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Abstract

Axenovich et al. started the study of planar avoidable graphs. We say that a graph
H is k-planar unavoidable if there exists a planar graph G such that every k-edge-
coloring of G contains a monochromatic subgraph isomorphic to H, otherwise we
call H k-planar avoidable. Similarly, we define the notion of k-outerplanar avoidable
graphs. Axenovich et al. were in particular interested in 2-edge-colorings and showed
that every path is 2-planar unavoidable. Building on their work, we continue the
study of edge-colorings of planar graphs that do not contain a monochromatic path of
a given length. Modifying a proof of Ding et al., we prove that paths of length at least
3 are 3-outerplanar avoidable and applying a result of Merker and Postle that there
exists a natural number n such that paths of length at least n are 4-planar avoidable.
Further, we study edge-colorings of the iterated triangulation, a specific family of
planar graphs, that avoid a restricted class of long paths. Finally, we are interested
in the complexity of the associated decision problem: Given a planar graph and a
natural number k, is there a 3-edge-coloring that does not contain a monochromatic
Pk? We attack the special case k = 2 by considering 3-regular, bridgeless, planar
supergraphs.

Deutsche Zusammenfassung

Axenovich et al. haben sich als erste der Analyse von planar avoidable Graphen
gewidmet. Ein Graph H heißt k-planar unavoidable, wenn ein planarer Graph G
existiert, sodass jede k-Kantenfärbung H als monochromatischen Subgraphen enthält.
Anderenfalls heißt H k-planar avoidable. Analog definiert man k-outerplanar avoi-
dable Graphen. Axenovich et al. haben sich in erster Linie mit 2-Kantenfärbungen
beschäftigt und konnten beweisen, dass alle Pfade 2-planar unavoidable sind. Wir
führen diese Arbeit fort. Wir beweisen, ähnlich zu einem Resultat von Ding et al.,
dass Pfade der Länge 3 3-outerplanar avoidable sind und es eine natürliche Zahl n
gibt, sodass Pfade der Länge n 4-planar avoidable sind. Insbesondere widmen wir uns
Kantenfärbungen der iterated triangulation, einer Familie planarer Graphen, die keine
langen monochromatischen Pfade einer Subklasse von Pfaden enthalten. Wir setzen
uns des Weiteren mit dem folgenden Entscheidungsproblem auseinander: Gegeben
ein planarer Graph G und eine natürliche Zahl k. Existiert eine 3-Kantenfärbung von
G die keinen monochromatischen Pfad der Länge k enthält? Wir untersuchen den
Spezialfall k = 2 indem wir 3-reguläre, brückenlose, planare Supergraphen betrachten.
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1 Introduction

Ramsey theory deals with the appearance of substructures in large graphs. Typically,
given a graph H we ask whether every large enough graph G or its complement G contains
H as a subgraph. The smallest order n such that the claim above holds for every graph
of order at least n, is called Ramsey number R(H) of H. In 1990, Ramsey showed that
Ramsey numbers exist for all complete graphs [10, p. 9.1.1]. As every graph is a subgraph
of a complete graph, the same holds for all graphs. Equivalently, Ramsey’s theorem states
that for every graph H, there exists a natural number n such that every 2-edge-coloring
of a complete graph on at least n vertices contains H as a monochromatic subgraph as we
can consider one color class as a graph G and the other as its complement. Interestingly,
Ramsey numbers even exist if we consider k-edge-colorings of complete graphs, where
k ≥ 2 [10, Theorem 9.1.3]. Lots of work has focused on determining bounds for Ramsey
numbers [7].

Until now, we only considered Ramsey numbers of one single graph at a time. Gener-
alizing this concept, we can define the Ramsey number R(H1, . . . ,Hk) as the smallest
natural number n such that every k-edge-coloring of a complete graph on at least n
vertices contains a copy of Hi in color i for some i ∈ {1, . . . , k}. If all graphs Hi are
isomorphic, we are in the same situation as above. Clearly, as there exists a complete
graph containing all chosen graphs Hi as subgraphs, the Ramsey number R(H1, . . . ,Hk)
exists for all graphs Hi.

As we wish to study Ramsey properties of planar graphs, we can consider two different
Ramsey problems. The first is the study of edge-colorings of complete graphs where
one color class is a planar graph. This problem was introduced by Steinberg and Tovey
in 1993. They defined the planar Ramsey number PR(H1, H2) as the smallest natural
number n, such that every edge-coloring in red and blue of a complete graph on at least
n vertices where the red color class is a planar graph, contains a red copy of H1 or a
blue copy of H2 [26]. This can be reformulated as follows. The number n := PR(H1, H2)
is the smallest number such that every planar graph G on n vertices contains H1 or its
complement G contains H2 as a subgraph. Steinberg and Tovey calculated the values
for all planar Ramsey numbers where H1 and H2 are complete graphs [26, Theorem 2].
Therefore, planar Ramsey numbers exist for all graphs H1 and H2 as every such graph is
subgraph of a complete graph. Dudek and Ruciński computed the values of PR(G,H),
where G and H are cycles or complete graphs [12].

We will concentrate on a different notion of planar Ramsey numbers. Instead of
considering edge-colorings of complete graphs, we study edge-colorings of planar graphs.
Then the Ramsey number of a graph H relative to all planar graphs is the smallest order
of a planar graph such that every edge-coloring of G contains H as a monochromatic
subgraph, if such a graph G exists. Note that this notion differs from the one given by
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1 Introduction

class number of colors result minimum length reference

outerplanar graphs 2 unavoidable [3, Lemma 6]
outerplanar graphs 3 avoidable 3 Corollary 3.7
planar graphs 2 unavoidable [3, Lemma 6]
planar graphs 4 avoidable bounded Theorem 6.4
planar graphs 5 avoidable 3 [16]

Table 1.1: A summary of results concerning avoidable and unavoidable paths of edge-
colorings using a given number of colors. If paths of a certain length are
avoidable, the minimum known length k for which Pk is avoidable, is specified.

Steinberg and Tovey as in the definition of planar Ramsey numbers, the graphs H1 and
H2 are not necessarily planar, but in the definition above, if such a number exists, H is
a subgraph of a planar graph, thus planar. Further, existence of planar Ramsey numbers
and Ramsey numbers relative to all planar graphs have different implications. While
the first one has implications for every planar graph, the latter only implies that there
exists at least one specific, planar graph. Thus, the structural implications of these two
notions differ widely. Informally, the second Ramsey problem studies unavoidable graphs
in all edge-decompositions of certain planar graphs, the first unavoidable subgraphs of
all planar graphs.
The study of the second Ramsey problem of planar graphs as given above has been

initiated by Axenovich et al. [3]. As all monochromatic subgraphs of edge-colorings of
planar graphs are necessarily planar, not all graphs appear as monochromatic subgraphs
of large enough planar graphs. Thus, we are interested in the existence of Ramsey
numbers. While Axenovich et al. focused on 2-edge-colorings of planar graphs, we will
be concerned with 3-edge-colorings. They proved that arbitrarily long paths cannot be
avoided in 2-edge-colorings of outerplanar graphs, i.e., for every given length k, there
exists an outerplanar graph G such that every 2-edge-coloring of G contains Pk as
a monochromatic subgraph [3, Lemma 6]. We wondered whether the same holds for
3-edge-colorings of planar graphs.

Chapter 2 contains preliminaries. In Chapter 3, we consider 3-edge-colorings of
outerplanar graphs avoiding long paths. Chapter 4 gives an insight in Pk-free edge-
colorings of a specific family of planar graphs, the iterated triangulation. In Chapter 5,
we show that subdivisions of stars are 2-planar unavoidable. We prove that there exist
paths that can be avoided in 4-edge-colorings of planar graphs in Chapter 6. Finally, we
are interested in an associated decision problem concerning Pk-free colorings of planar
graphs in Chapter 7. A summary of results concerning avoidable and unavoidable paths
is given in Table 1.1.
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2 Preliminaries

Roughly speaking, a planar graph is a graph that can be drawn in the plane without
intersecting edges. We will call such a drawing a planar embedding. A formal definition is
given by Diestel [10, p. 102]. Outerplanar graphs are planar graphs that admit a planar
embedding where all vertices lie on the boundary of the outer face. We will be interested
in edge-colorings of planar and outerplanar graphs avoiding long monochromatic paths.
The path Pk denotes a path of length k, i.e., a path containing k+ 1 vertices and k edges.

Ramsey’s theorem states that for every graph H and any number of d colors, every
d-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of
H [10, Theorem 9.1.3]. Generalizing this concept, we get the following definition.

Definition 2.1 (d-planar avoidable, [3, p. 1]). Let G and H be graphs. We say that G
d-arrows H if every d-edge-coloring of G contains a monochromatic copy of H. We write

G→d H

Let F be a class of graphs. We say that a graph H is d-F unavoidable if there is a graph
G ∈ F such that G d-arrows H. Otherwise we call H d-F avoidable. If F is the class of
planar graphs, we say that H is d-planar unavoidable or d-planar avoidable respectively.
If F is the class of outerplanar graphs, we say that H is d-outerplanar unavoidable or
d-outerplanar avoidable.

Therefore, if paths of lengths k are d-planar avoidable, every planar graph admits
a d-edge-coloring such that no monochromatic component contains Pk as a subgraph,
i.e., every d-edge-coloring is a Pk-free coloring. Often, we will write planar unavoidable
instead of 2-planar unavoidable. Note that all d-planar unavoidable graphs for d ≥ 2 are
in particular 2-planar unavoidable.

Axenovich et al. started the study of planar avoidable graphs [3]. They noticed that all
planar unavoidable graphs are bipartite, outerplanar graphs using a result of Gonçalves
[15] and the Four-Color-Theorem [1].

Observation 2.2 ([3, p. 1]). If H is a planar unavoidable graph, then H is bipartite
and outerplanar.

Proof. As H is planar unavoidable, there exists a planar graph G such that every 2-edge-
coloring of G contains H as a monochromatic subgraph. If there is a 2-edge-coloring of G
such that each color class is a bipartite graph, H is bipartite. Therefore, in order to show
that H is bipartite, it suffices to prove that every planar graph can be edge-decomposed
into two bipartite graphs.

Claim 2.2.1. Every planar graph can be edge-decomposed into two bipartite graphs.
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2 Preliminaries

V1

V3

V2

V4

(a) G′ is a bipartite graph.

V1

V3

V2

V4

(b) G′′ is a bipartite graph.

Figure 2.1: Illustrations to the proof of Observation 2.2.

Proof of Claim. Let G be a planar graph. The Four-Color-Theorem [1] implies that
there is a proper vertex-coloring c of G using four colors. Let V1, . . . , V4 denote the color
classes of c. Every color class is an independent set, as c is a proper vertex-coloring. For
all 1 ≤ i < j ≤ 4 let Eij denote the edges between Vi and Vj . As every color class is an
independent set, the edges of G can be decomposed as follows:

E(G) =
⋃

1≤i<j≤4
Eij

Let G′ := G[E13 ∪ E14 ∪ E23 ∪ E24] and G′′ := G[E12 ∪ E34]. Then G = G′ ∪G′′. Note
that G′ is bipartite with parts V1 ∪ V2 and V3 ∪ V4, as by definition of G′ there are no
edges between the vertices of V1 and V2 and the same holds for the sets V3 and V4; see
Figure 2.1a. Similarly, we see that G′′ is bipartite; see Figure 2.1b. y

Further, Gonçalves showed that every planar graph can be edge-decomposed into two
outerplanar graphs [15]. Thus, H has to be an outerplanar graph as every subgraph of
an outerplanar graph is outerplanar.

For d-planar unavoidable graphs, where d ≥ 3 even more is known. Later, we will see
that all 3-planar unavoidable graphs are forests as Nash-Williams formula [23] implies
that every planar graph can be edge-decomposed into three forests; see Proposition 6.2.
All 4-planar unavoidable graphs are caterpillar forests as every planar graph can be edge-
decomposed into four caterpillar forests, as has been shown by Gonçalves [14]. Hakimi,
Mitchem, and Schmeichel proved that every planar graph can be edge-decomposed into
five star forests [16]. Thus, every 5-planar unavoidable graph is a star forest.
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3 Pk-free Colorings of Outerplanar
Graphs

We are interested in edge-colorings of outerplanar graphs avoiding long monochromatic
paths, i.e., we wish to find a positive integer k ∈ N such that all paths of length at
least k are d-outerplanar avoidable for some number of colors d. Then, arbitrarily long
paths can be avoided. Instead of considering all outerplanar graphs, we will first study
one particular family of outerplanar graphs, called the universal outerplanar graphs
UOP(n), where n ∈ N. We will show that every outerplanar graph G is a subgraph of
UOP(n) for sufficiently large n. Thus, if we can color the edges of UOP(n) avoiding long
monochromatic paths for all n ∈ N, then the same holds for every outerplanar graph.
The following definition is due to Axenovich et al. [3].

Definition 3.1 (universal outerplanar graph). A universal outerplanar graph UOP(n)
is defined as follows: UOP(1) is a triangle. An edge on the outer face is called an outer
edge. For k > 1, UOP(k) is an outerplanar graph that is a supergraph of UOP(k − 1)
obtained by introducing, for each outer edge xy, a new vertex vxy and new edges vxyx
and vxyy. We say that x and y are the parents of vxy. If vxy is introduced in UOP(n),
we say that vxy is part of the n-th generation. We write gen(vxy) = n. An illustration to
the construction of UOP(3) is given in Figure 3.1.

The following result is well-known.

Lemma 3.2. Every outerplanar graph on n vertices is a subgraph of UOP(n).

UOP(1) UOP(2) UOP(3)

Figure 3.1: The iterative construction of the universal outerplanar graph UOP(3).

5



3 Pk-free Colorings of Outerplanar Graphs

a

b

v

G− v

(a) G− v is maximal outerplanar.

a

b

g

h
UOP(n− 1)

G− v

(b) The embedding of G− v in UOP(n− 1)
can be extended to an embedding of G
in UOP(n).

Figure 3.2: Illustrations to the proof of Lemma 3.2.

Proof. We prove a stronger statement. Let G be an outerplanar graph on n vertices and
consider a fixed outerplanar drawing of G. By abuse of notation, we also write G for its
drawing. Without loss of generality, we may assume that G is maximal outerplanar.

Claim 3.2.1. The outerplanar drawing G can be embedded in the drawing of UOP(n)
as given in Definition 3.1.

We will prove the claim by induction on the number of vertices. For n ≤ 3, we have

G ⊆ K3 = UOP(1)

and therefore G is a subgraph of UOP(n). Let now n > 3 and assume the claim holds
for n− 1. As G is maximal outerplanar there is a vertex v of degree 2 in G. Let a and b
be its neighbors. The drawing G is an inner triangulation as G is maximal outerplanar.
Therefore ab ∈ E(G); see Figure 3.2a. Note that G − v is also an inner triangulation,
thus maximal outerplanar. By induction, we have that G− v ⊆ UOP(n− 1). Consider
now UOP(n). Then there are two vertices g, h such that g, a, b and h, a, b form triangles
in UOP(n) as UOP(n) is an inner triangulation and ab is an inner edge in UOP(n); see
Figure 3.2b.

Then g /∈ V (G− v) or h /∈ V (G− v), as ab is an outer edge of G− v. Without loss of
generality g /∈ V (G− v). Then we can embed G in UOP(n) by mapping v to g.

The case of edge-coloring outerplanar graphs using two colors is well-studied. Axenovich
et al. proved that all paths are 2-outerplanar unavoidable.

Theorem 3.3 ([3, Lemma 6]). For all n ∈ N, we have UOP(n2)→2 Pn.

We are now interested in edge-colorings of UOP(n) using three colors. Clearly, paths
of length two cannot be avoided, as in any 3-edge-coloring of a graph that contains a
vertex v of degree four, there are at least two edges of the same color incident to v. The
strongest possible result would therefore be a coloring avoiding paths of length 3. Note
that a 3-edge-coloring of a graph G corresponds to an edge-decomposition of G into three
graphs. The following definition is due to Gonçalves [14].
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Definition 3.4 (Star, Star arboricity). A star is a tree in which all the edges are incident
to the same vertex. The star arboricity sa(G) of a graph G is the smallest number of
forests needed to cover all the edges of G such that each connected component of each
forest is a star.

If UOP(n) admits an edge-decomposition into three star forests, paths of length at
least 3 can be avoided. Our aim will be to construct such a decomposition.
In order to color UOP(n) such that we can avoid long paths, we have to understand

the structure of UOP(n). We seek to iteratively construct a 3-edge-coloring from a
vertex-coloring of UOP(n) by coloring new edges uv, where u is a vertex of the previous
iteration with the color of the vertex u. Therefore, it will be helpful that almost all edges
of UOP(n) are incident to a vertex in UOP(n− 1).

Lemma 3.5. Let n ∈ N, uv ∈ E(UOP(n)) and gen(u) ≥ 2. Then either u is parent of
v or v is parent of u. In particular gen(u) 6= gen(v).

Proof. As u /∈ V (UOP(1)) there is a k ∈ N such that the edge uv has been introduced in
UOP(k + 1). Without loss of generality u ∈ V (UOP(k)) and v /∈ V (UOP(k)). Then u is
a parent of v by construction.

By coloring the edges of UOP(n) for all n ∈ N, we obtain a coloring of every outerplanar
graph, as UOP(n) is universal by Lemma 3.2. Note that a 3-edge-coloring of UOP(n)
where every color class is a star forest induces an edge-decomposition of UOP(n) into
three star forests. Thus if we can decompose UOP(n) into three star forests, the same
holds for every outerplanar graph.

Theorem 3.6. Every outerplanar graph can be edge-decomposed into at most three star
forests.

Proof. As we just noticed, a 3-edge-coloring of UOP(n) where every color class is a star
forest, induces an edge-decomposition of UOP(n) into three star forests, hence, it will be
sufficent to construct such a coloring.
Ding et al. showed a generalization of a similar statement. They proved that every

so-called k-tree can be edge-decomposed into k + 1 star forests [11, Theorem 4.1]. We
proceed analogously to the proof given by Ding et al. Let V (UOP(1)) = {v1, v2, v3}.
Consider the proper vertex-coloring c1 where c1(vi) = i for all i ∈ {1, 2, 3}. Let
ci : V (UOP(i))→ {1, 2, 3} be the extension of the vertex-coloring ci−1 such that ev-
ery vertex of the i-th generation has a different color than its parents. Then ci is clearly a
proper vertex-coloring since every newly introduced vertex is only adjacent to its parents.

Consider the edge-coloring c′1 : E(UOP(1))→ {1, 2, 3} where c1(v1v2) = 1, c1(v2v3) = 2
and c1(v3v1) = 3. Let c′i : E(UOP(i))→ {1, 2, 3} be the extension of the edge-coloring
c′i−1 such that for any newly introduced edge uv with gen(v) = i we have ci(uv) = ci(u).
The edge-coloring c′i is well-defined as for every newly introduced edge exactly one of its
endpoints is part of the i-th generation.

Claim 3.6.1. Let xyz be a monochromatic path in UOP(n), i.e., c′n(xy) = c′n(yz). Then
cn(y) = c′n(xy).

7



3 Pk-free Colorings of Outerplanar Graphs

y

x z

(a) If xyz is a monochromatic
path in the edge-coloring
of UOP(n) and the color
of y is different to the
path’s color, then x and
z are not connected.

y

x z

w

(b) If there is a monochro-
matic path xyzw of
length 3 in the edge-
coloring of UOP(n), then
the vertices y and z have
the same color as the
edges of the path.

y

x z

(c) If there is a monochro-
matic triangle xyz in the
edge-coloring of UOP(n),
then the vertices y and z
have the same color as the
edges of the triangle.

Figure 3.3: Illustration of the proof of Theorem 3.6. Dashed edges represent edges of the
complement graph. White colored vertices represent a not specified color of a
vertex.

Proof of Claim. Let a := c′n(xy).
Case 1. gen(y) ≥ 2. Suppose cn(y) 6= a. By Lemma 3.5, x and y have a parent-

child-relationship and by definition of c′n we have c′n(x) = a. Analogously c′n(z) = a. In
particular x and z are parents of y. But as cn is a proper vertex-coloring x and z are not
connected and therefore x and z cannot both be parents of y; see Figure 3.3a. This is a
contradiction.
Case 2. gen(y) = 1. If gen(x) ≥ 2 or gen(z) ≥ 2 then by definition of c′n we have

cn(y) = a as x or z are children of y. Thus, the claim holds. Otherwise x, y, z ∈
V (UOP(1)). As all edges in E(UOP(1)) are colored differently this is a contradiction to
c′n(xy) = c′n(yz). y

Claim 3.6.2. There is no monochromatic path of length 3 in c′n.

Proof of Claim. Suppose there is a monochromatic path P = xyzw of length 3 in c′n in
color a ∈ {1, 2, 3}. Then by Claim 3.6.1 cn(y) = a and for the same reason cn(z) = a; see
Figure 3.3b. This is a contradiction as cn is a proper coloring but y and z are adjacent. y

Claim 3.6.3. There is no monochromatic cycle in c′n.

Proof of Claim. By Claim 3.6.2 a monochromatic cycle C must have length 3. Suppose
there is such a cycle C = xyz in color a. Then by Claim 3.6.1 cn(y) = a and cn(z) = a;
see Figure 3.3c. This is a contradiction as cn is a proper coloring but y and z are adjacent.

y

Therefore the color classes of c′n induce an edge-decomposition of UOP(n) into three
star forests. As any outerplanar graph G is a subgraph of UOP(n) by Lemma 3.2 for
sufficiently large n, the claim also holds for all outerplanar graphs.

8



Corollary 3.7. Pk is 3-outerplanar avoidable for k ≥ 3.

Proof. Let G be an outerplanar graph. By Theorem 3.6 there is a coloring c of G such
that each color class is a star forest. Then a longest monochromatic path in c has length
at most two.

9





4 Pk-free Colorings of the Iterated
Triangulation

As long monochromatic paths are 2-outerplanar unavoidable, thus in particular 2-planar
unavoidable, we are now interested in the case of edge-coloring planar graphs using three
colors.

4.1 Star Arboricity of the Iterated Triangulation
One specific family of graphs has often proved to be useful. The following definition is
due to Axenovich et al. [3].

Definition 4.1 (Iterated Triangulation). An iterated triangulation is a plane graph Tr(k)
defined as follows: Tr(0) = K3 is a triangle, Tr(i) ⊆ Tr(i+ 1), Tr(i+ 1) is obtained from
Tr(i) by inserting a vertex in each of the inner faces of Tr(i) and connecting this vertex
with edges to all the vertices on the boundary of the respective face. An illustration to
the construction of Tr(2) is given in Figure 4.1. If v is introduced in Tr(i) we say that
v is part of the i-th generation and write gen(v) = i. We see that there is exactly one
vertex c of the first generation. We call c the center. Note that Tr(i) is a triangulation
and each triangle of Tr(i) bounds a face of Tr(j) for some j ≤ i.

The graph Tr(n) has proved to be a useful tool for showing that a graph is 2-planar-
unavoidable. Indeed, for every graph G for which Axenovich et al. proved that G is
2-planar unavoidable, we have that G is already unavoidable in the family of iterated
triangulations [3, proof of Theorem 1], i.e., for large enough n ∈ N we have

Tr(n)→2 G.

Tr(0) Tr(1) Tr(2)

Figure 4.1: The iterative construction of the iterated triangulation Tr(2).
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4 Pk-free Colorings of the Iterated Triangulation

yx

c

v

(a) Inserting a vertex v in a face having c on
its boundary.

c

(b) The edges on the boundary of the face
of CTr(n)−c containing c correspond to
the edges E(UOP(n)) \E(UOP(n− 1)).

Figure 4.2: Illustrations to the proof of Proposition 4.2. Dashed edges represent edges
incident to c, thus edges that do not belong to the embedding of UOP(n) in
CTr(n).

One might get the impression that long paths cannot be avoided even when we restrict
our graph G := Tr(n) to the induced graph G[N(v) ∪ {v}] ⊆ind Tr(n) of the closed
neighborhood of one vertex v ∈ V (Tr(n)). But paths of length greater than four can be
avoided in G[N(v) ∪ {v}] as G[N(v) ∪ {v}] is isomorphic to the universal outerplanar
graph where a vertex v that is adjacent to all other vertices has been added.

Proposition 4.2. Let n ∈ N0 be a non-negative integer. Consider the induced subgraph
CTr(n) := Tr(n)[N(c) ∪ {c}] ⊆ind Tr(n) of the neighborhood of the center c of Tr(n).
Then for all k ≥ 5

CTr(n) 93 Pk.

Proof. In order to prove that paths of length at least five are avoidable in 3-edge-colorings
of CTr(n), we will extend an edge-coloring of UOP(n) avoiding long paths to an edge-
coloring of CTr(n).

Claim 4.2.1. CTr(n)− c is isomorphic to UOP(n).

Proof of Claim. Note that we obtain CTr(n) from CTr(n− 1) by inserting a vertex v in
every face f ∈ F (CTr(n)) having c on its boundary and joining v to all vertices on the
boundary of f ; see Figure 4.2a. For every edge xy bounding the face in CTr(n− 1)− c
containing c, a new vertex v has been inserted that is adjacent to x and y. We see
inductively that the new edges that are not incident to c correspond to the edges
E(UOP(n)) \ E(UOP(n− 1)); see Figure 4.2b. y

Thus CTr(n) can be obtained by inserting a vertex c in the outer face of UOP(n) and
connecting c to all other vertices. We already proved in Theorem 3.6 that there is an

12



4.1 Star Arboricity of the Iterated Triangulation

Figure 4.3: An edge-coloring of CTr(4) without a monochromatic P5.

edge-coloring c′n of UOP(n) in three colors such that every color class is a star forest. We
extend the coloring c′n used in the proof of Theorem 3.6 to a coloring hn of CTr(n) as
follows:

hn : E(CTr(n))→ {1, 2, 3}

uv 7→


cn(u), v = c

cn(v), u = c

c′n(uv), otherwise

This means that we color the edges uc according to the color of u, i.e., we connect
the centers of stars to c according to their color; see Figure 4.3. Note that every
monochromatic path of length 3 has to pass through c and that no two centers of stars of
the same color are connected in c′n since the color classes of c′n are star forests. Thus, the
color classes of the edge-coloring hn are trees rooted at c where all leaves have distance
at most two from c. Therefore there is no monochromatic path of length greater than
four in the coloring hn.

As the graph G′ induced by the neighborhood of any vertex v ∈ V (Tr(n)) is isomorphic
to the universal outerplanar graph UOP(k) for some k, for large enough n, we can find
long paths if the coloring uses only two colors for the edges of G′.

13



4 Pk-free Colorings of the Iterated Triangulation

Observation 4.3. Let C be an edge-coloring of G := Tr
(
1 + k + n2). If there exists a

vertex v ∈ V (G) with 1 ≤ gen(v) ≤ k such that C uses only two colors for the induced
subgraph G[N(v)], then C contains a monochromatic path of length n.

Proof. UOP(n2) ⊆ G[N(v)]. As by Theorem 3.3 we have UOP(n2) →2 Pn, this shows
the claim.

We were able to decompose UOP(n) into three star forests (see Theorem 3.6). Using a
similar approach, we can decompose Tr(n) into four star forests. Thus, if we use four
colors, long paths are avoidable in Tr(n).

The result that we will prove is also an application of a result of Ding et al. They proved
that every so-called k-tree can be edge-decomposed into k+1 star forests [11, Theorem 4.1].
As one can show that the iterated triangulation is a 3-tree, the claim holds. Our approach
will be similar to the proof given by Ding et al.

Lemma 4.4. The iterated triangulation Tr(n) can be edge-decomposed into at most four
star forests for all n ∈ N0.

Proof. We proceed analogously to the proof of Theorem 3.6; see Figure 4.4. Due to
the definition of the iterated triangulation, we can inductively define a proper 4-vertex-
coloring. This vertex-coloring enables us to define once again a 4-edge-coloring where
every color class is a star forest.

As Tr(n) can be edge-decomposed into four star forests, paths of length at least 3 are
avoidable in Tr(n).

Corollary 4.5. Let T := {Tr(n) | n ∈ N0}. Paths of length at least 3 are 4-T avoidable,
i.e., for all n ∈ N0 and all k ≥ 3, we have

Tr(n) 94 Pk.

Proof. This follows immediately from Lemma 4.4.

As long paths are avoidable in 4-edge-colorings of Tr(n), we are now interested in edge-
colorings using three different colors. We could hope that there is an edge-decomposition
of Tr(n) into three star forests. Then long monochromatic paths in 3-edge-colorings of
Tr(n) could be avoided. But this is not the case as the star arboricity of Tr(n) is four.
We will prove this claim using a result of Gonçalves [14, Theorem 1].

Theorem 4.6. For n ≥ 26, we have

sa(Tr(n)) = 4.

Proof. Our aim is to show that Tr(n) contains a subgraph of star arboricity four.

Claim 4.6.1. There is a subgraph T3 ⊆ Tr(n) for n ≥ 26, such that

sa(T3) = 4.

14



4.1 Star Arboricity of the Iterated Triangulation

Figure 4.4: An edge-decomposition of Tr(4) into four star forests.
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4 Pk-free Colorings of the Iterated Triangulation

a

b c

v1

v2

vn

u2

Figure 4.5: The embedding of T3 in Tr(n) for n ≥ 26.

Proof of Claim. Gonçalves constructed for all k ∈ N a graph Tk with star arboricity k+ 1
[14, Theorem 1]. We are interested in the case k = 3 as we will observe that T3 is a
subgraph of Tr(n) for sufficiently large n. Thus, we follow the construction of Tk given
by Gonçalves for k = 3. The graph T3 is constructed as follows. Let {a, b, c} = V (Tr(0)).
Let the vertex v1 be the center of Tr(1). The induced subgraph T3[a, b, c, v1] ⊆ind T3 of
T3 is a complete graph on four vertices. Let n := 4k(k − 1) + 2 = 4 · 3 · 2 + 2 = 26. For
1 < i ≤ n let vi be the vertex with parents a, b, vi−1. T3 contains vi and all three edges
connecting vi to its parent vertices. Therefore, the graph T3[a, b, c, v1, . . . , vn] ⊆ Tr(n) is
a subgraph of Tr(n). For all 1 < i ≤ n let ui be a vertex of the (n + 1)-th generation
that is a child of vi−1 and vi. T3 contains ui and the edges uivi and uivi−1. Then
T3 ⊆ Tr(n+ 1); see Figure 4.5. y

Note that an edge-decomposition of Tr(n) in i star forests induces such an edge-
decomposition of T3 as T3 ⊆ Tr(n). Hence

4 = sa(T3) ≤ sa(Tr(n))

holds. By Lemma 4.4, we have
sa(Tr(n)) ≤ 4.

Thus sa(Tr(n)) = 4.
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4.2 Paths of Increasing Generation

4.2 Paths of Increasing Generation

In order to prove that long paths are 2-outerplanar unavoidable (see Theorem 3.3),
Axenovich et al. extended monochromatic paths P in UOP(n) to monochromatic paths
P ′ in UOP(n+ 1) such that the last vertex on P ′ is of the (n+ 1)-th generation. Thus,
we wondered whether long paths in 3-edge-colorings of Tr(n) are unavoidable, even if
we restrict our paths to paths P such that the vertices along P increase in generation.
Inspired by the proof given by Axenovich et al. of Theorem 3.3, we introduce the notion
of a ping.

Definition 4.7 (Ping). Let P = v1 . . . vk be a path in Tr(n). If for all i ∈ {1, . . . , k− 1}
we have gen(vi) < gen(vi+1), we call P a path of increasing generation (ping). We write
LPk to denote a ping of length k.

Note that a ping is not a graph, but a fixed embedding of a subgraph in Tr(n). By
abuse of notation, we will write Tr(n)→k LP` to express that every k-edge-coloring of
Tr(n) contains a monochromatic ping of length `. We will use the notation Tr(n) 9k LP`

analogously.
However, there is a 3-edge-coloring of Tr(n) such that long monochromatic pings

are avoided. Thus, using pings, we cannot prove that long monochromatic paths are
3-planar-unavoidable.

Theorem 4.8. For all n ∈ N and ` ≥ 3:

Tr(n) 93 LP`

Proof. For a vertex v ∈ V (Tr(k)) such that gen(v) = k and a color i ∈ {1, 2, 3} let vi

denote the maximum length of a ping in color i ending in v in a given edge-coloring Ck of
Tr(k) in three colors. Note that by definition of a ping, a ping in Tr(n) ending in a vertex
v ∈ V (Tr(n)) with gen(v) = k is a ping in Tr(k). Therefore, it suffices to show that for
all n ∈ N there is an edge-coloring of Tr(n) in three colors such that for all v ∈ V (Tr(n))
and for all i ∈ {1, 2, 3} we have vi ≤ 2.

Claim 4.8.1. There is a 3-edge-coloring Cn of Tr(n) such that for all v ∈ V (Tr(n)) we
have

3∑
i=1

vi ≤ 4 and max
i∈{1,2,3}

vi ≤ 2.

We prove the claim by induction on n by extending an edge-coloring Cn of Tr(n) to
an edge-coloring Cn+1 of Tr(n+ 1). Let C0 be a 3-edge-coloring of Tr(0). For n = 0 the
length of a monochromatic ping is bounded by 0, as all vertices in Tr(0) are of generation
0. Assume now that for fixed n ∈ N the claim holds.
Let now v ∈ V (Tr(n+ 1)) be a vertex of generation n + 1. Then by definition of

Tr(n+ 1), N(v) = {a, b, c} ⊆ V (Tr(n)). Note that any ping P ending in v has to pass
through N(v). Thus P − v is a ping in Tr(n) ending in N(v).
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4 Pk-free Colorings of the Iterated Triangulation

a1 = 1

b1 = 1 c2 = 1

v

a

b c

a1 = 0

b2 = 0 c3 = 1

v

a

b c

Figure 4.6: Illustrations of Case 1 (left) and Case 2 (right) in the proof of Theorem 4.8.

We call a vertex u ∈ {a, b, c} good, if there are two distinct colors i 6= j such that the
length of a monochromatic ping in Ck ending in u in color i and j respectively is at most
1, i.e., ui, uj ≤ 1. Otherwise we call u a bad vertex.

Case 1. There are at least two distinct good vertices. We may assume without loss of
generality that a and b are good. Then by pigeonhole principle, there exists i ∈ {1, 2, 3}
such that ai, bi ≤ 1. We may assume i = 1. We color the edges av and bv in color 1.
By induction hypothesis, there exists j ∈ {1, 2, 3} such that cj ≤ 1. We color the edge
cv in color j. If j = 1, then v1 = max(a1, b1, c1) + 1 ≤ 2 by definition of a ping and
v` = 0 for ` 6= 1. Thus

∑3
m=1 vm ≤ 2 ≤ 4. Otherwise j 6= 1. We may assume j = 2.

Then v1 = max(a1, b1) + 1 ≤ 2, v2 = c2 + 1 ≤ 2, v3 = 0 and the claim holds for v; see
Figure 4.6.
Case 2. There is at most one good vertex in {a, b, c}. Then there are at least two

bad vertices. We may assume that a and b are bad. By induction hypothesis there exist
q, r, s ∈ {1, 2, 3} such that aq, br = 0 and cs ≤ 1. Then we color av in q, bv in r and cv
in s. If q, r and s are distinct, then vq = 1, vr = 1 and vs ≤ 2. Thus the claim holds.
Otherwise we colored some of these edges in the same color, therefore the bounds still
hold.
Note that Cn+1 is welldefined as all edges in E(Tr(n+ 1)) \ E(Tr(n)) are incident to

exactly one vertex of the (n+ 1)-th generation by definition of Tr(n+ 1).

Although, we were able to bound the length of monochromatic pings in a specific
3-edge-coloring of Tr(n), the same does not necessarily hold for the length of a longest
monochromatic path.

Observation 4.9. Let C be an edge-coloring of Tr(n) in at most three colors such that
the length of a monochromatic ping in Tr(n) is at most k ∈ N. Then there is a coloring
C ′ of Tr(n+ 1) such that the length of a monochromatic ping in C ′ is at most k + 1 but
the length of a monochromatic path is at least 2(n− 1) none the less.

Proof. Let a, b ∈ V (Tr(n)) be two distinct vertices of generation 0.

Claim 4.9.1. There is a path Pn−1 = v1 . . . vn of length n− 1 in Tr(n) such that for all
i ∈ {1, . . . , n} we have gen(vi) = i and vi is adjacent to a and b.
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4.2 Paths of Increasing Generation

. . . Pnv1 v2 v3 vn

a

(a) All edges vivi+1 of the path Pn be-
long to different faces.

. . . Pnv1 v2 v3 vn

(b) If all the edges that do not belong to
Pn are colored the same, then the path
represented by the dashed edges is a long
monochromatic path.

Figure 4.7: Illustrations to the proof of Observation 4.9. The initial path Pn is represented
by non-dashed edges. All edges that do not belong to Pn are dashed.

Proof of Claim. This can be seen by induction on the length of the path Pn−1. For n = 1,
let v1 be the center of the triangle. Then v1 is clearly of generation 1 and is adjacent to
a and b. Assume there is such a path Pn−1 in Tr(n) such that every vertex vi on Pn−1 is
adjacent to a and b. Then vn is of generation n and therefore a, b and vn form a face in
Tr(n). Therefore, there is a vertex vn+1 ∈ V (Tr(n+ 1)) of the (n+ 1)-th generation that
is adjacent to a,b and vn. Thus, we can extend Pn−1 to a path Pn as stated. y

As Tr(n) ⊆ Tr(n+ 1), Pn−1 is a path in Tr(n+ 1). Note that every edge vivi+1 belongs
to a different face as Tr(n+ 1) is a plane graph and all vi are adjacent to a; see Figure 4.7a.
Therefore for every edge vivi+1 of Pn−1 there is a vertex ui in Tr(n+ 1) of the (n+ 1)-th
generation that is adjacent to vi and vi+1 by definition of Tr(n+ 1) and all the vertices
ui are distinct. Consider the coloring C ′ of Tr(n+ 1) that extends C where all new edges
are colored in red. Then in particular all edges uiv for v ∈ {vi, vi+1} are red. Therefore,
the path v1u1v2u2 . . . un−1vn is a monochromatic path of length 2(n− 1); see Figure 4.7b.
However by definition of a ping, the length of a monochromatic ping in C ′ is at most one
more than the length of a monochromatic ping in C.

Corollary 4.10. Assume there exists k ∈ N and a sequence (Cn)n∈N0 such that Cn is
an edge-coloring of Tr(n) in at most three colors and the length of a monochromatic
ping in Cn is at most k for all n ∈ N0. Then for all n ∈ N there exists m ∈ N and an
edge-coloring C ′ in at most three colors of Tr(m) such that the length of a monochromatic
ping in Tr(m) is bounded by k+ 1, but Tr(m) contains a monochromatic path of length n.

Thus, bounding the length of a longest monochromatic ping in an edge-coloring of
Tr(n) does not enable us to bound the length of a longest monochromatic path.
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5 Subdivisions of Stars

We will be interested in graphs that we obtain by drawing new vertices on some or
all edges of a star. These graphs are called subdivisions of stars; see Figure 5.1 for
an illustration. A formal definition is given below. It is based on the definitions of
subdivisions given by Diestel [10, p. 19] and Axenovich [2, p. 39].

Definition 5.1 (subdivision). Let G be a graph and let uv ∈ E(G) be an edge of G. A
single-edge-subdivision of G is a graph G′ = (V (G) ∪ {c}, E(G) \ {uv} ∪ {uc, cv}), where
c /∈ V (G). Informally we obtained G′ from G by inserting a new vertex on the edge uv.
A subdivision of G is a graph that is obtained by a series of single-edge-subdivisions.

Our aim is to show that all subdivisions of stars are 2-planar unavoidable. We have
already been interested in the iterated triangulation where we inserted iteratively new
vertices in inner faces. Generalizing this approach, we obtain k-trees.

Definition 5.2 (k-tree, [11, p. 2]). Let k ∈ N. A k-clique is a complete graph on k
vertices. A k-tree is a graph defined inductively as follows: A k-clique is a k-tree. If G is
a k-tree, and C is a k-clique of G, then a graph obtained from G by adding a new vertex
and connecting it with edges to all vertices of C is a k-tree. Any subgraph of a k-tree is
called a partial k-tree.

Due to this definition, Tr(n) is a 3-tree. We will be interested in a specific class of
k-trees. The following definition is due to Ding et al. [11, Chapter 3].

Definition 5.3 ([11, p. 4]). Let k ∈ N. Let T (k, 0, r) be a k-clique. We call a k-clique
that is introduced in T (k, i, r) a k-clique of the i-th generation. The k-tree T (k, i+1, r) is
obtained from T (k, i, r) by inserting for every k-clique C of the i-th generation r vertices
v1, . . . , vr and connecting each vertex vi with edges to all vertices of C.

The construction of T (k, i, r) reminds us of the construction of the universal outerplanar
graph and the iterated triangulation. In order to get a better understanding of the

Figure 5.1: On the left, we see a star S and on the right a subdivision of the star S.
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5 Subdivisions of Stars

` = 0 ` = 1 ` = 2

Figure 5.2: The iterative construction of T (2, `, 1). The non dashed edges represent
2-cliques of the `-th generation, the 2-cliques of smaller generation are repre-
sented as dashed edges.

definition above, we well relate the construction of T (2, `, 1) to the definition of the
univeral outerplanar graph. Having the definition of the universal outerplanar graph in
mind, see Definition 3.1, wee can see inductively that T (2, `, 1) is a subgraph of UOP(`)
for all ` ∈ N. Note however that T (2, `, 1) is in general not isomorphic to UOP(`).

Example 5.4. The 2-tree T (2, `, 1) is a subgraph of the universal outerplanar graph
UOP(`) for all ` ∈ N.

Proof. We will prove a stronger claim by induction on `.

Claim 5.4.1. For all ` ∈ N the graph T (2, `, 1) is isomorphic to a subgraph of UOP(`).
Further, we can embed T (2, `, 1) in UOP(`) such that the 2-cliques of the `-th generation
of T (2, `, 1) are outer edges of UOP(`).

Proof of Claim. Let ` = 0. Then T (2, 0, 1) is a single edge. Thus T (2, 1, 1) is a triangle
as we added a single new vertex and connected this vertex to the only 2-clique. Therefore,
the 2-cliques of the first generation are outer edges of UOP(1) and T (2, 1, 1) ∼= UOP(1).
Assume the claim holds for some ` ∈ N. Then we obtain UOP(`+ 1) from UOP(`) by
adding a new vertex for every outer edge uv and connecting this vertex to u and v. As
by induction T (2, `, 1) can be embedded as a subgraph in UOP(`) such that all 2-cliques
of the `-th generation are outer edges, we see that the newly created vertices and edges
of T (2, `+ 1, 1) correspond to newly added vertices and edges of UOP(`+ 1). Hence, the
claim holds. y

Note that UOP(2) � T (2, 2, 1) as one of the outer edges of UOP(1) is not a 2-clique of
the first generation of T (2, 1, 1); see Figure 5.2.

Another class of k-trees that we will be interested in are the 1-trees T (1, `, r). Indeed,
the 1-trees T (1, `, r) are trees were all non-leaves have exactly r children.

Example 5.5. For all ` ∈ N0 and r ∈ N, the graph T (1, `, r) is a tree that can be rooted
such that every non-leaf has exactly r children and every leaf has distance ` from the root.

Proof. Let r ∈ N. For all ` ∈ N0 let T` := T (1, `, r). By definition of T0, there is a single
vertex s of the 0-th generation. We show a stronger claim by induction on `.
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` = 0 ` = 1 ` = 2

Figure 5.3: The iterative construction of T (1, `, 3). Black vertices represent 1-cliques of
the `-th generation.

Claim 5.5.1. For all ` ∈ N0 the graph T` is a tree with root s where all non leaves have
r children and the leaves of T` are the vertices of the `-th generation. Further for all
leaves v of T` we have distT`

(s, v) = `.

If ` = 0 then T0 is a single vertex. In particular, distT0(s, s) = 0. Assume now the
claim holds for some ` ∈ N. We get T`+1 from T` by adding for every vertex v of the `-th
generation r new vertices and connecting these with edges to v; see Figure 5.3. Thus,
as by induction all vertices of the `-th generation were leaves in T`, they have exactly r
children in T`+1. The neighborhood of vertices of generation less than ` did not change
and the newly added vertices are leaves in T`+1. Hence, every non-leaf has r children.
Since we added as many vertices as edges to the tree T` in such a way that T (`+ 1) is
connected, T`+1 is a tree by the tree equivalence theorem [10, Corollary 1.5.3]. Further,
the leaves of T`+1 are the vertices of the (`+ 1)-th generation. Let v be a vertex of the
(`+ 1)-th generation. Its parent p is a vertex of the `-th generation. As T`+1 is a tree,
there is exactly one v-s path. This path has to pass through v, thus by induction we get

distT`+1(s, v) = distT`
(s, p) + 1 = `+ 1.

We wish to prove that T (2, `, r) is a planar graph. In order to obtain this result, we
consider the subgraph T (2, 1, r) of T (2, `, r) that we will call a fishbone. The following
definition is based on the definition of a fish given by Axenovich et al. [3].

Definition 5.6 (Fishbone). A graph G is called a fishbone if V (G) = {x, y} ∪ S, where
S∩{x, y} = ∅, x and y are each adjacent to each vertex in S, xy is an edge of G and S is
an independent set, i.e., there are no edges between the vertices of S. We call S the set of
spine vertices. A Fishbone on x and y is denoted by Fbx,y. Note that Fbx,y = T (2, 1, |S|)
and Fbx,y is a planar graph; see Figure 5.4.

The 2-tree T (2, `, r) is obtained from T (2, ` − 1, r) by replacing some edges with a
fishbone with r spine vertices. This observation enables us to show inductively that
T (2, `, r) is a planar graph.

Observation 5.7. The graph T (2, `, r) is planar for all `, r ∈ N.
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5 Subdivisions of Stars

x y

...

Figure 5.4: A fishbone Fbx,y with k spine vertices.

u v

...

F

Figure 5.5: Replacing the edge uv with the fishbone Fbu,v within the face F .

Proof. We will prove the claim by induction on `. For ` = 0 the graph T (2, 0, r) is a
single edge and therefore planar. Assume that there is a plane embedding of T (2, `, r).
We wish to show that T (2, ` + 1, r) is planar. The graph T (2, ` + 1, r) is obtained by
replacing the edges uv of the `-th generation in T (2, `, r) with a fishbone Fbu,v with r
spine vertices. For such an edge uv let F be a face such that uv lies on its boundary.
We can replace the edge uv with Fbu,v by drawing all spine vertices in the face F ; see
Figure 5.5. Therefore, T (2, `+ 1, r) is clearly a planar graph.

Ding et al. showed that for all positive integers `, r ∈ N, there exist constants L,R ∈ N
such that every 2-edge-coloring of T (2, L,R) contains a monochromatic subdivision of
T (1, `, r). Thus these trees are in a certain way planar unavoidable. Note that the
monochromatic subdivisions of T (1, `, r) in a 2-edge-coloring of T (2, L,R) might however
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depend on the coloring. The following result follows immediately from a result of Ding
et al. concerning 2-edge-colorings of certain 2-trees [11, Theorem 3.5].

Theorem 5.8. For every tree T , there is planar graph G such that every coloring of G
in two colors contains a monochromatic subdivision of T .

Proof. Let v ∈ V (T ) be a vertex and consider the tree T as rooted at v. Let ` be the
maximum distance of a vertex in V (T ) to the root v. Let r be the maximum number
of children of a vertex in V (T ) considering the tree as rooted at v. The tree T is a
subgraph of T (1, `, r) as T (1, `, r) is a tree that can be rooted such that every non-leaf
has r children and every leaf has distance ` from the root as seen in Example 5.5. Ding
et al. showed that there are positive integers L,R ∈ N such that every edge-coloring
of T (2, L,R) in blue and red contains a red T (1, `, r) or a blue subdivision of T (1, `, r)
[11, Theorem 3.5]. The claim follows since T (2, L,R) is planar by Observation 5.7.

As every subdivision of a subdivided star S contains S as a subgraph, we can prove
that subdivisions of stars are 2-planar unavoidable. This generalizes a result of Axenovich
et al. They showed that all generalized brooms are 2-planar unavoidable [3, Lemma 7].

Corollary 5.9. All subdivisions of a star are 2-planar unavoidable.

Proof. Let S be a subdivision of a star. Then every subdivision S′ of S contains S as a
subgraph. By Theorem 5.8 S is 2-planar unavoidable.
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6 Bounded Diameter Arboricity

We were able to decompose every outerplanar graph into three star forests; see Theo-
rem 3.6. Thus, paths of length 3 are 3-outerplanar avoidable. Similarly, we can consider
decompositions of planar graphs into forests. However, such a decomposition might
contain a long path as a subgraph. In order to bound the length of a longest path in
an edge decomposition, we will use the notion of bounded diameter arboricity that was
introduced by Merker and Postle [22].

6.1 Bounded Diameter Arboricity of Planar Graphs

We will now be interested in a better understanding of 3-planar unavoidable graphs.
More precisely, we wish to identify necessary conditions for a graph H to be 3-planar
unavoidable. Axenovich et al. discussed this question [3]. One can easily see that such
a graph H has to be a forest. We will prove this claim in Proposition 6.2. In order
to understand the details of the proof, we have to define arboricity that we already
encountered in Definition 3.4 through the notion of star arboricity.

Definition 6.1 (Arboricity). The arboricity Υ(G) of a graph G is the smallest number
of forests needed to cover all the edges of G.

Proposition 6.2 ([3, Theorem 3]). Every 3-planar unavoidable graph is a forest.

Proof. Note that an edge-decomposition of a graph G into three forests induces a 3-edge-
coloring such that every monochromatic subgraph H ⊆ G is a forest. Thus, it will be
sufficient to show that all planar graphs have arboricity at most 3. This follows from
Nash-Williams formula [23] that states the following.

Claim 6.2.1 ([10, Theorem 2.4.3]). The edges of a graph G can be covered by at most k
trees if and only if

|E(G[U ])| ≤ k · (|U | − 1) (6.1)

for every non-empty set U ⊆ V (G).

Set k := 3 and let G be a planar graph. Let U ⊆ V (G) be a non-empty set. If |U | = 1,
then G[U ] contains no edges, thus Inequality 6.1 holds. If |U | = 2, the induced graph
G[U ] contains at most one edge, therefore the Inequality 6.1 holds once again. Otherwise
G[U ] is a planar graph on at least three vertices, as every subgraph of a planar graph is
planar. Therefore, the number of edges in G[U ] is bounded by 3|U | − 6. Hence, we get

|E(G[U ])| ≤ 3 · |U | − 6 = 3 · (|U | − 2) ≤ 3 · (|U | − 1).
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6 Bounded Diameter Arboricity

As Inequaltiy 6.1 holds for every non-empty set U ⊆ V (G), we have by Claim 6.2.1

Υ(G) ≤ 3.

Thus, every planar graph can be edge-decomposed into three forests.

Using star arboricity, we showed that long monochromatic paths in 4-edge-colorings
of Tr(n) can be avoided. Due to a result of Hakimi, Mitchem, and Schmeichel [16], a
similar results holds for 5-edge-colorings of planar graphs, as every planar graph can
be edge-decomposed into at most five star forests. As stars have diameter at most two,
we can avoid paths of length at most 3 in star forest decompositions. Similarly, if we
are able to decompose a graph into k forests of diameter at most d, paths of length at
least d+ 1 are avoidable using k colors. We wish to avoid long paths in planar graphs
using less than five colors, thus we might want to allow a larger diameter in our forest
decomposition. The following definition generalizes this concept. It is due to Merker and
Postle [22, Definition 1.1].

Definition 6.3 (bounded diameter arboricity). The diameter-d arboricity Υd(G) of a
graph G is the minimum number k such that the edges of G can be partitioned into
k forests each of whose components have diameter at most d. The bounded diameter
arboricity Υbd(G) of a class of graphs G is the minimum number k for which there exists
a natural number d such that every G ∈ G has diameter-d arboricity at most k.

We are interested in the bounded diameter arboricity of planar graphs. If there exists
some positive integer k ∈ N and a constant d such that every planar graph can be
edge-decomposed into k forests of diameter at most d, long paths are k-planar avoidable.
Merker and Postle introduced the notion of bounded diameter arboricity and studied
its applications to planar graphs [22]. The following lemma is a simple application
of one of their results concerning the bounded diameter arboricity of planar graphs
[22, Theorem 3.5].

Theorem 6.4. Let g ∈ N and let Pg be the class of planar graphs of girth at least g.
There is a positive integer dg ∈ N such that

1. if g = 3 and H is 4-Pg unavoidable

2. if g = 4 and H is 3-Pg unavoidable

3. if g ≥ 6 and H is 2-Pg unavoidable

then H is a forest of diameter at most dg. In particular, all paths Pk for k > dg are
4-planar avoidable.

Proof. We will only prove the first claim, as all others can be verified in a similar
way. Note that all planar graphs have girth at least 3, thus P3 is precisely the class
of all planar graphs. Since Υbd(P3) = 4, as has been shown by Merker and Postle
[22, Theorem 3.5], there exists a positive integer d := d3 ∈ N such that every planar
graph can be edge-decomposed into four forests of diameter at most d. Therefore, if H is
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6.1 Bounded Diameter Arboricity of Planar Graphs

4-planar unavoidable, then H has to be a subgraph of a forest of diameter at most d. As
every such subgraph is a forest of diameter at most d, the claim follows. Note that any
path P in a tree T of diameter at most d is in particular a shortest path by uniqueness
of a-b paths in a tree. Thus

|E(P )| ≤ diam(T ) ≤ d.

Therefore, Pk is 4-planar avoidable for k > d as all planar graphs can be edge-decomposed
into four forests of diameter at most d.

Merker and Postle calculated the bounded diameter arboricity not only for the class of
all planar graphs, but also for several subclasses [22, Theorem 3.5]. We will only restate
their proof for estimating the bounded diameter arboricity of the class of planar graphs
[22, Theorem 3.5].

Theorem 6.5 ([22, Theorem 3.5]). Let P denote the class of planar graphs. Then

Υbd(P) = 4.

Let Ak denote the class of graphs with arboricity at most k. Merker and Postle showed
that the bounded diameter arboricity of A3 is four [22, Theorem 1.3]. We already know
that P ⊆ A3 as seen in the proof of Proposition 6.2. Thus Υbd(P) ≤ Υbd(A3) = 4. If we
wish to show that the bounded diameter arboricity of the class of planar graphs is four,
we have to find a family G ⊆ P of graphs, such that for all d ∈ N there is a graph G ∈ G
that cannot be edge-decomposed into three forests of diameter at most d.

Lemma 6.6 ([22, Lemma 3.4]). Let G be a family of graphs with arboricity at most k
and c a natural number. If there exists a sequence of graphs G1, G2, . . . in G such that
diamGi ≥ i and |E(Gi)| ≥ k|V (Gi)| − c for all i, then Υbd(G) ≥ k + 1.

Proof. Suppose Υbd(G) ≤ k. Then there exists a positive integer d ∈ N such that for all
G ∈ G : Υd(G) ≤ k. Let G := Gcd+1. By assumption G can be edge-decomposed into
k forests F1, . . . , Fk such that each tree in Fj has diameter at most d for all j. Let Tj

denote the set of components in Fj for all j. Note that every vertex v ∈ V (Fj) belongs
to exactly one component, as no two components share a vertex. Since every tree on n
vertices has n− 1 edges and all components of Fj are trees, we can bound the number of
edges in every forest Fj for all j:

|E(Fj)| =
∑

T∈Tj

|E(T )| =
∑

T∈Tj

(|V (T )| − 1) = |V (Fj)| − |Tj | ≤ |V (G)| − |Tj | (6.2)

Let T :=
⋃k

j=1 Tj . By definition, T is the set of all components of the edge-decomposition,
thus of all trees of the decomposition. By Inequation 6.2, we get the following inequation
that bounds the number of components in the edge-decomposition.

k|V (G)| − c ≤ |E(G)| =
k∑

j=1
|E(Fj)| ≤

k∑
j=1

(|V (G)| − |Tj |) = k|V (G)| − |T |
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6 Bounded Diameter Arboricity

P

P ′

a

b

Figure 6.1: Illustration to the proof of Lemma 6.6. All non-dashed lines represent edges of
the tree T . Dashed lines may contain edges of T . The path P is represented
by dashed lines. The a-b-path P ′ that is represented by a thick line is a path
in the tree T . The length of P ′ is smaller than the length of the a-b-path
that is a subgraph of P . Therefore, P is not a shortest path, as we can easily
construct a shorter path with the the same endvertices.

Thus |T | ≤ c. As the diameter of G is at least cd + 1, there is a shortest path
P = v0 . . . vcd+1 in G. By pigeonhole principle there has to be a tree T ∈ T such
that at least d + 1 edges of P belong to T . Let ` be the minimum index such that
a := v` ∈ V (T ) and m be the maximum index such that b := vm ∈ V (T ). Note that
m ≥ `+ d+ 1, as d+ 1 edges of P belong to T .
Suppose there is an a-b-path P ′ in T of length at most d. Note that the vertices

v0, . . . , v`−1 and vm+1, . . . , vcd+1 are not vertices of T , in particular these vertices do not
belong to the path P . Therefore, v0 . . . v`−1P

′vm+1 is a shorter path then P connecting
v0 and vcd+1; see Figure 6.1. This is a contradiction, as P is a shortest path. Thus

diam(T ) ≥ distT (a, b) ≥ d+ 1.

This is a contradiction to the choice of the edge-decomposition of G, since every tree in
T has diameter at most d. Thus

Υbd(G) ≥ k + 1.

Therefore the claim follows.

Hence, in order to prove that the bounded diameter arboricity of the class of planar
graphs is four, it suffices to see that there are planar triangulations of arbitrarily large
diameter, as in this case we have a sequence G1, G2, . . . of planar graphs such that
diamGi ≥ i and |E(Gi)| = 3|V (Gi)| − 6, as all graphs Gi are planar triangulations.
Paths are planar graphs of large diameter. Therefore, if we are able to augment

these graphs to planar triangulations while preserving large diameters, we can prove
Theorem 6.5.
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6.1 Bounded Diameter Arboricity of Planar Graphs

vn−2

vn−1

vn

vn+1P 3
n

(a) Extension of a planar em-
bedding of P 3

n to a planar
embedding of P 3

n+1.

(b) A planar embedding of
P 3

6 . All edges that do not
belong to the underlying
path are represented as
dashed lines.

vn−2

vn

v

P

(c) A u-v-path P in P 3
n+1

between two vertices
u, v ∈ V (P 3

n) that goes
through v = vn+1 is not
a shortest path.

Figure 6.2: Illustrations to the proof of Observation 6.8.

Definition 6.7 (Graph Power). Let G be a graph and k ∈ N be a positive integer.
The k-th power of G is the graph Gk where V (Gk) = V (G) and E(Gk) = {ab | a, b ∈
V (G), a 6= b,distG(a, b) ≤ k}

Observation 6.8. The third path power P 3
n is a planar triangulation of diameter at least

n/3 for all n ≥ 3.

Proof. We will first show that P 3
n is a planar triangulation. Let v0v1 . . . vn be the

underlying path.

Claim 6.8.1. There is a planar embedding of P 3
n such that vn−2, vn−1 and vn are on the

outer face for all n ≥ 3. In particular, P 3
n is a plane triangulation.

Proof of Claim. We will prove the claim by induction on n. If n = 3 the claim holds
since P 3

n = K3. Suppose the claim holds for some fixed n ∈ N. By induction hypothesis,
there is a planar embedding of P 3

n such that vn−2, vn−1 and vn lie on the outer face. Then
we can obtain P 3

n+1 from P 3
n by adding a vertex vn+1 and connecting vn+1 to all vertices

on the outer face of the planar embedding of P 3
n such that vn−1, vn and vn+1 lie on the

outer face; see Figure 6.2a. In particular all new faces are bounded by a triangle. Thus,
the claim holds. See Figure 6.2b for an illustration of such an embedding. y

Claim 6.8.2. For all n ∈ N and all 1 ≤ k ≤ n we have: distP 3
n
(v0, vk) = dk

3e.

Proof of Claim. We will prove the claim by induction on the number of vertices. If
1 ≤ n ≤ 2, then dist(v0, vn) = 1 as P 3

n = Kn−1. Assume the claim holds for some
fixed n ∈ N. Then we obtain P 3

n+1 from P 3
n by adding a vertex v := vn+1 and edges

{viv | n− 2 ≤ i ≤ n}. Note that N(v) induces a triangle. Thus, the distances of vertices
in P 3

n to other vertices of P 3
n do not change by adding v, as going through v is a detour;

see Figure 6.2c. Hence for all 0 ≤ k ≤ n, we have by induction hypothesis:

distP 3
n+1

(v0, vk) = distP 3
n
(v0, vk) =

⌈
k

3

⌉
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6 Bounded Diameter Arboricity

Figure 6.3: An edge-decomposition of P 3
10 into two graphs avoiding long paths.

Any shortest path connecting vn+1 to v0 has to pass through N(vn+1). Thus

distP 3
n+1

(v0, vn+1) = min
n−2≤i≤n

distP 3
n
(v0, vi) + 1 =

⌈
n− 2

3

⌉
+ 1 =

⌈
n+ 1

3

⌉
by induction hypothesis. y

Therefore, as
diam(P 3

n) ≥ distP 3
n
(v0, vn) =

⌈
n

3

⌉
≥ n

3
the third path power P 3

n is a planar triangulation of diameter at least n/3 for all n ≥ 3.

As third path powers are planar triangulations of arbitrarily large diameter, we can
construct a sequence of graphs as needed in Lemma 6.6. This enables us to prove that
the bounded diameter arboricity of planar graphs is four, as stated in Theorem 6.5. Thus,
we cannot avoid long paths in decompositions of planar graphs into three forests.

Bounded diameter arboricity is however restricted to decompositions into forests. What
happens if we allow decompositions into graphs containing cycles? We could hope that
as we cannot avoid long paths in edge-decompositions of a family G of planar graphs
into three forests, the same might hold if we consider edge-decompositions into three
arbitrary graphs.

Proposition 6.9. Let G := {P 3
n | n ∈ N} be the class of all third powers of paths. Then

Υbd(G) = 4. However, for all G ∈ G and all k ≥ 6, we have

G92 Pk.

Proof. As G is a subclass of all planar graphs, we have Υbd(G) ≤ 4, as the bounded
diameter arboricity of planar graphs is four by Theorem 6.5. Let Hi := P 3

3i for all i ∈ N.
By Observation 6.8 for all i ∈ N,

diamHi ≥
⌈3i

3

⌉
≥ i

and Hi is a planar triangulation, thus |E(Hi)| = 3|V (Hi)| − 6. Therefore by Lemma 6.6,
we have

Υbd(G) = 4.

Claim 6.9.1. For all n ∈ N there is an edge-decomposition of P 3
n into two graphs G1, G2

such that P6 * Gi for all i.
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6.1 Bounded Diameter Arboricity of Planar Graphs

va vb

S

P

Figure 6.4: The edges entering S from the left represent edges connecting S to vertices of
lower index, the edges entering S from the right represent edges connecting
S to vertices of higher index. All edges connecting S to P 3

n − S are shown.
Every va-vb-path P in P 3

n has to pass through S. Since cn is a 2-edge-coloring
that colors the edges entering S from the left in blue and the edges entering
S from the right in red, P is not a monochromatic path.

Proof of Claim. Let v0 . . . vn denote the underlying path of P 3
n . Consider the following

edge-coloring cn of P 3
n ; see Figure 6.3.

cn : E(Hn)→ {1, 2}

vivj (i < j) 7→
{

1, if i ≡ 0, 1, 2 (mod 6)
2, otherwise

Let G1 := (V (P 3
n), {e ∈ E(P 3

n) | cn(e) = 1}) be the subgraph of P 3
n in color 1 and

G2 := (V (P 3
n), {e ∈ E(P 3

n) | cn(e) = 2}) the subgraph of P 3
n in color 2.

Claim 6.9.2. Every connected component of G1 and G2 respectively contains at most
six vertices.

Proof of Claim. Suppose there is a connnected component of G1 containing at least
seven vertices. Then there are two distinct vertices va, vb such that a ≡ b (mod 6) by
pigeonhole principle. We may assume a < b.
Case 1. a ≡ 3, 4, 5 (mod 6). Let j ∈ N be minimal such that a ≤ 6j. Let P be a

va-vb-path in G1. Then P is a path in P 3
n as G1 ⊆ P 3

n . Thus, P has to pass through
S := {v6j , v6j+1, v6j+2} by definition of P 3

n . Note that va, vb /∈ S, as a ≡ 3, 4, 5 (mod 6)
and thus b ≡ 3, 4, 5 (mod 6). However, all edges vks, where k < 6j and s ∈ S are
colored in 2, and all edges svk′ , where s ∈ S and k′ ≥ 6j are colored in 1; see Figure 6.4.
Therefore, P is not a monochromatic path in P 3

n , hence not a path in G1. This is a
contradiction.

Case 2. a ≡ 0, 1, 2 (mod 6). A similar argumentation as in the first case will work by
letting j be minimal, such that a ≤ 6j + 3 and considering S′ := {v6j+3, v6j+4, v6j+5}.
Analogously, every component of G2 contains at most six vertices. y

As every connected component in G1 and G2 respectively contains at most six vertices,
a longest path in G1 and G2 respectively has length at most five. Therefore cn is an
edge-decomposition of P 3

n avoiding paths of length at least six. y
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6 Bounded Diameter Arboricity

Thus, paths of length at least six are 2-G avoidable.

Although, we cannot avoid long paths in edge-decompositions of planar graphs into
three forests, this does not imply that the same holds for decompositions of planar graphs
into three graphs that might contain cycles.

6.2 Bounded Diameter Arboricity of the Iterated
Triangulation

We already considered the family of iterated triangulations T := {Tr(n) | n ∈ N0}. Our
aim was to show that long paths in 3-edge-colorings cannot be avoided. Assume that long
paths in 3-edge-colorings of graphs in T cannot be avoided. Then we have in particular

Υbd(T ) ≥ 4

as otherwise there is a positive integer d ∈ N such that for all n ∈ N there is an edge-
decomposition of Tr(n) into three forests of diameter at most d. In particular paths
of length at least d + 1 could be avoided. Thus, Υbd(T ) ≥ 4 is a necessary condition
for unavoidability of long paths in 3-edge-colorings. If we are able to prove that the
conditions of Lemma 6.6 hold for the family of iterated triangulations, then we have
Υbd(T ) = 4. Note that for all n ∈ N, Tr(n) is a planar triangulation. Thus, it remains to
show that the diameter of Tr(n) is arbitrarily large for large enough n.

Observation 6.10. For all n ∈ N0 we have: diam Tr(n) ≥ (n+ 2)/3.

Proof. Let n ∈ N0. Consider P 3
n+2. Let v0v1 . . . vn+2 denote the underlying path.

Claim 6.10.1. The third path power P 3
n+2 ⊆ind Tr(n) is an induced subgraph of the

iterated triangulation and there is an embedding of P 3
n+2 such that vn, vn+1, vn+2 bound a

face of Tr(n).

Proof of Claim. We prove the claim by induction on n. If n = 0, then Tr(n) = K3 = P 3
2 .

Assume the claim holds for some fixed n ∈ N0. By induction hypothesis, there exists a
face f of Tr(n) bounded by vn, vn+1, vn+2. In Tr(n+ 1), there is a vertex v in the face f
connected to all vertices on f . Thus, we formed in particular a face f ′ bounded by the
vertices vn+1, vn+2, v := vn+3; see Figure 6.5a. We obtain P 3

n+3 from P 3
n+2 by adding the

vertex vn+3 and all edges in Tr(n+ 1) incident to vn+3. By construction, we obtained
P 3

n+3 as an induced subgraph of Tr(n+ 1), since no new edge connects two vertices of
generation less than n+ 1 and all edges incident to vn+3 belong to P 3

n+3. The face f ′ is
the desired face of the embedding. y

Claim 6.10.2. Let n ∈ N0, u, v ∈ V (Tr(n)), k := max(gen(u), gen(v)). Then any
shortest u-v-path in Tr(n) is a path in Tr(k). In particular

distTr(n)(u, v) = distTr(k)(u, v).
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vn+1

vn

vn+2

v

P 3
n+2

(a) Gray areas represent vertices and edges of
Tr(n+ 1). The third path power P 3

n+2 is
a subgraph of Tr(n), thus a subgraph of
Tr(n+ 1). The vertices vn, vn+1, vn+3 form a
face f in Tr(n). By construction of Tr(n+ 1),
a vertex v that is adjacent to all vertices on
f is inserted. Hence, we obtain P 3

n+3 as a
subgraph of Tr(n+ 1).

a

b

z

P

(b) The path P is a path in Tr(n+ 1) be-
tween two vertices u, v of generation less
than n+ 1 that passes through a vertex
z of generation n + 1. The edges of P
are represented by dashed lines. The
path P has to pass through at least two
vertices a, b of the neighborhood of z.
Thus P is not a shortest u-v-path.

Figure 6.5: Illustrations to proof of Observation 6.10.

Proof of Claim. We will prove the claim by induction on n. The claim clearly holds
for k = n. Assume the claim holds for some n ∈ N0. Consider a shortest u-v path
P = v1 . . . v` in Tr(n+ 1). Suppose there exists z ∈ V (Tr(n+ 1)) ∩ V (P ) such that
gen(z) = n + 1, then the neighborhood of z bounds a face of Tr(n); see Figure 6.5b.
Thus, there are a, b ∈ NTr(n+1)(z) ⊆ V (Tr(n)) such that P = v1 . . . vhazbvh+4 . . . v`.
Then P ′ = v1 . . . vhabvh+4 is a shorter path as ab ∈ E(Tr(n)) ⊆ E(Tr(n+ 1)). This is a
contradiction to the choice of P . Thus, P is a path in Tr(n). By induction, any shortest
u-v-path in Tr(n) is a path in Tr(k). y

Claim 6.10.3. Let n ∈ N0. Consider the embedding of P 3
n+2 in Tr(n) constructed in

Claim 6.10.1. Let u, v ∈ V (P 3
n+2). Then

distTr(n)(u, v) = distP 3
n+2

(u, v).

Proof of Claim. We will show the claim by induction on n. If n = 0 the claim holds,
as P 3

n+2 = Tr(n) = K3. Assume the claim holds for some fixed n ∈ N0. Consider the
embedding of P 3

(n+1)+2 in Tr(n+ 1). Let k := max(gen(u), gen(v)). Without loss of
generality, we may assume gen(v) = k.
Case 1. k ≤ n. Then by induction and Claim 6.10.2, we have

distP 3
k+2

(u, v) = distTr(k)(u, v) = distTr(n)(u, v).

As a shortest u-v-path in P 3
k+2 is also a shortest u-v-path in P 3

n+2 the claim follows.
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6 Bounded Diameter Arboricity

Case 2. k = n+ 1. Note that gen(u) < k by definition of the embedding of P 3
n+3. Let

P be a shortest u-v-path in Tr(n+ 1). The path P has to pass through some vertex w
that is a neighbor of v in Tr(n+ 1). Note that every neighbor of v is a vertex of P 3

n+2 by
definition of the embedding of P 3

n+3, in particular gen(w) < gen(v) = n+ 1. Thus, P − v
is a shortest u− w path in Tr(n+ 1). By induction and Claim 6.10.2

distTr(n+1)(u,w) = distTr(n)(u,w) = distP 3
n+2

(u,w)

follows. Hence, we may assume that P − v is a path in P 3
n+2. Therefore P is a shortest

u-v-path in P 3
n+3, in particular we have

distTr(n+1)(u, v) = distP 3
n+3

(u, v)

as P is a shortest path. y

Thus, as the diameter of P 3
n+2 is at least dn+2

3 e by Observation 6.8, we have

n+ 2
3 ≤ diam(P 3

n+2) ≤ diam(Tr(n)).

Therefore, the claim follows.

As the diameter of the iterated triangulation Tr(n) is arbitrarily large for large enough
n, the family T of the iterated triangulation fulfills the conditions of Lemma 6.6. Thus,
there exists no natural number d such that every iterated triangulation can be covered
by three forests of diameter at most d.

Corollary 6.11. The family of the iterated triangulation has bounded diameter arboricity
4, i.e.,

Υbd(T ) = 4.

Proof. By Observation 6.10, the diameter of Tr(n) is arbitrarily large for large enough n.
As the iterated triangulation is a plane triangulation for all n ∈ N, we have:

|E(Tr(n))| = 3|V (Tr(n)| − 6

Thus, the conditions of Lemma 6.6 hold for the family of the iterated triangulation .̧
Hence, we have

Υbd(T ) ≥ 4

As the bounded diameter arboricity of the family of planar graphs P is four by Theorem 6.5,
we have

Υbd(T ) ≤ Υbd(P) = 4

Thus, the claim follows.
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7 Complexity of 3PlanarAvoidPk

We will discuss the complexity of the decision problem associated to Pk-free edge-colorings
of planar graphs. We use standard terminology as used by Garey and Johnson [13].

Definition 7.1 (3PlanarAvoidPk). Consider the following decision problem that we
will call 3PlanarAvoidPk. Given a planar graph G, decide whether G admits an
edge-decomposition into three graphs G1, G2, G3 such that for all i we have Pk * Gi.

If long paths cannot be avoided, we might hope that 3PlanarAvoidPk is NP-hard
for large enough k. On the other hand, NP-hardness of 3PlanarAvoidPk implies that
long paths cannot be avoided.

Observation 7.2. If for all k ∈ N there exists k′ ≥ k such that 3PlanarAvoidPk′ is
NP-hard, then for all k ∈ N Pk is 3-planar unavoidable.

Proof. Let d ∈ N be a positive integer. By assumption, there exists a positive integer
d′ ∈ N such that d′ ≥ d and 3PlanarAvoidPd′ is NP-hard. Therefore, there is a
polynomial transformation P from Sat to 3PlanarAvoidPd′ . Consider an instance I
of Sat that is not satisfiable. Then by definition of a polynomial transformation, P (I)
is a no-instance of 3PlanarAvoidPd′ . Note once again that an edge-decomposition of
a graph into three graphs G1, G2, G3 induces a 3-edge-coloring where every color class
corresponds to one of the graphs Gi. As P (I) is a no-instance of 3PlanarAvoidPd′ , P (I)
is a planar graph such that every 3-edge-coloring of P (I) contains Pd′ as a monochromatic
subgraph. Hence P (I) →3 Pd′ . Since Pd is a subgraph of Pd′ , the path Pd is 3-planar
unavoidable.

Broersma et al. investigated a similar decision problem concerning vertex decomposi-
tions instead of edge-decompositions of planar graphs. They were in particular interested
in deciding for a fixed length k ≥ 1 of a path and a given planar graph G if there is a
3-vertex-coloring, i.e., a decomposition of the vertices V (G) = V1∪V2∪V3 such that G[Vi]
does not contain Pk as a subgraph for all i ∈ {1, 2, 3}. They proved that this problem is
NP-hard for all k [4, Theorem 5.3]. Note however that G[V1], G[V2], G[V3] is in general
not an edge-decomposition of G as edges with endpoints in different color classes are not
part of any of these graphs.

7.1 Complexity of 3PlanarAvoidP2

Clearly, 3PlanarAvoidP1 is in P, as a path of length one cannot be avoided in an
edge-decomposition of a graph G, if and only if G contains at least one edge. We will
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7 Complexity of 3PlanarAvoidPk

first consider 3PlanarAvoidP2. An edge-decomposition of a graph G into three graphs
avoiding paths of length two, corresponds to a decomposition of G into three matchings;
thus, a proper 3-edge-coloring of G. If the maximum degree ∆(G) of G is greater than 3,
there is no proper 3-edge-coloring of G as in every 3-edge-coloring the same color will be
assigned to at least two edges incident to a vertex of degree at least 4. By a result of
Vizing [10, Proposition 5.3.2], we know that for all graph, we have

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

We wish therefore to decide for a planar graph G of maximum degree 3, if its chromatic
index is 3 or 4.

Lemma 7.3. Let G be a graph such that there exists v ∈ V (G) with 1 ≤ deg(v) ≤ 2 and
for all u ∈ V with u 6= v we have deg(u) = 3. Then G is not 3-edge-colorable.

Proof. Let n := |V |. Suppose there is a proper 3-edge-coloring c of G in colors 1, 2, 3.
Without loss of generality, there is an edge in color 1 incident to v and no edge in color 2
incident to v. For all i ∈ {1, 2, 3} consider

Xi = {(u, e) | u ∈ V, e ∈ E, e is incident to u, c(e) = i}.

Since c is a proper edge-coloring and for all u ∈ V \ {v} we have deg(u) = 3 there is
exactly one edge incident to u colored in i for all i ∈ {1, 2, 3}. Once again, as c is a
proper edge-coloring and one of the edges incident to v is colored in 1, there is exactly
one edge incident to v colored in 1. Thus, |X1| = n and |X2| = n − 1, as there is no
edge in color 2 incident to v. However, counting from the perspective of edges, for all
i ∈ {1, 2, 3} |Xi| has to be even, as every edge is incident to exactly two vertices. This is
a contradiction as either n or n− 1 is odd.

Using the result above, we can prove that no 3-regular graph with a bridge1 is 3-
edge-colorable. Since Tait showed that every 3-regular, bridgeless, planar graph G is
3-edge-colorable if and only if G is 4-face-colorable [10, Exercise 6.23], we can characterize
the class of planar, 3-regular, 3-edge-colorable graphs using the Four-Color-Theorem [1].
This characterization is well-known.

Corollary 7.4. Let G be a planar, 3-regular graph. Then

G is 3-edge-colorable ⇐⇒ G is bridgeless.

Proof. Let G be a planar 3-regular graph.
Case 1. G is bridgeless. Tait showed that a 3-regular, planar, bridgeless graph is

3-edge-colorable if and only if it is 4-face-colorable [10, Exercise 6.23]. The dual graph
G? of G is planar, as G is planar. Thus, G? is four-colorable by the Four-Color-Theorem.
Therefore G is 3-edge-colorable.

Case 2. G is not bridgeless. Let uv be a bridge in G. Let G′ be the component
of G − uv containing v; see Figure 7.1. Suppose G is 3-edge-colorable. Then G′ is
3-edge-colorable. Note that all vertices in G′ except v have degree 3 and degG′(v) = 2.
This is a contradiction as G′ is not 3-edge-colorable by Lemma 7.3.

1An edge e of a graph G is called bridge or cut-edge, if G − e has more connected components than G.
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v u

G′

Figure 7.1: Illustration of the proof of Corollary 7.4. The edge uv is a bridge of the
3-regular graph G. The component G′ of G− uv containing v is represented
by the gray area on the left side.

Note that we can check in linear time if a graph contains a bridge [25, Property 18.6].
Thus, we can decide in polynomial time if a given 3-regular, planar graph is 3-edge-
colorable. Cole and Kowalik claim [6, p. 3] that due to this observation the edge-chromatic
number of a planar graph with maximum degree 3 can be calculated in polynomial time
without giving a proof. However, Holyer showed that for a 3-regular graph G that is
not necessarily planar the problem of deciding if G is 3-edge-colorable is NP-complete
[19]. Vizing conjectured in 1965 that all planar graphs of maximum degree ∆ ≥ 6 are
∆-edge-colorable giving a proof for planar graphs of maximum degree ∆ ≥ 8 [27]. In
2001, Sanders and Zhao proved that all planar graphs of maximum degree ∆ ≥ 7 are
∆-edge-colorable [24], the case ∆ = 6 is still open. We also know that there are planar
graphs of maximum degree ∆ = 3, 4 and ∆ = 5 respectively that are not ∆-edge-colorable
[27]. Nevertheless, the complexity of determining the chromatic index of a planar graph
of maximum degree ∆, where 3 ≤ ∆ ≤ 5 is still unknown [18, p. 124].
We will be interested in the complexity of deciding for a planar graph of maximum

degree 3 whether it is 3-edge-colorable. Remember that the complexity of this problem
corresponds to the complexity of 3PlanarAvoidP2 as a proper 3-edge-coloring corre-
sponds to an edge-decomposition into three graphs avoiding paths of length 2, and no
graph of maximum degree at least 4 can be edge-decomposed into three graphs avoiding
paths of length 2. In order to determine the complexity of the edge-coloring problem,
one could aim to embed a planar graph G of maximum degree 3 into a planar, 3-regular,
bridgeless graph H. If there exists such a graph H, then G is 3-edge-colorable as H is
3-edge-colorable by Lemma 7.4.

Definition 7.5 (3-regular-embeddable). Let G be a planar, connected graph of maximum
degree 3. Let L(G) := {v ∈ V (G) | deg(v) < 3} denote the vertices in G of degree less
than 3. A vertex v ∈ L(G) is called non-saturated, a vertex v ∈ V (G) \ L(G) is called
saturated. We call G 3-regular-embeddable if there is a bridgeless 3-regular planar graph
H, such that G ⊆ H.

Note that if we do not enforce the supergraph H to be bridgeless, every planar graph
of maximum degree 3 would be 3-regular embeddable.
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(a) A planar embedding of the graph A
where all vertices but one have degree 3
and the only vertex of degree 2 lies on
the outer face.

v

f

(b) Embedding the graph of Figure 7.2a into
a face f adjacent to a non-saturated
vertex v in a planar way. The face f is
represented by the gray area.

Figure 7.2: Illustrations to Example 7.6.

Example 7.6. Let G be a planar graph of maximum degree 3. Then there exists a planar,
3-regular graph H such that G ⊆ H.

Proof. Let L(G) := {v ∈ V (G) | deg(v) < 3} be the non-saturated vertices ofG. Consider
a planar embedding of G. Then we connect every non-saturated vertex v ∈ L(G) to
3− deg(v) copies of the graph A represented in Figure 7.2a through edges connecting v
and the only vertex of degree 2 in the copy of A. This can be done in a planar way by
embedding the copies of A into a face f adjacent to v; see Figure 7.2b. The resulting
graph H is planar by construction and 3-regular as we connected every non-saturated
vertex v to 3− deg(v) new vertices and every new vertex has degree 3 in H.

The 3-regular supergraph H of Example 7.6 is a 3-regular graph with bridges, therefore
by Lemma 7.4 not 3-edge-colorable. As we are looking for a 3-edge-colorable, planar
supergraph of a planar graph of maximum degree 3 we need our supergraph to be
bridgeless.
By definition, a 3-regular-embeddable graph is a subgraph of a 3-regular, bridgeless

graph, thus 3-edge-colorable as a subgraph of a 3-edge-colorable graph by Lemma 7.4.
However, we will see that there exists a planar, 3-edge-colorable graph that is not 3-
regular-embeddable; see Observation 7.10. In other words, being 3-regular-embeddable is
sufficient, but not necessary for being 3-edge-colorable. Hence, we will not be able to
reduce the problem of properly edge-coloring a planar graph of maximum degree 3 to the
3-regular case using 3-regular supergraphs of our initial graph.

Nevertheless, we will be interested in deciding whether a given planar graph is 3-regular
embeddable. Hartmann, Rollin, and Rutter studied a similar augmentation problem [17].
They discussed in particular if we can augment a planar graph G of maximum degree
3 by adding edges such that the augmented graph is 3-regular and 2-connected, thus
the augmented graph is 3-regular and bridgeless as the notions of 2-edge-connectivity
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Figure 7.3: A bridgeless, 3-regular, planar supergraph H of C5. All edges belonging to C5
are represented as non-dashed lines, the edges in E(H) \ E(C5) are dashed.
All vertices in V (H) \ V (C5) are represented as black vertices.

and 2-connectivity coincide in a graph of maximum degree 3. Reducing Planar3Sat
to this augmentation problem, they showed that deciding whether there exists such an
augmentation is NP-hard [17, Theorem 3]. Clearly, if we can add edges to a given graph
in a planar way such that the resulting graph is bridgeless and 3-regular, the initial graph
is 3-regular-embeddable. However, not every 3-regular-embeddable graph can become
3-regular by only adding edges.

Example 7.7. The cycle C5 on five vertices is 3-regular-embeddable, but C5 has no
3-regular supergraph H such that V (H) = V (G).

Proof. The graph C5 is 3-regular-embeddable; see Figure 7.3.
Suppose there exists a 3-regular supergraph H of C5 such that V (H) = V (G). Consider

the set X := {(v, e) | v ∈ V (C5), e ∈ E(H) \ E(G), e is incident to v}. Then counting
from the perspective of vertices, |X| = 5 as every vertex of C5 has exactly one incident
edge in E(H) \ E(G). However, counting from the perspective of edges, |X| is even as
every edge is incident to exactly two vertices. This is a contradiction.

If a connected graph G is 3-regular-embeddable, then there is a planar embedding of
G such that we can connect every non-saturated vertex of G via new vertices and edges
to another non-saturated vertex on the same face, since G admits a 3-regular, bridgeless,
planar supergraph.

Definition 7.8 (2-face-mappable). Let G be a planar, connected graph of maximum
degree 3. We say that G is 2-face-mappable if G has the following property:
There is a planar embedding of G and a map γ : L(G)→ F (G), where F (G) denotes

the faces of the embedding, such that:

(P1) for every face in the image of γ at least two vertices of L(G) have been mapped to
f , i.e.,

∀f ∈ Im(γ) :
∣∣∣γ−1({f})

∣∣∣ ≥ 2.
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(a) An embedding that is not fixed 2-face-
mappable.

(b) A fixed 2-face-mappable embedding.

Figure 7.4: Not every planar embedding of a 2-face-mappable graph has to be fixed
2-face-mappable.

(P2) for all faces f ∈ F (G) and every bridge uv on f , we have

∀a ∈ {u, v} : γ−1({f}) ∩ V (Ga) 6= ∅,

where Ga is the component of G− uv containing a for a ∈ {u, v}.

We call such an embedding fixed 2-face-mappable.

Note that not every planar embedding of a 2-face-mappable graph has to be fixed
2-face-mappable; see Figure 7.4.

If a graph is 2-face-mappable, then there is an embedding such that we can map
each vertex to a face and add new vertices and edges in a planar way without creating
bridges such that the resulting graph is 3-regular. On the other hand, if a graph is
3-regular-embeddable, then there is such a mapping. This observation enables us to prove
that the definitions of 3-regular-embeddable and 2-face-mappable coincide for connected,
planar graphs.

Proposition 7.9. Let G be a planar, connected graph of maximum degree 3. Then

G is 2-face-mappable ⇐⇒ G is 3-regular-embeddable.

If G is 2-face-mappable, then we have in particular χ′(G) ≤ 3.

Proof. Let L(G) := {v ∈ V (G) | deg(v) < 3} denote the non-saturated vertices in G.

Claim 7.9.1. If G is 2-face-mappable, then G is 3-regular-embeddable.

Proof of Claim. As G is 2-face-mappable, there is a planar embedding of G and a map
γ : L(G) → F (G) as in Definition 7.8. Then we proceed as follows: For every face
f ∈ Im(γ) there exist u, v ∈ γ−1({f}) such that u 6= v by (P1). Without loss of
generality, we may assume degG(u) ≤ degG(v).

There are three distinct cases depending on the degree of u and v in G. As u and v lie
on the same face, we can add vertices and edges as shown in Figure 7.5. Black vertices
represent new vertices, dashed edges represent new edges. Note that all new vertices
have degree 3, and that we did not create multi-edges while preserving planarity. We did
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u v

(a) degG(u) = 2, degG(v) = 2

u v

(b) degG(u) = 1, degG(v) = 2

u v

(c) degG(u) = 1, degG(v) = 1

Figure 7.5: Illustration of the proof of Proposition 7.9. The non-saturated vertices u and
v lie on the same face f . The boundary of f is represented by a circle. Black
vertices represent new vertices, dashed edges represent new edges. All new
edges and vertices are drawn within the former face f such that the resulting
graph is planar and all represented vertices have degree 3.

u v

w

(a) degG(w) = 2.

u v

w

(b) degG(w) = 1.

Figure 7.6: Illustration of the proof of Proposition 7.9. The graph Ĝ′ on the vertices
u, v and the new created vertices is represented by the gray area within the
former face f that is adjacent to the vertices u and v in G. The boundary of
f is represented by circle. The vertex w is a non-saturated vertex adjacent
to f in the initial graph G. We connect w to Ĝ′ by subdividing edges of Ĝ′.
Black vertices represent vertices obtained by such an subdivision. The vertex
w has degree 3 in the resulting graph.
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u v

u′ v′

Gu Gv

f

Figure 7.7: Illustration of the proof of Proposition 7.9. The edge uv is a bridge in the
graph G that lies on the face f . The graph Gu is the component of G− uv
containing u, Gv the component containing v. The non-saturated vertices
u′ and v′ are connected through new vertices and edges represented by gray
areas and dotted lines. Therefore the former bridge uv is not a bridge in the
augmented graph H.

not create bridges since the initial graph G is connected; thus there exists a u-v-path
in G that is also a path of the augmentation. Another edge-disjoint u-v-path that only
contains new edges can be easily be found in the augmented graph.
Let Ĝ be the augmentation of G. Let Ĝ′ denote the subgraph of Ĝ on the vertices

u, v and the new vertices containing all new edges drawn in the former face f . Let
w ∈ γ−1({f}) \ {u, v}. Then we can subdivide one of the edges of Ĝ′ and connect w
with the newly created vertex; see Figure 7.6a. We have to do this twice if degG(w) = 1;
see Figure 7.6a. Note that once again, we did not create multi-edges and that all new
vertices have degree 3. Similarly as before, we can show that we did not create bridges
since G is connected.

Let H denote the graph that we obtain, if we proceed in such a way for every face of G.
Note that H is well-defined, as every non-saturated vertex is mapped to exactly one face
of G and the operations above do not effect any other face. Then H is a 3-regular, planar
graph and G ⊆ H by construction. Suppose H is not bridgeless. As by construction, we
did not create any bridge, a bridge uv in H is a bridge in G. Then uv lies on the boundary
of exactly one face f ∈ F (G). Let Gu denote the component of G− uv containing u, and
Gv the component of G−uv containing v. By (P2), there are vertices u′ ∈ V (Gu)∩L(G)
and v′ ∈ V (Gv) ∩ L(G) such that u′ and v′ are mapped to f . By construction, there is
a u′-v′ path that only goes through edges in E(H) \ E(G); thus, in particular does not
contain uv, see Figure 7.7. Therefore H − uv is still connected and uv is not a bridge,
contradicting our assumption.

Therefore, H is a 3-regular, planar, bridgeless graph. y

In particular, as χ′(H) = 3 by Lemma 7.4, we have χ′(G) ≤ 3.

Claim 7.9.2. If G is 3-regular-embeddable, then G is 2-face-mappable.

Proof of Claim. Let G be 3-regular-embeddable. Then there exists a planar, 3-regular,
bridgeless graph H such that G ⊆ H. We will call the edges E(H) \ E(G) new edges
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and the vertices V (H) \ V (G) new vertices. Consider a planar embedding of H. We will
define a function γ : L(G)→ F (G). Let v ∈ L(G). All new edges that are incident to v
lie within the same (former) face fv ∈ F (G), as if degG(v) = 2 there is just one such edge
and if degG(v) = 1 the vertex v lies on the boundary of exactly one face of G. We set

γ(v) = fv.

Suppose there exists v ∈ L(G) such that there is no other vertex u ∈ L(G) mapped to
the face γ(v).

Case 1. degG(v) = 2. As no other vertex in L(G) is mapped to fv, but v has degree 3
in H, there is a new vertex v′ adjacent to v; see Figure 7.8a. Then vv′ is a bridge in H,
as no other vertex on the boundary of fv has an incident new edge within the former
face fv.

Case 2. degG(v) = 1. Then v has exactly one neighbor u in G; see Figure 7.8b. Thus,
uv is a bridge in H as no other vertex on the boundary of fv has an incident new edge
within the former face fv.

In both cases, this is a contradiction, as H is bridgeless. Therefore the property (P1)
required in Definition 7.8 holds.

Suppose the property (P2) does not hold for γ. Then there is a bridge uv ∈ E(G) such
that

γ−1(f) ∩ V (Ga) = ∅

for some a ∈ {u, v}, where Ga denotes the component of G − uv containing a and f
denotes the face such that uv lies on its boundary. Note that there is exactly one such
face f . Without loss of generality, we may assume

γ−1(f) ∩ V (Gu) = ∅.

This means that no new edge incident to a vertex in Gu lies in the (former) face f . Hence,
uv is still a bridge in H. This is a contradiction, as H is bridgeless.
Therefore γ is the function required in Definition 7.8 and G is 2-face-mappable. y

By Claim 7.9.1 and Claim 7.9.2, we see that the notions of 3-regular-embeddable and
2-face-mappable graphs coincide for connected, planar graphs of maximum degree 3.

Using the characterization of 3-regular-embeddable graphs given in Proposition 7.9,
we can now conclude that there exists a 3-edge-colorable graph of maximum degree 3
that is not 3-regular-embeddable. Thus, being 3-regular-embeddable is not necessary,
but sufficient for being 3-edge-colorable.

Observation 7.10. There exists a planar 3-edge-colorable graph G of maximum degree
3 that is not 3-regular-embeddable.

Proof. Consider the graph G given in Figure 7.9a. As G is a bipartite graph, we have by
a result of König [10, Proposition 5.3.1]

χ′(G) = ∆(G) = 3.
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v v′

(a) degG(v) = 2.

u v

(b) degG(v) = 1.

Figure 7.8: Illustration of the proof of Proposition 7.9. Dashed edges represent new edges,
gray areas represent new vertices and edges. The non-saturated vertex v of
G is adjacent to the former face fv whose boundary is represented by a circle.
No other non-saturated vertex is mapped to v. Therefore, the augmentation
H contains a bridge.

a

x

b

y

c

(a) A 3-edge-colorable planar graph of max-
imum degree 3 that is not 3-regular-
embeddable.

b a

c

x

f

(b) An embedding of G[a, b, c, x] where a, b
and c lie on the same face f .

Figure 7.9: Illustrations to the proof of Observation 7.10.
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Claim 7.10.1. There is no embedding of G such that a,b and c lie on the same face.

Proof of Claim. Note that G is 2-connected, since G admits an ear-decomposition
[2, Theorem 25]: G0 = G[a, x, c, y], G1 = G, where G0 is a cycle on four vertices
and G1 can be obtained from G0 by adding a G0-path. Thus, in every planar embedding
of G, every face is bounded by a cycle [10, Proposition 4.2.6].
Suppose there is a planar embedding of G, such that a,b and c lie on the same face

f . As a and c are not connected and a,b,c form a path, x or y has to lie on f , since f
is bounded by a cycle. Without loss of generality, we may assume that x lies on f . As
b and x are connected, either a or c does not lie on the outer face. We may assume a
does not lie on the outer face. Thus, we are in the situation of Figure 7.9b. There is no
way to add y and the edges incident to y such that the embedding is still planar and a,b
and c lie on the same face. This is a contradiction to the assumption and thus shows the
claim. y

Therefore, G is not 2-face-mappable, as the property (P1) cannot hold for any function
γ : L(G)→ F (G). By Proposition 7.9, a graph H is 3-regular-embedabble if and only if
H is 2-face-mappable. Thus, G is not 3-regular-embeddable.

Although not all 3-edge-colorable, planar graphs of maximum degree 3 are 3-regular-
embeddable, we are still interested in deciding for a given graph if it is 3-regular-
embeddable, i.e., 2-face-mappable by Proposition 7.9. For every 2-face-mappable graph
G there exists a mapping from the non-saturated vertices of G to the faces of a fixed
2-face-mappable embedding. In some way, this mapping resembles a matching in a
bipartite graph where one part contains all non-saturated vertices of G and the other all
faces of the embedding. We can calculate the size of a maximum matching in a bipartite
graph in polynomial time using flows as explained by Kleinberg and Tardos [20, p. 370].
By increasing the capacity of edges connecting the faces to the sink, we can modify this
approach slightly so that multiple vertices can be mapped to the same face.
The situation of 2-face-mappable graphs is however somewhat different, as we wish

that there is no face f such that exactly one vertex is mapped to f . Further, it is not
clear how we can enforce that property (P2) holds. Thus, we will restrict our analysis to
bridgeless, planar graphs of maximum degree 3.
We wish to decide for a bridgeless, planar graph G of maximum degree 3 if it is

2-face-mappable. In fact, if we consider the bipartite graph G′ where one part consists of
all non-saturated vertices, the other of the faces of G and we connect each vertex with its
adjacent faces, we are looking for a subgraph of G′ such that each non-saturated vertex
in G has degree one in G′ and no face has degree 1. Thus, we wish to decide whether G′
admits a specific generalized factor as defined below. The following definitions are taken
from Cornuéjols [8, p. 185].

Definition 7.11. Let G be a graph.

1. Let b : V (G)→ N0 be a mapping from the vertices of G to non-negative integers.
The problem of deciding for a given graph G and such a mapping b whether there
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exists a spanning subgraph H ⊆ G such that

∀v ∈ V (H) = V (G) : degH(v) = bv

is called the FactorProblem. We call the graph H a b-factor.

2. Let B : V (G) → {S ⊂ N0} be a mapping from all vertices v of G to a subset of
{0, . . . ,degG(v)}. The problem of deciding for a given graph G and such a mapping
B whether there exists a spanning subgraph H ⊆ G such that

∀v ∈ V (H) = V (G) : degH(v) ∈ B(v)

is called the GeneralFactorProblem. We call the graph H a B-factor. Let
v ∈ V (G). We say that the set B(v) has a gap of length p ≥ 1 if there exists
a non-negative integer k ∈ B(v) such that k + 1, k + 2, . . . , k + p /∈ B(v) and
k + p+ 1 ∈ B(v).

While the FactorProblem can be solved in polynomial time [8], the GeneralFac-
torProblem is NP-complete [8, p. 186]. Lovász who initiated the study of general
factors, realized however that the gaps in the sets B(v) of the definition above play
an important role in determining the complexity of restrictions of the GeneralFac-
torProblem [21]. In 1988, Cornuéjols showed that if there are no gaps of length at
least two, we can decide for a graph in polynomial time if it admits a general factor
[8, Section 3]. This enables us to show that we can verify in polynomial time for a given
planar embedding of a bridgeless, planar graph G of maximum degree 3 if it is fixed
2-face-mappable, i.e., if G is 3-regular-embeddable relative to the given embedding.

Theorem 7.12. Let G be a planar, bridgeless graph of maximum degree 3. Then we can
decide in polynomial time, whether a planar embedding of G is fixed 2-face-mappable.

Proof. Consider the bipartite graph G′ with parts

A := L(G) = {v ∈ V (G) | deg(v) < 3}

and B := F (G) the faces of the embedding. Let

E(G′) = {vf | v ∈ L(G), f ∈ F (G), v lies on f}.

Let

B : V (G′)→ {S ⊆ N0}

u 7→
{
{1}, u ∈ A = L(G)
{0, 2, 3, . . . ,degG′′(u)}, u ∈ B = F (G).

An example of the construction of G′ is given in Figure 7.10.
Then (G′, B) is an instance of the GeneralizedFactorProblem where no gap

has length at least two and G′ is bipartite. More precisely (G′, B) is an instance
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a

b

c d

f1

f2 f3 f4

(a) The inital graph G. Only vertices of
degree at most two are drawn explicitly.

a

b

c

d

f1

f2

f3

f4

(b) The graph G′ and a B-factor H of G′.
All represented edges belong to G′. The
edges of H are the non-dashed edges.

Figure 7.10: An example of the polynomial transformation proposed in Theorem 7.12.

of the Bipartite1FactorAntifactorProblem, a restricted version of the Gene-
ralizedFactorProblem where the initial graph H is bipartite with parts A and B,
B(a) = {1} for all a ∈ A and B(b) = {0, 2, 3, . . . ,degH(b)}. As Cornuéjols showed
that the Bipartite1FactorAntifactorProblem polynomially reduces to the Edge-
AndTrianglePartitioningProblem [8, Theorem 1] and the latter can be solved in
polynomial time as has been shown by Cornuéjols, Hartvigsen, and Pulleyblank [9], we
can decide in polynomial time whether G′′ admits B-factor.

Claim 7.12.1. The graph G′ admits a B-factor if and only if the embedding of G is
fixed 2-face-mappable.

Proof of Claim. Let G′ admit a B-factor H. We wish to define a map¸ γ : L(G)→ F (G).
As for all vertices v ∈ L(G) = A we have degH(v) = 1, there is exactly one face
fv ∈ F (G) = B such that vfv ∈ E(H). By definition of G′, v lies on the face fv. We set
γ(v) = fv for all v ∈ L(G). Thus γ is well-defined. As for all f ∈ F (G) = B, we have
degH(f) 6= 1, we see that

∀f ∈ F (G) :
∣∣∣γ−1(f)

∣∣∣ 6= 1.

Thus, property (P1) holds. As G is bridgeless, we do not have to show property (P2).
Therefore, G is fixed 2-face-mappable.

Conversely, if G is fixed 2-face-mappable and γ : L(G) → F (G) is the map given
in Definition 7.8, we get a B-factor H of G′ as follows. Let V (H) = V (G′) and
E(H) = {vγ(v) | v ∈ L(G) = A}. Then similarly as before, we see that E(H) ⊆ E(G′)
and that H is a B-factor. y

As the construction of G′ can be done in polynomial time and we can decide in
polynomial time if G′ admits a B-factor, we can decide in polynomial time if G is fixed
2-face-mappable.
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7.2 Complexity of DemandFlow

As we already pointed out earlier, we can find a matching in a bipartite graph in
polynomial time by calculating the flow of an auxiliary network. We will proceed
similarly as in the proof of Theorem 7.12. Once again, we wish to find a map as required
in the definition of 2-face-mappable graphs in order to decide for a planar, bridgeless
graph whether it is fixed 2-face-mappable, but instead of B-factors, we will use flows.
Imagine a water source connected to a target via pipes that are able to carry a certain
amount of water. This situation can be modeled by a network. We will use the definition
of a flow given by Diestel [10, p. 151]. A network N = (G, s, t, c) is a directed graph G
with a capacity c : E(G)→ N0 ∪ {∞} and two vertices s, t ∈ V (G) called the sink and
the target, respectively. A flow is a map ϕ : E(G) → N0 such that the amount of flow
ϕ(e) going through an edge e ∈ E(G) cannot exceed the capacity c(e), i.e.,

∀e ∈ E(G) : ϕ(e) ≤ c(e)

and further such that flow is preserved within the network excepting source and target,
i.e.,

∀v ∈ V (G) \ {s, t} :
∑

uv∈E(G)
ϕ(uv)−

∑
vu∈E(G)

ϕ(vu) = 0.

The value |ϕ| of the flow ϕ is the sum of flow leaving the source, i.e,

|ϕ| =
∑

sv∈E(G)
ϕ(sv).

Once again, we consider the bipartite graph G′ where one part consists of all non-
saturated vertices, the other of the faces of the chosen planar embedding. A vertex and
a face are adjacent in G′ if the vertex lies on the face. We wish to find a map from
non-saturated vertices to adjacent faces in G′ such that every vertex is mapped to exactly
one face and no face is mapped to exactly one vertex. While the first condition can be
modeled using flows, to express the second condition we will introduce a more general
notion of demand flows.

Definition 7.13. Consider the following decision problem DemandFlow: Given a
network N := (G, c, s, t), a positive integer k ∈ N and a function d : E(G)→ N0 that we
will call demand. Is there an integral flow ϕ such that for every e ∈ E(G) we have

ϕ(e) ≥ d(e) or ϕ(e) = 0

and the flow value is at least k? We call such a flow feasible. We are also interested in
restricted variants of DemandFlow for fixed ` ∈ N where Im(d) ⊆ {0, `}. We call this
decision problem DemandFlow`.
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7.2 Complexity of DemandFlow

Note that the problem on a network where we have a demand function d and ask
whether there is a flow ϕ such that for every e ∈ E(G), we have

d(e) ≤ ϕ(e)

can be solved in polynomial time. This problem can be reduced to a flow problem without
a demand function as has been discussed by Kleinberg and Tardos [20, pp. 382–384].

Proposition 7.14. If DemandFlow2 ∈ P, then we can decide in polynomial time if a
given planar embedding of a planar, connected, bridgeless graph G of maximum degree 3
is fixed 2-face-mappable.

Proof. Consider the directed bipartite graph G′ with parts

A := L(G) = {v ∈ V (G) | deg(v) < 3}

and B := F (G) the faces of the embedding. Let

E(G′) = {vf | v ∈ L(G), f ∈ F (G), v lies on f}.

Let G′′ be the directed graph that we obtain from G′ by adding vertices s and t and
joining s to all vertices in A and t to all vertices in B with an edge, i.e.,

E(G′′) = E(G′) ∪ {sv | v ∈ L(v)} ∪ {ft | f ∈ F (G)}.

Let

d : E(G′′)→ N0

uv 7→
{

0, u /∈ F (G)
2, otherwise

be the demand function and let

c : E(G′′)→ N0

uv 7→
{
∞, u ∈ F (G)
1, otherwise

be the capacity function. Consider (G′′, s, t, c) together with d and k := |L(v)|, we call
this instance I. I is an instance of DemandFlow2. An example is given in Figure 7.11.

Claim 7.14.1. The instance I is a yes-instance of DemandFlow2 if and only if the
embedding of G is fixed 2-face-mappable.

Proof of Claim. If I is a yes-instance, then there is a feasible flow ϕ of value at least
|L(G)|. We wish to define a function γ : L(G)→ F (G). As s is only mapped to vertices
of L(G) and the capacity of each such edge is one, ϕ has value |L(G)|. Thus, for every
vertex v ∈ L(G), there is exactly one face f ∈ F (G) such that ϕ(vf) = 1. We set
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(a) The inital graph G. Only vertices
of degree at most two are drawn
explicitly.
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(b) The graph G′′ and a feasible flow. Dashed edges
represent edges with 0-flow, all other edges have
positive flow.

Figure 7.11: An example of the polynomial transformation proposed in Proposition 7.14.

γ(v) = f . As for every edge ft, where f ∈ F (G), we have ϕ(ft) = 0 or ϕ(ft) ≥ 2 we see
that

∀f ∈ Im(γ) :
∣∣∣γ−1(f)

∣∣∣ ≥ 2.

Thus, property (P1) holds. As G is bridgeless, we do not have to show property (P2).
Similarly, ifG is fixed 2-face-mappable, the map γ : L(G)→ F (G) given in Definition 7.8

defines a feasible flow. y

As we can construct G′′ in polynomial time and we assumed DemandFlow2 to be in
P, we can decide in polynomial time if G is fixed 2-face-mappable.

We already proved in Theorem 7.12 that we can decide in polynomial time for a given
planar embeddding of a planar, bridgeless graph of maximum degree 3 if it is fixed 2-face-
mappable. The proof of Proposition 7.14 is indeed very similar to the approach chosen
in Theorem 7.12. Therefore, at first glance, it might seem likely that DemandFlow2
is in P. However, we will see in Theorem 7.16 that DemandFlow2 is NP-complete.
As this is the case, there exists a polynomial transformation from every problem in NP
to DemandFlow2, thus it is not surprising that we were able to find a polynomial
transformation from the fixed 2-face-mappable problem to DemandFlow2.

In order to prove NP-completeness of DemandFlow2, we will prove that the decision
problem DemandFlow3 is NP-complete. As DeamndFlow3 is a restricted variant of
DemandFlow, NP-completeness of DemandFlow follows.

Lemma 7.15. The decision problem DemandFlow3 is NP-complete.

Proof. Büning and Lettmann showed that it is NP-complete to determine the satisfia-
bility of a given 3SAT-instance where every variable appears in at most three clauses
[5, Theorem 3.1.4. 2]. We call this problem 3Bounded3Sat. We wish to show that the
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restricted variant Exactly3Bounded3Sat of 3Bounded3Sat where every variable
appears in exactly three clauses is also NP-complete.

Claim 7.15.1. The decision problem Exactly3Bounded3Sat is NP-complete.

Proof of Claim. As we can verify for an instance of Exactly3Bounded3Sat and a given
variable assignment whether it is satisfying in polynomial time, Exactly3Bounded3Sat
is inNP . Further, 3Bounded3Sat is reducible to Exactly3Bounded3Sat as for every
variable x that appears only once we can add two clauses x ∨ x ∨ x and for every variable
x that appears twice, we can add a single clause x ∨ x ∨ x. As all new clauses are
clearly always satisfiable and this construction can be done on polynomial time, the claim
holds. y

DemandFlow3 ∈ NP as we can verify in polynomial time if a given flow is feasible.

Claim 7.15.2. Exactly3Bounded3Sat ∝ DemandFlow3.

Let I be an instance of Exactly3Bounded3Sat. Let X := {x1, . . . , xn} be the
variables of I and let tx be the number of clauses containing the variable x ∈ X. As
I is an instance of Exactly3Bounded3Sat, we have tx = 3 for all x ∈ X. For every
variable x ∈ X let x and x be the literals of x. Let L := {x, x | x ∈ X} denote the set of
all literals of I and C the set of all clauses. Consider the following directed graph G. Let

V (G) := {s, t} ∪X ∪ L ∪ C.

Let

EsX := {sx | x ∈ X}
EXL := {xx, xx | x ∈ X}
ELs := {xs, xs | x ∈ X}
ELC := {`c | ` ∈ L, c ∈ C, ` ∈ c}
ECt := {ct | c ∈ C}

and let E(G) := EsX ∪ EXL ∪ ELs ∪ ELC ∪ ECt. We define the capacity function c as
follows.

c : E(G)→ N0

e 7→



tx, e = sx ∈ EsX

tx, e = x` ∈ EXL

tx, e = xs ∈ ELs or e = xs ∈ ELs

1, e ∈ ELC

1, e ∈ ECt
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Figure 7.12: An example of the polynomial transformation proposed in Lemma 7.15
representing a feasible flow of the network (G, s, t, c) corresponding to the
Sat-instance (a∨b)∧ (a∨b). Dashed edges represent edges with 0-flow. For
simplicity, the transformation is illustrated for an instance of SAT instead
of Exactly3Bounded3Sat.

Let d be the demand defined as follows.

d : E(G)→ N0

e 7→
{
tx, e = x` ∈ EXL

0, otherwise

Let I ′ denote the instance of DemandFlow given by the network (G, s, t, c), the demand
d and k := |C|. An example is given in Figure 7.12. Note that I ′ is an instance of
DemandFlow3 as tx = 3 for all x ∈ X.

Claim 7.15.3. I is satisfiable ⇐⇒ I ′ is a yes-instance of DemandFlow3.

Proof of Claim. Let I be satisfiable. We wish to define a feasible flow ϕ. There exists a
variable assignment satisfying all clauses. For every clause c, we can pick a literal ` that
is true. We set ϕ(`c) = 1 and ϕ(ct) = 1. Let t` be the number of times the literal ` has
been chosen. Let x be the variable associated to `. We set ϕ(x`) = tx, ϕ(`s) = tx − t`
and ϕ(sx) = tx. For all variables and all literals that have not been considered so far, we
set the flow of all incident edges to 0. This defines a feasible flow of value |C|. Note that
the edges ELs were necessary in order to preserve flow.
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If I ′ is a yes-instance of DemandFlow3, there is a feasible flow ϕ′ of value at least
|C|. As the edges ECt define an s-t-cut of the graph G, the flow ϕ′ is of value exactly
|C|. Thus, for every clause c there is exactly one literal ` such that ϕ′(`c) = 1 by flow
preservation. Further, for every variable x ∈ X, at most one of the edges xx and xx has
positive flow by definition of the demand d. Therefore we can set x to true, if xx has
positive flow and to false otherwise. This defines a satisfying assignment, as in every
clause there is at least one literal that is true. y

As Exactly3Bounded3Sat is NP-complete and the given transformation can be
calculated in polynomial time, DemandFlow3 is NP-complete.

However, in order to verify for a fixed embedding if it is 2-face-mappable, we needed
DemandFlow2 in Proposition 7.14; thus, the demand for each edge was 0 or 2. The
same construction as in Lemma 7.15 will not work in order to prove NP-completeness for
DemandFlow2 as we could only consider SAT-instances where each variable appears
in exactly two clauses. The problem Sat(2) of deciding for such SAT-instances if they
are satisfiable is solvable in linear time as has been shown by Büning and Lettmann
[5, Theorem 3.1.4 3.]. Though, we can simulate edges of demand 3 and capacity 3 by
small graphs that only have demand 2 or 0 for edges as we will see in the following proof.

Theorem 7.16. The decision problem DemandFlow2 is NP-complete.

Proof. Clearly, DemandFlow is in NP as we can verify in polynomial time for a given
flow if it is feasible. We already proved that DemandFlow3 is NP-complete. Using the
reduction of Exactly3Bounded3Sat to DemandFlow3 proposed in Lemma 7.15, we
will show that DemandFLow2 isNP-complete. Let I be an instance of the decision prob-
lem Exactly3Bounded3Sat and let I ′ be the constructed instance of DemandFlow3
as in Lemma 7.15. Let (G, s, t, c) be the network, d the demand and k the value of a
feasible flow of I. Note that there are only two types of edges in G depending on their
demand. Let e ∈ E(G) be an edge.
Case 1. d(e) = 0. The demand of this edge is also a valid demand for an instance of

DemandFlow2.
Case 2. d(e) = 3. By construction of I ′, e ∈ EXL, thus c(e) = 3 as every variable in

I appears in exactly three clauses. We can replace the edge e = gh by the graph He

given in Figure 7.13. We will show that e behaves in the same way as He. Let Ĝ be the
graph where we replaced the edge e by He. Let ĉ denote the capacity and d̂ the demand
of the network (Ĝ, s, t, ĉ). For all edges of E(G) ∩ E(Ĝ) the maps d and d̂, and c and ĉ
respectively, agree.

Claim 7.16.1. The network G admits a feasible flow if and only if Ĝ admits a feasible
flow.

Proof of Claim. Let ϕ be a feasible flow of G. Then we can construct a feasible flow
ϕ̂ of Ĝ as follows. If ϕ(e) = 0, we can set ϕ̂(ê) = 0 for all edges ê ∈ E(He), otherwise
ϕ(e) = 3 as c(e) = d(e) = 3 and we can set ϕ̂(ê) = ĉ(ê) for all ê ∈ E(He). For all other
edges, we set ϕ̂ to the value of ϕ. This defines a feasible flow as the outgoing flow of g in
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Figure 7.13: Every edge e = gh in the instance I ′ of DemandFlow3 where c(e) = 3 and
d(e) = 3 can be replaced by the graph given above. All vertices except g
and h do not belong to the graph G of the instance I ′. An edge e′ labeled
p | ` denotes an edge of demand d(e′) = p and capacity c(e′) = `.

He is equal to the flow going through e = gh and the same holds for the incoming flow of
h in He. Note that the flow values of ϕ and ϕ̂ are identical.
Let ϕ̂ be a feasible flow of Ĝ. If ϕ̂(gu) > 0, then ϕ̂(gu) = 2 as ĉ(gu) = d̂(gu) = 2.

By flow preservation, we have ϕ̂(ux) = 1 and ϕ̂(uy) = 1, thus by the same argument
ϕ̂(yh) = 1 and ϕ̂(xh) ≥ 1. As d̂(xh) = 2 and ĉ(xh) = 2, we have ϕ̂(xh) = 2, thus by
flow preservation ϕ̂(vx) = 1 and ϕ̂(gv) = 1. Similarly, we can show that ϕ̂ assigns the
same values to the edges of He if ϕ̂(gv) > 0. Thus, if the outgoing flow of g in He is
positive, it is equal to 3, otherwise it is zero. Therefore, we set the flow of e = gh in
G to the outgoing flow of g in He, i.e., ϕ(e) = ϕ̂(gu) + ϕ̂(gv) and for all other edges
e′ ∈ E(G) \ {e}, we set ϕ(e′) = ϕ̂(e′). This defines a feasible flow as seen above as the
flow values of ϕ and ϕ̂ are identical. y

We proceed in such a way for all edges of G. Let I ′′ be the obtained instance
of DemandFlow, let G′′ be the underlying graph and d′′ its demand. Then we see
inductively by Claim 7.16.1 that G admits a feasible flow if and only if G′′ admits a feasible
flow. By construction of the instance I ′′, we have Im(d′′) ⊆ {0, 2}. Thus I ′′ is an instance
of DemandFlow2. As G was constructed through a polynomial transformation from
Exactly3Bounded3Sat to DemandFlow3, we have a polynomial transformation
from Exactly3Bounded3Sat to DemandFlow2. Therefore DemandFlow2 is NP-
complete as Exactly3Bounded3Sat is NP-complete.
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8 Conclusions

Our aim was to show that all paths are not only 2-planar unavoidable as has been shown
by Axenovich et al. [3, Lemma 6], but also 3-planar unavoidable. While this question
remains open, we were able to show that there exist paths that are 4-planar avoidable.
Axenovich et al. studied the iterated triangulation intensively. If all paths are 3-planar
unavoidable, it seems likely that they are also 3-planar unavoidable in the class of iterated
triangulations as the iterated triangulations cannot be edge-decomposed into three forests
of bounded diameter. However, there exists a family of planar graphs that cannot be
covered by three forests of bounded diameter, but admits an edge-decomposition into
two graphs (which may contain cycles) of bounded diameter. Thus, in order to show
that all paths are 3-T unavoidable, it is not sufficient, but necessary to know that the
bounded diameter arboricity of the class of iterated triangulations T is 4.

Another possible approach of proving that all paths are 3-planar unavoidable is to show
that the decision problem 3PlanarAvoidPk is NP-complete for large enough k. We
were interested in the special case k = 2. A graphG is a yes-instance of 3PlanarAvoidP2
if and only if G admits a 3-edge-coloring that does not contain P2 as a subgraph, i.e., if
G is 3-edge-colorable. As all 3-regular, bridgeless, planar graphs are 3-edge-colorable by
a result of Tait, we aimed to reduce 3PlanarAvoidP2 to the problem of determining
whether a graph G admits a 3-regular, bridgeless, planar supergraph. In the latter case,
we call G 3-regular-embeddable. It turned out that being 3-regular-embeddable implies
being 3-edge-colorable, but not vice-versa. Thus, we cannot reduce 3PlanarAvoidP2
to being 3-regular-embeddable. Although we did not determine the complexity of the
3-regular-embeddable problem, we were able to show that we can decide in polynomial
time for a given planar embedding of a bridgeless, connected graph G whether G admits
a 3-regular, bridgeless, planar supergraph that respects the embedding of G.
The complexity of 3PlanarAvoidPk is still unknown for k ≥ 2. The special case

k = 2 is of greater interest as it is part of the study of the chromatic index of planar graphs.
Vizing conjectured that all planar graphs of maximum degree ∆ ≥ 6 are ∆-edge-colorable
[27]. A proof for ∆ ≥ 7 was given by Sanders and Zhao [24]. Although planar graphs of
maximum degree 3 ≤ ∆ ≤ 5 are known that are not ∆-edge-colorable [27], the complexity
of the associated decision problems remain unknown [18, p. 124].

While all paths are 2-outerplanar unavoidable [3, Lemma 6], the same does not hold for
edge-colorings of outerplanar graphs using three colors. As every outerplanar graph can
be edge-decomposed into three star forests and all stars are 3-outerplanar unavoidable,
the 3-outerplanar unavoidable graphs are precisely the star forests.
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