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Abstract

The game of cops and robbers is a pursuit and evasion game played on graphs in
which both parties alternate in taking turns to move along the edges. While the cops
try to catch the robber in a finite number of moves, the robber tries to evade the cops
indefinitely. Contrary to the original game in which both parties move from vertex
to vertex, we introduce a new variation for planar graphs with cops that advance
on faces instead. In this variation, the cop number, denoted as c∗(G), specifies how
many cops are required to catch the robber, that is, by occupying all faces incident
to the robber’s position, even if the latter plays perfectly.

We first establish general lower and upper bounds on c∗(G) for planar graphs G.
From there on, we consider classes of graphs such as k-regular graphs and graphs
with maximum degree ∆(G) ≥ 5. Here we proceed by using already proven results
of the original game and applying them to our setting. Furthermore, we consider the
effect of subdividing edges of graphs on the cop number c∗(G). For this, we use K4
as an example.

Deutsche Zusammenfassung

Bei dem Spiel Cops and Robbers handelt es sich um ein Verfolgungsspiel auf Graphen,
in dem zwei Parteien sich abwechselnd auf den Kanten des Graphen fortbewegen.
Das Ziel der Cops ist es, den Robber in endlich vielen Zügen zu fangen, während
dieser versucht, den Cops unendlich lange zu entweichen. Im Gegensatz zu der
urpsrünglichen Variante, in der sich beide Parteien von Knoten zu Knoten bewegen,
untersuchen wir in dieser Arbeit eine Variante, in der sich die Cops auf den Facetten
des Graphen bewegen. Hier bezeichnet c∗(G) die sogenannte Cop-Number, die angibt,
wie viele Cops benötigt werden, um einen perfekt spielenden Robber zu fangen.
Dieser gilt als gefangen, wenn alle umliegenden Facetten von Cops besetzt werden.

Wir bestimmen zuerst allgemeine untere und obere Schranken für c∗(G) auf
beliebigen planaren Graphen G. Anschließend betrachten wir bestimmte Klassen
von Graphen wie k-reguläre Graphen und Graphen mit Maximalgrad ∆(G) ≥ 5.
Hierbei verwenden wir bereits bekannte Resultate aus der ursprünglichen Variante
und passen diese an unser Szenario an. Des Weiteren untersuchen wir den Effekt,
den Unterteilungen der Kanten auf die Cop-Number c∗(G) haben. Dabei betrachten
wir K4 als spezifisches Beispiel.
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1. Introduction

In mathematics and computer science, certain researchers are interested in the study
of games. These games are used to model situations with multiple adversaries having
conflicting interests. One particular category of those games are pursuit and evasion games.
Researchers studying these are motivated by the fact that pursuit and evasion games model
several real-world scenarios, such as cyber attacks [DN03]. In various cases, the existence
of an intruder on a given network is considered. A set of pursuers is then tasked with
capturing or eliminating the intruder. Modeling this scenario in a turn-based framework
on a structure such as a graph results in many useful insights.

In 1983 Nowakowski & Winkler [NW83] and in 1978 Quillot [Qui78] independently
introduced a pursuit and evasion game known as "Cops and Robbers" played on a graph
G. In this game, the player controlling the cops chooses starting positions on vertices of
G. After that, the player in control of the robber chooses a starting vertex. The cops and
robber then move in alternate turns, with the cops moving on odd turns and the robber
moving on even turns. A round of the game consists of the cops’ turn and the robber’s
subsequent turn. During every turn, each cop or the robber either moves along an edge
of G to a neighboring vertex or remains on their current vertex. Both players play with
complete information, meaning that they each know each other’s position at any time. The
cop’s objective is to catch the robber by moving onto the robber’s position.

Let us consider the game played on the cycle graph shown in Figure 1.1 with one cop
and a robber in play. The first player chooses one of the eight vertices to place the cop
on, followed by the second player choosing the starting vertex of the robber. As the graph
is symmetrical, let us assume that the cop starts on the bottom right vertex. Then it
stands to reason that the robber would start on the opposite vertex, the one at the top left
(Figure 1.2), to be located as far away from the cop as possible. Now the game commences
with the cop’s turn who can choose to move either left or right to a neighboring vertex or
stand still. The cop cannot move directly onto the robber’s position as there is no edge
connecting the two vertices and it would therefore be an illegal move. If the cop decides to
stand still, the robber may also stay put. If the cop moves in clockwise or counterclockwise
rotation, the robber can choose to do the same. By doing this, the robber manages to
keep the distance of 3 vertices between them after every round and therefore has a winning
strategy.

Nevertheless, if the robber plays sub-optimally, for example by staying put on every
turn, then one cop can be sufficient to capture the robber. We assume, however, that both
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1. Introduction

parties play perfectly and consider under these circumstances, how many cops are required
to catch the robber even if the latter plays optimally. In this case, that would be two cops
that move in opposing directions (Figure 1.3). Hence, we have a winning strategy for the
cops if two cops are in play.

Figure 1.1: Cycle with
8 vertices.

r

c

Figure 1.2: Winning strategy
for robber with
one cop in play.

c

rc

Figure 1.3: Winning strategy
for cops with
two cops in play.

Given an arbitrary graph G the following question arises: Do the cops have a winning
strategy or can the robber evade the cops indefinitely? If only one cop is in play, we call G a
cop-win graph if there is a winning strategy for the cop. Otherwise, we call G a robber-win
graph if the robber has a strategy to never get caught. The cycle in (Figure 1.1) is one
such example. When we consider multiple cops chasing the robber, the question becomes:
How many cops suffice to have a winning strategy for the cops? This number is then called
the cop number of G and denoted as c(G). In our example, it would be c(G) = 2. This
notion was first introduced in the paper by Aigner and Fromme in 1984 [AF84].

Without surprise, determining the cop number of any arbitrarily given graph turns out
to be difficult. To be precise, it is considered EXPTIME-complete to determine whether
c(G) = k with G and k as inputs [Kin13]. For that reason, it is interesting to see whether
one is able to determine or at least bound the cop number for specific sets or classes of
graphs with a certain structure by smartly exploiting characteristics of that structure. As
an example, showing that any tree is a cop-win graph is very easy: Let the cop start on a
root of the tree and move down the distinctive path to the robber. As that is a winning
strategy for the cop, trees have cop number 1.

In general, cop-win graphs have a very nice characterization due to the following obser-
vation about the robber’s position right before his last move: If the robber is unable to
prevent the cop from capturing him regardless of what the robber does, it means that the
robber’s vertex and all neighboring vertices are adjacent to the cop’s position.

A vertex v is called a corner if there exists another vertex w such that w is adjacent to
v and all of v’s neighbors. A graph G is dismantlable if it can be reduced to K1, the graph
with only one vertex, by removing corners successively. Nowakowski & Winkler [NW83]
have shown that cop-win graphs are the same class of graphs as dismantlable graphs.
This characterization of dismantlable graphs allows cop-win graphs to be recognized in
polynomial time. Trees belong to this class, as leaves in trees are corners and removing a
leaf from a tree results in another tree. Other examples of dismantlable graphs are finite
chordal graphs and graphs with a universal vertex, such as wheel graphs and complete
graphs.

An obvious upper bound for the cop number would be the number of vertices n in G.
Placing a cop on every vertex unquestionably leads to the robber’s capture. However, the
most well-known, yet unproven upper bound is known as Meyniel’s Conjecture:
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1.1. Variants of the Game

Conjecture 1.1 (Meyniel’s Conjecture [Fra87]). For any connected graph G with n vertices,
we have that c(G) = O(

√
n).

Although this conjecture has first appeared in 1987 [Fra87] and made its appearance in
many books [BN11, Bon16], it still remains unproven. What has been shown, however, is
that the cop number is at most O

(
n log log n

log n

)
[Fra87]. Later, this bound got first improved

to O
(

n
log n

)
[Chi08] and later on to O

(
n

2(1−o(1))
√

log n

)
[LP12]. It has also been proven that

there exists an infinite family of graphs with c(G) >
√

n/8 and even c(G) >
√

n/2 − n0.2625

for n sufficiently large [Pra10].
In contrast to that, for planar graphs we know the answer with certainty. The result

was published by Aigner and Fromme [AF84], stating that the cop number for any planar
graph is at most 3. We reproduce said result in Section 4.2. As there exist planar graphs
with cop number 3, such as the dodecahedral graph [AF84], this is a tight bound. Results
of similar nature can be found for other classes of graphs [CM12].

1.1 Variants of the Game
The research area has been largely expanded around the idea of modifying the way in
which the cops or the robber move and analyzing how these changes affect the strategies
and outcome of the game, and with that, the cop number of graphs as well. This approach
has been used to get a better insight into Meyniel’s Conjecture.

A well-known variant was introduced by Seymour and Thomas [ST93] called "helicopter
cops and robbers". In their version the robber is allowed to move at great speed to any
other vertex along a path of the graph and cops can fly via helicopters to arbitrary vertices
with some delay, giving the robber a chance to escape before a helicopter lands. In this
version, two cops are necessary to catch the robber on a tree. For cycles the cop number
becomes three. In fact, Seymour and Thomas came to the conclusion that in the helicopter
variant tw(G) + 1 cops are necessary to catch the robber. As the treewidth tw(G) of
(planar) graphs is unbounded, the helicopter cop number is unbounded as well. One such
example is the n × n grid graph Gn with treewidth tw(Gn) = n.

Another variation specifies how many cops must move each turn, how many must remain
in the same position, and how many can do either [OO14]. In this variation, the variant
they named "one-active-cop game", the one that only allows one cop to move each turn,
has received the most attention. Later on, this variation was introduced by many others
with different names, such as "lazy cops and robbers" [BBKP15, BBKP16, STW16] and
"one-cop-moves game" [GY17]. Here, it has been shown that there exist planar graphs in
which three lazy cops are not enough to catch the robber [GY17], contrary to the result of
the original game on planar graphs. The graph constructed in [GY17] has over 300 000
vertices and shows that at least four lazy cops are necessary. An upper bound for the
lazy cop variant remains to be found, apart from the simple upper bound we get from the
planar separators, which we introduce in Section 3.2.

Apart from that, a variation also known as "active cops and robbers" that forces players
to move every turn was introduced [AF84, NN98, BW00, GKS18]. Furthermore, there
are variants that demand the cops to occupy all surrounding vertices to catch the robber
[BCC+20, Sch22], add a decoy into the game [Isl14, Des16], or consider a fast robber that
can move faster than the cops [FGK+10]. Other variants of the game that add either
advantages or restrictions to the players include forcing a player to move randomly in a graph
[KW13], forcing them to move along geodesic paths [FHMP16], allowing the cops to capture
the robber at a distance [BCP10], giving the cops limited visibility [IKK06, CCD+17],
letting the robber’s position be known to the cops only through alarms and photo radars
[CN00, CC06], allowing the robber to be invisible [DDTY13], and many others.
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1. Introduction

1.2 Primal-Dual Cops and Robbers
In this thesis, we consider a new modified version of the game for planar embedded graphs.
Instead of moving on the vertices like the robber, we consider cops that move on the faces.
Similar to the robber that can either stay still or move to a neighboring vertex, cops can
either stay still on their current face or move to a neighboring face, that is a face that shares
an edge with the current face. The robber is caught if all incident faces to the robber’s
position are occupied by cops. With this capture rule, we conclude a straightforward lower
bound on the cop number in Section 3.1.

Definition 1.2. We denote the cop number in our primal-dual variant as c∗(G) for a
planar embedded graph G.

We continue with an introductory example.

c

r

Figure 1.4: Starting position.

c
r

Figure 1.5: Robber is caught.

Let us assume that we play on K4, the complete graph with four vertices (Figure 1.4). In
the original game, the player controlling the cop may choose any vertex to start on. After
that, the second player chooses a vertex to place the robber on. Let the cop be placed in
the inner vertex (Figure 1.4). Then, no matter which vertex the robber starts on, the cop
either wins immediately (if the robber chooses the same vertex) or wins in one move by
moving onto the robber’s position (Figure 1.5). This is a winning strategy for the cop and
since we only needed one cop, the cop number of K4 is c(K4) = 1.

c1

Figure 1.6: Cop on face.

c1

r

Figure 1.7: Robber cannot be caught by a
single cop.
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1.3. Outline of this Thesis

Now we consider the variation in which the cops are placed and played on the faces of
K4 instead of the vertices (Figure 1.6). Here, we quickly realize that one cop isn’t sufficient
to capture the robber. Due to the capture rule requiring all incident faces to the robber’s
position to be occupied by cops, a single cop cannot capture the robber by himself in this
graph. As every vertex in K4 has degree 3, no matter which vertex the robber is on, there
is no winning strategy for the cop (Figure 1.7).

c1c2

c3

r

Figure 1.8: Three cops occupying the inner
faces.

c1c2

r
c3

Figure 1.9: Robber is caught after one turn.

It turns out that we need exactly three cops. Let the cops begin on the inner three faces.
If the robber chooses to start on the inner vertex, he is immediately caught. As K4 is
symmetrical, we can assume that the robber starts on the vertex at the top (Figure 1.8).
Then in the next turn, cop c3 can move to the outer face and with that, all faces incident
to the robber are occupied (Figure 1.9). As this is a winning strategy, we have c∗(K4) = 3.

1.3 Outline of this Thesis
In the next Chapter 2 we continue with definitions for technical terms and a formal
introduction of the primal-dual variant of the game.

Chapter 3 begins with rough bounds that are rather obvious, some of which we have already
hinted at. We first establish a lower bound based on the capture rule and later an upper
bound with the help of planar separators.

The following Chapter 4 attempts to narrow these bounds down and provides insights for
the cop number c∗(G) depending on the highest vertex degree ∆(G). The main result
of this chapter shows that the cop number c∗(G) of planar graphs G with ∆(G) ≥ 5 is
unbounded, but bounded for graphs with ∆(G) < 5.

In Chapter 5 we consider subdividing edges of a graph and its effects on the cop number
c∗(G). We specifically use K4 as an example.

Chapter 6 introduces other variants of this primal-dual variant and suggests further ideas
for more research.
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2. Preliminaries

In this chapter we establish some assumptions and notations in this thesis. We also
introduce some of the basic concepts used throughout the thesis before we delve further
into the game.

2.1 Assumptions and Notations
Unless specified otherwise, we consider undirected connected finite planar graphs G = (V, E)
in this thesis. V is the set of vertices or nodes of G and E ⊆ V × V is the set of edges,
using the notation E = {(u, v) | u, v ∈ V } for edges. As we consider undirected graphs,
(u, v) refers to the same edge as (v, u). We may use V (G) and E(G) to denote the vertex
or edge set of a graph G.

For a given graph G = (V, E) and vertex v ∈ V , we define G − v as the resulting graph
by removing v from V and all edges incident to v. To be precise, V (G − v) = V (G)/{v}
and E(G − v) = {(x, y) ∈ E(G) | x ̸= v, y ̸= v}.

2.2 Planar Graph
An undirected graph G = (V, E) is planar if there exists an embedding of the graph in the
plane such that the edges intersect each other only at the endpoints. With a drawing, the
plane is then divided into inner faces and one outer face. Any face can be the outer face
with a different drawing of the same graph embedding.

2.3 Dual Graph
Given a connected, planar embedded graph G = (V, E), we construct its dual graph
G∗ = (V ∗, E∗) in the following way:

• For each face f in G we have a vertex vf in G∗.

• For each edge e in E we have an edge e∗ in E∗ that connects the corresponding
vertices of the two faces incident to e.

The graph G is also referred to as the primal graph in this case. With this construction, G∗

again is the embedding of a planar graph and we have G∗∗ = G. Note that given a (primal)
robber graph G, the cops in our variant of the game are then moving on the vertices of the
dual graph G∗.

7



2. Preliminaries

2.4 Euler’s Formula
Euler’s Formula gives us a correlation between the number of vertices of a graph G and
the number of vertices of its dual graph G∗.

Theorem 2.1 (Euler’s Formula). For a connected, planar embedded graph G with n vertices,
m edges and f faces we have n − m + f = 2.

Proof. We rewrite the equation to m − (f − 1) != n − 1 and prove it by induction over the
amount of inner faces f − 1.

Basis: Let f − 1 = 0.
Then G is a tree (connected and circle-free) and we have m = n − 1 and therefore
m − (f − 1) = n − 1.

Induction: Let f − 1 ≥ 1 (at least one inner face).
Let e be an edge between an inner face and the outer face. Consider G′ = G − e with n′,
m′ and f ′. Then we have n′ = n, m′ = m − 1 and f ′ = f − 1. As G′ is still connected, by
using the induction step on G′ we get m − (f − 1) = m′ − (f ′ − 1) = n′ − 1 = n − 1.

2.5 Formal Definition of Primal-Dual Cops and Robbers
To clear any possible remaining unclarities regarding our variant of the game, we give a
mathematical definition of "primal-dual cops and robbers" for a planar embedded graph G.

The game is played on a planar embedded graph G by two parties, the cops and the robber.
A round consists of the cops’ turn followed by the robber’s turn.

Let the position of the k cops in round i be denoted as a k-tupel

posi
c = (f1, . . . , fk) ∈ V (G∗)k

and the position of the robber as a single vertex posi
r ∈ V (G).

Then we define a configuration on the i’th round as

confi = (posi
c, posi

r) ∈ V (G∗)k × V (G) =: Conf.

A cop strategy consists of a starting position pos0
c and a function λ : Conf → V (G∗)k with

λ(posi
c, posi

r) = λ((f1, f2, . . . , fk), v) = (f ′
1, f ′

2, . . . , f ′
k) = posi+1

c .

A cop turn with a mapping λ is considered a legal move when

(fi, f ′
i) ∈ E(G∗) ∪ {(f, f) | f ∈ V (G∗)} ∀i ∈ {1, . . . , k}.

A robber’s sequence of positions is similarly considered legal if

(posi
c, posi+1

c ) ∈ E(G) ∪ {(v, v) | v ∈ V (G)} ∀i ∈ N0.

With this, (pos0
c , λ) is considered a winning strategy for the cops, if for any starting

position and moving sequence (pos0
r , pos1

r , . . . ) of the robber, the latter is caught after a
finite number of turns.

8



2.5. Formal Definition of Primal-Dual Cops and Robbers

The robber is considered caught when we reach a configuration confi such that the robber
is surrounded by cops after the cops’ turn, that is when all incident faces f1, f2, . . . , fdeg(v)
of v are in posi

c. Note that fi = fj with i ̸= j is possible.

The cop number c∗(G) is then defined as the smallest k such that there exists a winning
strategy for the cops. This cop number is well defined as occupying all faces guarantees
the robber’s capture and therefore c∗(G) ≤ 2 − |V (G)| + |E(G)| (see Theorem 2.1).

9





3. Simple Bounds

In this chapter we start with obvious bounds for the cop number c∗(G) for any planar
embedded graph G. In later chapters we try to narrow these bounds down.

3.1 Lower Bound
As already mentioned in Section 1.2, we get a lower bound due to the surrounding rule, as
we require all faces incident to the robber’s vertex to be occupied. This suggests that at
least ∆(G) cops are necessary, as the robber may just sit on the vertex with the highest
degree and never get caught. However, some edges might hold the same face on both sides.
Such an edge is either an edge incident to a vertex with degree one or, if one were to remove
this edge from the graph, the graph would no longer be connected. This means that only
as many cops are required as the amount of unique faces the robber’s vertex is incident to.
If all vertices have at least one such edge, it may result in c∗(G) < ∆(G).

Definition 3.1. Let G be a planar embedded graph. Then we define ∇(G) as the highest
amount of unique faces incident to the same vertex.

Another way to describe ∇(G) is the maximum amount of incident vertices a face in the
dual graph G∗ has.

Theorem 3.2. For a planar embedded graph G we have c∗(G) ≥ ∇(G).

Note that we always have ∇(G) ≤ ∆(G). In the upcoming chapters we presume
∇(G) = ∆(G) as this leads to the worst case for the cops in regards to c∗(G) and
c∗(G) < ∆(G) only occurs when every vertex in G has at least one edge that has the same
face on both sides, such as in trees.

3.2 Upper Bound
Similar to the upper bound of c(G) ≤ n for an arbitrary graph G with |V (G)| = n vertices
in the original cops and robbers game, here in the primal-dual variant we can also derive
an upper bound by placing a cop on every face of a planar embedded graph G.

Theorem 3.3. For a planar embedded graph G we have c∗(G) ≤ 2 − |V (G)| + |E(G)|.

11



3. Simple Bounds

Proof. The equation f = 2 − |V (G)| + |E(G)| is a direct conclusion of Theorem 2.1. By
occupying all faces of the graph with cops, every vertex has all its incident faces occupied
by a cop.

With the planar separator theorem we lay the foundation for the circle separator that
leads to a different upper bound for the cop number.

Theorem 3.4 (Planar Separator Theorem [LT79]). Every planar graph G with |V (G)| ≥ 5
has a 2

3 -balanced separator of size O(
√

n). This separator can be found in O(n).

A separator S is a subset of V (G) and partitions the graph into two subsets A and B
such that there are no edges (a, b) in E(G) with a ∈ A and b ∈ B. 2

3 -balanced indicates
that both A and B have at most 2

3n vertices. By placing cops on all faces incident to the
vertices in S, which requires at most ∆(G) · O(

√
n) cops, we prevent the robber from ever

changing his position from inside A to B or vice-versa.

Theorem 3.5 (Cycle Separator [MTTV97]). For α ≥ 3
4 and a triangular, planar graph G

there exists an α-balanced cycle separator with O(
√

n) vertices. This cycle can be found in
O(n).

As we can add edges to any planar graph G to turn it into a triangular planar graph G′,
we can find a cycle separator C of size O(

√
n) in G′. As G and G′ share the same vertices,

by placing cops in G on all faces incident to the vertices in C we prevent the robber from
ever leaving or entering the inner area of the cycle.

Now using the cycle separator we show that:

Theorem 3.6. For a planar embedded graph G we have c∗(G) ≤ O(
√

n).

Proof. We are going to use three cycles ci to repeatedly shrink the robber’s area down
until there is only one vertex left for the robber. A cycle is controlled by assigning ∆(G)
cops to each vertex in the cycle and occupying all incident faces. We use Theorem 3.5
to determine the first cop cycle to control. This partitions the graph into two subgraphs
A and B. Without loss of generality, let the robber be contained in A. Then, applying
Theorem 3.5 on A yields us a second cycle for the cops to control. This again partitions the
area into two subgraphs A1 and A2. Without loss of generality, let the robber be contained
in A1. Using the theorem on A1 gives us a third cycle. Now, the robber is contained by
two cycles. By freeing the cops of the other cycle and forming a new cycle by applying the
theorem on the robber’s subgraph, we further narrow the space down in which the robber
can move, until there is only one vertex left and the robber is caught. As cycle separators
are balanced, we guarentee that with each newly formed cycle the robber’s area becomes
smaller and as each cycle contains at most O(

√
n) vertices and subsequently formed cycles

contain less vertices, we require 3 · ∆(G) · O(
√

n) = O(
√

n) cops in total.

3.3 Simple Results
Now we consider simple classes of graphs in regards to their cop number c∗(G).

Trees T only have one face and therefore cop number c∗(T ) = 1. Here, we have the
special case of c∗(T ) = ∇(T ) ≤ ∆(T ) (Theorem 3.2).

Cycles C have cop number c∗(C) = 2 as there are two faces in total that every vertex is
also incident to. This conforms to Theorem 3.2 and Theorem 3.3.

With this, we have covered 2-regular (connected) graphs. In the next chapter we study
regular graphs of higher degree.
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4. k-Regular Graphs

In this chapter we consider planar k-regular graphs. A graph G is k-regular when all
vertices have degree k. By taking advantage of this property we find cop strategies and
determine bounds for the primal-dual cop number c∗(G).

4.1 3-Regular Graphs
We begin with 3-regular graphs. Here, we reveal that cops are able to cover a distance to a
target vertex faster than a robber and thus can chase a robber down.

Theorem 4.1. Let G be a planar embedded, 3-regular graph. Then c*(G) = 3 = ∆(G).

B

A

C

B’

C’

A’
r

Figure 4.1: One cop comes closer to the robber with each move.

Proof. Let r be the vertex occupied by the robber and A, B, C be the incident faces. Let
di(f) denote the distance between copi and face f , namely the minimal amount of steps
copi needs to take to reach face f . Let d be the total number of steps the three cops need
to take in order to occupy A, B and C. Then let cop1 go to A, cop2 to B, cop3 to C and
we get

d = d1(A) + d2(B) + d3(C).

After the robber moves to an adjacent vertex with incident faces A′, B′ = A and C ′ = C
(Figure 4.1) we have

d1(A′) ≤ d1(A) + 1 and d2(B′) ≤ d2(B) + 1

13



4. k-Regular Graphs

and therefore

dafter := d1(A′) + d2(B′) + d3(C ′) ≤ d1(A) + 1 + d2(B) + 1 + d3(C) = d + 2.

As each cop can now take a step we get

dnew = dafter − 3 ≤ d + 2 − 3 = d − 1.

Hence, the new total number of steps dnew the cops need to take decreases each turn by
at least 1. If one cop has already reached a face incident to the robber’s vertex, he can
assume the role of the cop on A and move along while letting one of the other two cops
move towards face C. Therefore, the total distance until capture becomes 0 after a finite
number of moves and the game is over.

Note that this proof does not use the properties of a plane and can therefore be applied
to graphs embedded on surfaces of arbitrary genus such as Möbius strips and Klein bottles
as well.

4.2 4-Regular Graphs
Now we consider 4-regular graphs where cops are not able to cover a distance to a target
vertex faster than a robber anymore. In this section, we refer to our cops as face-cops
and to cops that can move on vertices like in the original cops and robbers version as
vertex-cops.

A

B C

DA’

B’ C’

D’
u v

Figure 4.2: Four face-cops simulating a vertex-cop that can move on vertices.

Lemma 4.2. Let G be a planar embedded, 4-regular graph. Then four face-cops can
simulate one vertex-cop. Therefore, c*(G) ≤ 4c(G).

Proof. Let four face-cops occupy the four faces A, B, C, D surrounding a vertex u as shown
in Figure 4.2. Then the robber would be caught if he is on u, just as he would be when a
vertex-cop would occupy the same vertex. If the vertex-cop would want to move from u to
an adjacent vertex v, the four face-cops can move to the surrounding faces A′, B′, C ′, D′ of
v with A′ = D and B′ = C.

A special case of planar 4-regular graphs are square-grid graphs. The vertices of these
graphs correspond to the points in the plane with integer coordinates and two vertices are
connected by an edge whenever the corresponding points are 1 distance apart from each
other. We show that two vertex-cops suffice to catch the robber and therefore we have:

Theorem 4.3. Let G be a planar embedded square-grid graph. Then c∗(G) ≤ 8.
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4.2. 4-Regular Graphs

Proof. By showing that two vertex-cops have a winning strategy in the original game, we
conclude with Lemma 4.2 that eight face-cops suffice to catch the robber in the primal-
dual variant of cops and robbers. As the vertices in G correspond to points with integer
coordinates, let (x, y) refer to the vertex that corresponds to the point with such coordinates.
For G with n × n vertices, let (1, 1) refer to the vertex in the bottom left and (n, n) refer to
the vertex at the top right. A winning strategy for the cops begins by placing both cops on
(1, 1). The strategy is to let one cop, cop1, keep the same x-coordinate and the other cop,
cop2, keep the same y-coordinate as the robber while reducing the distance. Let (rx, ry) be
the position of the robber and (cop1x , cop1y ) or (cop2x , cop2y ) be the position of cop1 and
cop2 respectively. Cop1 moves right until cop1x = rx and then continues to maintain that
while cop2 moves up and does the same with cop2y = ry. As the board is finite, meaning
that rx, ry are in [1, n], the robber cannot prevent this. Now the cops act in the following
way depending on the direction the robber moves:

• Left: Let cop1 also move left and let cop2 move right. Then the distance of cop1 to
the robber remains the same while cop2 reduces the distance to the robber by 2 steps.

• Down: Let cop1 move up and let cop2 also move down. Then cop1 reduces the distance
by 2 while cop2 maintains the distance before the robber moved.

• Right or up: Let both cops move in the same direction. Then both cops keep the
same distance to the robber they had before the robber moved.

As the graph is finite, the robber can only go right and up a finite amount of times until
he has to go left or down again. Therefore, the distance between the cops and the robber
decreases steadily until the robber is eventually caught.

Now we consider 4-regular graphs in general. Here, the paper from Aigner and Fromme
[AF84] provides the result that three vertex cops suffice to catch the robber on any planar
graph. For the sake of completeness the proof for c(G) ≤ 3 is described here:

We begin by showing that a single vertex-cop can guard a geodesic path by himself. This
is necessary in order to show that 3 vertex-cops and therefore 12 face-cops have a winning
strategy on any planar graph G.

Lemma 4.4 ([AF84]). Let G be a planar, 4-regular graph and P a shortest path between
two different vertices u and v on G. Then four cops can, after a finite number of moves,
prevent the robber R from entering P. That means, R will be immediately caught if he
enters P.

Proof. Let d(x, y) denote the length of a shortest path between x and y. Let r be the vertex
occupied by the robber R and c the vertex controlled by the four cops as in Figure 4.2.
Suppose that for all z ∈ V (P ) it holds that

d(r, z) ≥ d(c, z). (4.1)

Then the cops can preserve this condition, meaning that the robber will not be able to
enter P without being caught:

After the robber moves from vertex r to an adjacent vertex s we have for each vertex z
on P

d(s, z) ≥ d(r, z) − 1
4.1
≥ d(c, z) − 1.

Therefore, the cops can preserve the condition from equation (4.1) by moving in the right
direction if necessary. For any z0 in V (P ) with

d(s, z0) = d(c, z0) − 1 (4.2)
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4. k-Regular Graphs

the cops need to control the vertex one step closer to z0 in comparison to c. So four cops
can control a path as long as there are no two different vertices as in (4.2) on opposite
sides of c on path P .

We show that there exist no such two vertices by contradiction. Suppose that there exist
x, y in V (P ) with x and y being on opposite sides of c and

d(s, x) = d(c, x) − 1 and d(s, y) ≤ d(c, y) or
d(s, y) = d(c, y) − 1 and d(s, x) ≤ d(c, x).

(4.3)

This leads to the contradiction

d(x, y)
(a)
≤ d(s, x) + d(s, y)

(4.3)
≤ d(c, x) + d(c, y) − 1 (b)= d(x, y) − 1 (4.4)

due to the (a) triangle inequality and the (b) minimality of P . Therefore, such x, y ∈ V (P )
cannot exist.

It remains to show that the cops can reach the situation described in (4.1). As shown
in (4.4), d(r, z) < d(c, z) can only be valid for z ∈ V (P ) on a single side of c. By moving
towards that side the cops force the situation after a finite number of moves.

Now we show that 3 vertex-cops and therefore 12 face-cops suffice to catch the robber.

Theorem 4.5 ([AF84]). Let G be a planar, 4-regular graph. Then c*(G) ≤ 12.

Proof. We divide the game rounds into stages. In each stage i we assign an area Ri to the
robber that he can still enter without being caught. At each subsequent stage, this area
becomes smaller until the robber is eventually caught. In other words, Ri+1 ⊊ Ri after a
finite number of moves. We start with twelve cops controlling a vertex c as in Lemma 4.2
and let r0 be the vertex occupied by the robber. Then R0 is G − c and at any stage of the
game we have one of the two following situations:

a) Four cops control vertex u, R is on r and Ri is the section of G − u containing r.
This is also our starting situation.

b) P1 and P2 are two shortest paths between vertices u and v with |P1|, |P2| ≥ 1 and
disjoint except for u and v. With a planar embedding of G we get an interior region
I and exterior region E formed by the two paths. Without loss of generality let r be
in E. P1 is a shortest path in P1 ∪ P2 ∪ E and P2 a shortest path in P1 ∪ P2 ∪ E
that is disjoint from P1. Four cops control P1, four cops control P2. Then Ri = E.

If we are in case (a) and u only has one neighbor v in Ri then the four cops on u move
to control v. If r = v then the robber is caught. Otherwise, Ri+1 is contained in Ri − v
and we therefore reach case (a) again with Ri+1 ⊊ Ri. If u now has two neighbors s and
t in Ri and Pst is a shortest path between s and t in Ri, let four of the remaining eight
cops control Pst after a finite number of moves. Then we reach case (b) with P 1 = (s, u, t),
P2 = Pst (or P1 = Pst and P2 = (s, u, t) if (s, t) ∈ E(G)) and Ri+1 ⊂ Ri − V (Pst) ⊊ Ri.

In case (b) if there is no other path from u to v in Ri then Ri consists of disjoint
components A, B, C, . . . attached to the vertices of P1 ∪ P2. Without loss of generality,
let r be contained in A attached to vertex a. Then move the remaining four free cops to
the connection point a and we end up in case (a) with u = a, Ri = A (Figure 4.3).
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Figure 4.3: Case (b) with no other paths from u to v. From [AF84].

If there are other paths between u and v in Ri ∪ P1 ∪ P2 let Z be a shortest such path.
Let P (x, y) denote the subpath from x to y on P . Let w be the first vertex on Z after u
which is also on P1 ∪ P2. If w ∈ V (P1), then the path P3 = Z(u, w) ∪ P1(w, v) is also a
shortest path due to P being a shortest path. P3 is disjoint from P2 and depending on
how P3 partitions Ri we have one of the two cases in Figure 4.4.

Figure 4.4: P3 partitions Ri with w ∈ V (P1). From [AF84].

If we are in case (i) and r is in A, then the last four free cops move to control P 3. With
P2 and P3 we arrive in situation (b) with Ri+1 ⊊ Ri. (There is at least one vertex on
P3(u, w) which is in Ri but not in Ri+1.) If r is in B, then the cops control P1(u, w) and
P3(u, w) and we also arrive at case (b) with Ri+1 ⊊ Ri. Case (ii) is handled by a similar
argument.

Figure 4.5: P3 partitions Ri with w ∈ V (P2) and Z intersects P1. From [AF84].

If w ∈ V (P 2) and Z does not intersect P 1 (except in u, v), then P 3 = Z(u, w)∪P 2(w, u)
is another shortest path and we can repeat the argument above. Otherwise, let y be the
first intersection of Z with P1, and x be the preceding intersection of Z with P2. By
the minimality of P1 and P2, P3 = P2(u, x) ∪ Z(x, y) ∪ P1(y, v) is another shortest path
(Figure 4.5). Then we have one of the two situations in Figure 4.5 depending on whether
r ∈ A or r ∈ B, and the argument is as before.
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4. k-Regular Graphs

4.3 Low-Degree Graphs
Expanding on the results of Theorem 4.1 and Theorem 4.5 we show that the strategy
used for 3-regular and 4-regular graphs can be applied to graphs G with ∆(G) ≤ 3 and
∆(G) ≤ 4 as well.

Corollary 4.6. Let G be a planar embedded graph with ∆(G) ≤ 3. Then c*(G) = 3.

Corollary 4.7. Let G be a planar embedded graph with ∆(G) = 4. Then c*(G) ≤ 12.

Proof. The transitions when moving between vertices of different degrees are described in
the following.

A

B B’

A’ D

C

u v

Figure 4.6: deg(u) = 4 and deg(v) = 2

A

B B’

A’ D

C

u v

C’

D’

Figure 4.7: deg(u) = 4 and deg(v) = 3

We look at how four face-cops move in order to simulate a vertex-cop moving from a
vertex u to an adjacent vertex v. For any vertex w with deg(w) = 2 we uphold the invariant
of having two cops on each incident face. We consider different scenarios depending on
deg(u) and deg(v).

• deg(u) = 1 or deg(v) = 1
Let deg(u) = 1. Then the four cops are on the only face F incident to u. All faces
incident to v are either F or adjacent to F and can be occupied by one of the cops
in one move. As deg(v) ≤ 4 we have up to three unique faces that can all be covered
by the four cops. Correspondingly, in the case of deg(v) = 1 all cops can move to the
only incident face.

• deg(u) = 4 and deg(v) = 2 (Figure 4.6)
We start with four face-cops with each on their own face, of which two (C, D) are
also the incident faces to v. Let the remaining two cops move to C and D and we
end up with two cops on each face incident to v and thus, upholding the invariant.

• deg(u) = 2 and deg(v) = 4
Assuming that we uphold the invariant, let one cop from each face move to the faces
incident to v but not u.

• deg(u) = 4 and deg(v) = 3 (Figure 4.7)
We start with four face-cops with each on their own face, of which two (C, D) are
also the incident faces to v. Let the cops on A and B move to D and C respectively
while the other two cops move to the third face incident to v.

• deg(u) = 3 and deg(v) = 4 (Figure 4.8)
Each of the three faces has at least one face-cop. Regardless of which face has two
cops, let one cop from face C and D each move to the faces not incident to u. Let
the cop on A move to D and the last cop move to C.
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B

B’

D

C

u vA

A’
D’

C’

Figure 4.8: deg(u) = 3 and deg(v) = 4

A

B

D

C
u v

B’

A’

Figure 4.9: deg(u) = 3 and deg(v) = 2

• deg(u) = 3 and deg(v) = 2 (Figure 4.9)
If there are two cops on a face incident to v, move the cop not incident to v to the
other face incident to v. If there are two cops not incident to v, move one of them to
each face incident to v. With this, we uphold the invariant.

• deg(u) = 2 and deg(v) = 3
As we start with two cops in each incident face to u, move one cop to the face incident
to v but not incident to u. We end up with at least one cop in each incident face of v.

So four face-cops can simulate a vertex-cop on graphs G with ∆(G) ≤ 4 as well.
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4.4 High-Degree Graphs
In this section we consider planar embedded graphs with ∆(G) ≥ 5 in general. Our
approach until now does not work here anymore, as cops cannot keep pace with the robber
when moving from a vertex with degree 5 to a neighboring vertex (Figure 4.10). When
moving five cops surrounding a vertex with degree 5 to a neighboring vertex, while four
cops manage to move to the faces incident to the new vertex, one cop does not manage
to do so in one step. Therefore, face cops cannot simulate vertex cops anymore in graphs
with ∆(G) ≥ 5.

A

B

B’
A’

D
u

C

v

E

C’

D’

E’

Figure 4.10: One of the five cops cannot reach a face incident to v with one step.

Instead, we use the main result in the paper of Nisse and Suchan [NS08] that proves the
lower bound of the vertex-cop number in n×n square-grid graphs to be in Ω(

√
log n) when

the robber has a higher speed than the cops, meaning that the robber can go a further
distance than a cop in the same amount of time.

Theorem 4.8 (Nisse and Suchan [NS08]). Let Gn be a square-grid graph with n×n vertices.
Let p be the velocity of the vertex-cops and q be the velocity of the robber. Then for any
q
p > 1 we have c(Gn) > Ω(

√
log n).

In order to apply the theorem in our primal-dual cops and robber setting we need to
artificially reduce the cops’ speed.

Figure 4.11: Gn Figure 4.12: Gn,h

Let Gn be a square-grid, meaning that Gn consists of n×n vertices which we call cities.
Each city is connected to its closest neighbors (in regard to the Euclidean metric), thus
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forming (n − 1)2 inner faces that we call squares. This is the graph that both robber and
vertex-cops move on in the [NS08] setting (Figure 4.11). For easier intuition, we call the
edges highways.

Let Gn,h (with h ≥ 4 even) be the graph that results from Gn after subdividing each
highway h times. These new vertices on the highways will be called checkpoints. Each
checkpoint will have degree 5, alternating between checkpoints that have two additional
edges on one side of the highway and checkpoints that have two edges on the other side of
the highway (Figure 4.12). These edges will be connected to villages, vertices that fill up
the squares formed by Gn. Note that the total amount of vertices in Gn,h now depends on
n and h, and the way the villages are placed.

A highway is now a path (c0, c1, . . . , ch, ch+1) with deg(c0) = deg(ch+1) = 4 (cities) and
deg(ci) = 5 for i ∈ {1, . . . , h} (checkpoints). Let N(ci) be the neighborhood of ci in counter-
clockwise order. Then for any i ∈ {1, . . . , h − 1} we have N(ci) = (ci−1, v1, v2, ci+1, v3)
and N(ci+1) = (ci, v4, c1+2, v5, v6) or vice-versa, with vi being villages. That means that
checkpoints alternate between having two edges on one side of the highway and one edge
on the other side and we therefore have h

2 · 2 + h
2 · 1 = 3

2 h edges on each side of the highway.

As each side of a highway has 3
2 h edges incident to checkpoints, each square has

4 · 3
2 h = 6 h edges incident to checkpoints.

In each square we construct villages connected to each other while ensuring two properties:

1. ∆(Gn,h) ≤ 5 and

2. A shortest path between two cities or checkpoints consists of highway edges only.

We construct the villages with nested rings. Each ring consists of 6h villages forming a
cycle. A village is connected to the corresponding village on the next outer ring and the
corresponding village on the next inner ring. By construction each village has degree 4
except for the villages in the inner most ring that have degree 3 (see Figure 4.13). With
this Property 1 is fulfilled. By adding sufficient rings we can ensure Property 2. We show
that 3

2h + 1 rings are enough.

Lemma 4.9. A shortest path between two checkpoints belonging to the same square for the
robber only consists of highway edges.

Proof. First we show that using the outer most ring instead of the highway takes more
steps. Then we show that going into an inner ring is not faster than staying on a ring.
Therefore, the robber should never leave the highway.

Let ca and cb be two checkpoints on highways belonging to the same square. As each
checkpoint is connected to at least one village on the outer most ring, let va and vb be
such villages connected to ca and cb respectively (if there are two villages connected to
the same checkpoint, choose the village with the closer distance to the other checkpoint).
Let Ph = (ca, c1, . . . , cα, cb) be a shortest path from ca to cb using edges on highways
only and Pv = (va, v1, . . . , vβ, vb) be a shortest path from va to vb through villages on the
outer most ring only. Without loss of generality, let both paths go clockwise or both go
counterclockwise. We show that |Pv| ≥ |Ph| − 1.

In the case that Ph contains no cities, each checkpoint in {c1, . . . , cα} is connected to at
least one village in {v1, . . . , vβ} that no other checkpoint is connected to and each village is
connected to at most one checkpoint that no other village is connected to. Therefore, we
have |{c1, . . . , cα}| ≤ |{v1, . . . , vβ}|.

In the case that Ph contains one city we have |{c1, . . . , cα}| ≤ |{v1, . . . , vβ}| − 1.
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city citycheckpoint

village

ring

Figure 4.13: Construction of villages in a square; here h = 6 with 10 visible rings.

In the case that Ph contains two cities, Ph contains a full highway with h checkpoints.
These checkpoints are connected to 3

2h villages that are in Pv. Therefore, |Pv| ≥ |Ph| − 2 +
(3

2 − 1)h ≥ |Ph| for h ≥ 4.

As Ph cannot contain more than two cities, we have shown |Pv| ≥ |Ph|−1. Since entering
and exiting a village ring both takes one step, we have shown |Ph| < |(ca, va) ∪ Pv ∪ (vb, cb)|.

Now we show that going through the next inner ring requires more steps than staying
on the current ring of villages. Let va and vb be two villages on the same ring r and v′

a

and v′
b be villages on the next inner ring r′ connected to va and vb respectively. Let Pr be

a shortest path from va to vb on the ring r and Pr′ be a shortest path from v′
a to v′

b.

Assume that Pr′ stays on the ring r′ and without loss of generality, let both paths go
clockwise or both go counterclockwise. As each village between va and vb corresponds
to exactly one village between v′

a and v′
b, we have |Pr′ | = |Pr| and therefore |Pr| <

|(va, v′
a) ∪ Pr′ ∪ (v′

b, vb)|.

Now assume that Pr′ enters the next inner ring r′′ at some point. Let v′′
a and v′′

b be
villages on r′′ connected to v′

a and v′
b respectively. By applying the above argument on

Pr′ = (v′
a, . . . , v′

b) and Pr′′ = (v′′
a , . . . , v′′

b ), we inductively conclude that Pr′ must stay on r′.
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A path P = (c0, . . . , c1, . . . , c2, . . . , c3) that switches between checkpoints and villages
cannot be a shortest path either since for every subpath between two subsequent checkpoints
ci and ci+1, there exists a shorter subpath using highway edges only as we have just
shown.

Lemma 4.10. A shortest path between two cities belonging to the same square for the
robber only consists of highway edges.

Proof. As each city is connected to checkpoints only and no villages, this lemma is a
conclusion of Lemma 4.9 by applying it to the checkpoints.

Lemma 4.11. A shortest path between two cities for the robber only consists of highway
edges.

Proof. The proof is by contradiction. Assume that a shortest path P between two cities
contains a subpath going through villages. Since villages in a square are isolated from
villages in another square, there must have been checkpoint c1 before the subpath and a
checkpoint c2 after the subpath in P . According to Lemma 4.9 a shortest path from c1 to
c2 uses highway edges only, a contradiction.

Now we show the same for the cops.

Lemma 4.12. A shortest path between two faces incident to cities or checkpoints belonging
to the same square for the face-cops only consists of faces incident to highways.

Proof. Note that every layer of faces between two village rings (and every layer between a
highway and an outer most village ring) consists of the same amount of faces, namely 6h
faces. Let P = (fa, f1, . . . , fb) be a shortest path between two faces incident to cities or
checkpoints belonging to the same square. Let layermin be the most inner layer that a face
in P belongs to. We come to a contradiction by assuming that layermin is not the layer
between the highway and outer most ring:

Let layermin+1 be the next outer layer of layermin and let fi be the last and fj the first
face belonging to layermin+1 before and after the first face belonging to layermin respectively
on

P = (fa, . . . , . . . , fi︸ ︷︷ ︸
layermin+1

, . . .︸︷︷︸
layermin

, fj , . . .︸ ︷︷ ︸
layermin+1

, . . . , fb).

Then either layermin is the inner most layer that contains only one face or the subpath
Psub = (fi, fi+1 . . . , fj−1, fj) is not a shortest path between fi and fj .

If layermin is the inner most layer then P = (fa,
≥3/2 h faces︷︸︸︷. . . , finner,

≥3/2 h faces︷︸︸︷. . . , fb) has length

|P | = 2 · (amount of village rings − 1) + 3 ≥ 2 · 3
2h + 3 = 3h + 3.

As each layer consists of 6h faces, the length of a shortest path staying on the layer of fa

and fb can at most be

2 + max amount of faces inbetween = 2 + 3h − 1 = 3h + 1 < 3h + 3,

a contradiction to P being a shortest path.

If layermin is not the inner most layer then the amount of faces between fi and fj on
layermin+1 is the same as the amount of faces between fi+1 and fj−1 on layermin. Therefore,
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a path that stays on layermin+1 and that is shorter than Psub exists, a contradiction to P
being a shortest path between fa and fb. By induction, we conclude that layermin must be
the layer between the highway and the outer most ring of villages.

Lemma 4.13. A shortest path between two faces incident to cities or checkpoints for the
face-cops only consists of faces incident to highways.

Proof. Let P = (fa, . . . , fb) be a shortest path between two faces incident to cities or
checkpoints not belonging to the same square. Otherwise apply Lemma 4.12. Let fi be
the last and fj be the first face incident to a highway after the first subpath of villages
in P = (fa, . . . , fi︸ ︷︷ ︸

incident to
highways

, . . .︸︷︷︸
between

village rings

, fj , . . . , fb). Applying Lemma 4.12 to fi and fj yields a

shorter subpath between fi and fj and by induction P cannot contain any villages.

With these lemmas, we ensure that the second property is fulfilled, namely that a shortest
path between two cities or checkpoints consists of highway edges only.

Theorem 4.14. The number of face-cops c*(G) for graphs G with ∆(G) ≥ 5 can be in
Ω(

√
log n).

Proof. Since Gn,h with robber and face-cops is equivalent to Gn with robber and vertex-cops
that fulfill vrobber

vcops
= 3

2 > 1, Theorem 4.8 can be applied.

The amount of vertices in Gn,h is the sum of

• cities: n2

• checkpoints per highway × highways: h · 2n(n − 1)

• villages per square × squares: (n − 1)2 · (3
2h + 1)6h.

This adds up to
n2 + h · 2n(n − 1) + (n − 1)2 · (3

2h + 1)6h

= 9n2h2 + 8n2h + n2 − 18nh2 − 14nh + 9h2 + 6h.

With h = 4 we get 177n2 − 344n + 168 and the term is dominated by n2 resulting in
Ω(

√
log n) as a lower bound just like for Gn with n2 vertices.
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5. Cop Graph K4

In this chapter the cop graph is being analyzed. As opposed to the previous chapter, in
which the face-cops were moving on the faces and the robber on the vertices, here the cops
move on the vertices and the robber on the faces. We look at cop-graph K4 specifically.

5.1 Subdivisions of K4

v1

v2 v3

v4

e1

e2

e3
e4

e5 e6

f1

f2

f3

f4

Figure 5.1: Cop-Graph K4 labeled.

Lemma 5.1. We have c*(K4*) = 3 = ∆(K4*).

Proof. Let the three cops occupy any three different vertices. Regardless of which face
the robber occupies, either all three incident vertices are already occupied or two of them
are and the cop not incident to the robber can move to the unoccupied vertex in the next
move. With that, the robber is caught.

As the dual graph of K4 is K4 itself, this is the minimal required amount of cops necessary
to catch a robber on a (robber-)graph G∗ with ∆(G∗) = 3. It naturally raises the question:
How many subdivisions on cop-graph K4 are necessary until c∗(G∗) > ∆(G∗) for the dual
graph G∗?

Lemma 5.2. Let G be a subdivision of K4 and U be the number of subdivisions. Then
∆(G∗) ≥

⌈
U
2

⌉
+ 3.
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5. Cop Graph K4

Proof. The proof is by contradiction. Suppose that

∆(G∗) <
U

2 + 3. (5.1)

Let K4 = ({v1, v2, v3, v4}, {e1, e2, . . . , e6}) be the original graph before subdivision. Let ui

denote the number of vertices on edge ei and Ui denote the number of vertices incident to
face fi that resulted from subdivision, i.e. U1 = u1 + u2 + u3. Since every face in K4 has
three incident vertices before subdivision, we have

Ui < ∆(G∗) − 3
(5.1)
<

U

2
for every i ∈ {1, 2, 3, 4} and thus

U1 + U2 + U3 + U4 < 4 · U

2 = 2U.

By adding the number of all vertices incident to the faces that resulted from subdivision
via the individual ui we get

U1 + U2 + U3 + U4 = (u1 + u2 + u3) + (u1 + u4 + u5) + (u2 + u5 + u6) + (u3 + u4 + u6)

=
6∑

i=1
2ui = 2

6∑
i=1

ui = 2U.

With that we get 2U =
4∑

i=1
Ui < 2U , a contradiction.

Lemma 5.3. Let G be a subdivision of K4 and U be the number of subdivisions. If ∆(G∗)
≤ U and U ≥ 6 then c*(G*) ≥ U.

Proof. If there are less than U cops in the game, we show that the robber R can move
to a face where he will not be caught in the next turn. Without loss of generality, let R
be on face f1 and let x1 denote the number of cops incident to f1. Since there are only
three entry points to the vertices adjacent to f1 (vertices that are connected to vertices
not incident to this face), namely v1, v2 and v3, we need to have x1 ≥ u1 + u2 + u3 = U1
in order to catch the robber in the next turn. The reasoning is that in the next turn no
cop other than the x1 cops already incident to f1 can occupy the vertices that resulted
from subdividing e1, e2 and e3. If x1 is large enough, the robber escapes to another face.
He chooses the face fi with the smallest xi. Since there are less than U cops in the game,
there exists a face fi with xi < Ui. As the robber can keep this situation up indefinitely,
the cops may never catch the robber.

Theorem 5.4. Let G be a subdivision of K4 and U be the number of subdivisions. If ∆(G∗)
≤ U and U ≥ 6 then c*(G*) = U.

Proof. Assume that ui > 0 for i ∈ {1, 2, 3, 4, 5, 6}. Then we place all U cops on the vertices
in V (G) \ {v1, v2, v3, v4}. Let the robber start on face f . Let va, vb, vc ∈ {v1, v2, v3, v4}
be the incident vertices to f that originate from K4. As each of those three vertices are
connected to an edge that is not incident to f , let the next cop on those edges move to
va, vb and vc respectively. This is possible since ui > 0 for all edges. With this, the robber
is caught.

Now assume that ui = 0 for at least one edge. Let va and vb be the endpoints of such
an edge. Then place the cops like before on all vertices in V (G) \ {v1, v2, v3, v4} with the
exception of vertices adjacent to va and vb. These cops go on va and vb respectively and
with this, the robber will be caught in the next turn regardless of his starting position. With
Lemma 5.3 we conclude c∗(G∗) = U , but if U < 6 then we have U < ∆(G∗) = c∗(G∗).
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5.1. Subdivisions of K4

This results in the following table (Theorem 5.4):

U minimal ∆(G∗) c*(G*)
1 4 4
2 4 4
3 5 5
4 5 5
5 6 6
6 6 6
7 7 7
8 7 8
9 8 9
10 8 10

U minimal ∆(G∗) c*(G*)
11 9 11
12 9 12
13 10 13
14 10 14
15 11 15
16 11 16
17 12 17
18 12 18
19 13 19
20 13 20

Table 5.1: c∗(G∗) depending on the amount of subdivisions U .
G is a subdivision of K4.
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6. Variants

This chapter introduces some further variants on the primal-dual cops and robbers game.
We consider a variant that simplifies the capture rule and a variant that restricts the
movement of the robber. Hence, both variants benefit the cops.

6.1 Tag Variant
In this variant we change the capture rule from requiring all faces incident to the robber’s
vertex to be occupied by cops to only one of the faces having to be occupied. Similar to
the original game, now one cop is able to catch the robber by himself. Let c∗

t (G) denote
the cop number for this tag variant. Obviously, we have c∗

t (G) ≤ c∗(G).

This change has an effect on the cop number of outerplanar graphs G. While we always
have c∗

t (G) = 1 for outerplanar graphs (by occupying the outer face), the cop number c∗(G)
can be arbitrarily high, for example for outerplanar graphs constructed in the following
way: Begin with a cycle of three vertices. At any step, for each edge incident to the outer
face, add a new vertex that is connected to the endpoints of the edge, thus forming a
new face (Figure 6.1). Repeat this step an arbitrary amount of times. As we know the
lower bound to be c∗(G) ≥ ∆(G) for this graph (see Section 3.1), the cop number c∗(G) is
unbounded.

Figure 6.1: Construction of an outerplanar graph.
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6. Variants

For 3-regular graphs the tag cop number c∗
t (G) also becomes smaller than c∗(G) and

actually assumes the smallest number possible. This applies to graphs with ∆(G) ≤ 3 as
well:

Theorem 6.1. Let G be a planar embedded graph with ∆(G) ≤ 3. Then c∗
t (G) = 1.

Proof. We show that with each step the cop reduces the total distance to the incident faces
of the robber. Assume that the robber moves from vertex u to a neighboring vertex v.
Let f1, f2, f3 be the incident faces of u and f2, f3, f4 be the incident faces of v. Note that
f1, f2, f3 and f4 do not have to be distinct faces. Let dist(c, f) denote the distance of the
cop to face f , that is the number of steps the cop needs to reach the face. Let f1 be the
face with the smallest distance to the cop. Before the robber moves, for

dist(c, f1) = d

we have
dist(c, f2) ≤ d + 1,

dist(c, f3) ≤ d + 1,

dist(c, f4) ≤ d + 2.

Therefore, as the total distance we have
totalbefore = dist(c, f1) + dist(c, f2) + dist(c, f3) ≤ 3d + 2.

Assume that dist(c, f2) = d + 1 = dist(c, f3) and with that totalbefore = 3d + 2. After the
robber moves, the cop reduces the distance to f1 by 1. Then, we have

distnew(c, f1) = d − 1
and also

distnew(c, f2) = dist(c, f2) − 1 = d,

distnew(c, f3) = dist(c, f3) − 1 = d,

distnew(c, f4) ≤ min(distnew(c, f2), distnew(c, f3)) + 1 ≤ d + 1.

With that, the new total distance to the three faces incident to the robber becomes
totalafter = distnew(c, f2) + distnew(c, f3) + distnew(c, f4) ≤ 3d + 1 < 3d + 2 = totalbefore.

For dist(c, f2) = d or dist(c, f3) = d we have distnew(c, f4) ≤ d and subsequently
totalafter ≤ totalbefore − 2.

For 4-regular graphs the tag cop number is identical to the cop number in the original
game, as a face-cop moves just as quickly as a vertex-cop.

Theorem 6.2. Let G be a planar embedded graph with ∆(G) = 4. Then c∗
t (G) = 3 = c(G).

For 5-regular graphs we have already shown in Section 4.4 that c∗
t (G) ≥ Ω(

√
log n), as

the cops in the proof never reached a face incident to the robber’s vertex.

Theorem 6.3. Let G be a planar embedded graph with ∆(G) ≥ 5. Then c∗
t (G) ≥ Ω(

√
log n).

For the subdivision of the cop graph K4 from Chapter 5 two cops suffice, as one cop
might not be able to cover three faces by himself and the second cop then covers the
last face that the robber might be on, thus capturing the robber. One cop might not be
sufficient as moving along the original edges of K4 can give the robber enough time to
escape to another face due to the subdivided the edges. This does not apply if one of the
edges is not subdivided.

Theorem 6.4. Let G be a subdivision of K4. Then c∗
t (G∗) ≤ 2.
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6.2. Restrictive Variant

6.2 Restrictive Variant
In this variant, we add the rule that the robber cannot use an edge that has cops occupying
both faces incident to the edge. If an edge has the same face on both sides, one cop
occupying the face already blocks the edge. We denote the restrictive cop number as c∗

r(G).
Note that c∗

r(G) ≤ c∗(G).

For the square-grid graph from Section 4.2 we can implement the same idea with four
restricting face-cops. Two face-cops fulfill the role of cop1, the cop that upholds cop1x = rx,
by occupying the bottom two faces of the vertex that cop1 controls and thus preventing
the robber from moving down when (cop1x , cop1y ) = (rx, ry). The other two face-cops
analogously occupy the two incident faces to the left of the vertex that cop2 is supposed
to control and thus preventing the robber from moving left when (cop2x , cop2,y) = (rx, ry).
Once robber stands still the four face-cops can surround him. This happens at vertex (n, n)
at the latest. We conclude:

Theorem 6.5. Let G be a planar embedded square-grid graph. Then c∗
r(G) ≤ 4.

For the other results this variant does not seem to change the cop number. A new lower
bound could be found for 4-regular graphs if two cops suffice to guard a geodesic path
by blocking the robber from entering or exiting the path. This however, remains to be
proven. A proof could look similar to the proof of Aigner and Fromme for c(G) = 3 on
planar graphs [AF84].
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7. Conclusion

In this thesis we studied the primal-dual variant of the cops and robbers game on planar
graphs. We started by showing general lower and upper bounds on the cop number c∗(G)
of this variant in Chapter 3.

Following that, we determined some tight bounds and upper bounds for graphs G with
∆(G) ≤ 4 by analyzing the properties of those graphs in regards to their effect on the cops’
movement and drawing analogies between the original and the primal-dual variant.

Aside from that, it remains to be proven what a tight bound for 4-regular graphs is. We
were unable to prove an accurate lower bound as we were not able to show how less than
four cops can guard a geodesic path.

For graphs G with ∆(G) ≥ 5 we constructed a graph that simulates face-cops as vertex-
cops moving at a slower speed than the robber. Thus, we have shown by reduction that
the cop number c∗(G) is at least Ω(

√
log n).

We conclude that for ∆(G) ≤ 4 the cop number is bounded, but unbounded for ∆(G) ≥ 5.
To be precise, for

• ∆(G) ≤ 3 we have c∗(G) ≤ ∆(G) (Section 3.3, 4.1),

• ∆(G) = 4 we have c∗(G) ≤ 12 (Section 4.2) and

• ∆(G) ≥ 5 we have c∗(G) ≥ Ω(
√

log n) (Section 4.4).

After changing perspectives and looking at graphs from the cop’s perspective in Chapter
5, we determined that subdividing edges of K4 results in a linear increase of the cop number
on the resulting dual graph.

Although we have taken a brief look at further variants in Chapter 6, additional ideas
may be considered and studied. Examples are: How does it affect the cop number c∗(G) if
all parties are forced to move every turn? What if we restrict the movement of the robber
even more by already blocking edges that have a single cop on one of the two incident
faces?
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