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Abstract

More and more commuters and travellers are dependant on public transport every
day and finding journeys that fit their time schedules becomes increasingly important.
While the problem of computing a set of best journeys in a given time-interval is well
researched and meets those needs, only few bounds on the theoretical complexity
are known. The incorporation of additional time-independent-networks, enabling
a traveller to take a car or walk for segments of his journey, especially turned out
to be more complex and impractical in comparison to single-mode ones, even with
modern acceleration techniques. This thesis focuses on the theoretical complexity
of such queries, abstracting from the implementation in practice, thus exploring
its foundation. Different approaches, such as using combinations of established
algorithms or trying recursive computation attempts are analysed and tested for
viability, giving or discarding possible starting points for future works. These include
the family of Connection Scan Algorithms and Dijkstra-based approaches on different
graph-models. Aside from finding asymptotic runtime boundaries of these well-known
algorithms, this thesis takes a look at partitions of networks and how they might be
used for efficient algorithms.

Deutsche Zusammenfassung

Immer mehr Berufspendler und Reisende sind tagtäglich auf öffentliche Verkehrsnetze
angewiesen und es wird immer wichtiger Verbindungen zu finden, die in ihre Zeit-
pläne passen. Obwohl das Finden der besten Verbindungen in einem bestimmten
Zeitintervall gut erforscht ist, gibt es wenige theoretische Aussagen über die Kom-
plexität des Problems. Insbesondere die Betrachtung von zusätzlichen zeitunabhängi-
gen Netzwerken, die beispielsweise die Nutzung eines Autos oder das Laufen auf
Zwischenabschnitten der Reise ermöglichen, haben sich als sehr komplex erwiesen
und sind selbst unter Zuhilfenahme von modernen Beschleunigungstechniken häufig
impraktikabel. Diese Arbeit beschäftigt sich mir der theoretischen Komplexität
solcher Anfragen und abstrahiert damit von der praktischen Implementierung. Unter-
schiedliche Ansätze, wie die Nutzung einer Kombination aus etablierten Algorithmen
oder rekursive Berechnungsarten werden analysiert und auf Realisierbarkeit geprüft,
wobei Ansatzpunkte für zukünftige Arbeiten geschaffen oder verworfen werden. Ins-
besondere werden die Familie von Connection Scan Algorithmen und Dijkstra-basierte
Ansätze auf unterschiedlichen Graph-Modellen untersucht. Neben dem Finden von
asymptotischen Laufzeitgrenzen von diesen Algorithmen legt diese Arbeit einen
zusätzlichen Fokus auf partitionierte Netwerke und wie sie eventuell für effiziente
Algorithmen verwendet werden könnten.
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1. Introduction

This thesis takes a look at the complexity of some questions concerning profile queries for
public transit networks. The profiles contain information about all optimal journeys leading
from a source stop to a target stop and have broad applications for journey planning. One
catchy example is the online service of the German railroad company Deutsche Bahn. A user
can input the time he wants to leave at a specified stop and where he wants to travel to. The
service then outputs the best train connections for the next hours. Computing such profiles
has been done in these use cases for longer now and a set of algorithms was developed
to solve this problem efficiently. First approaches tried to use algorithms made for route
planning in graphs with weighted edges, like the famous algorithm of Dijkstra. However, it
soon turned out that they can not unfold their full potential on the discrete structures given
by connections that leave and arrive at fixed times. New algorithms that do not work on
graphs but on the underlying timetable information were developed for this. One of them
is the Route Based Public Transit Router (RAPTOR) [DPW12], which uses the structures
of routes and trips taken by trains. It solves the problem more effectively and showed its
applicability on instances like the public transit network of London. Other algorithms
followed and maybe most importantly, the Connection Scan Algorithm (CSA) [DPSW17]
was invented. It only has to scan over an array of connections, sorted by departure time.
This causes it to be very cache-efficient and well suited for practical purposes. There
have been little major breakthroughs in terms of completely new algorithms since then
and research concentrates on accelerating CSA [BCE+10] [BHS16] [BGMH10] and other
Dijkstra-based approaches [BDGMH09]. Furthermore, other variations of this problem are
discussed now. While CSA can handle transitively closed sets of footpaths, arbitrary ones
are problematic [WZ17]. Combining time-dependent transit networks and time-independent
ones like footpaths or streets (used by cars) seems very difficult. It can be classified as a
multi-modal query, which is in focus of current research [Paj09][DDP+13].

1.1 Related Work

The model for public transit networks used in this thesis can not sufficiently represent every
aspect of real transit networks. The most important things missing here are minimum
change times for stops and the subdivision of connection sets into trips and routes [BDG+15].
Trips are sequences of consecutive connections which are served by a single train. This
means that a traveller can remain seated at the intermediate stops and does not have to
change the train. It only has an effect on the validity of journeys when using minimal
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1. Introduction

change times for stops. These are times that are needed if one changes a train at a stop
and have to pass between the arrival and departure of the connections. The time is not
needed when staying with the same trip. Routes partition the trips into sets containing
trips that serve the same stops in the same order.
The model was trimmed for a reason in this thesis, as the work is focused on the complexity
in asymptotic terms and not the exact runtime. Trips and minimum change times have
little effect on this. The algorithms used in the following chapters can be expanded to
incorporate these aspects, without loss of asymptotic efficiency. However, considering
them would make the explanations of algorithms more complex, shifting the focus to less
important elements. So in an attempt to streamline things, they are left out.
Other related work includes the Round Based Public Transit Router (RAPTOR) [DPW12],
which is not included for various reasons. It heavily depends on the fact that in practice
shortest journeys do not contain many transfers between vehicles. Of course, in theory that
has not to be the case and in an extreme example every pair of stops can involve two routes
(one in each direction) and every connection its own trip. Then the number of transfers
for a shortest journey is the number of connections taken minus one. Another aspect
that makes it hard to compare RAPTOR (or the version for profile queries: rRAPTOR)
to other algorithms for the profile calculation in public transit network is the inherent
multiple criteria approach of it. It calculates a Pareto-set of shortest journeys optimizing
the number of transfers and the arrival time. There are other publications which deal with
those multi-criteria queries [DMHS08] [Wit15].
The time-model used in this thesis models connections with one fixed departure and arrival
time. However, in reality a route is taken every few minutes by a train which can be
represented by a repetition rate. There is work that uses this compressed information
[BS14].
The holy grail of route-planning are multi-modal queries. These enable a traveller to take
different modes of transportation for one journey. They can include means of transportation
like trains, streets, itineraries, ships, taxis or even planes. Some of them use time-dependent
vehicles, while others are time-independent [Paj09] [DDP+13].

1.2 Contribution
The first part of the thesis takes a look at the problem of public transit routing and analyses
established algorithms and possible boundaries. Those include variations of Dijkstra and
versions of CSA tailored for different use cases. One acceleration technique for CSA is
considered too, namely Connection Scan Accelerated ([SW14]). Then the problem of
arbitrary footpaths is addressed. All algorithms are treated on a theoretical level, working
out asymptotic runtimes. The worst case scenarios used for this expose difficulties the
algorithms struggle with.
The second part tries to reveal the problems for finding better algorithms. After showing
some boundaries for one-to-one queries, a simple recursive algorithm that uses some basic
operations and solves one-to-one queries without solving the equivalent all-to-one query
simultaneously, is presented. Extending on this idea an algorithm using graph-separators
is presented. It is only applicable for very limited instances, but the results can still be
used to identify problems and improving upon those.
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2. Preliminaries

For understanding the rest of the thesis, basic notions are introduced first. These are
structured by first giving definitions for public transit networks, profiles and the different
kinds of queries. Afterwards some graph models will be shown and explained. After giving
some operations on profiles, the algorithms used to solve the problems are presented. Some
parts of them will be elaborated in following chapters where they are needed.

2.1 Definitions
Public Transit Network. A public transit network is defined as a 3-tuple (P,C, F )
containing a stop set P , a set of connections C and footpaths F ⊆ {{p1, p2} | p1, p2 ∈ P}.
Further, the sizes of those sets are denoted as |P | = n, |C| = k and |F | = m. Additionally,
there are the following functions to model times and stops for connections and footpaths:

Function Meaning
πdep : C → P Departure stop of a connection
πarr : C → P Arrival stop of a connection
τdep : C → R Departure time of a connection
τarr : C → R Arrival time of a connection
τdur : F → R+ Walking duration of a footpath

In the context of public transit networks only such connections are reasonable that arrive
after they depart, or a train would travel back in time and enable an equivalent of negative
cost cycles in weighted graphs. Although times are modelled by real numbers, often times
timestamps like 14:25 will be used to give the intuition of a point in time. It should be clear
that one can be mapped to the other. The reason real numbers are used is the fact that
it would be tedious to define a set with properties of an algebraic field with appropriate
comparators.
Footpaths can be transitively closed while fulfilling the triangle-inequality so that they
divide the stop set P into equivalence classes. This ensures that all minimal paths only
containing footpaths are of length one as multiple successive footpaths can be replaced by
a single footpath that is guaranteed to exist and have smaller or equal length. It simplifies
some algorithms because the search for shortest paths through footpaths can be limited to
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2. Preliminaries

a search radius of one. The set of connections leading from a stop p1 to another stop p2
have to fulfil the FIFO-property, i.e. connections that depart earlier, arrive earlier, too.
If this is not the case, then a connection c can be dominated in the sense that there is a
connection c? departing later and arriving earlier. Then c is not needed because a traveller
can always use c? instead. Therefore c can be left out of the problem formulation.
The thesis will use the convention of drawing footpaths as dotted lines and connections as
arrows leading from the departure to the arrival stop.
Journeys. A journey of length l is a sequence of connections and footpaths (d0, . . . , dl−1)
with di ∈ C ∪ F . A journey is only valid if a traveller can get every connection in time, i.e.
if for every subsequence (c0, f0, . . . , fj , c1) with two connections and an arbitrary amount
of footpaths fulfils

τarr(c0) +
j∑

a=0
τdur(fa) ≤ τdep(c1)

Pareto Optimality. A set of tuples S ⊂ A×B is called Pareto optimal for two binary
equivalence relations ≤1⊂ A2 and ≤2⊂ B2 if no element is dominated in regards to both
of its elements, i.e. there are no (a1, b1), (a2, b2) ∈ S, so that a1 ≤1 a2 ∧ b1 ≤2 b2.
Profiles. An u-v-profile profilevu is a Pareto optimal ordered (for departure times) sequence
of departure-time/arrival-time tuples ((t1dep, t1arr), (t2dep, t2arr), . . . ) describing the arrival time
of a shortest journey from u to v for any departure time and an additional walking duration
w ∈ R+ ∪∞ for the time it takes to walk from u to v. The Pareto relations are ≤1:=≤R
and ≤2:=≥R. Profiles can be represented as a set of tuples as public transit networks only
allow for connections to leave at discrete points in time. Every journey that contains at
least one connection has a fixed latest departure time at u where it is possible to reach
the first connection of the journey. Only journeys that contain no connection can not be
discretised this way. Those journeys are a sequence of footpaths and there is only one
shortest time for that. It is independent of the departure time and can be stored in the
walking duration. An empty profile can be represented as the empty set, which can cause
the need for special treatment. Instead, guard entries (∞,∞) can be inserted at the end.
Profiles can also be understood as a partial function fvu : R→ R mapping departure time
to arrival time, although this is more abstract and makes defining minimal profiles difficult.
The tuples will sometimes be referred to as profile entries.
Queries. A time-query asks for the earliest possible arrival of any journey to a target stop
t after a specified time at a start stop s. A profile query not only asks for the arrival of an
earliest journey, but for the whole profile profilets containing all optimal journeys from the
source stop s to the target stop t.

2.2 Depiction of Profiles
As mentioned before, profiles can be represented as a partial function mapping departure
time to arrival time. Depicting them as such is more intuitive than giving a list of tuples.
The following section makes clear how those drawings have to be understood. The profile
shown in figure 2.1 has one entry and the according stop is connected to the target by a
series of footpaths. Shifting the identity function by the walking duration gives a linear
function describing the arrival time if only footpaths are taken. A constant part is induced
by the tuple, which itself is just a point in the graph. The resulting function is drawn
in blue and takes the minimum of both. Assuming that the x- and y-axis intersect in
the origin (0, 0) of the coordinate-system this offset is also the intersection of the shifted
identity-function with the y-axis. This convention can be used for the coordinate systems
but restricts all lines to run above the identity function as points under it would represent a
journey that departs after it arrives. That is why the coordinate systems will not be scaled
this way in the following chapters. The depictions are only meant to visualize profiles and
not to give quantitative values.
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2.3. Graph Models

travel time

departure time

Figure 2.2: Profile depicted as a function mapping departure to travel time

arrival time

departure time
tdep

tarr

walking duration

Figure 2.1: Profile with one entry and a walking duration not ∞. The red part can not be
used as journeys arrive before they depart in this area.

Another alternative way of depicting profiles is by mapping the departure time to the travel
time. This leads to linear parts of gradient −1 for leaving connections and to constant
parts if the optimal journey is a sequence of footpaths. The two different functions can be
converted into each other: Let f1 : R 7→ R be a function mapping departure time to arrival
time and f2 : R 7→ R a function that maps the departure time to the travel time. Then the
following equation holds:

f1(x) = f2(x) + x, ∀x ∈ R

This is true because the arrival time is the departure time of the journey, plus the time the
journey takes. Figure 2.2 shows such a function. Blue parts are times where a connection
is taken at some point in the journey. For the red parts the shortest journey only takes
footpaths to the destination.

2.3 Graph Models
Public transit networks were introduced as a set of stops, connections and footpaths.
However, there are various ways to model them as a graph. Two ways for doing so are the
time-dependent and time-expanded model [PSWZ08]. The time-dependent one uses the
notion of profiles introduced before and models edges by profiles between two stops. For
the time-expanded one a new graph is constructed and used for the query. The models will
be explained in the following sections.

2.3.1 Time-Dependent Model

The goal of this approach is to transform the network into a simple graph with only a
maximum of one simple directed edge running between stops. In contrast to the time-
expanded approach the topology of the network is preserved and functions describing the
travel-time are introduced as edges. These functions are profiles. An edge with a profile
only has to be added if there is any footpath or connection between the stops. Figure 2.3
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2. Preliminaries

shows a network with connections as arrows and dotted lines for footpaths. The resulting
graph with time-dependent edges is shown on the right. The colours of profile-segments
indicate the originating connection or footpath.

p0

p1

p2

p3
p0

p1

p2

p3

p0 → p1

p2 → p1 p1 → p2

p2 → p3

p1 → p3

p0 → p2p2 → p0

p3 → p1

Figure 2.3: Network (left) modelled as a time-dependent graph (right). Yellow nodes
symbolize departure events and blue ones arrival events

2.3.2 Time-Expanded Model

Instead of modelling the network as a graph with time-dependent edges it is also possible
to translate the problem instance to a graph with constant weights. It enables the usage
of the standard Dijkstra algorithm and all its speed-up techniques. On the downside, the
resulting graph is bigger and footpaths can not be incorporated that easily, especially when
they are not transitively closed.
Figure 2.4 shows how the transition is done in an informal way. For every stop the departure-
and arrival-events of connections are unrolled in time. What that means is that one node is
created for every every pair (s, t) of arriving or departing connection c at s and associated
time of the event t. In the graphic the vertically aligned nodes are the event-nodes for
the respective stop denoted above them. Nodes created by an arrival event are coloured
blue and such created by a departure of a connection in yellow. Time passes from top to
bottom and the dotted horizontal lines symbolize the points in time written next to them.
The nodes of each stop are connected downwards. This enables waiting at a stop for the
departure of a later connection. Furthermore, the sets of nodes are connected by one edge
for every connection. They run from their according departure event to the arrival event.
Intuitively, they make it possible to travel from one stop (represented by a set of nodes)
to another. The weight of an edge is the difference between the time at the arrival and
the time of the departure. This guarantees that a shortest path in this graph represents a
shortest journey in the transit network. As directed edges are only added from higher to
lower nodes (or from earlier to later events) in the figure, the graph is acyclic.
The figure should give a vague intuition what is done and why it works, however there is
potential for confusion and the construction will be explained more formally here. The
new directed graph G = (V,E) with the weight function w : E → R is defined as follows:

V = {(s, t) | s ∈ P, c ∈ C : (πdep(c) = s ∧ t = τdep(c)) ∨ (πarr(c) = s ∧ t = τarr(c))}

E = {((p, t1), (p, t2)) ∈ V 2 | t2 > t1 ∧ �∃(p, ti) ∈ V : t1 < ti < t2}
∪{((p1, t1), (p2, t2)) ∈ V 2 | ∃c ∈ C : πdep(c) = p1 ∧ πarr(c) = p2

∧τdep(c) = t1 ∧ τarr(c) = t2}

6
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p0 p1

c1

c2

c0 c3

τdep(c1)

τdep(c3)

τarr(c0)

τarr(c1)
τdep(c2)

τarr(c2)

p0 p1

c0 c3c1

c2

Figure 2.4: Network (left) modelled as a time-expanded graph (right)

w : ((p1, t1), (p2, t2)) 7→ t2 − t1
As the construction uses the limited set of discrete points in time given by the arrival
or departure of a connection it is not possible to directly incorporate footpaths without
changing the model. They can be taken at any time, so it is more difficult to map them to
nodes that represent a discrete event.

2.4 Operations On Profiles
Profiles will be handled by the algorithms presented later and therefore need some elementary
operations which will arise in different context throughout the thesis. To get some basic
understanding of those notions they will be presented here. In particular those are:

• Shifting: Adding a constant offset to the profile function

• Merging: Taking the union of two profiles

• Linking: Connecting two profile functions

The implementation for all of the operations will be given together with the asymptotic
runtime in chapter 3.

2.4.1 Shifting

This operation’s goal is to add an offset to the function, resulting in a new profile. The
formal definition for a shift by x ∈ R is as follows:

profilets+x : R→ R, a 7→ profilets(a− x),

where profilets+x is the shifted profile. Shifting can be used when walking times between
stops are incorporated and lead to all profile entries of the next stop to be shifted in negative
x-direction by the walking duration as one has to leave earlier to get the corresponding
connections. Figure 2.5 demonstrates this.

2.4.2 Merging

Sometimes it is easier to break up the computation of a profile and compute two or more
profiles which all describe times of possible journeys. The minimum over all those functions
is the desired output of this operation. More formally:

(profilets + profilets)(x) := min{profilets(x), profilets(x)}, ∀x ∈ R

Merging is denoted by a simple ∪ and because it is associative and commutative it can be
uniquely extended to any number of profiles.
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tarr

tdep

tarr

tdep

Figure 2.5: Profile before shift (left). Profile after shift (right).

2.4.3 Linking

For two profiles profilevu and profiletv the linking operation⊕ is defined as the concatenation
of the profiles:

profilevu ⊕ profiletv := profiletv ◦ profilevu
and results in a new profile. If the stops are on a path with stops {p0, p1, . . . , pn−1} the
following holds:

∀pi, pj , pk ∈ {p0, p1, . . . , pn−1}, i < j < k : profilepkpi = profile
pj
pi ⊕ profilepkpj

because of simple concatenation of the operation.
This operation will be used to calculate new profiles from already existing ones. The
notation is the other way around when comparing it to the concatenation of functions,
making it more intuitive to work with in algorithms. Figure 2.6 shows the execution of the
operation on two profiles.

tarr

tdep

tarr

tdep

tarr

tdep

Figure 2.6: Two profiles which are linked, resulting in a third one

2.5 Dijkstra’s Algorithm
Dijkstra’s algorithm [Dij59] solves the problem of finding shortest paths in a graph G =
(V,E) with a weight function w : E 7→ R0

+. It starts at a node s and computes distances to
all reachable nodes. Keeping track of tentative distances is implemented with a priority

8



2.6. Connection Scan Algorithm

queue Q, where nodes are inserted with their respective distance as the key. In the
beginning, Q only contains s and distances are set to 0 for s and ∞ for all the others.
The main loop of the algorithm takes the minimal node out of the queue and settles it.
Settling is done by relaxing all outgoing edges of the node. The relax-operation computes
the sum of the distance to the node and the weight of the edge and compares it to the
tentative value at the target node. If the computed distance is shorter, the target node
will be inserted into Q or the key will be decreased (if it is already contained in Q). The
main invariant of the algorithm is that only such nodes are settled, where the tentative
distance is already optimal. If a target node t is specified the algorithm can therefore stop
when taking it out of the queue, knowing that the distance to it can not improve. The
runtime depends on the priority-queue and can be expressed as

|V | · (Tinsert + TdeleteMin) + |E| · TdecreaseKey,

where Tinsert and TdeleteMin are the times needed to insert an element into the queue
and extract the minimum and TdecreaseKey the time for decreasing the key of an already
contained element. The insertions and deletions are done once for every node, whereas
every edge can cause a decrease-operation. For a Fibonacci-heap all queue-operations are
constant except for the deletion of the minimal element, which is O(log(n)).

2.6 Connection Scan Algorithm
The Connection Scan Algorithm [DPSW13] does not work directly on a graph structure,
but scans the set of connections in order and keeps labels for stops. The time-query
computes the earliest arrival time from one stop s to all other stops in the network while
profile-queries compute profiles from all stops to one target stop t. Footpaths can be
incorporated but have to be transitively closed for the algorithm to stay correct. In the
following, both kinds of queries will be introduced while not going too much in depth. In
chapter 3 the runtime of the different variants will be analysed and pseudocode with more
elaboration will be given for them.

2.6.1 Time-Query

As the name suggests the Connection Scan Algorithm takes the sorted array of connections
and scans them in increasing departure time. For every stop p it holds a label l(p) containing
the earliest arrival time of all journeys from s. It is initialized to ∞ for all stops that are
not s as with the lack of any connection taken into consideration none of them is reachable.
The label of s is set to the starting-time passed in the query. When scanning a connection
c the algorithm checks whether it is reachable, i.e. if l(πdep(c)) ≤ τdep(c). If this is the
case and τarr(c) ≤ l(πarr(c)) the label at πarr(c) is set to τarr(c). This ensures that at any
point of the execution the labels are correct regarding journeys only containing connections
which were already scanned. Footpaths are handled by relaxing ones at the destination
stop of a connection that is scanned.

2.6.2 Profile-Query

In contrast to the time-query, profile-queries are not answered one-to-all, but all-to-one by
CSA. For a given target stop t the query answers with complete profiles from all other stops
to it. First, consider networks without footpaths, the algorithm will be expanded upon those
later. It is no longer sufficient to store only the earliest arrival in a label, instead a tentative
profile will be used. These tentative profiles are complete in the sense that they contain all
tuples necessary to find the earliest journey for any time later than the the departure time of
the last scanned connection. The correctness of the algorithm is based on this invariant. The
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profiles are initialized as the identity profile for t (this is a profile which is not represented
by a list of tuples, but it can be handled as a special case) and the empty profile for all other
stops. The algorithm no longer scans the connection array in ascending departure time,
but in reverse. For any connection c that is scanned, the algorithm evaluates profiletπarr(c)
(the label at πarr(c)) for the time τarr(c). This returns the earliest possible arrival at t for a
time later than τarr(c). The evaluation of the incomplete profiles is correct as only entries
with later departure times are needed for the evaluation and these are already contained.
If this time improves the profile at πdep(c) it can be inserted into it. Note that one has to
specifically check if the profile is still made up of a Pareto optimal set or no insertion is made.

p0

p1

p2

c0

c1

c3c2

c4

c5

0 (τdep(c0),−)
1 (τdep(c4),−)
2 (∞,∞)

0 (τdep(c1),−)
1 (τdep(c2),−)
2 (τdep(c3),−)
3 (∞,∞)

0 (τdep(c5),−)
1 (∞,∞)

a0

a2

a1

Figure 2.7: Network with profiles drawn next to their stops. Colors symbolize the entries
that have to be evaluated for the scan of a connection.

In contrast to the time-query, the evaluation of a profile for every scan is no longer constant
as the best entry of the profile at the destination stop has to be found. The fastest way to
do so is by using a binary search. This problem is fixed by an adapted version, namely
pCSA-C (where the C stands for constant evaluation of profiles). Of course, it is not
possible to evaluate any profile in constant time, but one can use special properties of
the scan to make it constant when scanning connections in descending departure time. In
this case, the evaluation queries on the profiles are always in the same order and use the
same times (the arrival times of the connections). They are the same for all target stops.
Additionally, the algorithm is modified so that labels do not hold profiles, but sets of tuples
that are not necessarily Pareto optimal. Every connection that is scanned then leads to
the insertion of a tuple, even if it does not improve it. To stay correct, the newly inserted
tuple is inserted with the arrival time of the minimum of the result of the profile evaluation
and all arrival times the profile already contains. Every label can hold a fixed array for the
tuples that has the size of the number of outgoing connections as these lead to insertions.
At the beginning, arrival times are not given yet and the entries are templates that the
algorithm will fill in. What this adaption enables is the preprocessing of pointers for every
connection that indicate the place for the next insertion in the array of a connection’s
departure stop and pointers that indicate where the profile at the arrival stop has to be
evaluated. Now every query only needs constant time to evaluate profiles. Figure 2.7
depicts a network with three stops and the arrays that were computed. The departure
times of the entries are those of the connections leaving at that stop (in order). The colours
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symbolize the entry of the array at the arrival stop that has to be evaluated to scan the
connection. A small disadvantage is that for getting profiles instead of tuple-sets one last
step of minimizing the sets has to be added.
Handling footpaths is possible, if those are transitively closed. The standard version of CSA
without constant evaluation can be adapted to simply relax all footpaths at πdep(c) when
scanning c. For pCSA-C things get more complicated as this version uses the discrete points
in time given by the departure and arrival times of connections to create a template-entry
for them. For every footpath {u, v} = f ∈ F , the difference τdep(c)− τdur(f) is a possible
entry for the label at u if πdep(c) = v. To fix this, footpaths are replaced by a set of
pseudo-connections. These are computed in the following way: For a footpath between p1
and p2 all pairs of incoming and outgoing connections at different stops are identified. For
every pair (τarr(p1), τdep(p2)) or (τarr(p2), τdep(p1)) a pseudo-connection is added if there is
not already one with a later or equal departure time and an earlier or equal arrival time
between the stops of the footpath, meaning that it is not dominated and therefore needed.
Unfavourably this increases the number of connections. Footpaths at s and t have to be
treated separately.

2.6.3 Connection Scan Accelerated
The basic Connection Scan Algorithm can be accelerated [SW14] by using similar principles
to those of Multi-Level-Dijkstra [DGPW17]. The network is recursively partitioned into
cells (the components of the partition) such that all connected components induced by
footpaths are only part of one cell. It starts with a component for the whole network zroot
and subdivides it successively. In the preprocessing-phase the Transit Connection Set T (z)
of a cell z is computed. It is a subset of all connections running inside of a cell z, i.e. they
depart in z. Additionally, every optimal journey through a cell can be replaced by one that
only contains transit connections. It should be noted that multiple correct sets can exist,
although one is interested in a preferably small one. The Long Distance Connection Set
D(z) is the set of all interior connections iff z is a bottom layer cell (it contains no subcell)
or the union of the transit connection sets of all direct subcells. Moreover, let zi be the
bottom cell containing the stop i.
The query for computing the earliest arrival journey from s to t uses the following prop-
erty: There is an optimal journey only using connections from D(zs) and then from
D(zparents ), . . . , D(zroot), . . . , D(zparentt ), D(zt). The sets of connections can be processed
in this order, i.e. the profile CSA can work on the sets and considers the connections
in ascending departure time. It also means that the connections are not processed in
ascending departure time in general, as a set occurring later can contain connections that
depart earlier than the latest of the previous ones. In the setting where no routes and trips
exist this is no problem, however adaptions have to be made if one wants to consider those.
The transitively closed footpaths are handled just like CSA handles them, they are just
not explicitly part of the connection sets because their components do not stretch amongst
multiple cells. The profile algorithm of CSA can be used in the same way in the accelerated
version by storing profiles for every stop instead of the earliest arrival time and using the
Long Distance Connection Set in order.
As the footpaths are required to be transitively closed they do not have a bigger impact
on the query as in the normal CSA. However, they give additional restrictions for the
partitions because all transitively closed sets have to be part of one cell. The Arrival Time
Transit Set Ta(z) is sufficient for networks with those footpaths. If one wants to optimize
the number of transfers (this only makes sense for trips and routes which are not considered
here) or minimum change times, a bigger transit connection set is necessary. It is the
Transfer Transit Set Tt(z).
The original paper [SW14] contains more optimizations, such as only walking the hierarchy
of components up to the lowest common ancestor cell zlca of zs and zt and descending
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from there to zt. However it is necessary to compute a set of loop connections L(zlca), that
contains connections to model all shortest journeys leaving and re-entering the cell. This
approach is not pursued any further as it has no impact on the asymptotic runtime. There
is always a pair of stops where the lowest common ancestor is the root cell and thus this
optimizations does not accelerate the query asymptotically at all. Quite in opposition the
loop connection set only makes it more complicated and causes more overhead.
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In this chapter the complexity of known algorithms like Dijkstra for different graph models,
the Connection Scan Algorithms and a mix of both for networks with arbitrary footpath
sets will be analysed. The runtimes will give an estimate for the practicability of the
algorithms and the worst case examples show weaknesses towards special networks. But
first, implementations of the profile-operations will be given as they are needed for some of
the following algorithms.

3.1 Implementation Of Profile-Operations
In the preliminaries some basic operations like shifting, merging and linking were introduced,
however no algorithms and runtimes were given. The following section will present solutions
with linear runtime. The operations will then be used in the following algorithms.

3.1.1 Minimizing Tuple-Sets

Although not being an operation on profiles itself, making a set of tuples Pareto optimal is
an important component of other algorithms. The algorithm presented here requires a set
of (tdep, tarr)-tuples that is already sorted by departure time. It sweeps over the sequence
and removes tuples that are not necessary. Those are the ones departing after another
journey, but arriving earlier. Figure 3.1 shows a set of tuples with the last one dominating
the rest.

tarr

tdep

Figure 3.1: Set of tuples with dominated entries

Algorithm 3.1 solves the problem and is optimal as every departure and arrival time is
processed once. It scans the sequence of tuples from back to front and evaluates if the
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current tuple can be inserted while preserving Pareto optimality.
It has linear runtime in the number of tuples as every tuple is considered for insertion
exactly once. The resulting set guarantees that arrival times are sorted in ascending order,
too. The result represents a valid profile.

Algorithm 3.1: Minimizing tuple sets
Input: Sequence of distinct departure-/arrival-time tuples

T = ((t0dep, t0arr), (t1dep, t1arr), . . . , (t
j
dep, t

j
arr)), ordered in ascending departure

time.
Output: Pareto-optimal profile profile, describing the same function.

1 profile← ((tjdep, tjarr))
2 tlast ← tjarr
3 for i← j − 1 to 0 do
4 if tiarr < tlast then
5 profile.pushFront((tidep, tiarr))
6 tlast ← tiarr

3.1.2 Merging

Merging profiles is not much different than merging any two sorted sequences. The
algorithm merges them, so that a list of sorted tuples results. The only thing that has to
be kept in mind is the Pareto optimality of profiles. Merging the profiles does not keep
this property intact, however they can simply be minimized with the algorithm shown
before. The walking duration is simply the minimum of both. The runtime is dominated
by scanning the two profiles with constant effort for both.

Algorithm 3.2: Merging profiles
Input: Profiles profile1 = ((t0dep1

, t0arr1), . . . , (tadep1
, taarr1), (∞,∞)) and

profile2 = ((t0dep2
, t0arr2), . . . , (tbdep2

, tbarr2), (∞,∞)), each terminated with a
guard entry and walking durations w1 and w2 respectively

Output: The merged input with tuples profile and walking duration w
1 i, j ← 0
2 while i ≤ a ∨ j ≤ b do
3 if tidep1

< tjdep2
then

4 profile.pushBack((tidep1
, tiarr1))

5 i← i+ 1
6 else
7 profile.pushBack((tjdep2

, tjarr2))
8 j ← j + 1

9 w ← min(w1, w2)
10 minimize profile // Make it Pareto optimal

3.1.3 Linking

The linking-operation for profiles takes two profiles, one from u to an intermediate stop
v and one from v to another stop w. There are some possibilities for shortest journeys
from u to w. They can start with a journey being described by an entry of profilevu and
then walk to w or take another journey at v. To compute those journeys for every entry
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of profilevu the best journey at v needs to be known. This is either a direct walk to the
destination or an entry of profilewv . This is what the nested loops in the algorithm are
for. They sweep over both profiles and compute the next entry departing at v for every
entry of profilevu. For every such combination the algorithm checks whether walking to the
destination or taking the journey described by a tuple of profilewv is better. The resulting
sequence of tuples is stored in profilew?u , which is only a tentative profile at first and is
made into a Pareto optimal sequence at the end.
The only journeys that are not considered yet are ones that take a series of footpaths from
u to v and then proceed to w. A profile for these journeys can be computed by shifting
profilewv by the time it takes to walk from u to v. The shifting itself is done in negative
x-direction as one needs to leave earlier to get the first connection of the journey. The
implementation is rather simple, the algorithm only needs to adapt the departure time
values of profilewv and can be done in linear time. This shifted profile and profilew?u can
now be merged to get the final result. The walking time of the resulting profile needs to be
set to the sum of the walking times of the input profiles. The runtime for this operation is
linear in the number of entries of both profiles.

Algorithm 3.3: ⊕(profilevu, profilewv )
Input: profilevu and profilewv , each ending with the dummy entry (∞,∞)
Output: The profile profilewu

1 (tudep, tuarr)← first entry of profilewu
2 (tvdep, tvarr)← first entry of profilewv
3 while (tudep, tuarr) 6= (∞,∞) 6= (tvdep, tvarr) do
4 while tuarr < tvdep do

// Check if walking at v is faster
5 if tuarr + profilewv .walkingT ime < tvarr then
6 profilew?u .insert(τudep, τuarr + profilewv .walkingT ime)
7 else
8 profilew?u .insert(tudep, tvarr)
9 (tudep, tuarr)← next ordered entry of profilevu

10 (tvdep, tvarr)← next ordered entry of profilewv
11 minimize profilew?u
12 x← profilevu.walkingT ime
13 profilewu ← profilewv−x ∪ profilew?v
14 profilewu .walkingT ime← profilewv .walkingT ime+ profilevu.walkingT ime

3.2 Using Dijkstra’s Algorithm
A first approach to one-to-one queries is to use existing well known algorithms like Dijkstra
to find shortest journeys. For the representation of the network as a graph two models
[PSWZ08] were introduced in the previous chapter: the time-dependent and the time-
expanded model. For the time-expanded model Dijkstra’s algorithm can be used without
much adaption. For the time-dependent one small adjustments have to be made, changing
the behaviour and runtime of the algorithm.

3.2.1 Time-Dependent Model

Figure 3.2 shows a simple network and the corresponding profiles. An edge with a profile
only has to be introduced if there is any footpath or connection between the stops. To
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relax an edge (u, v) and compute the profile from s to v the tentative profile (a profile that
does not consider all connections and footpaths yet) at u and the profile of the edge (u, v)
can be linked:

profilevs ⊇ profileus ⊕ profilevu
The ⊆-relation is supposed to symbolize that profilevs can contain more entries for other
shortest journeys which do not visit u. Moreover, all incoming edges Ei at v have to merged
to cover all journeys:

profilevs =
⋃

(u,v)∈Ei

profileus ⊕ profilevu

Recall that profilevu does not have to be computed as it is the value of the edge (u, v) and
part of the input graph. The ∪-notation is used for the merging of profiles. It is clear that
this statement holds as every journey causing an entry in profilevs has to pass through one
of the incident edges.
For example getting profilep3

p0 can be done by relaxing the edge (p2, p3) and computing
profilep2

p0 ⊕ profile
p3
p2 , where profile

p3
p2 is the profile of that edge. In contrast to Dijkstra’s

algorithm for shortest paths, an existing label at the target stop has to be merged with the
newly generated one.

p0

p1

p2

p3

p0 → p1

p2 → p1
p1 → p2

p2 → p3

p1 → p3

p0 → p2
p2 → p0

p3 → p1

Figure 3.2: Time-dependent graph of a network with colours showing connections or foot-
paths causing the parts in the profiles.

One problem that still remains for the usage of Dijkstra’s algorithm is the absence of a total
order on profiles. Although they can dominate each other, they can also be incomparable.
This raises the question for the value of the keys to use in the priority queue. Settling
every node only once can be guaranteed for the shortest path Dijkstra because the minimal
key of the queue is falling monotonously. When settling a node v this ensures that all
shortest paths that are smaller than the one to v were already computed. Profile queries
ask for multiple shortest journeys departing at different times from the source stop. Being
monotonously falling means that all shorter shortest journeys for different departure times
have to be computed when a stop is settled. This can not be guaranteed when settling
stops as a whole. As shown in figure 3.2, when starting the search at p0, then there
are two journeys to p3 (assuming that the profiles on the edges are chosen accordingly):
(p0, p2, p1, p3) and (p0, p1, p2, p3). p2 and p1 can not be settled before one or another as
information for one journey would be missing. Therefore it is not possible to maintain the
label-setting property and the algorithm has to be label-correcting (meaning that stops can
be settled multiple times). Algorithm 3.4 shows the pseudocode for the label-correcting
algorithm which uses the linking operation to compute labels. It is worth mentioning that
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Algorithm 3.4: Label-correcting Dijkstra
Input: Public transit network, source stop s
Output: Label l(p) for every stop p with profileps

1 for p ∈ P, p 6= s do
2 l(p)←∞− profile // profile with (∞,∞) as only entry

3 l(s)← id− profile // initialized with identity-profile
4 Q.insert(s, 0)
5 while Q 6= ∅ do
6 u← Q.deleteMin()
7 for edges (u, v) with respective value profilevu do
8 l(v)← l(v) ∪ (l(u)⊕ profilevu)
9 if l(v) was imroved then

10 tminarr ← minimal arrival time of l(v)
11 Q.insert(v, tminarr ) // decrease the element if already contained

although the runtime changes the algorithm stays correct as long as a viable stop criterium
is used. The algorithm presented here answers one-to-all queries and thus does not use any
target pruning. It is therefore sufficient to stop when the queue is empty. The order for
settling stops can be chosen arbitrarily, although this can impact the runtime. The minimal
arrival time of a profile is used to get boundaries for the analysis in the next section.
Slightly altering the problem and using directed footpaths instead of undirected ones can
lead to restricted graph classes where Dijkstra can remain label-setting. One of those
are directed acyclical graphs (DAGs), regarding connections and footpaths as edges. A
topological sorting can be obtained and used for the order of settling stops. This works
because all stops that are on a shortest path from s to a stop are settled before the stop
itself. It also eliminates the need for a dynamic priority queue and the order can be
computed in advance.
The approach is not the only way to run an adapted version of Dijkstra to solve profile-
queries. Another one that exists is the Self-Pruning Connection Setting algorithm [Paj13].
It concurrently runs one indexed query for every connection leaving at s. The labels for
stops contain the arrival time and this index. When settling a stop, a pruning rule can
be applied: If the stop was already settled for a higher index (belonging to a connection
that leaves later at s), the entry in the profile is dominated and the search can stop for
this index at this stop. SPCS is therefore not too different from the algorithm presented
here, only that this algorithm prunes journeys by keeping Pareto optimal profiles and
throws those entries away if not needed and SPCS checks this with the indices. The main
difference between the algorithms lies in the relaxation of edges, which does not have an
impact on the runtime. The connection setting property, which determines the runtime,
holds for the label-correcting Dijkstra, too. It will be proven in the next section. SPCS is
interesting in practice as it can be parallelized very well.

3.2.2 Runtime of the Label-Correcting Algorithm

The runtime of the label-correcting algorithm is heavily impacted by the possibility of
settling a stop multiple times. It depends on the chosen order and the toplogy of the
network. Guarantees can be given when using the minimal arrival time of the profile’s
entries as the key. This is either the arrival time of a connection leading to the stop or a
footpath arriving there.
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Lemma 3.1. If a stop p and its profile were taken out of Q and the minimal arrival time
tminarr used as key is the arrival time τarr(c) for any connection c, then the profile-entry with
arrival time τarr(c) can not be improved in the future.

This is because there are no other journeys having a smaller arrival time when removing
the stop from Q. Otherwise another stop would have been taken out of the queue instead.
Therefore the algorithm proceeds by considering only arrival times > τarr(c) and c can
not be improved. This also means that the profile can only be repeatedly inserted into
Q because a later entry improves the profile. In this sense, c does not lead to a repeated
insertion and can be regarded as settled.
For footpaths, this is not the case and they can contribute to multiple shortest journeys at
any time. Finding good boundaries for the number of times they trigger improvements
for better profiles and thus the need of resettling stops is very difficult. A footpath can
be contained in each shortest journey, none or everything in between. There are k + 1
journeys at maximum, so a footpath could trigger k settling-operations.

p0 p1

c0

c1

c2

f

Figure 3.3: Network where a footpath leads to one settle-operation for every connection

Figure 3.3 shows a network where a footpath leads to a settle operation at p1 for every
connection. For this to work, the following inequality has to hold:

τarr(c0) + τdur(f) < τarr(c1) < τarr(c2)− τdur(f)

This way, the connections arrive with a margin of τdur(f) in between. Every time a
connection is scanned, p0 is taken out of the queue and f leads to an insertion p1. More
footpaths can be added by connecting them to one new stop each and setting τdur low
enough.
In contrast to Dijkstra’s algorithm for normal graphs, edges (consisting of connections and
footpaths) can be relaxed multiple times as this is done every time the incident stop is
settled. Additionally, the cost of relaxing an edge is not constant any more as it kicks
off one linking and one merging operation. The runtime for those operations depend on
the number of connections represented by the edge (u, v) and the size of the profile at
the arrival stop v of the edge. As profileus and profilevu are linked and merged with the
tentative profile profilevs , the linear linking- and merging-operations together take

O(|profileus |+ |profilevu|+ |profilevs |)

The cost of one settle-operation can therefore be as high as O(k + m). The size of the
priority queue is bounded by the number of stops. One connection can cause one settle
operation as stated above and a footpath can cause O(k), so there are O(m · k) in total.
This is also the number of insertions into (removal of minimal elements of) the priority
queue. This gives the bound:

O((m · k) · (Tinsert(n) + TdeleteMin(n) + TdecreaseKey(n) + k +m))

The functions named with T represent the queue-operations named the same way. m · k is
the number of settle operations, each causing at most one insertion, a deletion and the
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42 31

Figure 3.4: DAG (left) with nodes drawn in topological order on the right

effort for linking at merging can be at most k + m. For a Fibonacci-Heap the runtime
becomes

O((m · k) · (log(n) + k +m)).
and shows that in comparison to a normal execution time of Dijkstra’s algorithm, slow
times have to be expected.

3.2.3 Time-Expanded Model
Instead of modelling the network as a graph with time-dependent edges, it is also possible to
translate the problem-instance to a graph with constant weights. It enables the usage of the
standard Dijkstra and all its speed-up techniques. On the downside, the resulting graph is
much bigger and the incorporation of footpaths is more complicated. Therefore the version
introduced in the preliminaries will be used and no footpaths will be considered. It was
already stated that the graph after the transformation is a directed acyclic graph (DAG)
because the graph can be drawn with nodes arranged from top to bottom, representing
times of departure and arrival events, and edges only running from higher nodes to lower
nodes. The following result can be used to solve such instances.

Theorem 3.2. Shortest paths for a directed acyclic graph G = (V,E) can be found in time
O(|V |+ |E|) by using the topological order of the instance.

Every directed acyclic graph G = (V,E) induces a topological order on its nodes. An
example is shown in figure 3.4. All nodes are on a path given by this ordering with edges
running only from lower to higher nodes. In particular, every shortest path is a subpath
of this path and the order of its nodes is strictly increasing. The following algorithm is
therefore sufficient to find shortest paths.

Algorithm 3.5: Shortest paths in DAG’s
Input: Graph G = (V,E) with V = (v0, . . . , v|V |−1) in topological order, starting

node vs, target node vt and weight function w : E → R
Output: Shortest path p, encoded in the parent array p
// Initialize parent-array to vs for vs and ⊥ for every other node
// Initialize distance array d to 0 for vs and ∞ for others

1 for v ← vs to vt−1 do
2 for e = (v, w) ∈ E do
3 if d(v) + w(e) < d(w) then
4 d(w)← d(v) + w(e)
5 p(w)← v

The algorithm is very similar to Dijkstra, with the crucial difference that no priority queue
is needed to handle the nodes. Edges are relaxed in the same way. The topological sorting
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used for determining the order can be computed in O(|V |+ |E|) by a depth-first search.
While transforming the public transit network into a DAG, for every connections two
event-nodes and one edge are added. Furthermore, edges connecting the events of a stop
are added. No more edges are added this way than there are nodes, making the sum of
edges and nodes in the graph O(k + n). This means that the runtime of the shortest path
algorithm is equal to O(k + n).
Note that those are time-queries and therefore barely comparable to the label-correcting
Dijkstra above.

3.3 Asymptotic Runtime for the CSA-Family
The following section deals with the runtime of the Connection Scan Algorithms [DPSW17].
In the beginning they are analysed for time-queries with and without footpaths. Afterwards,
the profile-queries are further separated into ones that use special adaptions to evaluate
profiles in constant time (denoted with a C at the end of the name) and those which hold
a Pareto optimal set (denoted by a P). To distinguish between profile and non-profile
algorithms in their denotations, profile algorithms are prefixed with a small p. Table 3.3
gives an overview on the results, they are explained in the subsequent sections. All runtimes
require that enough stops are contained in the network and are therefore not factored in.

Profile Foothpaths Preprocessing Query
CSA k · log(k) k
CSA k · log(k) k ·

√
m

pCSA-P k · log(k) k · log(k)
pCSA-C k · log(k) k

pCSA-P k · (log(k) +
√
m) k ·

√
m · log( k√

m
)

pCSA-C k ·
√
m · log( k√

m
) k ·

√
m

Table 3.1: Asymptotic worst case runtime for the Connection Scan Algorithms

3.3.1 Asymptotic Runtime for Time-Queries

The Connection Scan Algorithm needs a sorted connection array to scan them in increasing
departure time. The preprocessing therefore sorts the connection and needs time O(k ·
log(k)).

Algorithm 3.6 shows the general pseudocode for the earliest arrival problem with footpaths.
If the network does not contain any footpaths, lines 9 to 11 can be left away. In this
case, the algorithm needs constant time for every connection it is scanning to compare
arrival and departure times. The total runtime then becomes O(k). As the connections
are scanned in order, only stops that are incident to a connection are considered and the
runtime is not impacted by the number of stops.

If footpaths are incorporated, all incident footpaths of a connection’s arrival stop have
to be scanned when relaxing it. To get the worst case runtime for the algorithm one
has to construct an instance where connections lead to a maximum number of footpath
relaxations. The linear overhead for scanning the array always stays the same. To maximize
the footpaths for every connection, they can be connected to the stop with the maximal
number of incident footpaths. This works because the connections can be distributed
independently on the stops and do not affect the number of relaxation for other ones. As
figure 3.5 demonstrates, all connections can lead to one stop that has a maximum number
of incident footpaths. In the example it is p3. It therefore suffices to to maximize the
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3.3. Asymptotic Runtime for the CSA-Family

Algorithm 3.6: CSA with footpaths
Input: Timetable network, source stop s and query time tdep
Output: Label l(p) for every stop p with the earliest arrival time for any journey

from s

// Initialize the data-structures
1 for p ∈ P, p 6= s do
2 l(p)←∞
3 l(s)← tdep
4 for (s, p) ∈ F do
5 l(p)← tdep + τdur(f) // set times for footpaths from the source stop

// Main loop
6 for c ∈ C in increasing departure time do
7 if τdep(c) > l(πdep(c)) and τarr(c) < l(πarr(c)) then
8 l(πarr(c))← τarr(c)

// Check for footpaths at the target stop
9 for {πarr(c), p} = f ∈ F do

10 if τarr(c) + τdur(f) < l(p) then
11 l(p)← τarr(c) + τdur(f)

p0 p1 p2

p3

p4

p5

p6

Figure 3.5: Network with worst case complexity for CSA with footpaths. Connected
footpath components are drawn in the same colour.

number of footpaths incident to one stop. The result of the next theorem can be applied
to get the runtime.

Lemma 3.3. In an undirected graph G = (V,E) with transitively closed edges E, the
maximal degree of a node is Θ(

√
|E|).

Proof. First recall that it is not possible for one stop to be incident to all edges as it
conflicts with the transitive closeness. Then observe that every connected component
induces a complete subgraph G′ = (V ′, E′) where V ′ are all nodes incident to a footpath
in the component and E′ all edges of the connected footpath component. If it was not
complete, then there is an edge {v, w} /∈ E′. This means that G′ is not transitively closed
as v and w are connected (since G′ is connected) but the edge {v, w} is not in E′.  
Building one complete graph of maximum size with the edges available maximizes the
node-degree. In a complete graph with l nodes, every node is connected to l − 1 others.
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3. Runtime Of Established Algorithms

Summing over the number of edges for every node counts each edge twice. Therefore the
total number of edges is

|E| = l · (l − 1)
2

and l ∈ Θ(
√
|E|). The degree of every node is l − 1 and the lemma is proven.

Figure 3.5 shows all nodes of connected footpath-components in different colours. Orange
ones are contained in the component of maximal size and contains p3 where all connections
lead to. With the lemma, one can conclude that the total runtime is O(k ·

√
m), with effort

of
√
m for every scan of a connection.

3.3.2 Asymptotic Runtime for Profile-Queries

Next, the complexity of profile-queries will be investigated. In contrast to time-queries, here
the query-mode is all-to-one, meaning that profiles are computed from every stop to the
target stop t. Algorithm 3.7 shows the pseudocode for the query. It initializes all profiles
except the one of t with the guard (∞,∞) as the only entry. The profile of t gets special
treatment as t is the only stop that is reachable although no connections are considered
yet. If a traveller departs at t and wants to travel to t he needs no time as he is already
there. Therefore profilett is the identity profile. It could be implemented as a profile with a
walking duration of 0. The only two lines where the runtime is not clear at first glance are

Algorithm 3.7: CSA for profile queries
Input: Timetable network, target stop t
Output: Label l(p) for every stop p containing profiletp
// Initialize the data-structures

1 for p ∈ P, p 6= t do
2 l(p)← profile with the only entry (∞,∞)
3 l(t)← id

// Main loop
4 for c ∈ C in decreasing departure time do
5 tarr ← evaluate profile at πarr(c) for τarr(c)
6 if entry (τdep(c), tarr) improves l(πdep(c)) then
7 Add (τdep(c), tarr) to l(πdep(c))

5 and 7. For the stop p = πarr(c) and the arrival time of the currently scanned connection
τarr(c) the query returns the arrival time tarr of the entry (tdep, tarr) with τarr(c) < tdep
and tdep minimal. This is the arrival time of the next connection departing after c arrives.
As profiles are Pareto optimal this is the earliest arrival time at the destination. This
operation can be implemented in different ways. The naive way is to do a binary search
on the sorted list of tuples and find the next entry. Using this approach leads to the
pCSA-P variant of CSA, while the constant evaluation discussed in the next section is used
in pCSA-C. The time needed for the binary search depends on the number of entries in
the profile at the arrival stop, which can be at most k as every departure time of a tuple
correspondes to a departing connection at the stop. Therefore the time for the evaluation
is O(log(k)).
Indeed, the evaluation can take that long for half of the connections. Consider the graph
in figure 3.6 where each edge represents a single connection. Let C = C1 ∪ C2 and let
C1 contain all connections from p1 to t and C2 contain all connections from s to p1. If
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|C1| = |C2|, all connections in C1 depart at a distinct time and

∀c ∈ C1 : τarr(c)− τdep(c) = r1, τdep(c) < r2 for r1, r2 ∈ R,

∀c ∈ C2 : τarr(c) > r2,

s p1 t. . . . . .

C1 C2

Figure 3.6: Network with worst case complexity for pCSA-P without footpaths

In this case, connections from p1 all depart before any connection from s arrives. As
connections are scanned sorted by descending departure time all connections in C2 are
scanned before the ones in C1. There are O(k2 ) of them which are all added to the profile
at p1 because they all take the same time and have a distinct departure time. Afterwards,
the profile-queries at p1 for the connections in C1 take O(log(k)) for the binary search.
The other non-trivial operation is executed in line 7. The new tuple is added to the profile at
the departure stop. As connections c are scanned in decreasing departure time τdep(c) and
all insertions are done with τdep(c) as the departure time of the tuple, departure times of the
insertions are decreasing, too. This is why the new tuple can be appended at the beginning
of the profile. To maintain Pareto optimal profiles, the new entry has to be checked for
domination, but it is enough to only compare it to the now second entry (t2dep, t2arr). For
any later tuple (t?dep, t?arr) the departure times are ordered: t2dep < t?dep. Furthermore the
profile was optimal before the insertion and t?arr > t2arr. If (t?dep, t?arr) dominates the new
entry (t1dep, t1arr) and (t2dep, t2arr) does not, then t?arr < t1arr and t2arr > t1arr. Together, this is
a contradiction:

t?arr < t1arr < t2arr < t?arr

So, constant time is enough for the insertion of the new tuple and all lines except for 5 can
be executed in constant time. The evaluation of the profile was shown to take O(k) and
can be achieved with the network in figure 3.6. One can conclude that the algorithm takes
O(k · log(k)).

3.3.3 Constant Evaluation of Profiles

pCSA-C still uses the same pseudocode as in algorithm 3.7, with the exception that the
evaluation of profiles and insertion of tuples are handled differently.

p0 p1
c

(11:25,−)
(12:00,−)

(12:55, 14:00)
(∞,∞)

(11:00,−)
(12:45,13:45)
(13:14, 13:45)

(∞,∞)

a0 a1

Figure 3.7: Excerpt of a network with arrays as labels. Bold entries are referenced via
pointers of the connection.

Figure 3.7 depicts an excerpt of a network. p0, p1 and the connection c are the only elements
drawn, although there are more connections and stops in the network. They caused the
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entries in the labels a0 and a1 of the stops. Furthermore, c departs at τdep(c) = 12:00 and
arrives at τarr(c) = 12:30. The algorithm has already scanned all connections that depart
later than c and is now beginning to scan c itself. The labels contain placeholder-entries,
one for every connection departing at the stop. They are filled in for all departure times
after τdep(c). Something that is not possible when the profiles are held as a Pareto-set
is the existence of dominated entries. a1 contains such entries as pCSA-C does not hold
Pareto-sets, but sets of tuples. The time for the entry (12:45,-) was not improved when the
outgoing connection at p1 with departure time 12:45 was scanned. Therefore the arrival
time of a later tuple was put in so that the tuple still contains the optimal arrival time for
the departure at 12:45.
For each connection, two template-tuples are referenced via pointers: One containing the
departure time of the connection at πdep(c) and one that points at the tuple of πarr(c) that
has the closest departure time after c arrives. The ones for c are highlighted in bold font
in the figure. When c is scanned, the tuple at the arrival stop already contains the optimal
arrival time at that stop since the departure time of that tuple is later and the outgoing
connection at 12:45 was scanned before. The time 13:45 can now be taken as the optimal
arrival time if the connection c is taken. Now the tuple at a0 needs to be filled in. It is
still possible that a later entry dominates that time and that c is not part of the optimal
journey at 12:00. The time has to be compared with the next tuple in a0 and the minimum
is taken.
In total, the algorithm only considers three entries for the scan of a connection and is
constant for that. This means that the runtime for the query is O(k). In the preprocessing,
the pointers have to be computed. This can be done by creating the arrays with template-
entries for all departure times of connections at that stop (the arrival times are undefined
at that point and a placeholder is inserted for them) and then execute a binary search for
every connection c to get the tuple at the arrival stop that has the closest departure time
after τarr(c). This results in logarithmic time in k for the binary search of every connection
and therefore makes O(k · log(k)) for the preprocessing.

3.3.4 Profile Queries with Footpaths

Footpaths can be handled by replacing them with enough connections so that profile-queries
in the new network provide the same result. In the preprocessing this is done by iterating
over all footpaths {u, v} = f ∈ F and looking at the connections departing and arriving at
u and v. If a connection c1 arrives at u and at τarr(c1) + τdur(f) = τdep(c2) a connection c2
departs at v, then the footpath provides a way to get to the next stop in time to get c2 after
leaving c1. Therefore a pseudo-connection cp can be added with τdep(cp) = τarr(c1) and
τarr(cp) = τdep(c2). For every pair of incoming connection c1 and outgoing connection c2,
it is tested whether τarr(c1) + τdur(f) ≤ τdep(c2) and a pseudo-connection is added if it is
the case. However doing so can add too many pseudo-connection and the FIFO-property is
violated eventually. The FIFO-property stated that connections that depart earlier, arrive
earlier, which means that the set of outgoing connections is Pareto optimal. Consider the
footpath in figure 3.8.

The table lists the departure and arrival time of the connections which were added. c3
dominates all other entries and it is sufficient to only include this connection as all successive
connections at p2 can be reached by taking it. To create an optimal set of pseudoconnections,
the sweep algorithm 3.8 can be used.

It scans arrival and departure times in descending order and only adds connections which
can not be dominated. The runtime is linear in the number of incoming and outgoing
connections.
The pseudo-connections allow for connections that can be taken successively by using
the connecting footpath to be reachable in an instance without footpaths, too. However,
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p1 p2
3 min

12:00

12:05

12:08

12:13

p1 p2

12:00

12:05

12:08

12:13

τdep(·) τarr(·)
c1 12:00 12:08
c2 12:00 12:13
c3 12:05 12:08
c4 12:05 12:13

Figure 3.8: Network where a footpath is replaced by pseudo-connections

Algorithm 3.8: Replacing footpaths with pseudoconnections
Input: Sorted sequence of arrival times of incoming connections

(ti0, . . . , tia−1, t
i
a =∞) at stop p1, sorted sequence of departure times of

outgoing connections (to0, . . . , toa−1, t
o
a =∞) at stop p2, footpath

f = {p1, p2}
Output: Pareto-optimal sorted list l of pseudoconnections replacing f

1 l← b− 1
2 tlast ←∞
3 for k ← a− 1 to 0 do
4 while tik + τdur(f) ≤ tol+1 do
5 l← l − 1
6 if tol 6= tlast then
7 l.pushFront(connection c with τdep(c) = tik and τarr(c) = tok)
8 tlast ← tok

footpaths can also be taken at the beginning of the journey where no connections were
taken yet and in the same way at the end of a journey. These are the footpaths incident to
s and t. To cover these journeys, CSA can be modified to ensure that the evaluation of
profiles for stops that are connected to t yield correct results. Profiles already contain a
walking duration to the target which is used in the evaluation of a profile to check if walking
to t is faster than taking another connection. These walking times have to be initialized at
the start of the query by iterating over all footpaths incident to t and setting the times
accordingly. This way, footpaths at the end of the journey are taken into consideration.
Footpaths at the start of a journey are incident to s and after the CSA-query has finished,
profiles at all adjacent (via footpaths) stops to s are already correct for journeys that do
not start with a footpath. Because of the transitive closeness of the footpaths, it suffices to
shift the profiles at these stops by their walking duration to s and merge them with the
profile at s.
The effort for those two extra steps at the beginning and end of the query both are
O(k ·

√
m). There are O(

√
m) stops adjacent to s and each of the profiles at those stops

have O(k) entries. As the merge-operation needs linear time this results in O(k ·
√
m)

together for all merge-operations at the end. The footpaths at the target only need one
constant step for the evaluation of profiles. The setting of the walking time at the beginning
can be done for O(

√
m) at most and therefore needs O(

√
m) ⊂ O(k ·

√
m).

Now one can try to maximize the effort for the preprocessing and add a maximal number of
new connections for a worst case query-time. Observe that every incoming connection can
generate at most one pseudo-connection for a given footpath. If more pseudo-connections
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than incoming connections exist, then one departure time has to occur more than once for
the pseudo-connections replacing the footpath as all departure times of pseudo-connections
are arrival times of incoming connections. This is not possible in a Pareto optimal set. The
same holds for the outgoing connections. So the maximal number of pseudo-connections
P for the incoming connection-set I and outgoing connection-set O of stops incident to a
footpath is

|P | ≤ min{|I|, |O|}

Further, if every connection can only cause one pseudo-connection for every footpath at
its arrival and departure stop, then every connection can generate a maximum of O(

√
m)

of them as this is the maximal amount of footpaths at these stops. Given that every
connection creates this maximal number, a total of O(k ·

√
m) pseudo-connections are

added. Then this is also the maximal time the preprocessing needs additionally as every
linear sweep of algorithm 3.8 adds a linear amount of pseudo-connections in this case.
Indeed, it is possible to realize the number of O(k ·

√
m) pseudo-connections. Figure 3.9

p1

p2

p3

p4

Figure 3.9: Network for a maximal number of added pseudo-connections

shows an example for this worst-case. It depicts the maximal footpath component which is
logically split into red stops that only have incoming connections and blue stops where
connections depart. There are O(

√
m
2 ) = O(

√
m) red and blue stops. Connections are

distributed evenly amongst them, meaning that every stop has k√
m

connections. Between
the sets of stops with incoming and outgoing connections there are O(

√
m

2) = O(m)
footpaths as every pair (p1, p2) of stops with p1 and p2 out of different sets are connected
with a footpath. The number of added pseudo-connections then is O(m · k√

m
) = O(k ·

√
m).

For this instance each binary search of pCSA-P in the preprocessing takes O(log( k√
m

)), so
the runtime is O(k ·

√
m · log( k√

m
)) if a maximal number of pseudo-connections is added.

This always dominates the time of O(k · log(k)) the version without footpaths takes.
After the pseudo-connections are added to the connection-set, the profile algorithm with
constant evaluation can be used without adaption. As stated above, its preprocessing
consists of the execution of the profile algorithm without constant evaluation. This time is
O(k ·

√
m · log( k√

m
)). The query then scans over the connection-array with constant time

for every scan. Now that there are O(k ·
√
m) connections in total this takes O(k ·

√
m).

3.4 Connection Scan Accelerated
In comparison to the standard CSA the accelerated version [SW14] extends on the idea
of having a preprocessing and a query phase. In the preprocessing of the algorithm the
network is first recursively partitioned into cells. Then the Arrival Time Transit Set Ta(z)
is computed for every cell z. To get the transit connection sets the interior and exterior
border stops, i.e. the arrival stops of entry or exit connections, are identified and all profiles
from interior to exterior ones are computed inside each cell. The runtime for this depends
on the quality of the partitioning, the sizes of the cells, and the number of border stops.
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Without any restrictions on the network even the best partitioning can give bad results.
For example a network that induces a complete connection graph leads to partitions where
every stop is a border stop. Another bad case where only little can be accelerated is a
network that contains very big connected components of footpaths. These big components
always have to be in the same cell and limit the sizes of them. Thus the complexity of the
algorithm does not only depend on the number of stops, footpaths and connections, but
also the following values:

• s(z): the number of stops of a cell

• c(z): the number of connections of a cell

• b(z): the number of border stops (interior and exterior)

• f(z): the number of footpaths in the cell

• p: asymptotic time for finding the recursive partitioning

Then the asymptotic time needed in addition to finding the partitioning is dominated by
the computation of profiles, which takes O(TpCSA(s(z), c(z), f(z)) for the cell z if TpCSA is
the runtime of the profile algorithm in dependence of its parameters. The time needed to
identify the border-stops is negligible for they can be found by scanning the connections of
every stop and determining if one of its incident stops is in another cell, taking O(c(z)). The
profile queries are executed on every cell, which leads to this runtime for the preprocessing:

p+
∑
z∈Z

b(z) · TpCSA(s(z), c(z), f(z))

where TPCSA(a, b, c) is the runtime of the profile CSA for a stops, b connections and c
footpaths. Z is the set of all cells. Executing the all-to-one query of the profile CSA for all
border-stops guarantees that profiles from every border-stop to every other border-stop are
covered. This time is rather abstract but without any information about the partitioning
it is complicated to get better bounds.
The same holds for the query-time. The number of connections which have to be scanned
heavily depends on the quality of the preprocessing’s result and the sizes of the transit
connection sets. This number is hard to limit as every connection could possibly be
necessary to cross a cell and no asymptotic improvement would be made. For this reason,
this section only concentrates on the preprocessing of the algorithm.

3.4.1 Connection Scan Accelerated on Planar Networks

First it should be noted what a planar transfer-network is, as it contains footpaths and
connections which could both be considered as some type of edges. In this context the
graph given by the stops as vertices and connections as edges (replaced by undirected
edges, multiple connections between the same stop are replaced by a single edge) suffices
to be planar.
Now that those networks are narrowed down, some special properties can be used to
fill in the placeholder functions and get better bounds. The following theorem found by
Frederickson [Fed87] helps with this.

Theorem 3.4. For a planar graph G = (V,E) there exists an r-division, i.e. a division of
a graph into Θ( |V |r ) overlapping partitions with O(r) vertices and O(

√
r) boundary vertices

each. These can be found in time O(|V | · log(|V |)).

Although the partitions (which are also called regions) are not disjunct, they only intersect
on the boundary vertices, so the accelerated Connection Scan can be used if two regions
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are joined successively to form a (balanced) hierarchy of cells. With these facts in mind a
bound for the asymptotic runtime can be found.
The size of a cell depends on the level of it. The root cell contains all stops and is split into
two asymptotically equally sized parts. Those are split equally again, thus a cell on level i
contains Θ( n2i ) stops and O(

√
n
2i ) boundary stops. The number of connections can not be

bounded that easily as in contrast to the standard definition of a planar graph there can
be multiple connections between the very same stops. The time for finding the partitioning
is O(k + n · log(n)) for replacing connections and using Frederickson’s construction. Using
runtimes of Tpreproc(k,m) for the preprocessing of the profile Connection Scan Algorithm
and Tquery(k,m) for the profile queries executed on the boundary stops and further restrict
that connections and footpaths are distributed evenly amongst cells adds up to:

O(Tpreproc(k,m) + k + n · log(n) +
log(n)∑
i=0

2i ·
√
n

2i · Tquery(
k

2i ,
m

2i ))

Although the number of footpaths of a cell is part of the parameter of the query-runtime,
distributing footpaths evenly amongst the cells effectively means that there are no big
footpath components or the graph can not be divided further at some point as footpaths of
one component have to stay in the same cell. This is very restrictive and means that there
are a lot of very small components. Using a runtime of O(k ·

√
m) for the Connection Scan

profile algorithm results in:
O(
√
n ·
√
m · k)

for the sum on the right counting the additional runtime for the executions of the profile
algorithm on the boundary stops. This is only O(

√
n) times bigger than the query-time

and therefore not too bad. But although the preprocessing seems manageable, the query of
Connection Scan Accelerated still depends on the number of connections in the Transit Set
which is not bounded by the restriction made here. It is possible that all connections are
necessary for all journeys from s to t and the query-time is the same as the normal CSA.
It shows that speed-up techniques depend on heuristics of public transit network and are
not that interesting for a look on complexity of the problem.

3.5 Algorithms for Arbitrary Footpath Sets
The previous Connection Scan Algorithms could not handle footpath-sets that are not
transitively closed. Although every arbitrary footpath-set can be extended to be transitively
closed, this comes with a lot of effort and a bigger number of additional footpaths. It is
covered in section 3.5.4. On the other hand, arbitrary footpath-sets are interesting for
applications. It is not too far fetched that one is interested in journeys where bigger parts
can be taken by foot [WZ17]. The following sections will take a look at one approach to
handle these graphs.

3.5.1 Functioning of the Algorithm

Algorithm 3.9 builds one the basic idea of the profile Connection Scan Algorithm, which
is scanning connections in decreasing departure time while holding tentative profiles at
every stop. Additionally, an interleaved Dijkstra search is executed on the footpaths for
every (departure time, arrival time)-tuple to search for shortest paths for every departure
time. This way all shortest journeys are found as every part of a journey where a series of
footpaths is taken is appended by a connection that is taken afterwards (or it ends with a
footpath to the destination). For all those connections and their best arrival times at t the
Dijkstra search is executed and will find the series of footpaths. The direct arrival at the
destination is a special case that has to be handled separately by computing the walking
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Algorithm 3.9: Profile algorithm for arbitrary footpath sets
Input: Public Transit Network, target node t
Output: Profiles from every node to t departing between minTime and maxTime

1 walkingTime(u) ← d(u, t) // Using Dijkstra’s algorithm on the footpath
graph starting at t

2 forall conn ∈ P ordered by descending departure time do
// Interleaved Dijkstra on the footpath network

3 while Q is not empty and τdep(conn) ≤ Q.max() do
4 Settle the maximal queue element using algorithm 3.10
5 profilearr ← profiles(πarr(conn))

// walk to the destination...
6 tarrival ← τarr(conn)+ walkingTime(πarr(conn))

// ...or take another connection
7 tarrival ← min{profilearr.evaluate(τarr(conn)), tarrival}

// Insert new entry
8 profiledep ← profiles(πdep(conn))
9 if (πdep(conn), tarrival) improves profiledep then

10 profiledep.insert(πdep(conn), tarrival)
11 Q.update(profiledep)

// Empty the queue of the search
12 while Q is not empty do
13 Settle the maximal queue element using algorithm 3.10

time for every stop to the destination. It is done at the beginning of the algorithm in line 1.
One global priority queue Q (max heap) is maintained and used to search for shortest
paths for every profile entry, meaning that the search is executed for every departure time
of a profile entry. To achieve this, one can insert every (departure time, arrival time)-tuple
with the associated stop into Q, although it has the drawback that Q can hold a large
amount of elements, making queue-operations slower. A small observation helps to solve
this problem: The elements are taken out of the queue in descending departure time (this
fact will be elaborated later) and if (tdep, tarr) is the last settled tuple, it is sufficient for Q
to only contain the tuple (t?dep, t?arr) of each profile with t?dep < tdep and maximal t?dep. It
ensures that the global queue will always contain the best element while not holding all
of them. Further, (t?dep, t?arr) has some special properties. It is always the the tuple with
maximal departure time that was not settled yet for every profile. The tuple that was
settled last has a higher departure time than the current tdep and the entry before it has a
lower one, thus making it the element of interest.
This means that it is possible to insert profiles into the queue and use the last unsettled
entry as the key. It guarantees |Q| ≤ |P |, which can be used in the runtime analysis. To
get the last unsettled entry of every profile in constant time, a pointer to the last entry can
be stored at first, and is always moved to the previous entry when the profile is settled.
Algorithm 3.10 is executed to settle such a (tdep, tarr)-tuple belonging to a stop p. It
is a slightly adapted version of the settle operation of Dijkstra’s algorithm with some
modifications. For one, it searches backwards, meaning that when relaxing a footpath
f = {u, v} for a tuple belonging to v, it reduces tdep by τdur(f) to get the departure time
for a journey that starts at u and takes the footpath. The new tuple (tdep − τdur(f), tarr)
is only inserted into the profile of u, if it is not already dominated in the Pareto-sense.
Furthermore, it is possible that the settled profile contains more unsettled entries and Q
has to be updated for it.
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Algorithm 3.10: Settling one queue entry
Input: Public Transit Network and priority queue Q

1 profileu belonging to node u← Q.deleteMax()
2 (tdep, tarr)← profileu.nextUnsettledEntry()

// Settle entry of u
3 forall f = {u, v} ∈ F do
4 profilev ← profiles(v)
5 tnewdep ← tdep − τdur(f)
6 if entry (tnewdep , tarr) improves profilev then
7 profilev.insert(tnewdep , tarr)
8 Q.update(profilev)

9 if profileu.hasUnsettledEntries() then
10 Q.update(profileu)

The interleaved Dijkstra searches are not executed until the queue is empty, but can be
paused in between which does not affect correctness. However, it gives the surrounding
profile Connection Scan Algorithm the possibility to scan connections to stops which can
dominate entries generated by a footpath that leaves there. This optimization leads to less
Dijkstra searches for unnecessary entries.
Figure 3.10 shows a network where this optimization is used. It shows the entries of

t

p1

p2

(12:35,13:05)
(12:20,12:50)
(11:55,12:15)

Figure 3.10: Network with connections and a footpath causing entries in the profile next
to p1. The arrow shows the last unsettled entry.

p1’s profile and the arrow symoblizes the pointer to the last unsettled entry. The blue
connection was scanned and created the first entry. Then some other connection at p2 was
scanned and the red footpath was relaxed, creating the red entry. Afterwards the green
connection lead to the insertion of a tuple, which shows another property of the algorithm:
Adding entries to a profile is not constant any more as footpaths can lead to other entries
being inserted in between and it is not possible to use CSA with constant evaluation of
profile. The red entry was not settled because its departure time was lower than the yet
to scan green connection. The state of the image is right after the green connection was
scanned.
Besides the interleaved Dijkstra during the scan of a connection, the necessary steps of the
Connection Scan Algorithm have to be executed. These are:

• Check if the arrival stop is connected to the destination by a series of footpaths

• Check if another connection or footpath can be used at the arrival stop
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After the new arrival time is calculated as the minimum of the cases shown above the new
entry is added to the profile if it is not dominated. It has to be added to Q in this case.
Lastly, when all connections were scanned, the queue has to be emptied so that all journeys
starting with footpaths are found.

3.5.2 Asymptotic Runtime

The asymptotic runtime is affected by the one of the profile Connection Scan Algorithm
and the execution of the interleaved Dijkstra. As mentioned before, constant evaluation
of profiles is not possible since footpaths lead to the insertion of entries with arbitrary
departure times and no template-profile for pCSA-C can be computed in advance. Therefore
the evaluation of a profile in line 7 of algorithm 3.9 takes logarithmic time to find the
correct entry and the insertion in line 7 of algorithm 3.10 too. On the other hand, the
pointer to the last unsettled entry can be held in constant time.
Dijkstra’s algorithm can be executed multiple times, once for every profile-entry while
generating new entries. It is even possible that the whole footpath network has to be
looked at for every connection. Figure 3.11 shows an example where this is the case.

p t...

c0

ck−1

Figure 3.11: Worst case network for the algorithm. Red dotted lines symbolize a big
footpath component while all connections run between p and t.

Red dotted lines symbolize one huge complete graph G consisting of stops and footpaths.
All connections c0, . . . , ck−1 run from p to t. The departure and arrival times of them have
to be chosen in a way that after a connection is scanned, the algorithm executes Dijkstra on
the whole footpath subgraph. The search is paused if τdep(conn) > Q.MAX() and if tmax is
the maximal duration any shortest path takes in G, then the values of the connections can
be chosen like this: τarr(c0) = a, where a is an arbitrary number, τdep(ci) = τarr(ci)− tmax
for i ∈ {0, . . . , k − 1} and τarr(ci) = τdep(ci−1) for i ∈ {1, . . . , k − 1}. This causes the
Dijkstra search to never stop as for any connection ci, i ∈ {0, . . . , k − 2}:

τdep(ci+1) ≤ τdep(ci)− tmax

and τdep(ci) − tmax is the minimal value Q.MAX() can become. The asymptotic time
needed for the search on G is O(TDijkstra(n,m)), where TDijkstra(n,m) is the time needed
for the execution of Dijkstra’s algorithm on n nodes and m edges.
Additionally, the worst time for the CSA-part of the algorithm caused by the evaluation
and insertion of entries into profiles can take O(log(k)) per iteration as both operation are
logarithmic in the number of connections. This was already discussed before with the worst
case example in figure 3.6. In total, the evaluation and insertion then take O(k · log(k)).
Together with the Dijkstra-part it makes

O(TDijkstra(n,m) + k · log(k))

The runtime can be refined by splitting the time needed for Dijkstra into the runtimes of
the queue-operations TdeleteMin, Tinsert and TdecreaseKey. This results in

O(k · (n · TdeleteMin +m · TdecreaseKey + n · Tinsert) + k · log(k)).

For a binary heap this is O(k · (n + m) · log(n) + k · log(k)) and for a Fibonacci heap
O(k · (m + n · log(n)) + k · log(k)). This is clearly more than the usual runtime of the
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Connection Scan profile algorithms. On a side note, although the network in figure 3.11
has this bad runtime, there is some potential for accelerating the algorithm in this case.
The durations between stops in the footpath graph could be computed once. Then they
would not have to be computed for every connection. However generalizing this idea is not
trivial and it is not clear how this can be done in networks where the separation between
footpath and connection components is not this strong.

3.5.3 Acceleration for Special Graph Classes

The runtime is pretty slow for normal networks and the pausing of the Dijkstra search
can be nulled by setting the times between departing connections big enough as shown
in previous section. Effectively, the search does not need to interleave between scanned
connections and the same runtime can be achieved by doing a complete search for every
connection. This has the advantage that normal shortest paths algorithms can be used
without them taking the special structure of public transit networks into account. This can
be done by executing them solely on the graph G where stops are the nodes and footpaths
edges. The length of the shortest path from u to v can be subtracted form the departure
time of the connection departing at v to get the maximal departure time when leaving at u.
Some graph classes have better asymptotic runtimes for the shortest path problem. One of
them is planar graphs, where the following theorem (proven in [HKRS97]) holds.

Theorem 3.5. On a planar graph G = (V,E) shortest paths can be found in time O(|V |+
|E|).

Setting TDijkstra(n,m) = n+m in the runtime analysis seen before leads to

O(k · (n+m) + k · log(k))

which is still slower than the Connection Scan profile algorithms. Constant evaluation
for profiles is still not possible as new tuples with arbitrary times are inserted after every
Dijkstra search.

3.5.4 Transitively Closing Footpath Sets

Although the Connection Scan Algorithms can only be used for public transit networks
with transitively closed footpath sets, one can take an arbitrary footpath set and close it
by adding enough footpaths. This enables the usage of CSA afterwards. The number of
footpaths which can be maximally added to the network is significant for the query-time.

Theorem 3.6. For a graph G = (V,E) the minimal graph G′ = (V,E′) with E ⊆ E′ and
E′ transitively closed, has |E′| = O(|E|2) edges. The upper bound is minimal.

Proof. A transitively closed component is a complete subgraph and the number of its edges
only depends on the number of nodes. It therefore suffices to take a connected graph on
V with a minimal amount of edges and observe how many edges must be added to get a
complete graph. A tree is a minimally connected graph, meaning that it is connected but
removing any edge leads to a graph with more than one component. It is the graph with
the least amount of edges that connects V and has |V | − 1 edges, while the complete graph
on |V | nodes has O( |V |·(|V |−1)

2 ) edges. Therefore |E′| = O(|E|2) and the upper bound is
minimal as it is realized if V is a tree.

With the theorem one can conclude that the number of footpaths in the new network is
O(k2). For the profile Connection Scan Algorithm with constant evaluation of profiles the
query then is O(k ·m).
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3.6 Comparison of Algorithms for Arbitrary Footpaths
Three approaches were introduced to handle arbitrary footpaths. These are:

• Label-correcting Dijkstra
Query-time: O((m · k) · (log(n) + k +m)) for a Fibonacci-heap

• Profile CSA with interleaved Dijkstra
Query-time: O(k · (m+ n · log(n)) + k · log(k)) for a Fibonacci-heap

• Making the footpath-set transitively closed and using a profile CSA
Query-time: O(k ·m) for pCSA-C

It seems that the last approach dominates the other two, which is rather surprising as
the transitive closure seems to add a lot of footpaths. The reason why the runtime is
not that overwhelming is the fact that the footpaths are replaced by pseudo-connections.
They are only added if there are connections arriving and departing at the two stops the
footpath connects. Even if there are O(m) footpaths at every stop of the transitively closed
network, still only O(k ·m) connections can be added. However, a significant difference
between the first two and the last is the fact that the transitive closure needs to fulfil the
triangle-inequality, whereas the Dijkstra-based approaches work with arbitrary non-negative
values for the footpaths.
The second approach is better than the first, especially when considering that the number
of stops is not that big in comparison to connections and footpaths (at least in practice),
which is less surprising as the Profile CSA with interleaved Dijkstra was made with arbitrary
networks in mind.
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Algorithms in previous chapters always computed one-to-all or all-to-one queries. Although
they can be used for one-to-one queries as well, the question remains whether algorithms
with better asymptotic runtime exist for the one-to-one case and where natural boundaries
for the runtime lie.
One such boundary is the output size of the problem. The chapter starts by discussing
it and proceeds with an analysation of the size a profile can have in a one-to-one query
without footpaths. Afterwards, an algorithm that does not compute a one-to-one query
by simultaneously solving the problem for all stops will be presented for restricted graph
classes.

4.1 Runtime Boundaries
The runtime of an algorithm can be bounded by the output size of the underlying problem.
Here, two different kinds of queries exist: one-to-one queries and all-to-one queries. They
will be discussed for networks with and without footpaths.

4.1.1 Boundary for Networks without Footpaths

One-to-one queries only output one profile containing a set of entries. These entries all
correspond to a distinct connection arriving at the target stop of the problem instance,
namely the one having the same arrival time as the entry:

Lemma 4.1. For a profile profilets in a public transit network without footpaths the
departure times of all tuples are departure times of connections leaving at s. The arrival
times of tuples are arrival times of connections arriving at t.

Proof. Every tuple of the profile represents a journey from s to t. Those journeys have to
start with a connection leaving at s and one arriving at t. Therefore the lemma has to
hold.

Furthermore, there can not be two or more entries having the same departure or arrival
time as they are held in a Pareto-set. This gives a boundary for the size of one profile in
the network, which is also the output-size of an one-to-one query:

|profilets| ≤ min{|{c ∈ C | πdep(c) = s}|, |{c ∈ C | πarr(c) = t}|} for s 6= t
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and because all connections can leave at s and arrive at t, the asymptotic size of a profile
is O(k). The output-size of the all-to-one query, i.e.

∑
p∈P |profiletp| can be bounded with

the following observation: Every connection c can only cause one profile entry with its
according departure time at maximum and the entry has to be part of profiletπdep(c). It is
a direct result of lemma 4.1. Thus, ∑

p∈P
|profiletp| ≤ k

and the asymptotic output size of all-to-one queries is O(k).

4.1.2 Boundary for Networks with Footpaths

When looking at footpaths, one can differentiate between transitively closed and arbitrary
footpath sets. A boundary for transitively closed ones can be given by the query-runtime
of pCSA-C for these instances, as it only uses a transformed network instance to work on
and still outputs all profiles. It runs in O(k ·

√
m) and outputs all profiles of the network.

There are networks realizing this value and therefore O(k ·
√
m) is a minimal upper bound.

Figure 4.1 shows such a network for 5 footpaths and 3 connections. The basic idea is to run

p0

p1

p2

p3 t

Figure 4.1: Network with maximal output-size for an all-to-one query. Different footpath-
components have different colour.

all connections between two stops, in this case p3 and t. p3 is part of one large footpath
component and therefore has O(

√
m) neighbours. All the other stops in the footpath

component have the profile of p3, shifted by the duration of the footpath connecting them.
The size of profiletp3 is O(k) as outgoing connections fulfil the FIFO-property and are
therefore Pareto optimal. In total, that makes a size of O(k ·

√
m) for all profiles. Footpaths

can be added to the example ba making the footpath component bigger and connections
can be added between p3 and t.

For arbitrary footpaths, a similar approach can be pursued. As footpaths do not have to
be transitively closed any more, footpaths that run within the component of figure 4.1 and
do not have p3 as a node can be removed without changing the sizes of the profiles in the
example. So, not only O(

√
m) footpaths can be connected to p3, but O(m). This makes a

total output-size for all-to-one queries of O(k ·m).

4.1.3 Number of Different Profiles of Same Size

Proving lower bounds for algorithms turns out to be more complicated than upper bounds
as one can not simply look at one algorithm and take its runtime as a lower bound. The
argumentation has to include all algorithms that solve the problem and take the best of
them. Another way to show lower bounds is by reducing an algorithm A1 that is known
to have a certain bound to the algorithm A2 in question. This proves the lower bound of
A1 for A2 as any faster one for A2 induces a faster one for A1 which contradicts with its
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optimal runtime. One problem that is known to run in O(n · log(n)) is comparison-based
sorting. It would be interesting to reduce a sorting instance to a profile query for a network
without footpaths and n connections to prove a lower bound for the profile Connection
Scan Algorithm that does not use any preprocessing (excluding pCSA-C, which does more
than sorting the array in the preprocessing), but solely works on the input and gets the
connections sorted by departure time. To show why this approach fails, the number of
possible profiles is calculated and compared to the number of permutations of a sequence.
To limit the number of possible profiles lemma 4.1 can be used. It gives a discretization of
the profile entries and makes it possible to place all tuples of a profile on a grid given by
the departure and arrival times of connections as stated in the lemma. The value of the
profile for some departure time tdep is

min({τarr(c) | c ∈ C, πdep(c) = s, τdep(c) ≥ tdep})

Intuitively, it is the value of the profile for the next point right to the queried departure
time. As we are interested in profiles, which are Pareto optimal sets of tuples, not all
placements of points on the grid represent a valid profile. In particular, if for two points
p1 = (x1, y1) and p2 = (x2, y2), the values fulfil x2 ≥ x1 and y2 ≤ y1, then p1 is dominated
and the set is not optimal. This gives the restriction that only one point can exist per row
and column. Otherwise they can be interpreted as p1 and p2 in the previous argumentation
and one is dominated.

τarr(ct0)

τarr(ct1)

τarr(ct2)

τarr(ct3)

τ d
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Figure 4.2: Profile with departure and arrival times on a grid

Figure 4.2 shows an example of a profile with departure and arrival times as an underlying
grid where points can be placed on. The connections {cs0, . . . , cs4} are departing at s,
{ct0, . . . , ct3} arrive at t. The number of departing and arriving connections is bounded by k.
If the points could be placed freely there would be O(kk) different profiles. In the following,
the number η : N0 × N0 → N of different grids of size a× b with the restriction that the
according profile is valid, will be calculated.
The case of a = b = 0 is special and η(0, 0) = 1 as there is only one profile with that
property. The same applies to η(1, 0), η(0, 1) and η(1, 1). All 2× 2 grids are depicted in
figure 4.3. There are six of them.

Figure 4.3: All possibilities for the 2× 2 grid

37



4. Speeding Up One-To-One Queries

Figure 4.4: A 3× 3-grid with the black dot positioned in the last column. Blue dots show
the remaining grid that can be used.

Lemma 4.2. The follwing recurrence relation holds for the number η of valid a× b-grids:

η(a, b) =
b∑
i=0

η(a− 1, i), η(0, 0) = 1

Proof. A recurrence relation for η can be found by constructing the grids from right to
left and placing one dot (or none) in the last column. Placing more than one dot in a
column would violate the Pareto-property. Depending on which row the dot is placed on
the remaining grid that can be freely used is restricted more or less. Figure 4.4 shows an
example of a 3× 3-grid and all possible placements of the black dot in the last column. The
blue dots show the remaining grid where dots can be independently placed. Those are all
points that are to the left and under the black dot. Thus the size of the remaining grid is
(a− 1)× (i− 1), if the dot is placed in row i and the original grid had size a× b. If no dot is
placed the grid is of size (a− 1)× b. Using the addition principle the number of valid grids
is the sum over all possibilities to place points on the remaining grid for every placement
in the last column. This gives the recurrence relation η(a, b) =

∑b
i=0 η(a− 1, i). The initial

value η(0, 0) is one, as there are is only one possibility to place dots on an empty grid.

Theorem 4.3. The recurrence for η is solved by η(a, b) =
(a+b
a

)
=
(a+b
b

)
.

Proof. Proving
(a+b
b

)
=
∑b
i=0 η(a−1, i) =

∑b
i=0

(a−1+i
i

)
can be done with the help of Pascal’s

Formula. The initial value is correct as η(0, 0) =
(0

0
)

= 1. Now use that
(n+1
k+1
)

=
( n
k+1
)

+
(n
k

)
:(

a+ b

b

)
=
(
a− 1 + b

b

)
+
(
a− 1 + b

b− 1

)
=
(
a− 1 + b

b

)
+
(
a− 2 + b

b− 1

)
+
(
a− 2 + b

b− 2

)
= . . .

The last term can replaced repeatedly using Pascal’s Formula until the whole sum is written
out and therefore the claim holds.

With this knowledge it is easy to get the number of profiles for a network with k connections.
It is η(k, k) =

(2k
k

)
= (2k)!

(k!)2 and called the central binomial coefficient. It has some interesting
properties like the following boundaries (for n ≥ 1):

1
2

4n√
πn

<

(
2n
n

)
<

4n√
πn

This implies that η(n, n) ∈ Θ( 4n√
n

) and therefore η(n, n) ∈ o(n!). It means that there are
asymptotically fewer possibilities for different profiles than there are for permutations of
size n. This explains why the reduction of the sorting problem on the profile query is
difficult. The sorting algorithm has to distinguish between n! cases, while the profile query
only distinguishes between

(2n
n

)
. The reduction itself therefore has to do some computation
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to distinguish between more cases.
Another approach for proving this bound that is closely related is to look at decision trees.
For comparison-based problems the runtime can be bounded by the minimal height of a
decision tree. In such a tree every profile that can possibly be gained is represented by a
leaf. The section before showed that the number of those cases is Θ( 4k√

k
). The binary tree

has a minimal height for a fixed number of elements only if it is balanced. This means that
the last level contains Θ( 4k√

k
) nodes and therefore the number of nodes in the entire tree is

Θ( 4k√
k
). With this knowledge the height is log2( 4k√

k
) = 2k − log2(

√
k) ∈ Θ(k) and if there

exists an algorithm that balances the decision tree it would have linear runtime. To prove
the lower bound of O(k · log(k)) for the algorithm one would have to show that this is not
possible.

4.2 Algorithm for Multipaths

Another special graph class are multipath-chains with connections and footpaths only
between following stops on the chain. They can be formally described as a stop set
P = {p0, p1, . . . , pn−1} with connections c ∈ C fulfilling πdep(c) = pi and πarr(c) = pi+1.
The footpath set F must be a subset of {{pi, pi+1} | pi, pi+1 ∈ P}. Figure 4.5 shows an
example.

p0 p1 p2 p3 p4

Figure 4.5: An example for a multipath

In contrast to general problem classes for these multipaths the profiles can be computed
per stop from t to s as the profile of pi is dependent on the one of pi+1. This means that
one can bundle all outgoing connections of a stop and check for the earliest reachable
connection at the next for each of the outgoing connections together via a sweep-algorithm.
It will be discussed after some observations.
The size of profiletp0 is bounded by the number of connections arriving at the target stop
and by the same argumentation by any number of connections between adjacent stops
on the path (because again every entry must take a distinct connection between adjacent
stops or it would have the same minimal arrival time as another one). Summarizing:

|profileji | ≤ mink∈{0,...,n−1}{|Sk|+1 : Sk = {c ∈ C | i ≤ k < j, πdep(c) = pk∧πarr(c) = pk+1}}

The maximal size of a single profile is O(k) as all connections can run between two stops.
An example for a worst case regarding the output size for all-to-one queries is given in

p0 plp1 pl−1 ...· · ·

Figure 4.6: Worst case for all-to-one queries

figure 4.6. All connections run from pl−1 to pl. This means that profileplpl−1 has k entries
and propagates them backwards through the network to every other stop. As a profile can
have at most k entries, this construction leads to every stop having a profile of maximum
size and the output size is O(k · n). This means that any algorithm computing all-to-one
queries has runtime at least O(k · n). In the following, an algorithm will be presented that
solves those queries. It uses the linking-operation and is shown in algorithm 4.1.
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Algorithm 4.1: Calculating profilen−1
0

1 for i← 2 to n− 1 do
2 profilei0 ← profilei−1

0 ⊕ profileii−1

The profiles between consecutive stops i and i+ 1 can be obtained by taking the outgoing
connections of i and set the walking duration to the duration of the footpath between i
and i+ 1.

The runtime lies in O(k · n) as it needs linear time in the number of profile entries at each
stop because every operation needed for ⊕ runs in linear time in the number of profile
entries involved. The worst case for the number of those entries is k.

4.2.1 Recursive Algorithm

The previously discussed algorithm still computes profiles for all stops on the path between
the source and target node and therefore can not break the boundary of O(k · n). To get a
better runtime, the algorithm must not compute all profiles. Based on this observation
algorithm 4.2 is introduced, which does not compute all profiles.
The algorithm divides a multipath into two paths only having one stop in common or
computes the profile directly if there are two stops or less left.

Algorithm 4.2: profile(i, j)
Input: Multipath network, Indices i and j with i < j
Output: profilepjpi

1 if j − i > 1 then
// At least one stop in between, split recursively

2 profile
pj
pi ← profile(i, b j−i2 c)⊕ profile(b

j−i
2 c, j)

3 else if j − i = 1 then
// Only direct connections and footpaths between stops

4 profile
pj
pi ← outgoing connection-set of pi and footpath

5 else
// Single stop, profile is the identity function

6 profile
pj
pi ← id

Figure 4.7 shows it schematically splitting the path up into smaller ones until they are
small enough to work on directly. The profiles are then combined to get profilep4

p0 .

4.2.2 Runtime

The runtime for the algorithm can be partitioned into recursion levels, describing the
call-depth of the executed operations. Figure 4.7 depicts them. On layer 0 two profiles are
linked, leading to two calls on layer 1. In general every call of the function leads to two
calls on the next layer. The number of calls on each layer therefore increases exponentially,
meaning that there are 2i calls on layer i and there are dlog2(n)e layers.
The runtime of the algorithm depends on the effort to link the profiles on all layers except for
the last one. Computing the profiles of successive stops on the last layer is not problematic,
as the outgoing connections are already sorted and just have to be written into a new
profile. The size of a profile is limited by the number of connections on the sub-path it
covers. This also means that every connection causes at most one entry of a profile in each
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p0 p1 p2 p3 p4

profilep1
p0 profilep2

p1 profilep3
p2 profilep4

p3
⊕ ⊕

profilep2
p0 profilep4

p2
⊕

profilep4
p0

level

2

1

0

Figure 4.7: Depiction of the recursive profile calculation. The levels show the call-depth of
the operation.

layer. The asymptotic size of all profiles on one layer is O(k). Every profile is linked with
at most one other profile, meaning that the profile size has a linear impact on the runtime
and because the number of entries is limited by the connections the total time needed
on one level is O(k). There are O(log(n)) layers, so the total runtime for the handling of
connections is O(k · log(n)). In addition to the connections, footpaths have to be taken into
consideration, too. They are represented by the walking duration of the profile, therefore
only existing once per profile. The total number of profiles is

∑dlog2(n)e
i=0 2i ∈ O(n), so the

stops have a linear part in the runtime equation. Together with the connections that makes
O(k · log(n) + n)
This assumes that the connections are sorted in the beginning so the generation of the
profiles on the last layer takes linear time. If one drops this requirement the connections
have to be sorted by the algorithm. This takes at least O(k · log(k)), raising the whole
runtime to this value plus the number of footpaths as n ∈ O(k) for connected multipaths
(paths can be checked for connectivity at first and the computation could be stopped
earlier). In this case the runtime is indeed minimal since the footpaths have to be computed
at least once and every sorting problem of size n can be solved with the solution of a
multipath instance having n connections in linear time. This instance only has two stops
which are connected by one connection for every number to sort. The network is defined
by the following sets, assuming that the set S contains the numbers to sort.

P = {p0, p1}, E = ∅,

C = {c | τdep(c) ∈ S, τarr(c) = τdep(c) + 1, πdep(c) = p0, πarr(c) = p1}

For this network profilep1
p0 contains an entry for every connection since there are no

dominated ones. Furthermore, those entries are sorted by departure time, which correspond
to elements of S. The sorting instances are somehow simplified as they can not contain
duplicates but this restriction can be lifted and handled in linear time by first locating
those and inserting them again after the profile returns the sorting of all distinct ones.
This implies that an algorithm for multipaths that does not get the connections ordered
can not be faster than O(k · log(k)) and the one presented here is optimal.

4.2.3 Recursive Algorithm for Trees

The recursive algorithm 4.2 only works for paths, but can be extended to trees quite
easily by first searching for the unique multipath connecting the two stops and letting
the algorithm run on this instance. To find the multipath, a breadth-first search from
the departure stop is sufficient. It finds a path to the target node in O(n+ k +m). On
this directed path every footpath, stop and connection pointing towards the target node
(meaning it leads from a stop closer to the departure node to one closer to the target node
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Figure 4.8: Finding a multipath between two stops in a tree

on the path) can be taken and added to the multipath. Figure 4.8 shows an example of
such a network where the source node is to the left and the target node to the right. All
elements that are marked in red are part of the resulting multipath. The runtime for the
procedure is mostly still dominated by the recursive algorithm and in O(k · log(n) +n+m).

4.3 Using Graph-Separators
The algorithm for multipaths is restricted to a very special graph-class. In general, not all
shortest journeys have to be on one multipath where a stop p can be taken and it suffices
to join profileps ⊕ profiletp. Instead, it is possible to take a set of stops which separate the
graph and use them to compute profiles. This leads to the following algorithm.

4.3.1 Algorithm Using Separators

Algorithm 4.3: computeProfiles(G,P1, P2)
Input: Transit network G, Stop sets P1 and P2
Output: profileba for all a ∈ P1, b ∈ P2

1 if G is small enough or no suitable separator exists then
2 calculate profilep2

p1 for all p1 ∈ P1, p2 ∈ P2 in network induced by G
3 else
4 S ← special separator splitting G into S1, S2 and P1 ⊆ S1, P2 ⊆ S2
5 calculateProfiles(S ∪ S2, S, P2)
6 calculateProfiles(S ∪ S1, P1, S)
7 for every pair (p1, p2) with p1 ∈ P1, p2 ∈ P2 do
8 initialize profilep2

p1 with walkingdistance =∞ and no entries
9 for s ∈ S do

10 merge profilep2
p1 with profilesp1 ⊕ profile

p2
s

The algorithm is formulated to take two sets and compute all pairwise profiles between
elements of them. To get the result for a one-to-one query the sets can be chosen accordingly
as P1 = {s} and P2 = {t}. It takes a separator S between P1 and P2. S then has the
property that any journey from an element in P1 to one in P2 has to pass one of the
separators stops. Therefore the algorithm can recurse on both separated components each
adding the separator itself and join them by considering all possible combinations of profiles
through it.

Figure 4.9 shows the networks S ∪S1 and S ∪S2 the two recursive sub-searches are working
on. Since S1 and S2 are the components separated by S they are per definition disjunct.
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P1 P2

S

S1 ∪ S S ∪ S2

Figure 4.9: Network that is split by the separator S, leading to two components

The only part where the two networks overlap is the separator itself. Profiles are computed
for all elements in P1 to all in S and for all in S to all in P2. As all journeys from
P1 to P2 have to pass the separator the results can be joined to get profilep2

p1 for fixed
p1 ∈ P1, p2 ∈ P2 by taking every stop s ∈ S and first linking profilesp1 and profilep2

s (the
two profiles were computed in the two recursive calls before) and then merge all of them.
One linked profile is only optimal for journeys that lead through the stop it is linked on and
if the journey can be partitioned so that the first part only runs in S1 ∪ S and the second
part in S2 ∪ S. In this case profilesp1 covers the first part of the journey and profilep2

s the
second. The linking thus yields the wanted result. The optimal profile can contain journeys
through all of the stops of S, thus they have to merged into a Pareto-set. The only case
where the algorithm does not cover all possibilities occurs when there is a shortest journey
that enters the separator, leaves it in one direction and enters the separator again.

p1

p2
S

Figure 4.10: Shortest journey leaving the separator multiple times

This is depicted in figure 4.10. Here, simple joins on all stops of the separator may not
be enough as the path can not be split on any stop so that one half only runs through
stops in the first component and the separator and the second in the other one including
the separator. It has to be avoided and can be done by forbidding separators that
have connections leaving the separator in both directions, meaning that connections and
footpaths only enter S from S1 and only leave to stops of S2. Footpaths are only allowed
to run from S to one of the separated components.

In the network of figure 4.9 the algorithm recurses only once, although it would be possible
to execute computeProfiles(S ∪ S1, P1, S) to get the profiles for elements on the left. If
the query is not handled recursively other ways for the many-to-many queries have to
found. This could be as simple as to use brute force or a Dijkstra based approach for
footpath sets which are not transitively closed.
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4.3.2 Complexity

To get any reasonable result for the algorithm’s time complexity some assumptions have to
be made. One of them is the size of the separator, which will be bounded by being at most
the constant c. It should be noted that this is not possible for all graphs. Another one
is the size of P1 and P2 for the initial query. Bounding them to be at most c makes the
analysis easier as the two sets are then bounded for every call of the algorithm. In the case
of one-to-one queries the sets would only have one element, showing that this assumption
may not be too far fetched. As the separators dissect the network based on the connectivity
of stops the connections and footpaths could still be distributed unevenly to the separated
components, especially because the network can contain multiple connections between two
stops. Assuming that the distribution is always even (in regards to stops and footpaths
and connections) makes the analysis easier and excludes cases where one component of
the network contains the majority of connections but can not be split any further as it
is already too small in terms of stops. The algorithm heavily profits from dividing the
problem instances into smaller parts and the connections are one big factor for the size of
an instance.
More general, the following recursive formula for the runtime T holds:

T (G,P1, P2) = T (S ∪ S1, P1, S) + T (S ∪ S2, S, P2) + |P1| · |P2| · |S| · k

The first two summands represent the recursive calls, the last one is the time it takes to
join all paths on the separator. The equivalence is asymptotic. The number of (p1, p2)-pairs
is |P1| · |P2| and for each pair all stops of the separator of size |S| lead to two profiles
being linked and merged. Linking and merging can be done in O(k) as shown before. The
separators are meant to be part of the input or retrievable in constant time.
A drawback of this formula is that it is hard to estimate the size of the separated components
and the recursion depth of the algorithm. The problem of separators not having an empty
cut with P1 and P2 and the handling of this case does not lead to a higher runtime as
many-to-many queries between the sets do not take more time than O(|P1| · |P2| · |S| · k).
A rough estimate for the runtime can be given with the restrictions in mind and some
observations of the separators’ build-up.

Figure 4.11 shows a network that is partitioned by multiple separators. Underneath, a tree
is depicted representing components of the network. C1 is the entire network and is split
evenly into two components in one step of the recursion. Those components are C2 and C3
and only have S1 in common. They are split the same way into more subcomponents. The
area below a separator where two components overlap is the separator itself. Every layer
of the tree from top to bottom represents the recursion depth in which the component
is handled and they are always drawn beneath the separator they are split by. Every
layer i contains the whole network, split into 2i parts. Each of the components joins the
components below it which are connected via and edge on the separator they have in
common. To get the number of steps needed for the join it is important how big the profiles
are. As seen previously they are bounded by the number of connections of the network they
are contained in. The size of those networks is different on every layer/recursion-depth
of the algorithm. On layer 0 all connections of the original network can have an impact
when joining on S1 while on layer 2 only a fourth of the connections are joined on each of
the separators. Because of the restrictions that the network is always split evenly, a layer
contains 2i separators on layer i and the components on one layer build the whole network
and not more (in fact the union of them is not disjoint as separators are part of multiple
components, but this does not play a role in the asymptotical analysis) a join of a component
on layer i deals with k

2i connections and needs a time of O(|P1| · |P2| · |S| · k2i ) = O(c3 · k2i ).
The time needed for one layer can then be described as O(2i · c3 · k2i ) = O(c3 · k). Note
that a join is only executed on layer 0− 2 where subcomponents have to be joined. On the
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S4 S2 S5 S1 S6 S3 S7

C4

C2

C5

C1

C6

C3

C7

C8 C9 C10 C11 C12 C13 C14 C15

Figure 4.11: Network recursively split by the separators S1 to S7, resulting in the compo-
nents depicted below.

last layer the algorithm does not split the network any further and executes the many-to-
many queries instead. Because of the even splits of the network the tree representing the
components is balanced and therefore has a height of log(n). This makes a runtime of

O(c3 · k · log(n) + q),

where q is the time needed for the many-to-many queries between separators. This is
heavily dependend on the algorithm used for it though one can reason that every separator
is used as a target and a source for the queries on the last layer. The number of separators
is O(nc ), so there are about that many queries on the network.

To get to this runtime it has taken a lot of restrictive prerequisites to the network. Those
were:

• Between any two stop-sets of size c there is a separator of size c partitioning the
network

• Shortest journeys can not leave the separator on both sides.

• The connections and footpaths are distributed nicely among the separated components

• The recursion tree is balanced in the sense that it has logarithmic height

Therefore practical feasibility is severely narrowed down. However, the goal of this section
was not only to show a new approach that does not compute all profiles of the network,
but to show where the problems of the approach lie.
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5. Conclusion

Public transit networks do not behave like weighted graphs. The discrete structure given
by departures and arrivals of connections call for special treatment and new algorithms.
Modelling the network as a graph with different models is not only slower in practice,
but also falls behind the Connection Scan Algorithms in terms of asymptotic runtime,
which was to be expected. The need for a priority queue and the processing of nodes in
no fixed order do not even have to be factored in to get this result. The Connection Scan
Algorithms and in particular the ones for profile-queries are better suited for the task, but
struggle when too much footpaths and even worse, footpaths not fulfilling the triangle
inequality, are part of the network. Here, the combination of the two approaches where
Dijkstra’s algorithm handles footpaths and the Connection Scan Algorithm deals with
connections seems to take best of the two worlds and combines them appropriately. As it
turns out, this procedure does not have the edge over a plain profile CSA where footpaths
are replaced by pseudo-connections. At least this is the case if the triangle inequality holds
for the footpaths of the public transit network. This result is rather surprising and can be
explained by the relatively small amount of footpaths that have to be added as only ones
important for the reachability of successive connections are integrated.
The thesis gives information about the asymptotic complexity of algorithms used for profile
queries in public transit networks. The analysis of the Connection Scan Algorithms shows
where the runtimes can be ranked and includes worst-case scenarios for them.
The acceleration technique investigated showed that no improvement in runtime has to
be made if bad instances are chosen. This is in line with the experience of route planning
algorithms for road networks. The acceleration builds on inherent properties of the network
and heuristically uses them to get better results.
While some algorithms could be proven to be optimal by regarding their output-size, others
turned out to be more difficult to analyse. One nice result that was proven on the way is
that the number of different profiles of size n is O(

(2n
n

)
).

One major boundary for the runtime of profile algorithms was identified: Computing all
profiles even if one is only interested in a one-to-one query, limits the runtime. A new
approach was tested that uses separators to counter that problem and was successful for
very restricted graph classes. The problems for a wider usage were pointed out, although it
is not clear how they can be solved.
This is one of the aspects of future work in this field. Another starting point is the further
testing of feasibility of computing transitive closures for profile queries in practice. There
is some work to be done, especially towards more multi-criteria settings, but it seems that
there is no intrinsic unfeasibility that makes it impossible.
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