forward and backward searches have to be to be
performed in the second phase of the algorithm on higher rank queries.

The response time of the algorithm, however, increases for larger look-ahead factors.
For instance, for a page size of 10 and a look-ahead factor of 2.5 the algorithm has to
compute 25 journeys in the first phase. While this large cache is likely to contain the
10 earliest departing journeys, it also contains many journeys that are not relevant for
the current page.

rre performs consistently better than rrdep, especially for small look-ahead factors.
This is due to a difference in the second computation phase of rre: Let J be the candidate
to be output as the next earliest journey. In the implementation of rrdep, we then check
for every number of trips k , |J | the condition τ latest

dep (k) > τdep(J ) to determine whether
a forward and backward raptor search is necessary. In rre, however, it is sufficient to
compare τ latest

dep (k) with τe(J ) (for a proof, see Section 4.2.3). Since τe(J ) < τdep(J ) the
latter comparison checks a weaker condition. It is thus more likely that no forward and
backward raptor search needs to be performed, which leads to a lower total running
time.

All in all, a look-ahead factor of 1.5 seems to be a sensible choice. In all of the considered
scenarios, the total running time does hardly benefit from more caching whereas the
response time increases for higher look-ahead factors.

53





6. Conclusion

In this thesis, we focused on a practical aspect of public transit profile queries: How
can the response time of timetable information applications be decreased by computing
profiles page-wise?

In Chapter 3, we formally stated the prerequisites an algorithm for pagination must
fulfill. A decisive aspect is the order by which the journeys of a profile are sorted.
Journeys that are listed on later pages are more likely not to be seen by a user. We
discussed the advantages and drawbacks of ordering journeys by their arrival time,
departure time or earliest optimal departure time. The latter is a criterion we proposed
that sorts journeys by the earliest point of time after which they are bicriteria-optimal.

Ensuring that a profile algorithm computes journeys already sorted, poses a different
challenge for each of the aforementioned orderings. In Chapter 4, we showed how
Alternating raptor [WZ17] can be adapted to obtain each of the orderings we consider.
This can be done by rearranging the order in which forward and backward bicriteria
raptor searches are performed within Alternating raptor appropriately.

We further pursued a different approach based on the rraptor algorithm [DPW12],
which inherently computes the journeys in a profile from latest to earliest departure
time. By running the same algorithm on a reversed instance of the public transit
network we can, however, compute journeys ordered by their arrival time. Using
rraptor to obtain orderings by departure and earliest optimal departure time turned out
to be rather complex. To this end, we developed two algorithms, rrdep and rre, featuring
a mixed usage of rraptor and Alternating raptor: For each page, a parameterizable
number of journeys, which are ordered by their arrival time, is computed using rrarr.

55



6 Conclusion

In a second step, all missing, earlier departing journeys are determined using (a few)
forward and backward raptor searches for individual departure times. We expected
these algorithms to benefit from rraptor’s performance advantage due to its self-
pruning property.

We performed several experiments on the public transit network of Switzerland, which
we discussed in Chapter 5. For one thing, we showed that when ordering real-world
profiles by arrival or departure time, journeys that are bicriteria-optimal for the same
departure time range are likely to be listed on different pages. This supports the
usefulness of ordering journeys by earliest optimal departure time.

Regarding the performance of our algorithms, the rraptor based approach that yields
journeys ordered by their arrival time, rrarr, computes average profiles about twice as
fast Alternating raptor. This difference comes mainly from the missing self-pruning
property of Alternating raptor and its bigger overhead for the initialization of round
tables. The running times of the mixed approach, rrdep, lie between the running times
of rrarr and ardep. With a carefully chosen look-ahead factor, the average running
time decreases by about 10% compared to Alternating raptor. When computing
journeys ordered by earliest optimal departure time, an even greater speed-up of 30%
is achieved.

All in all, Alternating raptor seems to be a good starting point for a pagination
algorithm. For profiles ordered by arrival time, we achieved significantly shorter
running times by using rraptor backwards. While rrarr is conceptually elegant, the
algorithms rrdep and rre require a rather complex implementation. However, they
show some performance gains compared to Alternating raptor.

Future Work. Future research could focus on applying the Alternating raptor ap-
proach on networks with unrestricted walking. Apart from that, it also seems promising
to reduce Alternating raptor’s overhead for clearing and initializing round tables by
using timestamps similiar to the lazy round table propagation we used in our rraptor
implementation (see Section 2.5.1).

The concept of running an algorithm on a reverted network, which we used for rraptor,
could be also applied to other algorithms which find journeys from latest to earliest.
A promising candidate is the Connection Scan Algorithm (csa) [Dib+18]. The profile
variant of csa scans all connections (trip segments between two consecutive stops) in
decreasing order by their departure time. It thus finds the latest arriving journeys of
a profile first. On a reverted network, csa hence yields journeys increasing by their
departure time. It could thus be used to decrease running times for departure time

56



order queries. How csa can be adapted to obey other orderings, however, remains an
open question.

57



List of Algorithms

2.1 raptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 raptor– scanRoutes . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 raptor– relaxTransfers . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 pagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 ararr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 ardep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 rrarr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 rrdep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 rrdep– forwardBackwardSearch . . . . . . . . . . . . . . . . . . . . 37

List of Tables

3.1 Example for Different Orderings . . . . . . . . . . . . . . . . . . . . . 22

5.1 Swiss Public Transit Network – Statistics . . . . . . . . . . . . . . . . 42
5.2 τe-Distance per Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Average Running Times of Different Algorithms . . . . . . . . . . . . 45
5.4 Partitioned Running Time of rrarr, rrdep, and rre . . . . . . . . . . . 46

58



List of Figures

2.1 Profile Visualization Scheme . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Example where Redundant Backward Searches May Occur . . . . . . 29
4.2 Earliest Optimal Departure Time Example . . . . . . . . . . . . . . . 30
4.3 Integration of Journeys Departing after τmax into the Profile . . . . . 33

5.1 Running Times per Rank . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Running Times per Page . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Comparison of Look-Ahead Factors for rrdep and rre . . . . . . . . . 50

59





Bibliography

[Bas+10] Hannah Bast et al. “Fast Routing in Very Large Public Transportation
Networks Using Transfer Patterns”. In: Algorithms – ESA 2010. Ed. by Mark
de Berg and Ulrich Meyer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 290–301. isbn: 978-3-642-15775-2.

[Bas+15] Hannah Bast et al. “Route Planning in Transportation Networks”. In: CoRR
abs/1504.05140 (2015). arXiv: 1504.05140. url: http://arxiv.org/abs/
1504.05140.

[Bas09] Hannah Bast. “Car or Public Transport–Two Worlds”. In: Efficient Algo-
rithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday. Ed. by Susanne Albers, Helmut Alt, and Stefan Näher. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 355–367. isbn: 978-3-642-
03456-5. doi: 10.1007/978-3-642-03456-5_24. url: https://doi.org/
10.1007/978-3-642-03456-5_24.

[Ber+09] Annabell Berger et al. “Accelerating Time-DependentMulti-Criteria Timetable
Information is Harder Than Expected”. In: 9th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’09). Ed. by Jens Clausen and Gabriele Di Stefano. Vol. 12. OpenAccess
Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2009. isbn: 978-3-939897-11-8. doi: 10.
4230/OASIcs.ATMOS.2009.2148. url: http://drops.dagstuhl.de/
opus/volltexte/2009/2148.

61

https://arxiv.org/abs/1504.05140
http://arxiv.org/abs/1504.05140
http://arxiv.org/abs/1504.05140
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.4230/OASIcs.ATMOS.2009.2148
https://doi.org/10.4230/OASIcs.ATMOS.2009.2148
http://drops.dagstuhl.de/opus/volltexte/2009/2148
http://drops.dagstuhl.de/opus/volltexte/2009/2148


Bibliography

[BJ04] Gerth Stølting Brodal and Riko Jacob. “Time-dependent Networks as Mod-
els to Achieve Fast Exact Time-table Queries”. In: Electr. Notes Theor. Com-
put. Sci. 92 (2004), pp. 3–15. doi: 10.1016/j.entcs.2003.12.019. url:
https://doi.org/10.1016/j.entcs.2003.12.019.

[Dib+18] Julian Dibbelt et al. “Connection Scan Algorithm”. In: J. Exp. Algorithmics
23 (Oct. 2018), 1.7:1–1.7:56. issn: 1084-6654. doi: 10.1145/3274661. url:
http://doi.acm.org/10.1145/3274661.

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numer. Math. 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X. doi: 10.1007/
BF01386390. url: http://dx.doi.org/10.1007/BF01386390.

[DKP12] Daniel Delling, Bastian Katz, and Thomas Pajor. “Parallel Computation
of Best Connections in Public Transportation Networks”. In: J. Exp. Algo-
rithmics 17 (Oct. 2012), 4.4:4.1–4.4:4.26. issn: 1084-6654. doi: 10.1145/
2133803.2345678. url: http://doi.acm.org/10.1145/2133803.
2345678.

[DPW09] Daniel Delling, Thomas Pajor, and Dorothea Wagner. “Engineering Time-
Expanded Graphs for Faster Timetable Information”. In: Robust and Online
Large-Scale Optimization: Models and Techniques for Transportation Systems.
Ed. by Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 182–206. isbn:
978-3-642-05465-5. doi: 10.1007/978-3-642-05465-5_7. url: https:
//doi.org/10.1007/978-3-642-05465-5_7.

[DPW12] Daniel Delling, Thomas Pajor, and Renato Werneck. “Round-Based Pub-
lic Transit Routing”. In: Society for Industrial and Applied Mathemat-
ics, Jan. 2012. url: https://www.microsoft.com/en-us/research/
publication/round-based-public-transit-routing/.

[Mar84] Ernesto Queiros Martins. “On a Multicriteria Shortest Path Problem”. In:
European Journal of Operational Research. Vol. 26. 3. 1984, pp. 236–245.

[MS07] Matthias Müller-Hannemann and Mathias Schnee. “Finding All Attractive
Train Connections byMulti-criteria Pareto Search”. In:Algorithmic Methods
for Railway Optimization. Ed. by Frank Geraets et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 246–263. isbn: 978-3-540-74247-0.

[Mül+04] Matthias Müller-Hannemann et al. “Timetable Information: Models and
Algorithms”. In: vol. 4359. Jan. 2004, pp. 67–90. doi: 10.1007/978-3-540-
74247-0_3.

62

https://doi.org/10.1016/j.entcs.2003.12.019
https://doi.org/10.1016/j.entcs.2003.12.019
https://doi.org/10.1145/3274661
http://doi.acm.org/10.1145/3274661
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://doi.org/10.1145/2133803.2345678
https://doi.org/10.1145/2133803.2345678
http://doi.acm.org/10.1145/2133803.2345678
http://doi.acm.org/10.1145/2133803.2345678
https://doi.org/10.1007/978-3-642-05465-5_7
https://doi.org/10.1007/978-3-642-05465-5_7
https://doi.org/10.1007/978-3-642-05465-5_7
https://www.microsoft.com/en-us/research/publication/round-based-public-transit-routing/
https://www.microsoft.com/en-us/research/publication/round-based-public-transit-routing/
https://doi.org/10.1007/978-3-540-74247-0_3
https://doi.org/10.1007/978-3-540-74247-0_3


Bibliography

[Sau18] Jonas Sauer. “Faster Public Transit Routing with Unrestricted Walking”.
MA thesis. Karlsruhe Institute of Technology, Apr. 2018.

[WZ17] Dorothea Wagner and Tobias Zündorf. “Public Transit Routing with Unre-
stricted Walking”. In: 17th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems (ATMOS 2017). Ed. by Gian-
lorenzo D’Angelo and Twan Dollevoet. Vol. 59. OpenAccess Series in Infor-
matics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, 7:1–7:14. isbn: 978-3-95977-042-2. doi: 10.4230/
OASIcs . ATMOS . 2017 . 7. url: http : / / drops . dagstuhl . de / opus /
volltexte/2017/7891.

63

https://doi.org/10.4230/OASIcs.ATMOS.2017.7
https://doi.org/10.4230/OASIcs.ATMOS.2017.7
http://drops.dagstuhl.de/opus/volltexte/2017/7891
http://drops.dagstuhl.de/opus/volltexte/2017/7891

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Public Transit Network
	2.2 Journeys
	2.3 Problems
	2.3.1 Single Departure Time
	2.3.2 Departure Time Ranges (Profile Queries)

	2.4 Bicriteria Problem Algorithm: RAPTOR
	2.5 Profile Algorithms
	2.5.1 rRAPTOR
	2.5.2 Alternating RAPTOR


	3 Pagination Problem
	3.1 Ordering Profiles
	3.1.1 Earliest Optimal Departure Time
	3.1.2 Partial Orders on Journeys

	3.2 Pagination
	3.2.1 Formal Prerequisites
	3.2.2 Trade-offs between Different Orderings
	3.2.3 Pagination Framework


	4 Algorithms
	4.1 Alternating RAPTOR-based Approaches
	4.1.1 Ordering by Arrival Time (AR_arr)
	4.1.2 Ordering by Departure Time (AR_dep)
	4.1.3 Ordering by Earliest Optimal Departure Time (AR_e)

	4.2 rRAPTOR-based Approaches
	4.2.1 Ordering by Arrival Time (RR_arr)
	4.2.2 Ordering by Departure Time (RR_dep)
	4.2.3 Ordering by Earliest Optimal Departure Time (RR_e)


	5 Experimental Evaluation
	5.1 Experimental Data and Setup
	5.2 Earliest Optimal Departure Time
	5.3 Performance of Profile Queries
	5.3.1 Overall Performance
	5.3.2 Performance per Rank

	5.4 Parameterizing RR_dep and RR_e

	6 Conclusion
	List of Algorithms
	List of Tables
	List of Figures
	Bibliography

