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Abstract

Customizable Contraction Hierarchies enable fast shortest path queries on continental
routing graphs. They can be used to integrate real-time traffic data into online
navigation. This is possible due to a two-phase precomputation. In the first, metric-
independent phase shorcuts are added to the road graph. The second phase, called
customization, is used to add a metric to the augmented graph. Customization can
be done in seconds enabling frequent changes to the metric.

In this thesis we present several optimizations accelerating the customization phase.
These optimizations make use of the structure of the vertex and are mainly focussed on
triangle enumeration. We present several approaches to parallelize these optimizations.
In the end we conduct experiments with these techniques and report the results.

Deutsche Zusammenfassung

Customizable Contraction Hierarchies ermöglichen sehr schnelle Kürzeste-Wege-
Anfragen auf kontinentalen Straßengraphen. Darüber können sie genutzt werden, um
die aktuelle Verkehrssituation in Echtzeit in die Navigation aufzunehmen. Dies ist
durch eine zweigeteilte Vorberechnung möglich, deren erster Schritt, unabhängig von
der der gewählten Metrik, neue Abkürzngskanten in den graphen einbaut. Erst im
zweiten Schritt, der Anpassungsphase, wird die Metrik eingebaut. Die Anpassung
kann auf einem Server in wenigen Sekunden durchgeführt werden, was häufige
Änderungen der Metrik ermöglicht.

In dieser Arbeit stellen wir mehrere Optimierungen vor, die die Anpassungsphase
beschleuningen. Die Optimierungen nutzen die Struktur der Knotenkontraktion und
beziehen sich auf die Dreiecksaufzählung. Dazu stellen wir Ansätze vor, wie diese
Optimierungen parallelisiert werden können. Zu beidem führen wir Ergebnisse durch
und präsentieren die Ergebnisse.
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1. Introduction

In the modern world computer assisted navigation has become more and more important.
Dedicated navigation hardware can be found in many cars even though these devices are
getting replaced by online mapping services accessed using smartphones. Several web-based
services offer interactive real-time routing on a continental scale. Such systems also take
into account real-time traffic data, providing a more realistic model of actual travel time.
Online routing services have to deal with very high numbers of queries in the order of
several thousand requests per second. This requires highly efficient routing algorithms with
very low query time, which can easily be adapted to new traffic situations.

The classical approach to finding shortest paths is using Dijkstra’s algorithm[6]. It can
easily switch between different distance metrics without requiring additional computation.
However, with query times of up to several seconds it is unsuitable for interactive online
routing on large scale graphs.

Over the last few decades many speed-up techniques have been developed in order to
improve query time. Most of them depend on additional precomputation with different
requirements of processing time and additional memory. One approach employed in such
techniques is to add additional edges called shortcuts to the graph. These shortcuts can
help to reduce the number of edges visited. Other approaches use hierarchical structures
in the road graph to divide it into smaller parts. Contraction Hierarchies[7] (CH) are
a technique combine these concepts. They allow for very fast shortest-path queries. As
Contraction Hierarchies are fully metric-dependent, they need to be rebuilt every time the
metric changes. This requires a considerable amount of preprocessing, making CHs less
useful with frequent metric updates.

Exploiting the fact that the basic road network rarely changes, some approaches split
preprocessing into two phases. In the first phase a metric-independent structure is generated
which is then populated with edge weights in a second phase. A two-phase approach
allows using multiple metrics at once for performing queries on each of them. With a fast
customization phase it is possible to provide personalized metrics for specific requirements
of a single user.

The first speed-up technique to support two-phase with arbitrary metrics was Customizable
Route Planning[3]. It supports very fast customization in the order of seconds using
arbitrary metrics.

An approach similar to Contraction Hierarchies but with precomputation split into two
phases are Customizable Contraction Hierarchies (CCH)[5].
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1 Introduction

With frequent traffic updates the performance of the customization phase is quite important.
CCHs allow for the customization to be accelerated using parallelization and some sequential
optimizations.

Basic methods for parallelizing CCH customization have already been presented in [5].

In this work we will first summarize the CCH algorithm as introduced in [5]. We will then
introduce several optimizations of the customization phase. By exploiting the structure of
the graph we can accelerate triangle enumeration, which is the basic operation of several
steps in the CCH algorithm.

One more chapter will be about parallelizing the customization phase using our sequen-
tial optimizations. We will present several approaches to lock-free parallization of the
customization phase as well as witness search.

We will also conduct experiments on how the modifications perform and present the results
in this work.
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2. Preliminaries

This chapter provides the formal definition and the basic concept of customizable contraction
hierarchies.

We denote an undirected Graph by G = (V, E) where V is the finite set of vertices and E
is the finite (multi-)set of undirected edges. A directed Graph is denoted by G = (V, A)
where A is the (multi-)set of directed arcs. If E contains several instances of an edge e this
edge is called a multi-edge. A graph not containing any multi-edges is called simple. An
edge whose endpoints are equal is called a loop.

A vertex order π : {1 . . . n} → V is a permutation of the vertices of a graph. Its inverse
π−1 is called rank.

With respect to the order we call a vertex v higher than another vertex w, if and only if it
has a higher rank, i.e. π−1(v) > π−1(w). Accordingly, w is called lower than v. An edge
or arc can be traversed upwards and downwards, i.e. from the lower endpoint to the upper
or from the upper to the lower endpoint respectively.

A directed graph G is upward directed with respect to an order π, if for every arc the tail
vertex is below the head vertex, i.e. ∀ (v, w) ∈ A : π−1(v) < π−1(w). Every undirected
graph can be transformed into an upward directed Graph G∧ with respect to a vertex
order π by removing loops and replacing each remaining edge {i, j} ∈ E with an arc (i, j)
if j is higher than i, otherwise we replace {i, j} with an arc (j, i).

The upward neighbourhood of a vertex v in a graph G with respect to an order π consists of
v’s neighbours with a higher rank. It is denoted by Nu(v) := {w : (v, w) ∈ A}. Similarly
the downward neighbourhood is defined as Nd(v) := {w : (w, v) ∈ A} and contains the
neighbours of v with lower rank. By du(v) = |Nu(v)| we denote the upward degree of a
vertex v and by dd(v) = |Nd(v)| we denote the downward degree of a vertex v.

An upward directed graph can be divided into levels. For each vertex the level is defined as

l(v) =
{

0 if Nd(v) = ∅
max{l(w) : w ∈ Nd(v)}+ 1 otherwise

Each vertex is in the lowest level above the levels of its downward neighbours. We define
the set of vertices on each level LV (i) := {v ∈ V : l(v) = i}. Similarly, we define the set of
arcs starting at a vertex on each level LA(i) := {(u, v) ∈ A : u ∈ LV (i)}.
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2 Preliminaries

Edge weights, also called metric, are a mapping w : E → R>0 for undirected graphs or
w : A→ R>0 for directed graphs. With respect to an order π we define an upward weight
wu for an edge or arc when traversed upwards and a downward weight wd when traversed
downwards. For an edge or arc (u, v) with asymmetric weights we denote by m(u, v) the
weight from u to v while m(v, u) is the weight from v to u. This can also be used to model
directed weights in undirected graphs.
A sequence of edges connecting a sequence of vertices is called a path. We denote a path
P by p1 → . . .→ pn where pi is the i-th vertex in the path. We distinguish forward and
backward arcs in a path. Arcs traversed in their forward direction are called forward arcs.
Accordingly arcs traversed in reverse are called backward arcs. A path is called simple if
all vertices in the path are distinct. A closed path, i.e. a path with equal start and end
vertices is called a cycle.
Given weights w, the sum over all of a path’s edges’ weights is called weight-length with
respect to w. The number of edges in a path is called its hop-length. We will refer to the
weight-length as length unless noted otherwise. A shortest s-t-path is a path of minimum
length connecting s and t. We call the length of such a path in G the distance of s and t
distG(s, t). If no path exists between s and t in G we set distG(s, t) =∞.
An up-down-path with respect to an order π is a path that can be split into an upward path
Pu and a downward path Pd meeting at a vertex z. This meeting vertex has the maximum
rank in the path. Pu is the path from s to x. In Pu vertices appear by increasing rank,
each arc is traversed forwards. Pd is the path from x to t containing downward arcs. The
vertices in Pd appear by decreasing rank and the arcs in Pd are traversed backwards. The
weight length of an up-down path Pd is the sum of the weight length of Pu with respect to
wu and the weight length of Pd with respect to wd.
A clique is a subset of vertices C ⊆ V such that all pairs of vertices in C are adjacent.
A Graph G is called chordal iff every cycle of at least four vertices contains a pair of vertices
connected by an edge e ∈ E not part of the cycle. Such an edge is called a chord. A perfect
elimination ordering is a vertex order π so that the neighbourhood of π(i) forms a clique in
the remaining graph induced by π(i), . . . , π(n). A simple graph has a perfect elimination
ordering if and only if it is a chordal graph[11].
An undirected vertex contraction G∗

π is a simple graph in which for each vertex v the
upward neighbourhood Nu(v) forms a clique. We denote by G∧

π the corresponding upward
directed graph. The undirected vertex contraction is chordal. To prove this we show
that every cycle of at least four vertices has a chord. The lowest vertex in every cycle is
connected to two other vertices in the cycle. By construction the upward neighbourhood
forms a clique, so an edge between those two neighbours must exist. If the cycle has four
or more vertices this edge is a chord. Thus the graph is chordal. The vertex order π is
the perfect elimination ordering of G∗

π. This follows directly from the definition of the
elimination ordering.
The elimination tree TG,π of a chordal graph with elimination order π is a directed tree
with root π(n). In this tree each vertex’s parent is its upward neighbour with the lowest
rank with respect to the elimination order.
In a vertex contraction there are three types of triangles induced by an arc (x, y) or by the
corresponding undirected edge {x, y}, illustrated in figure 2.1. These triangles differ in the
order of the participating vertices. In a lower triangle {x, y, z} induced by (x, y) the third
point z has a lower rank than x and y, i.e. π−1(z) < π−1(x) < π−1(y). In an intermediate
triangle z lies between x and y. In an upper triangle z is the highest point.
We call the path x→ z → y induced by a lower triangle {x, y, z} of (x, y) the lower triangle
path. The intermediate triangle path and upper triangle path are defined analogously.
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2.1 Graph Representation

z

x

y

(a) Lower triangle

x

z

y

(b) Intermediate triangle

x

y

z

(c) Upper triangle

Figure 2.1: An arc (x, y) induces three kinds of triangles. In a lower triangle as shown in
(a) the third point is below the arc’s endpoints. In the intermediate triangle as shown in
(b) the arc’s endpoints x and y lie above and below the third point z. The upper triangle
has a third vertex higher than both of the arc’s endpoints.

2.1 Graph Representation
We can employ different graph data structures to store a graph. These have different
properties regarding the complexity of different operations such as enumerating the incident
edges of a vertex or checking adjacency. For computing shortest paths we need to efficiently
enumerate the incident edges and the respective neighbours of a vertex. We do not need a
dynamic data structure as the graph remains mostly unchanged after construction. Routing
graphs tend to have a high number of nodes in the order of tens of millions while they are
sparse, meaning every vertex is only connected to very few other vertices. Not all data
structures are suited for this.

Adjacency matrix: We store a quadratic matrix M = (xij) ∈ R2 in which (xij) represent
the weight of the arc (i, j). If no arc exists connecting i and j we set (xij) to ∞. Using
this approach it is easy to check whether two vertices are adjacent. Enumerating the
neighbourhood of a vertex requires iterating all vertices and checking whether they are
connected. In addition, storing the whole matrix uses a prohibitive amount of memory for
a larger graph with several million vertices.

Adjacency list: Instead of storing all pairs of vertices, in adjacency list we only store
the actual edges. For each vertex v we store a linked list or dynamic array containing all
other vertices connected to v via an edge or outgoing arc of v. This way we can efficiently
enumerate the neighbourhood of v while not using much more space than necessary to
store all the edges. Storing the graph this way also allows for efficient addition of new arcs
or edges. If a linked list is used arcs can also be deleted efficiently by just removing them
from the list.

Adjacency Array: If there is no need for a dynamic graph data structure we can use
an adjacency array. It consists of an array containing all the edge heads ordered by their
tail. In additional array we store for each vertex v the range in which its outgoing arcs are
stored.

Storing all arcs in the same array also improves locality of memory, which accelerates
enumeration of the outgoing arcs of consecutive vertices. Packing arcs tightly in a single
array also reduces memory consumption.

Unfortunately adding and removing arcs from and to the adjacency array is difficult and
inefficient once it has been constructed. Edge weights are stored in a third array.

Edge list: Edges can also be stored explicitly by maintaining a list of all edges with their
respective tail and head. This approach can be combined with an adjacency array by
sorting the edges by tail.

5



2 Preliminaries

Figure 2.2: Transforming a road network to a routing graph can result in multi-edges and
loops being formed. The road in the lower left corner is only connected to one junction.
This results in a loop in the routing graph. The road in the lower right however is parallel to
another road connecting the same junctions. The corresponding vertices are thus connected
by a multi-edge.

2.2 Road Graphs
In real-world road networks not all streets are passable in both directions, such as one-way
streets and highways. One-way streets can be represented by modelling the road network
as a directed graph. This is also useful for direction dependent metrics such as travel time.
A road network can be converted to a graph by using junctions as vertices and streets
connecting them as edges or as arcs respectively. By modelling a road network this way
some information such as the road’s actual course is lost.

Another approach preserving the geographical course of the streets adds vertices dividing
roads into small road segments. This second approach however adds a lot of vertices not
necessary for larger scale navigation.

Road graphs obtained by the first approach may contain loops and multi-edges which need
to be considered. Multi-edges can occur in places like residential areas which tend to have
several roads connecting the same junctions, e.g. the situations in figure 2.2. Loops can
occur in similar circumstances. When computing shortest paths loops can always safely be
ignored. A path containing a loop will always be at least as long as the same path without
the loop. Multi-edges however can be part of a shortest path. Dijkstra’s algorithm can
cope with multi-edges just fine. In a Customizable Contraction Hierarchy we need to take
care of them because vertex contractions are simple graphs.

6



3. The CCH Algorithm

This chapter is about Customizable Contraction Hierarchies as described in [5]. The
algorithm is included here to provide a self contained work.

By preprocessing the graph in two phases Customizable Contraction Hierarchies achieve a
considerably faster query time than regular queries using Dijkstra’s algorithm[6].

In the first, metric independent, phase the input graph G = (V, E) is transformed into a
vertex contraction by adding shortcut arcs as needed. The second phase is used to add a
metric to the graph which can then be used for queries.

3.1 Building the Customizable Contraction Hierarchy
In this section we will describe how to construct the unweighted vertex contraction from
an input graph using a vertex order.

We start by transforming the graph into an upward directed, simple and loop-free graph. If
the input graph is directed we reverse all downward arcs and remove the resulting multiarcs.

We construct the contraction hierarchy by contracting vertices in the graph. A vertex is
contracted by connecting all its upward neighbours to form a clique. We do this for every
vertex in the graph with respect to the vertex order. See figure 3.1 for an example.

2

0 4

1 5 3

Figure 3.1: A vertex contraction of the graph from figure 2.2. Vertices have been relabelled
with their respective ranks. The dashed arcs are shortcuts.
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3 The CCH Algorithm

3.1.1 Obtaining the Vertex Order

As the construction of the contraction hierarchy does not rely on a metric, customizable
contraction hierarchies work best with metric-independent orders[5]. Such an order can
be computed using nested dissection[8] as suggested for the construction of Contraction
Hierarchies by Bauer et al. in [1]. The order obtained using nested dissection is called
nested dissection order (ND-order). Using an ND-order results in a low elimination tree
height. This construction uses a balanced separator S splitting the graph into two vertex
sets A and B. The vertices in the separator are assigned to a vertex order πS in an arbitrary
order. Then vertex orders πA and πB for the vertex sets A and B are computed recursively.
Figure 3.2 illustrates the construction of an ND-order.

The final vertex order π is obtained by appending πA, πB and πS , the resulting order is
π = πA(1), . . . , πA(|A|), πB(1), . . . , πB(|B|), πS(1), . . . , πS(|S|).

0

1 2

3 4 5

1 3 0 5 2 4
Resulting order π:

Figure 3.2: Computation of an ND-order for the graph from figure 2.2. This is the
order used in figure 3.1. The first separator S = {2, 4} splits the vertices into the sets
A = {0, 1, 3} and B = {5}. In the recursive step A is separated into A′ = {3} and B′ = {1}
by S′ = {0}. Note that S is not a very well-balanced separator in this example.

Computing a perfectly balanced separator is hard. There are however a few heuristic
algorithms computing good separators and graph partitions on continental road graphs
such as Inertial Flow[9] and PUNCH[4]. In our experiments we use the Inertial Flow graph
partitioner[9]. It sorts the vertices along a line and computes the maximum flow from the
first k nodes to the last k nodes. The corresponding minimum cut is used as separator.

3.2 Triangle Enumeration
For customization we will rely on the concept of triangles. In a vertex contraction with
respect to a vertex order π, an arc induces three types of triangles, as described above.
Enumerating the triangles induced by an arc is the fundamental operation of basic and
perfect customization.

We can use two different approaches for enumerating the triangles differing in processing
time and space consumption.

3.2.1 Basic Triangle Enumeration

The lower triangles of an arc (x, y) in G∧
π can be characterized by the intersection of the

endpoints’ downward neighbourhoods. The triangle {x, y, z} is a lower triangle of (x, y), if

8



3.3 Customization

and only if z ∈ Nd(x) ∩Nd(y). We can exploit this to efficiently enumerate all triangles.
For this we need the adjacency arrays for the upward and downward neighbourhoods in
G∧

π to have the same ordering, e.g. the head id or the head rank.

The neighbourhood intersection for lower triangles can then be computed by iterating the
downward neighbourhoods of the arc’s endpoints x and y simultaneously using two pointers.
In each step we advance the iteration pointing to the lower vertex. If both iterations point
to the same vertex, we found a triangle. In this case both pointers proceed to the next
vertex.

The enumeration of upper and intermediate triangles works similarly. We enumerate
intermediate triangles by intersecting the upward neighbourhood of the arc’s tail and the
downward neighbourhood of the arc’s head. Upper triangles are enumerated by intersecting
the upward neighbourhoods of both endpoints.

3.2.2 Triangle Preprocessing

Instead of iterating the entire neighbourhoods of all arcs we can precompute the triangles
in an additional preprocessing step. This approach allows us to avoid computing the
neighbourhood intersection while using much more space. Triangles are stored in an
adjacency array structure mapping an arc id to the respective triangles. We need one such
array for lower, intermediate and upper triangles each. For triangle enumeration to work
we only need to store two of the arcs. The third arc is the one inducing the triangle. The
endpoints are stored in the graph hence they do not need to be stored either.

3.2.3 Hybrid Triangle Enumeration

The number of triangles can be far higher than the number of arcs. This results in high
memory usage for storing these triangles. In the worst case the graph contains Θ(n3)
compared to Θ(n2) arcs. To avoid storing all triangles we can limit precomputation to
those arcs (x, y) whose tail vertex x is below a certain level. The remaining triangles are
still computed using the neighbourhood intersection.

3.3 Customization
In the customization phase a metric mG is extended from the input graph to the arcs
generated in the metric independent preprocessing phase. We will refer to all edges and arcs
not representing an edge in the input graph as shortcuts. Note that in a weighted vertex
contraction this includes arcs with a weight different from that of their corresponding edge
in the input graph. There are several kinds of metrics preserving shortest paths in the
contraction hierarchy.

Let distR(s, t) be the length of an arbitrary, not necessarily up-down st-path in G∗
π with

respect to a metric mR. A metric mR fulfilling distG(s, t) = distR(s, t) is called respecting.
Such a metric can easily be constructed by copying the weights from the input graph and
setting the remaining weights to infinity. This metric obviously fulfils the above constraints
as all shortest paths from the input graph are kept. The shortcuts with infinite weight are
not part of any shortest path.

A respecting metric is not very useful on its own, as it does not make use of the shortcuts
added in the first preprocessing phase. The query algorithms introduced in section 3.5
require the existence of a shortest up-down-path, which a respecting metric does not
guarantee. See for example figure 3.3a in which no finitely long up-down path from vertex
2 to vertex 5 exists.

9



3 The CCH Algorithm

2

0 4

1 5 3

3

1

∞
196

4
2 ∞ 11

3

(a) Vertex contraction with
respecting metric. Weights
from the input graph have been
copied to the corresponding arcs
in the vertex contraction. The
remaining weights are set to ∞.

2

0 4

1 5 3

3

1

4
117

4
2 6 11

3

(b) Customized metric after ba-
sic customization. Note that
(2, 4) became a shortcut deriving
its weight from its lower triangle
path 2→ 0→ 4.

2

0 4

1 5 3

3

1

4
107

4
2 6 9

3

(c) Perfect metric. The arcs
marked for deletion in witness
search are striked out.

Figure 3.3: Computing customized and perfect metrics in a vertex contraction. The bold
weights are the ones changed in the respective steps.

Let distud(s, t) be the length of the shortest up-down-path in G∧
π and let distG(s, t) be

the length of a shortest s-t-path in the graph G. In order for the query algorithms to be
correct we need to preserve shortest paths from the input Graph G, i.e. for every (s, t)
pair the shortest up-down path is exactly as long as the shortest s-t-path in the input
graph or, more formally: ∀s, t ∈ V : distud(s, t) = distG(s, t). A metric mC fulfilling these
constraints is called customized. Note that in a customized metric arcs can have a lower
weight than in the input graph. Such a case is illustrated in figures 3.3a and 3.3b where the
arc (2, 4) gets shorter because it has a lower triangle path 2→ 0→ 4 with lower weight.

Customized metrics are not necessarily unique. Arcs not part of any shortest path can
have arbitrary weights. A metric fulfilling the additional constraint of all arcs’ weights
being equal to the shortest path distance between their end points is called perfect. The
perfect metric is unique for every input metric.

All customization steps use triangles in the graph in order to compute each arc’s weight. If
there is a triangle containing an arc, the other two arcs form a path between the endpoints
of the arc. We can exploit this in order to compute the customized and the perfect metric.

3.3.1 Basic Customization

Basic customization makes use of the lower triangle inequality, i.e. for all lower triangles
{x, y, z} of an arc (x, y) the lower triangle path x→ z → y is at least as long as x→ y or,
more formally, m(x, y) ≤ m(x, z) + m(z, y). We will show that a respecting metric fulfilling
the lower triangle inequality is customized[5].

Theorem 3.1. A respecting metric fulfilling the lower triangle inequality is customized.

Proof. A metric m is customized if for every st-pair a shortest up-down path with the
same length as a shortest st-path in the input graph exists. If a shortest st-path exists in
the input graph a shortest, not necessarily up-down st-path P exists. Note that a shortest
path always exists if the input graph is connected. If P is not already up-down, it has
a subpath x → y → z with π−1(x) > π−1(y) and π−1(z) > π−1(y). By construction the
vertex hierarchy contains an arc (x, z) or (z, x) as y is lower than both x and z. We know
m(x, z) ≤ m(x, y) + m(y, z) because of the lower triangle inequality. The path thus does

10
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get longer by replacing x→ y → z with x→ z. We can apply this argument iteratively for
all such subpaths until the path is an up-down path.

A customized metric mC can be constructed from a respecting metric mR by iterating
all arcs in the vertex contraction ordered increasingly by their tail vertex. For each lower
triangle {x, y, z} of an arc (x, y) we check whether the lower triangle path through z is
shorter than (x, y). If it is shorter, we update the metric to reflect the shorter weight:
mC(x, y)← mC(x, z) + mC(z, y). In this case we say (x, y) derives its weight from (z, x)
and (z, y).

After this processing step mC is customized. By definition z is below both x and y in every
lower triangle {x, y, z} of (x, y). The weights mC(z, x) and mC(z, y) have therefore already
been computed and mC(x, y) ≤ mC(z, x) + mC(z, y) holds. After all arcs on the level of z
have been processed, mC(z, x) and mC(z, y) do not change until the algorithm terminates.
Inductively we can conclude that after termination the lower triangle inequality holds for
all lower triangles {x, y, z} in the vertex contraction.

3.3.2 Perfect Customization

The perfect metric mP can be obtained from a customized metric mC . First, mP is initialized
with the weights from mC . Then we iterate all arcs (u, v) ordered decreasingly by the level of
u and enumerate the respective upper and intermediate triangles {u, v, z}. When the path
through z is shorter than the current edge weight we set mP (u, v)← mP (u, z) + mP (z, v).
After this processing step the metric is the perfect metric as shown in [5]. See figure 3.3c
for an example.

3.4 Witness Search
Not all edges in G∧

π are needed to preserve the shortest path distance for all pairs of vertices
given a customized metric. Removing these arcs from the graph does not change the length
of shortest paths. If shortest paths are unique, we can remove all arcs that are not part of
a shortest path. If for an edge an upper or intermediate triangle with lower length exists,
it can be deleted from the graph. The triangle induces a shorter up-down path which can
be used instead of the arc. When shortest paths are not unique, we only need to preserve
a single shortest path for every pair of vertices. In this case we also delete some arcs that
are part of a shortest path. Examples of both can be found in figure 3.3c.

We can identify the unnecessary arcs during perfect customization. If an arc has a upper
or intermediate triangle path which is at most as long as the arc itself, we mark the arc
for deletion. After perfect customization we delete all marked arcs from the graph. This
removes all arcs not necessary to preserve all shortest paths distances as shown in [5].

Note that this can result in two different graphs if upward and downward weights differ.

There might however be multiple possible up-down s-t-paths. The previous approach will
not delete all edges that could be removed, as illustrated in figure 3.4.

Instead of deleting arcs from the graph it is possible to set their length to infinity in order
to avoid these edges being considered in queries. This approach did not prove to be very
useful in experiments as it did not produce any noticeable speedup compared to the perfect
metric.

If we only set the weight to ∞ however, the arc still needs to be scanned. This results in
more arcs being iterated than if we actually delete the arc.

11
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Figure 3.4: In this graph there are two shortest paths between the bottom vertex and
the upper left vertex. The leftmost edge is not needed to preserve their distance.

3.5 Query
A distance query computes the distance between two vertices s and t in G∧

π given a
customized metric. The query should also yield the corresponding shortest up-down-path
in G∧

π , which can be transformed to a shortest path in the input graph.

The subgraph of G∧
π reachable from a vertex v is called the search space SS(v). We can

restrict shortest s-t-path queries to the respective search spaces. If an up-down-path from
s to t exists, the forward part of that path lies within SS(s) and the downward part lies
within SS(t). In a bidirectional search we can thus restrict the forward search from s to
SS(s) and the backward search from t to SS(t).

3.5.1 Basic Query

The basic query performs a bidirectional Dijkstra search from s and t. We use the upward
metric mu for the forward search and the downward metric md for the backward search.
The metrics are the same if the input metric is symmetric. Both searches operate on G∧

π .

If the weights in the graph are not symmetric, the witness search yields different graphs
for upward and downward weight. Hence we cannot use the same graph for both forward
and backward search. Instead, we use the graph corresponding to the upward weight as
forward search graph and the graph corresponding to the downward weight as backward
search graph. This works because both graphs share the same vertices and only the arcs
are different.

3.5.2 Elimination Tree Query

The dijkstra based query spends a lot of time updating the priority queue. We can use a
different approach without a priority queue by taking advantage of the elimination tree.

This approach also uses a bidirectional search. We maintain an array of tentative forward
and backward distances. In order to find a path between two points s and t we first
determine their lowest common ancestor z in the elimination tree TG∧

π
. Then we expand

all outgoing arcs of vertices on the path between s and z. We repeat this process for the
path from t to z. In a final step we expand all outgoing arcs of vertices on the path from
z to the root of T . The last step is also used to find the vertex with the lowest distance
between s and t. Note that a vertex higher up in the elimination tree can have a lower
tentative distance than its children, e.g. in figure 3.5 vertex 7 has forward distance of 17
while its parent vertex 6 has forward distance of 18.

After each query we add an addition cleanup step to avoid the initialization time for the
tentative distance arrays. For each vertex on the paths from s and t to the root we reset
the tentative forward and backward distances to infinity.
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Figure 3.5: Elimination tree query from s = 0 to t = 3 on a graph with elimination
tree highlighted in orange. The forward and backward search meet at z = 6. The nodes
are labelled with their tentative forward (superscript number) and backward distances
(subscript number).

The elimination tree query has the disadvantage of visiting the entire search spaces of s
and t. However, it performs better on random queries than the Dijkstra-based query, as
shown in [5] and in our own experiments in table 6.5.

We can perform an elimination tree query after deleting arcs in witness search. However,
the resulting graph does not necessarily have an elimination tree as it is not necessarily
chordal. Instead, we use the elimination tree of the vertex contraction like before.

After pruning arcs, a vertex v might have an ancestor in the tree that is not part of
SS(v). The query is correct if all vertices in the search space of v are ancestors of v in the
elimination tree because all vertices in the search space of v are visited if the are ancestors
in the elimination tree. This is true because deleting arcs does not add vertices to the
search space of v.

In figure 3.5 the arc (2, 6) is not part of a shortest path because 2 → 7 → 6 is shorter.
Deleting it does not change any of the tentative distances. Figure 3.5 also illustrates why
we cannot compute a new tree using the elimination tree rule for the pruned graph. In
the new tree, vertex 6 would not be an ancestor of vertex 0 even though it is in its search
space because the arc (2, 6) is removed after witness search.

13





4. Sequential Optimizations

In this section we will present several optimizations and implementation details that
improve the sequential performance of CCH customization.

4.1 Storing the Graph
The data structures used to store the graph have a great influence on the running time of
the algorithms. Like Dibbelt et al. in [5], we reorder the vertices according to the vertex
order in an adjacency array when constructing the vertex contraction. A vertex v in the
input graph is mapped to a vertex v′ = π−1(v) in the vertex contraction. The outgoing
arcs of each vertex in the vertex contraction are ordered by their heads. We order the arcs
in the adjacency array by their head’s ids. The improvements of query time by reordering
vertices has already been observed in [5]. Reordering the vertices and arcs in the graph
data structure also raises customization performance because it improves cache locality.
When performing a query we map the source and destination vertices in the input graph to
their counterparts in the vertex contraction. This requires only a single additional memory
access per vertex which is a negligible overhead.

4.2 Triangle enumeration
The outgoing arcs of each vertex are ordered by their head’s ids, which, after reordering, is
the same as the rank. In both basic and perfect customization sequential running time can
be improved by exploiting this ordering to accelerate triangle enumeration.

When enumerating upper and intermediate triangles of an arc (x, y) we optimize the
calculation of the neighbourhood intersection. In upper triangle enumeration we can skip
those outgoing arcs of x whose head is below y. As outgoing arcs are ordered by head-id
this can easily be achieved by starting enumeration at (x, y). This way on average only
about half as many arcs have to be iterated to find the neighbourhood intersection.

In the intermediate triangle enumeration we can skip all outgoing arcs of x whose head is
above y. We stop enumeration when we reach (x, y).

Computing the upward neighbourhood intersection only requires the upward directed graph
for both endpoints. Using only one graph instead of two as when computing the intermediate
neighbourhood intersection increases cache efficiency. Arcs in the downward graph need to
be mapped to the corresponding upward arcs which requires additional memory acceses.
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This is not necessary with the upward graph, hence upper triangle enumeration can be
implemented more efficiently than both lower and intermediate triangle enumeration.

We can also make use of the fact that an upper triangle {x, y, z} of an arc (x, y) is also an
intermediate triangle of (x, z). Both (x, y) and (x, z) share the same tail vertex which means
they start on the same level. Hence, we can combine enumeration of upper and intermediate
triangles in perfect customization. Instead of enumerating upper and intermediate triangles
separately, we only enumerate upper triangles. In addition to the metric update for (x, y),
we also perform a metric update for (x, z) using the intermediate triangle path x→ y → z.

Lower triangle enumeration cannot be accelerated by skipping arcs. During basic customiza-
tion we can however replace lower triangle enumeration with upper triangle enumeration.
We compute a customized metric mC as follows: We iterate all arcs (u, v) ∈ E ordered
increasingly by the rank of u. For each arc (u, v) we enumerate all upper triangles {u, v, w}.
The triangle {u, v, w} is a lower triangle of (v, w). If the lower triangle path u← v ← w is
shorter than (v, w) we update mC(v, w)← mC(v, u) + mC(u, w) like we did before.

Theorem 4.1. The metric mC fulfils the lower triangle inequality after the last arc has
been processed.

Proof. We can show this by inducing over the levels. Our induction hypothesis is that
when our algorithm reaches a level l, all lower triangles of arcs in or below that level fulfil
the lower triangle inequality.

By definition arcs on the lowest level do not have lower triangles, hence they do not violate
the lower triangle inequality.

A lower triangle {u, v, w} of an arc (u, v) on level l(u) has a third point w which by definition
is on a level l(w) < l(v). As our algorithm iterates levels in ascending order we must have
already processed the arc (w, u) at some point which has the upper triangle {u, v, w}. The
triangle has hence been processed before and fulfils the lower triangle inequality.

When we reach the highest level the lower triangle inequality holds for all levels.

4.3 Path Unpacking
Retrieving the shortest path between two points in addition to the distance is essential for
most applications of route planning. Neither the basic query nor the elimination tree query
reveal the shortest path in the input graph directly, but both can be used to compute the
shortest up-down-path by using a parent array for forward and backward search.

We call this up-down-path the packed path. It can be unpacked to obtain the shortest path
in the input graph. In the original CCH paper[5] single arcs in the vertex contraction are
unpacked by enumerating lower triangles in order to find the constituent arcs. A path is
unpacked by recursively unpacking shortcuts until the original arcs have been found.

Instead of performing an additional triangle enumeration, we propose to store the constituent
arcs during basic customization. This way we can avoid some overhead in the query phase
while using more memory.

Arcs need to be unpacked in different ways depending on the direction of traversal. If an
arc (u, v) is traversed forwards in the path, the first constituent arc (w, u) is traversed
backwards. The second constituent arc (w, v) is traversed forwards again. When unpacking
a forward arc (w, u) appears before (w, v)

Likewise, if (u, v) is traversed backward (w, u) is traversed forward and (w, v) is traversed
backward. In this case (w, v) appears before (w, u).
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4.3 Path Unpacking

4.3.1 Unpacking Upper and Intermediate Triangles

In the perfect metric some arcs derive their weight from an upper or intermediate triangle
instead of a lower triangle. Using the original algorithm we would have to enumerate upper
and intermediate triangles in addition to the lower triangles when unpacking arcs. With
our approach we only need to update the constituent edges during perfect customization.

We cannot unpack upper and intermediate triangle paths the same way as lower triangle
paths because the constituent arcs are traversed in different directions. A shortcut (u, v)
deriving its weight from an intermediate triangle has two constituent arcs which are
traversed in the same direction as (u, v). When the shortcut derives its weight from an
upper triangle, the second constituent arc is traversed in the opposite direction.

Unpacking upper and intermediate triangles is only relevant with a perfect metric. The
customized metric resulting from basic customization only depends on lower triangles. In
witness search we delete all arcs depending on upper or intermediate triangles. In both
cases we do not need to unpack upper or intermediate triangle paths.

4.3.2 Witness Search

Path unpacking based on lower triangles is still possible with perfect customization and
witness search. Recall that an arc (x, y) is marked for deletion in witness search if there is
an upper or intermediate triangle {x, y, z} such that the shortest path from x to y over z is
as most as long as (x, y). The arc (x, y) can however be part of a lower triangle of another
arc (y, w) which dervies its weight from the corresponding lower triangle path.

We have to make sure no deleted triangles are stored to ensure the unpacked path exists.
If we delete one of the lower arcs of a lower triangle and keep the upper arc, the respective
lower triangle path is destroyed, as illustrated in figure 4.1. In the following we will show
that a shortcut is always deleted if all lower triangle paths with the same length are
destroyed in witness search.

u

v

6

w
14

8

z

4
2

12

(a) The arc (u, v) is deleted because its upper
triangle path u → z → v also has length 6.
It is part of the lower triangle {u, v, w} of the
shortcut (v, w). By deleting (u, v) the only lower
triangle of (v, w) is destroyed. However, the
path v → z → w has the same length as (v, w)
so this arc is not necessary either.
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(b) The path u → z → v is part of an in-
termediate triangle of (u, v). Because it is no
longer than (u, v), we can delete (u, v). However
this destroys a lower triangle of (v, w) with the
same length as (v, w). There is however another
path with the same length in the lower triangle
{v, z, w}.

Figure 4.1: Deleting arcs in the vertex contraction destroys the lower triangle {u, v, w}
of (v, w) drawn with thicker arcs. In both cases it does not matter which of v and w has
higher rank.
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Theorem 4.2. After witness search every remaining shortcut (x, y) has a lower triangle
path x→ z → y in the remaining graph with mP (x, y) = mP (x, z) + mP (z, y).

Proof. Perfect customization processes arcs level-wise, starting at the highest level proceed-
ing towards lower levels. We show that on no level we mark an arc for deletion that is part
of the last remaining lower triangle of an arc not marked for deletion.

We will consider the two cases in which an arc is deleted separately. If an arc (u, v) is
deleted because of an upper triangle path, we will show that all shortcuts deriving their
weight from a lower triangle path containing (u, v) must have been marked for deletion. In
case of an arc (u, v) deleted because of an intermediate triangle path we will prove for all
shortcuts (v, w) and (w, v) depending on (u, v) the existence of another lower triangle path
with the same length.

An upper or intermediate triangle {u, v, z} can contain a shortcut (v, z) or (z, v) deriving
its weight from the same triangle. Note that in this case neither (u, v) nor (u, z) will be
deleted {u, v, z} if all weights are positive.

We will first consider the upper triangle path.

If an arc (u, v) is deleted because of its upper triangle {u, v, z}, all arcs (v, w) and (w, v)
deriving their weight from the lower triangle {v, w, u} will also be deleted. In a contraction
hierarchy w and z must be connected with an arc. This arc has the lower triangle {u, w, z},
hence mP (z, w) ≤ mP (z, u) + mP (u, w). We can conclude that the paths v → u→ w is at
least as long as v → z → u→ w. The path v → z → w in turn is at most as long as the
latter. If w is below z the path v → z → w is an upper triangle path of (w, z). It is an
intermediate triangle of (z, w) if w is above z. In both cases v → z → w is a witness path.
We can thus delete the arc connecting w and z.

An arc (u, v) is also marked for deletion if it has an intermediate triangle {u, v, z} which
induces a path of lower or equal length through z. In this case all arcs (v, w) and (w, v)
that derive their weight from (u, v) must have another lower triangle of the same length. If
such an arc exists the arc (z, w) must exist too as the vertex contraction is a chordal graph.
It is part of the triangle {v, z, w} which is a lower triangle of (v, w). The path v → z → w
can not be longer than v → u→ w because v → z → u is at most as long as v → u and
{z, w, u} is a lower triangle of (z, w). So the arc (v, w) can derive its weight from {v, z, w}
instead of {v, u, w}.

We can avoid having to update stored lower triangles if an arc is deleted by choosing the
highest lower triangle in basic customization.

The theorem holds true for asymmetric weights. The proof works analogously in that case.
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5. Parallelization

Several steps in the CCH algorithm can be executed in parallel to increase performance. In
this work we will concentrate on the customization phase. Some approaches can however
easily be transferred to other steps as well.

5.1 Basic Customization
As described in [5] basic customization can be parallelized by processing the edges on each
level in parallel. Each thread processes a block of edges and enumerates the respective arcs.
Synchronization is only needed between levels.

This method is correct because lower triangles only depend on arcs in lower levels. As long
as only arcs on the same level are processed at a time, no conflict can occur.

The respecting metric can be constructed in parallel by distributing blocks of arcs to the
threads. Each thread then processes its respective block of arcs by copying weights from
edges in the input graph to the respective arcs in the contraction hierarchy. To avoid data
races in case of multi-edges in the input graph we enumerate constituting edges of arcs in
the contraction hierarchy. If we enumerate edges in the input graph in parallel, we need to
make sure multi-edges are processed by the same thread. Otherwise, two threads might
access the same arc in the contraction hierarchy simultaneously, resulting in a data race if
not synchronized.

Sequential basic customization can be accelerated by enumerating upper triangles instead
of lower triangles. When enumerating upper triangles, a weight can be updated by two
threads simultaneously possibly resulting in a data race. We could avoid these data races
using locks, adding a considerable overhead.

Algorithm 5.1: atomicAssignMin(w: int32, other: int32) atomically assigns the
minimum of w and other to w. The operator & is the C addres-of operator

1 expected ← w;
2 while w ≥ other and not atomicCompareExchange(&w, &expected, other) do
3 expected ← w;

We implement edge weights as an array of 32 bit integers. Most CPUs offer an atomic
compare and exchange instruction for integral data types. It compares the contents of a
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Figure 5.1: All outgoing arcs of x are on the
same level. When processing them in parallel
we might update (x, y) with a weight derived
from (y, z) and (x, z) while writing a new
weight to (x, z) at the same time. x

z

y

w

destination pointer with an expected value and writes a new value if both are the same.
We can use this instruction to atomically assign the minimum of two weights in basic
customization using algorithm 5.1.

When storing path unpacking data we need to update the constituent arcs in addition to
the edge weights. We need to write all of them atomically. Luckily most modern 64 bit
processors have an atomic compare and exchange instruction for 128 bit fields. Before
performing the triangle enumeration we pack the weight and the constituent arcs into a 128
bit integer and use the atomic exchange as before. To make sure we always use the highest
lower triangle we can make use of the ordering of the graph. Outgoing arcs of higher arcs
appear later in the adjacency array hence they have a higher index. As we want to find the
highest lower triangle with lowest weight we reverse the indices by using the negative value
when packing them to a 128 bit integer. The weight is written to the most significant 32
bits. The reversed indices of the constituent arcs are written to the least significant 32 bits.

Using this packing scheme allows to use upper triangle enumeration without locks for basic
customization. Path unpacking information obtained here is ready for perfect customization
and witness search.

5.2 Perfect Customization
The perfect customization can be parallelized similar to the basic customization. We iterate
over the edges in each level in parallel, synchronizing threads between levels. This approach
has been proposed by Dibbelt et al. in [5] who also showed its correctness. It relies on
data being written atomically. We use an adjacency array to map the level directly to the
respective arcs.

We can use a closely related approach for enumerating the arcs on each level. Instead of
distributing the arcs on each level to the threads directly, we can distribute the vertices on
each level to the threads and enumerate the outgoing arcs. In this case the arcs departing
from each vertex are iterated in the same thread. No conflicts can occur here because no
two vertices in upper and intermediate triangles can be on the same level. This has the
advantage of being correct with metrics that cannot be written atomically. If the metric is
not written atomically, data races can occur, as illustrated in section 5.2.

We can also parallelize the combined triangle enumeration. An upper triangle {x, y, z}
of (x, y) is an intermediate triangle of (x, z). If we distribute the vertices on each level
to the threads this approach does not need any additional synchronization, because both
arcs share the same tail vertex. In this case no data races can occur. In order to avoid
data races when enumerating the arcs on each level directly, we make use of the atomic
minimum operation described above. This allows parallelization by distributing the edges
directly to the threads without additional locks. Pseudocode for this approach is given in
algorithm 5.2.
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5.3 Witness search

Note that when performing a witness search, we do not need to update the constituent
arcs. If we do not perform a witness search on top of perfect customization, we need to
update the constituent arcs though. This requires the weight and the constituent arcs to
be written atomically. We can use 128 bit operation to achieve atomicity, similar to the
approach we presented for basic customization.

Our experiments in section 6.2 showed that parallelization by distributing vertices and
distributing arcs perform similarly with a lower number of threads.

Algorithm 5.2: Perfect customization with combined triangle enumeration up-
dating both upward and downward weights.

1 for l ← 0 to maxLevel do
2 for each (u, v) ∈ LE(l) do in parallel
3 for each upper triangle {u, v, w} of (u, v) do

/* Update weights for upper triangle */
4 atomicAssignMin(mP (u, v), mP (x, z) + mP (z, y)) ;
5 atomicAssignMin(mP (v, u), mP (y, z) + mP (z, x)) ;

/* Update weights for intermediate triangle */
6 atomicAssignMin(mP (x, z), mP (x, y) + mP (y, z)) ;
7 atomicAssignMin(mP (z, x), mP (z, y) + mP (y, x)) ;

5.3 Witness search
As witness search is done in combination with perfect customization, we can employ the
techniques used there for witness search too. In addition to updating the weights, we mark
arcs for deletion if we find a triangle inducing a shorter path. In order to avoid the more
complex synchronization of bitsets, we use a full byte for each arc. No conflicts can occur
here as the flags are only set and never reset. Hence the order in which threads write the
flags does not matter as long as any of successfully flags the arc for deletion.

We can also use parallelization in order to build the new graphs for upward and downward
weight. The number of edges deleted before a specific edge determines its location in the
new adjacency array. This number can be calculated using the prefix sum of the deletion
markers. For each vertex we compute the new edge ranges by subtracting the number
of edges deleted up to the left and right borders respectively. The edges not marked for
deletion are then be copied to their new locations in parallel. All steps except for the prefix
sum can be parallelized trivially by dividing arcs and vertices into contiguous blocks which
are then processed by the threads.

5.4 Prefix sums
Efficient parallelization of prefix sums is not trivial. They are usually implemented by
scanning through the array sequentially. Some fundamental changes need to be made to
enable parallelization.

The approach proposed by Blelloch in [2] achieves a theoretical running time of O(n/p+log n)
on an array of length n with p threads. It divides the prefix sum calculation into an up-sweep
and a down-sweep. In the up-sweep partial prefix sums are calculated which are combined
in the down sweep. Unfortunately, on a modern CPU the overhead of synchronization and
of steps introduced to make the algorithm parallelizable far exceeds the sequential running
time.
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We also tested another approach: We calculate the prefix sum on p contiguous blocks of
equal size in parallel. Then we calculate a sequential prefix sum over the maximums of
each block, i.e. the last elements of each block. The blocks are then incremented by this
block-wise prefix sum. The pseudocode is presented in algorithm 5.3. This approach has
been described in [10]

Algorithm 5.3: Parallel Prefix Sum
Data: a: array[N ]

1 prefix← array[NumThreads()];
2 begin parallel section
3 id ← CurrentThreadID();
4 left← bN · id/NumThreads()c;
5 right← bN(id + 1)/NumThreads()c;
6 PrefixSum(a, left, right);
7 prefix [id + 1]← a[right− 1];
8 barrier begin sequential section
9 PrefixSum(prefix, 0, NumThreads());

10 for i← 1 to N do
11 a [i]← a [i] + prefix [id]

Algorithm 5.3 has a complexity of O(n/p + p), which is worse than the other approach. In
practice we have p� n so this is not really a problem. However, it has less parallelization
overhead than the one above and is a lot faster in practice on a regular CPU. Unfortunately
prefix sum calculation is mainly limited by memory bandwidth, so even with efficient
parallelization we could achieve any speedup in our experiments in section 6.3
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6. Experiments

Machine and Compiler: All algorithms have been implemented in C++ and compiled
with clang 5.0.1 with compile option -O3. We ran our experiments on a dual-CPU machine
with two Intel® Xeon® E5-2680 16 core processors with two threads per core, clocked at
2.7 GHz with a total of 256 GB of DDR3-RAM. It has 32 KB of L1 cache, 256 KB of L2
cache and 20.48 MB of L3 cache.

Instance #Vertices #Arcs #Edges

Europe 18017748 42560275 22212039
Germany 4377307 10736200 5483012
Belgium 462843 1112155 591480
Karlsruhe 120481 304935 154856

Table 6.1: Comparison of the different test instances.

Graph Instances: In our experiments we used four instances of different sizes. Our main
test instance is the Western European road network from the PTV Europe graph1. The
other three instances are extracts from that graph, one of Germany, one of Belgium. The
last one covers a greater region around the city of Karlsuhe with a latitude between 48.3° N
and 49.2° N and a longitude between 8° N and 9° E. Table 6.1 gives an overview of the
sizes of the different instances.

In our experiments we used nested dissection orders obtained using the Inertial Flow graph
partitioner[9] with a balance of 0.3.

We tested the different parallelization approaches described in chapter 5. As this work
is focussed on the customization phase we did not run experiments concerning the CCH
construction.

6.1 Basic Customization
In figure 6.1 we compare the running times of basic customization using lower triangle
enumeration and using upper triangle enumeration. In both cases we parallelized by
distributing the arcs on each level directly to the threads. Even though using upper

1https://i11www.iti.kit.edu/resources/roadgraphs.php
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Figure 6.1: Running time of basic customization by enumerating upper and lower triangles
on Europe.

triangle enumeration is slightly faster when using a single thread, enumerating lower
triangles performs better when using more threads. This is most likely due to the atomic
128 bit operations which are not necessary with lower triangle enumeration. With a higher
number of threads atomic memory accesses become more and more inefficient.

The small dent in the plot when using more than 16 threads can also be observed in other
plots in this chapter. It corresponds to the number of physical cores of our test machine.

Graph #Arcs in CCH #Triangles #Lower Tris
(20% Levels)

#Upper Tris
(20% Levels)

Europe 70362408 655640384 408303719 467071645
Germany 17841703 158081590 83172653 98960828
Belgium 2134434 18822408 9699709 12096320
Karlsruhe 497487 2291333 1210709 1462264

Table 6.2: Sizes of the vertex contractions of different graphs. All use an ND-order
computed using the Inertial Flow partitioner. We counted the total number of triangles as
well as the number of triangles up to a certain level. Note that the numbers of upper and
intermediate triangles are the same for every level.

We also investigated the impact of triangle precomputation on basic customization. The
results for all graphs are shown in table 6.3. We report the data for Europe additionally in
figure 6.2. Interestingly precomputing triangles is considerably slower than performing the
optimized triangle enumeration on all larger graphs. On Karlsruhe at least the sequential
basic customization is slightly faster with triangle precomputation. When using a higher
number of threads, basic customization using triangle precomputation performs about
two times worse with all test instances. This might be due to more cache misses when
iterating the array containing the triangles because this array is much larger than the
graph’s adjacency array as seen in table 6.2. Our implementation checks for each arc
whether it is below the threshold level. Performance with precomputation might be better
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Figure 6.2: Running time for basic customization on Europe with travel time using
different levels of triangle precomputation.

with an implementation which does not perform this additional check for each arc but only
once for each level.

Karlsruhe Belgium Germany Europe

#Thr. none all none all none all none all

1 85 131 406 704 3.483 5.721 14.652 24.160
2 51 73 227 377 2.081 3.361 8.962 14.534
4 26 38 144 226 1.284 1.990 5.411 8.533
8 20 32 107 170 0.898 1.384 3.862 5.887

16 27 31 137 148 1.131 1.212 4.922 4.781

Table 6.3: Running time in seconds for basic customization using upper triangle enumera-
tion with and without triangle precomputation

6.2 Perfect Customization
In figure 6.3 we compare different optimizations of perfect customization with witness
search. Parallelizing by distributing the arcs directly to the threads performed a bit better
than distributing blocks of vertices when using more threads. When enumerating the
incident arcs of a vertex we need more memory accesses than when enumerating the arcs
so the memory bandwidth is saturated faster than when enumerating the arcs directly.

Combining upper and intermediate triangle enumeration accelerates perfect customization
by about one third when executed sequentially. When enumerating intermediate triangles
separately sequential perfect customization takes about 36.4 s compared to 25.7 s when
combining upper and intermediate triangle enumeration. With a higher number of threads
the advantage shrinks until vertex-wise parallelization is faster. This is most likely due to
the atomic operations required in edge-wise parallelization.
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Figure 6.3: Performance of different optimizations of perfect customization with witness
search on a varying number of threads with witness search. Note that perfect customization
is based on basic customization and thus includes its running time.

In figure 6.4 we report the speedup corresponding to the running times in figure 6.3 compared
to the respective sequential single threaded running times. The best speedup is achieved
by edge-wise parallelization compared to vertex-wise parallelization. This approach does
not only have the best running times it also achieves a higher speedup than all the other
approaches. In all cases we do not benefit from using more than about 16 threads. This is
most likely due to the memory bus being saturated, we can thus not read and write data
faster.

Karlsruhe (ms) Belgium (ms) Germany (s) Europe (s)

#Threads perf. p+w perf. p+w perf. p+w perf. p+w

1 122 152 659 763 5.348 6.223 22.550 25.960
2 82 78 358 409 3.242 3.664 14.032 15.691
4 37 38 209 245 1.939 2.183 8.337 9.320
8 29 30 156 173 1.392 1.554 5.982 6.701

16 27 30 137 152 1.131 1.288 4.922 5.539

Table 6.4: Running time for perfect customization (p) without and with wit-
ness search (+w). We report the customization times for all our test instances.

Performing a witness search in addition to perfect customization can increase query time as
reported in table 6.5. Figure 6.5 shows a comparison of the running times of the different
customization variants. Witness search setting the weights to infinity is faster than actually
deleting the arcs. It is slightly faster than the regular perfect customization with four or
more threads because it does not have to update the constituent arcs. On the other hand
building the new graph takes less than a second. The perfect customization with witness
search takes less than twice as long as basic customization.
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Figure 6.4: Speedup of perfect customization with witness search compared to the single
threaded version.
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Figure 6.5: Comparison of the running times of different customization variants.

We report the times needed for perfect customization with and without witness search
in table 6.4. If we compare this to the number of triangles from table 6.2 we see that
customization on Europe takes about 48 ns per triangle. The time per triangle increases
for the smaller graphs, Karlsruhe is as high as 83 ns per triangle, nearly twice as much.

We report the running times of queries using the different customization variants in table 6.5.
The perfect customization itself does not have a big impact on query time. Setting the
weight of unnecessary arcs to infinity does not really accelerate the query compared to the
regular perfect metric. Interestingly using the perfect metric on Europe accelerates the
elimination tree query a lot.
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basic query elimination tree query

Instance Customiza-
tion

time(ms) #visited
vertices

unpack(ms) time(ms) #visited
vertices

G
er

m
an

y Basic 1.617 1,064 – 1.282 1,074
Perfect 1.587 1,083 – 0.839 1,074
Perfect+w(∞) 1.541 983 – 0.977 1,074
Perfect+w 1.114 983 – 0.534 1,074

Eu
ro

pe

Basic 3.403 1,311 0.198 1.297 1,199
Perfect 3.418 1,328 0.198 1.266 1,199
Perfect+w(∞) 3.372 1,218 0.198 1.266 1,199
Perfect+w 3.037 1,218 0.214 0.702 1,199

Table 6.5: Average performance of the basic query with different variants of customization
using the travel time metric. For each configuration we performed 100000 queries with
start and destination chosen uniformly at random.

Actually deleting the arcs in witness search leads to a considerable acceleration of query
time with both basic and elimination tree query in Europe and in Germany. The vertex
search space is the same in both cases, but we do no need to touch the arcs when deleting
them. This justifies the overhead of building the new graph in perfect customization.
Setting the weights to infinty results in slightly faster queries than using the perfect metric,
though. Hence setting weights to infinity performs better than the perfect metric in both
customization and query. The elimination tree query profits much more from witness search
than the basic query.

Unpacking paths is fast on both Europe and Germany. This is important for interactively
drawing routes.
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Figure 6.6: Detailed running time of perfect customization with witness search on Europe.

In figure 6.6 we report the running times of the different steps of perfect customization with
witness search. All the steps can be accelerated using parallelization. Interestingly, triangle
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Figure 6.7: Speedup of the different steps of perfect customization and witness search on
Europe.

enumeration in the perfect customization part is faster than basic customization. This
might be due to the basic customization using lower triangle enumeration and constituent
arcs being set in basic customization resulting in more memory accesses.

We report the corresponding speedup in figure 6.7. The construction of the respecting
metric can be accelerated by a factor of 4 from about 0.4 s with a single thread to 0.1 s
with six threads. It reaches its limits at six threads when memory bandwidth is exhausted.
We achieved the highest speedup with upper triangle enumeration in perfect customization.
It has a nearly linear speedup for up to 16 threads when it reaches its lower limit of 1.2
seconds.

Customization is accelerated a lot by reordering the vertices according to the contraction
order. In figure 6.8 we report the impact of vertex reordering on perfect customization
with witness search. Note that using all other optimizations the unordered version is still
faster than the ordered approach using no optimizations and parallelizing vertex-wise.

In figure 6.9 we compare the running times of perfect customization with witness search
using different levels of triangle precomputation. Unfortunately triangle precomputation did
not accelerate the customization. When preocmputing all triangles, perfect customization
takes about 1.5 times longer than without triangle precomputation when using eight or
more threads. Precomputation is not very useful this way.

When precomputing all triangles for Europe we need about 3.2 GB for lower, intermediate
and upper triangles each. Storing the graph uses another 2.3 GB. For every arc we store
the head, the tail and two constituent arcs. In addition, we need the downward graph, as
well as a mapping between the upward and the downward graph, and we need to store
the metric. When performing a witness search we have two upward graphs, one for the
forward search and one for the backward search. This requires about 3.4GB of additional
memory. By combining upper and intermediate triangle enumeration we can avoid storing
intermediate triangles. We do not need the lower triangles when we use upper triangles
in the basic customization. So these modifications significantly reduce the total memory
usage for precomputing triangles.
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Figure 6.8: Impact of reordering the vertices on perfect customization with witness search.

# Treads array size Sequential Block-Wise[10] Two-Sweep[2]

1 106 561µs 1028µs 4.3ms
2 106 561µs 974µs 4.3ms
8 106 561µs 990µs 4.3ms
1 109 2.1s 8s 19.1s
2 109 2.1s 4.1s 18.2s
8 109 2.1s 4.2s 19.0s

Table 6.6: Running time of sequential and parallel prefix sum algorithms no an array a

6.3 Prefix Sums
Calculating the prefix sum is the only step of perfect customization with witness search
we did not parallelize. The prefix sum is needed to find the indices of the remaining
arcs. In our experiments we tested two different approaches to implement parallel prefix
sums. Unfortunately none of them was able to beat sequential performance. With both
approaches parallelization seemed not to have any effect. This indicates that the memory
bandwidth is already exhausted by a single threaded prefix sum calculation.

The running time of the block-wise approach correspond to the number of additional
memory accesses. When calculating the sequential sum every value is written once. Using
the block-wise parallelization every value is written exactly twice.

The third approach is somewhat slower. It requires about four times more writes than the
sequential variant and it is less cache efficient because it does not access memory sequentially.

Parallelizing prefix sums might be more efficient on modern machines with quad-channel
DDR4-RAM which has a higher bandwidth of up to 100GB/s. On such a machine a
single thread does not saturate the memory link when calculating a prefix sum and
thus multithreading might accelerate the calculation. Without access to a machine with
DDR4-RAM we could not verify this claim.

30



6.3 Prefix Sums
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Figure 6.9: Running time for perfect customization with witness search on Europe with
travel time metric using different levels of triangle precomputation.
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7. Conclusion

In this thesis we designed and examined several techniques aimed at accelerating the
customization phase of Customizable Contraction Hierarchies. We developed modifications
for both sequential optimization and parallelization.

7.1 Summary
With our optimizations we were able to reduce the running time of perfect customization by
a third. By exploiting several properties of the way the graph is stored we could accelerate
triangle enumeration beyond the speed achieved with precomputed triangles. Triangle
enumeration can be avoided in path unpacking by storing the constituent arcs of each
shortcut. We showed that this approach works with witness search.

The sequential optimization we presented in this work can be used with parallel customiza-
tion. Most of them work fine in parallel and accelerate customization even further. Only
one technique did not work out as good as expected: Using upper triangles for basic cus-
tomization can be parallelized but requires the use of atomic 128bit operations which makes
it slower than using lower triangles.

Witness search can be done in parallel. The only step we did not parallelize is calculating
prefix sums which is limited by memory bandwidth.

7.2 Future Work
A very promising method to further accelerate customization is to parallelize using the
nested-dissection separator tree. The blocks induced by the separator tree have the
advantage of being contigous blocks in memory which improves cache locality. In addition
perfect customization can be parallelized lock free without atomic operations using the
separator tree.

Parallelisation might also be used in other CCH phases. The bidirectional query can be
parallelized using one thread for the forward search and one for the backward search.

Path unpacking can also be parallelized. By precomputing the unpacked length of an arc
it is possible to use lock free parallelization to write the unpacked path to an array.
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