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Abstract

A metro map drawing of a hypergraph is a visualization of a hypergraph in which each
hyperedge of the hypergraph is drawn as a metro line and each vertex is represented by
a station. A vertex v has a vertex crossing if at least two metro lines intersect at v .

Given a hypergraphH = (V ,EH ) and the ordering of every hyperedge, we show that it
is NP-complete to decide whether there exists a metro map drawing with at most k vertex
crossings, even if the embedding is fixed. Moreover we show some connections between
support graphs and metro map drawings.
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Zusammenfassung

Eine Metromap-Darstellung eines Hypergraphen ist eine Visualisierung eines Hypergra-
phen in der jede Hyperkante des Hypergraphen als eine Metrolinie und jeder Knoten als
eine Metrostation dargestellt wird. Eine Knotenkreuzung ist ein Knoten, in welchem sich
mindestens zwei Metrolinien kreuzen.

Für einen gegebenen Hypergraphen H = (V ,EH ) und eine gegebene Ordnung je-
der Hyperkante zeigen wir, dass es NP-vollständig zu entscheiden, ob eine Metromap-
Darstellung des Hypergraphen mit höchstens k Kreuzungsknoten existiert, auch wenn
die Einbettung bereits vorgegeben ist. Des Weiteren zeigen wir Zusammenhänge zwi-
schen Metromap-Darstellungen und Supports von Hypergraphen.
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1 Introduction

London with its more than eight million inhabitants has one of the most famous metro
systems in the world. It is the biggest metro in Europe with eleven different metro lines
and 270 stations. Nevertheless it is possible to navigate through the underground of Lon-
don and even tourists are able to understand quickly which lines they have to take by
looking at the metro map. This map encodes the stations with their names, the metro
lines and some geographical information at the same time. In spite of this overload of
information, people are still able to read and receive the information they need.

Because of this benefits metro maps have been looked at intensively and people have
tried to use metromap drawings to visualize other data. For example, Foo [Foo] turns per-
sonal memories into ametromap, Nesbitt [Nes04] and Stott et al. [Sto+05] use thosemetro
map drawings to visualize relationships between PhD theses and items of a business plan,
Sandvad et al. [San+01] for building Web-based guided tour systems, and Seskovec [Ses]
uses it for visualizing historical events. One of the most popular applications is the vi-
sualization of the movies and movie genres (Figure 1.2) by the creators of the website
Vodkaster. We will take this example to explain how we visualize some abstract data in
this drawing style. The data we want to visualize is a set of movies and a set of genres
such that each genre can contain many movies and each movie can also be part of more
than one genre. One example for this is the movie ”Wall-E” which belongs to the genres
Animation and Romance. We transform this set data into a metro map by representing
each movie as a station and each genre as a metro line that traverses exactly the movies
that belong to this genre. In contrast to the actual metro map the set data does neither
contain an order of the movies of that genre nor geographical positions for the movies.
Therefore there is more freedom in generating a metro map drawing with such data set.

In our work we will mostly work with hypergraphs which are a generalization of
graphs. A hypergraphH = (V ,EH ) can contain edges that are not just sets of two vertices
but nonempty elements of the power set of the vertices. In other words the hyperedges
h ∈ EH are sets of vertices v ∈ V and therefore a way to encode set data. Going back to
our movies and genres example, we can encode this data as a hypergraph by each movie
being a vertex and each genre being a hyperedge containing exactly those movies that
belong to the genre. Comparing this to the metro map drawing the vertices of the hy-
pergraph are stations and the hyperedges are metro lines. The metro map drawing style
actually visualize many properties of the hypergraph. For instance the number of nec-
essary changes of metro lines we need from station A to station B is nothing else than
the distance of the vertices A and B in the hypergraph H . The number of different metro
lines at a station A is the degree of the vertex A. In order to make the metro map drawing
less complicated it is useful to reduce the number of crossings that occur in the draw-
ing. We will distinguish here between two different kind of crossings. The first kind of
crossings takes place at the vertices of the metro map drawing, i.e. two metro lines cross
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Figure 1.1: Map of the London underground system [15M]
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Figure 1.2: Metro map drawing of the data set movies and movie genres [Hon]

Figure 1.3: A vertex crossing between the blue and the black metro line at the stationThe
Usual Suspect and an edge crossing between the green and the black metro
line [Hon]
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at a common vertex. Such a crossing can be seen in Figure 1.3 at the vertex The Usual
Suspect. We will call those kind of crossings vertex crossings. The second kind of crossing
is a crossing between two metro lines that occurs between vertices. One example for this
kind of crossing is the crossing between the green and the black metro line in Figure 1.3.
We will call those crossings edge crossings.

So far we discussed the connection between a hypergraph and its corresponding metro
map drawing but ametromap drawing also induces a graphG with the same set of vertices
in the following way. If there is a metro line such that the vertices u and v are directly
connected without any vertices in between than we add the edge {u,v} to G. In this
transformation we lose the information which metro line actually uses a certain edge but
nevertheless we know that each metro line is a path in G. So for each hyperedge h ∈ EH
there is a path in G that contains exactly the vertices of h. We call graphs that have this
attribute path-based supports of H . We can weaken the above condition of a hyperedge
being represented by a path inG by not insisting on a path but only a connected subgraph.
If each hyperedge h of H is a connected subgraph of G we call G a support graph of H .

1.1 RelatedWork

Since hypergraphs are a way to encode set data, drawing hypergraphs is a form of visual-
izing sets. But in comparison to the visualization of graphs there is less consense on how
to draw a hypergraph. Therefore there a many different approaches. Mäkinen [Mäk90]
describes the subset standard which is very similar to a Venn diagram. Every hyperedge
is drawn as a closed curve that contains in the interior exactly the same vertices as the
hyperedge. Johnson and Pollak [JP87] introduce so called vertex-based Venn diagrams. A
vertex-based Venn diagram representation of a hypergraph H is a planar embedding of a
graphG such that each vertex is represented by a face and for each hyperedge h of H the
union of the corresponding faces of the vertices in h comprises a region whose interior is
connected. They also show that this condition is equivalent to finding a planar support
graph (Definition 2.6) for H which they show is NP-complete. Buchin et al. [Buc+09]
give a polynomial-time algorithm to find a support that is a tree with bounded degrees
on each vertex if such a support exists.

This work will give some theoretical results on path-based support graphs (Definition
2.7) and their relation to normal support graphs. Brandes et al. [Bra+10] give some results
on the existence of path-based tree supports. In comparison we will look at path-based
supports in general. Moreover we want to use those path-based support graphs to create
drawings of hypergraphs in the metro map style under crossing minimization criteria.

Assume in the following that a planar path-based support is already given as well as
an ordering for each hyperedge. Now we want to draw the metro lines on the support
with as few crossings as possible and insist that all the crossings between metro lines that
share at least one edge occur on the shared edges. Observe that at each vertex we are free
to decide the ordering of the metro lines. This problem has been studied quite intensively
andmany variants of it are alreadyNP-hard on relatively simple graphs. Fink and Pupyrev
[FP13] proved that minimizing the number of crossings in such a setting (MLCM) is NP-
hard even on caterpillars, Argryriou et al. [Arg+10] showed that minimizing the number
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of crossings is NP-hard for paths if insisted that each metro line terminates at a peripheral
position (MLCM-SE). If further insisted on fixed peripheral positions (MLCM-fixedSE) the
problem becomes polynomial (see [AGM08]).

1.2 Outline

In the second chapter we give some important defininitions for the following chapters.
In Chapter 3 we give some results on path-based supports and compare them to general
support graphs. Furthermore we look at the condensation (Definition 2.10) of hyper-
graphs and show that there are hypergraphs that have a planar path-based support but
the condensation does not have one and vice versa.

In Chapter 4 we focus on the largest number k such that every hypergraph on k hy-
peredges can be drawn in a specific style without edge crossings.

In Chapter 5 we introduce a new problem where we want to find a metro map drawing
that minimizes the number of vertex crossings. We show the hardness of this problem
for given and variable embedding and give a polynomial-time algorithm for trees with
given embedding. Furthermore we look at the MLCM problem for variable embedding
and show its NP-hardness.

In Chapter 6 we give an Integer Linear Program (ILP) for minimizing the number of
edges in a path-based support for a given hypergraph.

In Chapter 7 we summarize our results.
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2 Preliminaries

First we need to give some necessary definitions. As mentioned above our goal is to
visualize hypergraphs which are a generalized version of graphs in the sense that each
hyperedge is a set of potentially more than just two vertices. We denote the power set of
V by P(V ).

Definition 2.1 (Hypergraph). A hypergraph H = (V ,EH ) is a pair of a set of vertices V
and a set of hyperedges EH such that EH ⊆ {h | h ∈ P(V ) \ {∅}}.

In general, hyperedges are just a set of vertices and do not contain any information
about the order. In this case we denote a hyperedge h = {1, 2, ...,k} with curly brackets.
A hypergraph with additional information about the ordering of the vertices within each
hyperedge is called an ordered hypergraph. In this case we denote a hyperedge with
ordering information h = (a,b, ...,k) with ordinary brackets.

Our main goal is drawing hypergraphs as metro maps as defined below:

Definition 2.2 (Drawing of a graphG). Adrawing of a graphG = (V ,E) is a representation
ofG in which each vertex v ∈ V is depicted by a point in the plane and each edge {u,v} ∈ E
by an open continous curve between u and v with u,v ∈ V .

Definition 2.3 (Metro map drawing). Let H = (V ,EH ) be a hypergraph. A metro map
drawing of H is a graphical representation where each node in V is depicted by a point in
the plane and each hyperedge h ∈ EH by an open continuous curve that passes through the
points corresponding to the vertices in h.

In order to present one way to create such drawings we need some further definitions
on hypergraphs. At first we define the dual of a hypergraph:

Definition 2.4 (Dual of a hypergraph). The dual H ∗ = (V ∗,E∗H ) of a hypergraph H =
(V ,EH ) is given by V ∗ = EH and E∗H =

⋃
v∈V {{e | v ∈ e, e ∈ EH }}

In our final representation as a metro map each hyperedge will have an ordering. This
ordering corresponds to a path that contains exactly the vertices of the hyperedge. In our
metro map drawing each of those paths will become a metro line. To specify this further
we need a few definitions about support graphs.

Definition 2.5 (Induced Subgraph). The induced subgraph G[S] = (S,ES) of a graph G =
(V ,E) and a subset S ⊆ V is the graph that contains exactly the edges ofG which have both
endpoints in S . Therefore ES = {{u,v} ∈ E | u,v ∈ S}.

Definition 2.6 (Support graph). A support graphG = (V ,E) of a hypergraphH = (V ,EH )
is a graph such that for all h ∈ EH : G[h] is connected.
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u

v

w

x
(a) A minimal but not a minimum path-

based support graph G of a hyper-
graph H = (V ,EH ) with EH =
{{u,w,v}, {u,w,x}}

u

v

w

x
(b) A minimum and therefore also a min-

imal path-based support graph G of a
hypergraph H = (V ,EH ) with EH =
{{u,w,v}, {u,w,x}}

Figure 2.1: An example for a hypergraph H where a graph G is a minimal path-based
support graph of H but not a minimum path-based support graph of H

Definition 2.7 (Path-based support graph). A path-based support graph G = (V ,E) of a
hypergraph H = (V ,EH ) is a graph such that for all h ∈ EH : The graph G[h] contains a
Hamiltonian path.

It is clear that every path-based support graph of a hypergraph H is also a support
graph of H but not the other way around. Furthermore every hypergraph H = (V ,EH )
does have a path-based support graph since the complete graph on |V | vertices is a valid
path-based support graph of H . In many cases we want to minimize the number of edges
of this path-based support graph. We call a path-based support graph G of H minimal
if any graph that we get by removing an edge in G is not a path-based support graph
of H . Furthermore we call G a minimum path-based support graph of H if there is no
other path-based support graph G′ that does have less edges than G. It is clear that if
a path-based support graph G of a hypergraph H is minimum it is also minimal but not
the other way around as seen in Figure 2.1. In some of our problems we consider the
case that we want to find a path-based support graph of an ordered hypergraph H . In
this case we know how the paths for each hyperedge look like. For those instances a
path-based support graph of H is minimal if for every edge e = {u,v} ∈ E there exists
an ordered hyperedge h in EH with consecutive vertices u and v . In the case of ordered
hypergraphs the definitions for minimum and minimal become equivalent and we will
call those path-based supports graphs of H minimum.

We will use a path-based support graph G of H for our metro map drawings in the
following way. A metro line of the hyperedge h ofH is a path p inG that contains exactly
the vertices of h. So basically a path-based support is the railwaysystem on which the
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u v w x

(a) A crossing free instance with four ver-
tices

u v w x

(b) Same instance as Figure 2.2a but with
vertex crossings at v,w

Figure 2.2: Vertex crossings

u v w x

Figure 2.3: A line crossing between the pink and the brown metro line at the edge {u,v}

metro lines run. In the followingwe present a pipeline that results in a metro line drawing
of a hypergraph H :

1. find a path-based support graph G of H with a path ph in G for each hyperedge h
of H .

2. find a drawing of G.

3. order the metro lines on the edges of G.

Each of those steps can have different optimization criteria. In step 1 we may want to
find a minimal path-based support graph G of H or a planar path-based support graph.
In step 2 we can optimize the number of crossings or find a straight-line drawing. In step
3 we may want to avoid crossings (Figure 2.2, Figure 2.3).

In the following we want to look at the crossings that can occur in a metro map draw-
ing. In step 2 we choose a drawing for the path-based support graph. This drawing may
contain a crossing between two edges e and e′. A metro line p1 that uses the edge e and
a metro line p2 that uses the edge e′ cross at this point. We call such a crossing an edge
crossing. Observe that those kind of crossings can already be computed after step 2 of
our metro map drawing procedure since the ordering of the hyperedges and the drawing
of the support graph is enough to detect such crossings. But our metro map drawing
can have a different type of crossings as well. Two metro lines can also cross at a vertex
(Figure 2.4a). We denote this kind of crossing as a vertex crossing. For vertex crossing we
do not distinguish between the number of crossings that take place at this vertex. So no
matter how many lines intersect at a vertex it still only has one vertex crossing (Figure
2.4b). As seen in Figure 2.2b there are vertex crossings that can be avoided. But there
are also vertex crossings that are unavoidable if we do not change the embedding as seen
in Figure 2.4a. Even though some of the crossings can already be computed after step 2
(for example the crossing in Figure 2.4a), the way we order the metro lines on the edges
of our support graph may change the number of vertex crossings (Figure 2.2). There is
another kind of crossing which occurs if two metro lines p1 and p2 cross on a common
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u

(a) An unavoidable vertex crossing at
vertex u between the green and the
brown metro line

u

(b) Only one unavoidable vertex cross-
ing at vertex u even though two
crossings occur in u (the brown and
the green metroline, the pink and
the green metroline)

Figure 2.4: an unavoidable vertex crossing

edge e = {u,v} (Figure 2.3). We will call those crossings line crossing. For the chapters 3
and 4 we insist that no line crossings occur in our metro map drawings.

If the path-based support graph of our metro map is planar we call the metro map
drawing planar, if the metro map drawing does not contain edge or vertex crossings we
call it crossing free. A simple observation is that hyperedges of size two cannot enforce a
vertex crossing since they do not traverse any vertices.

Another property of metro map drawings we want to discuss is monotonicity.

Definition 2.8 (x-monotone metro map drawing of a hypergraph). An x-monotone metro
map drawing of a hypergraphH = (V ,EH ) is a metro map drawing of a hypergraphH such
that ∀h ∈ EH : the Hamiltonian path (v1, ...,vk) crosses every line that is perpendicular to
the x-axis at most once.

A simple observation about hyperedges of size two is that since we do not care about
the direction in which we traverse the path a hyperedge of size two will never violate the
monotonicty condition.

In the following we want to give an example that shows that if we have a Hamiltonian
graph G there does not have to be a straight line drawing D of G such that there is an
x-monotone Hamiltonian path of G in D.

Example 2.9. Take the graph G = (V ,E) with V = {1, 2, 3, 4, 5, s, t} and E = {{u,v} |

u ∈ {1, 2, 3, 4, 5}, v ∈ {2, 4, 5} with u , v} ∪ {{3, t}} ∪ {{1, s}}. This graph has a straight
line planar drawing as seen in Figure 2.5 and is Hamiltonian because it contains the path
(s, 1, 5, 4, 2, 3, t). But if we insist that this graph is x-monotone for any Hamiltonian path
we cannot draw the graph with straight lines: Since both vertices 1 and 3 are connected
to the vertices 2,5,4 and the vertices 2,5,4 form a triangle, we know that either 1 or 3 has to
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1

2

3

45

s

t

Figure 2.5: A planar straight line drawing

be inside the triangle. So without loss of generality assume 3 is inside the triangle. Since
t has degree one and is therefore at the end of the path and connected to the vertex 3, t
has to be inside the triangle as well. We further insisted on straight lines therefore t is
inside the convex hull of 2,4,5 and so there cannot be any x-monotone Hamiltonian path
in a planar straight line drawing of G.

Next we consider something called the condensation of a hypergraph. We define an
equivalence relation ∼ on the vertices V of a hypergraph H = (V ,EH ) as follows:
x ∼ y ⇐⇒ ∀h ∈ EH : (x ∈ h ⇐⇒ y ∈ h).

Definition 2.10 (Condensation of a hypergraph). The condensation HC = (VC ,EHC ) of a
hypergraph H = (V ,EH ) is defined by removing all but one vertex vi ∈ V for each class i of
the equivalence relation x ∼ y. Formally, VC =

⋃
i{vi} and EHC = {h ∩VC | h ∈ EH }

The condensation of a hypergraph is unique but different hypergraphs can have the
same condensation. In order to create a hypergraph that equals its own condensation we
can use the following trick:

Given a hypergraph H = (V ,EH ). We create a new hypergraph Hcon = (V ,EH ∪⋃
v∈V {{v}}). Since for every vertex v inV there exists one hyperedge that only contains

v , Hcon is equal to its own condensation. We can use this trick to show that if a crossing
problem for drawing hypergraphs as metro maps is NP-hard that it is also hard for the
condensation of hypergraphs since adding hyperedges of size one does not change the
problem. Even if we insist on hyperedges of size at least two we can add a unique vertex
vclone for each vertex v ∈ V and add the hyperedge {v,vclone} to EH . Those extra edges
will not create any extra edge crossings.

In the following we want to show the relation between a metro map drawing of a
hypergraph H and path-based support graphs of H .

Proposition 2.11. For a hypergraph H = (V ,EH ): H has a planar metro map drawing if
and only if H has a planar path-based support graph G = (V ,E).

Proof. So assume that H has a planar metro map drawing DH . Now we look at every pair
of verticesu,v : if there is a metro line connectingu,v directly we add the edge {u,v} to E.
This creates a planar graphG because for every edge e ∈ E there is a corresponding curve
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in DH and DH is planar and by definition this is a path-based support graph (because if a
metro line uses the edge {u,v} we added it to E).
For the other direction assume G = (V ,E) is a planar path-based support graph of H =
(V ,EH ). For every hyperedge h ∈ EH there exists a Hamiltonian path in the induced
subgraphG[h]. Let PH =

⋃
h∈EH {Ph} be a valid set of Hamiltonian paths for each h ∈ EH .

Now split every edge e of E in ek parallel parts where ek = |{Ph ∈ PH | e ∈ Ph}|. If no Ph
contains e remove e . Now if e = {u,v} ∈ E is in Ph add one of the created edges between
the vertices u and v to the metro map drawing of the hyperedge h.

The same argument can be used to show that the equivalency upholds also if we add
the x-monotonicity condition.
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3 Results on path-based supports

In this section we want to show some results about path-based support graphs of hyper-
graphs in comparison to other support graphs of hypergraphs. We further want to give
some results on the correlation between finding a planar path-based support graph for
the condensation of a hypergraph H and the original hypergraph H .

3.1 Hardness

Johnson and Pollak showed it is NP-complete to decidewhether a hypergraph has a planar
path-based support [JP87]. But even if a planar path-based support is given it remains
NP-hard to verify it.

Proposition 3.1. It is NP-complete to decide if a planar graph G = (V ,E) is a planar
path-based support of the hypergraph H = (V ,EH ).

Proof. First we observe that the problem is in NP since if the order is given for each hy-
peredge the solution can be verified in polynomial time.
Next we show that the problem is NP-hard. Hamiltonian path remains NP-complete even
for planar graphs. Now we reduce planar Hamiltonian path to our problem: Take a graph
G = (V ,E) and transform it to the hypergraph H = (V , {V }).

Let P be the Hamiltonian path inG. SinceG has a Hamiltonian path the subgraphG[V ]
has a Hamiltonian path. Therefore G is a path-based support graph of H .

IfG is a planar path-based support ofH each hyperedge h inH has a Hamiltonian path
in G[h]. Since H contains a hyperedge with all the vertices V , G contains a Hamiltonian
path.

This NP-reduction shows that the Hamiltonian path problem is a specific version of the
problem if a given graph G is a support graph for a hypergraph H . In other words the
question if a graph of a certain graph class is a support graph for a given hypergraph H
is NP-hard at least for all graph classes for which Hamiltonian path is NP-hard.

Proposition 3.2. It is NP-complete to decide if a planar graphG = (V ,E) is an x-monotone
path-based support of the hypergraph H = (V ,EH ).

Proof. We can use the same transformation as in the NP-reduction for Proposition 3.1.

13



(a) A planar x-montone metro map drawing of the condensation of
H

(b) A planar x-monotone metro map drawing of the original hyper-
graph H

Figure 3.1: Transformation of a planar x-monotone metro map drawing of the condensa-
tion of a hypergraph H to a planar x-monotone metro map drawing of H

Let P be the Hamiltonian path in G. This path induces an ordering of the vertices in
G. After moving the vertices to positions that respect the ordering this results in an x-
monotone path-based support graph.

If G is a path-based support of H each hyperedge in H has a Hamiltonian path in G.
Since H contains a hyperedge with all the vertices in V , G contains a Hamiltonian path.

3.2 General results on path-based supports

Next we will look at the relationship between a hypergraph and its condensation. First
we observe that in the x-monotone case an x-monotone planar drawing of the condensa-
tion can be transformed into an x-monotone planar metro map drawing of the originial
hypergraph.

Proposition 3.3. If the condensation HC = (VC ,EHC ) of a hypergraph H = (V ,EH ) has
a planar x-monotone metro map drawing with k vertex crossings then H has a planar x-
monotone metro map drawing with k vertex crossings.

Proof. Use the metro map drawing of HC in the following way. For every vertex v ∈ V
there exists a vertex vc ∈ VC such that for every hyperedge h ∈ EH v ∈ h if and only if
vc ∈ h. So take the x-position pos of vertex vc in the drawing of H . There exists an ϵ > 0
such that every hyperedge that contains vc does not contain a vertex with x-position in
the intervall (pos,pos + ϵ) in the drawing of HC . Therefore we can place each v into
this intervall of the drawing. If a hyperedge terminates at vertex vc we extend it to the
last vertex we inserted in the intervall. This method will neither create vertex nor edge
crossings. An example of this method can be seen in Figure 3.1.

14



1 2 3 4 5 6 7s s′

Figure 3.2: A possible planar x-monotone metro map drawing of H

Now we will show that the opposite statement is not true.

Proposition 3.4. There is a hypergraph H = (V ,EH ) that has a planar x-monotone metro
map drawing but its condensationHC = (VC ,EHC ) does not have a planar x-monotone draw-
ing.

Proof. Take the hypergraph H = (V ,EH ) with V = {1, 2, 3, 4, 5, 6, 7, s, s′} and the hyper-
edges EH = {{u,v, s, s′} | u,v ∈ V \{s, s′} and u , v}. There exists a planar x-montone
metro map drawing as seen in Figure 3.2.
The condensation HC = (VC ,EHC ) of this hypergraph H has the vertex setVC = {1, 2, 3, 4,
5, 6, 7, s} and the hyperedges EHC = {{u,v, s} | u,v ∈ VC\{s}}. Now assume there is a
planar x-montone metro map drawing of HC . If s has the lowest or the highest x-value
of the vertices of VC in the metro map drawing the vertices {1, 2, 3, 4, 5, 6, 7} are next to
each other and will form aK7. Because an x-monotone path containing the vertices of the
hyperedge {u,v, s} contains the edge {u,v} due to the x-monotonicity. So from now on
assume that s is neither the vertex with the lowest nor the vertex with the highest x-value
of VC in the drawing. Without loss of generality there are four vertices of HC that have a
higher x-value than s in the drawing (otherwise there are four vertices of HC that have a
lower x-value than s and we can use the same argument). We will call them Vhiдh . Fur-
thermore since s is not the vertex with the lowest x-value of VC there is a vertexw of HC

that has a lower x-value than s in the drawing. Because an x-monotone path containing
the vertices of the hyperedges {s, r ,u} contains the edge {r ,u} for every r ,u ∈ Vhiдh and
because an x-monotone path containing the vertices of the hyperedges {w, s, r } contains
the edge {s, r } for every r ∈ Vhiдh the vertices Vhiдh ∪ {s} will create a K5. Contradiction.

In the following we will use the notation [A,N ] := [A,N ] ∩ N with A,N ∈ N. We
want to look at the relationship between the condensation of a hypergraph H and H in
the non-monotone case. Therefore we need one more result which will compare path-
based support graphs of hypergraphs to general support graphs of hypergraphs. It will
show that the class of path-based support graphs is way more restrictive than the class
of support graphs.

Proposition 3.5. There is a graph that has a tree support but only path-based supports with
O(|V |2) many edges.

Proof. Take the star SN with the center vertex s and the peripheral vertices 1, 2, 3, 4, 5...,N .
At first we observe that as long as s is in every hyperedge the star graph is a valid support
for this hypergraph.
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Take the hypergraph H = (V ,EH ) with V = {x | x ∈ [1,N ]} ∪ {s} and EH =
{{a,b, c, s} | a,b, c ∈ V \{s} and a < b < c} ∪ {{u, s} | u ∈ V \{s}} This graph con-
tains the hyperedges {x , s} with x ∈ [N ]. Those hyperedges ensure that each path-based
support graph contains those as well. So we already have N edges in our path-based
support graph.

Now look at the hyperedges of the type {s,p,k, r } with p ∈ [1,N −2], k ∈ [p+1,N −1]
and r ∈ [k + 1,N ]. We observe that due to the fact that every hyperedge has to be
connected by a path only two of those edges can be incident to the vertex s , which means
that there has to be at least one edge connecting two peripheral vertices (Figure 3.3).

Case 1: the edge {p,k} exists. Repeat the same argument for {s,p,k+1, r+1}. (adding
one edge each step)

Case 2: the edge {p,k} does not exist. Therefore for every r either p or k have to be
connected to r (either the edge {p, r } or the edge {k, r } exists) (adding N − k edges).

Now fix p. Either we never get to case 2 and therefore add N − p − 1 edges or we get
to case 2 at the vertex q and also add N −p − 1 edges (case 1: N −p − (N − q) − 1, case 2:
(N − q) ). All the edges we had to add for a fixed p are incident to either p or q, meaning
that if we remove those two vertices all the edges we have added in our support graph
cannot be used for paths in the remaining graph. So if we increase p by 1 and remove the
vertex q we can repeat the same argument with Ni := Ni−1 − 2. In total we have to add
at least b(N−1

2 )c · b(N2 )c + N edges for a graph with N + 1 vertices.

Since planar graphs have at most 3 · |V | − 6 edges we can use this construction with
N ≥ 9 to show the following corollary:

Corollary 3.6. There is a graph that has a planar tree support but not a planar path-based
support.

We can use the last proposition to show that if we do not insist on x-monotonicity then
there is a hypergraph that does not have a planar path-based support but its condensation
does and vice versa.

Proposition 3.7. There is a hypergraph H = (V ,EH ) that has a planar path-based support
but its condensation HC = (VC ,EHC ) does not have a planar path-based support.

Proof. Take the hypergraph H = (V ,EH ) with V = {1, 2, 3, 4, 5, 6, 7, 8, 9, s, s′} and EH =
{{u,v, s, s′} | u,v ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and u , v} ∪ {{u, s} | u ∈ V \{s}}. This
graph has a planar path-based support as seen in Figure 3.4. Furthermore we have seen
in Proposition 3.5 that its condensation cannot have a planar path-based support.

Proposition 3.8. There is a hypergraph H = (V ,EH ) that does not have a planar path-
based support but its condensation HC = (VC ,EHC ) does have a planar path-based support.

Proof. Take the hypergraphH = (V ,EH )withV = {s, s′}∪ [1, 15] and EH = {{u,v, s, s′} |

u,v ∈ V \ {s, s′}} ∪ {{i, i + 1} | i ∈ [1, 14]} ∪ {{1, 15}} ∪ {{s, s′}}. Its condensation
HC = (VC ,EHC ) is VC = V \ {s′} and EH = {{u,v, s} | u,v ∈ V \ {s}} ∪ {{i, i + 1} | i ∈
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Figure 3.3: Different possibilites to draw the hyperedge {1, 2, 3, s}
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Figure 3.4: A valid drawing of hypergraph H
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(d) Creating a cycle that contains only
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Figure 3.5: Creating a path-based support graph for the hypergraph H
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[1, 14]} ∪ {{1, 15}} ∪ {{s}}. HC does have a planar path-based support as seen in Figure
3.5a. Now we show that H does not have a planar path-based support by contradiction.

Assume H has a planar path-based support G = (V ,E). We know that the vertices
{1, 2, 3..., 15} form a cycle C . The vertices s and s′ have to be connected by an edge.
Therefore they can be either inside or outside of C . Without loss of generality assume
they are inside (Figure 3.5b). Now pick the vertices V1 = {1, 2, 3, 4, 5}. They cannot be
connected all with each other because then they would form aK5. So with the hyperedges
Hsub = {{u,v, s, s′} | u,v ∈ V1} we know, that at least one of those hyperedges {u,v, s, s′}
with u,v ∈ Hsub has to be connected by a path p that does not contain the vertices u
and v in consecutive positions. We observe that p is either of the form (u, s,v, s′) or
of the form (u, s, s′,v). In both cases we create a cycle that contains only vertices in
VF = V1∪{s, s

′}. We further observe that this cycle guarantees that the edge {s, s′} touches
a face in the drawing of G that only contains vertices of VF (Figure 3.5c). Now pick the
vertices V2 = {6, 7, 8, 9, 10} and V3 = {11, 12, 13, 14, 15}. With the same argument the
edge {s, s′} touches a face in the drawing of G only containing vertices of V2 and {s, s′}
touches a face only containg vertices of V3 and {s, s′}. Therefore {s, s′} touches three
different faces in the drawing of G. Contradiction.
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4 Existence of planar metromap drawings

In many cases it makes sense to assume that the number of hyperedges is way smaller
than the number of vertices. In the following we give some results if the number of hy-
peredges is limited. Verroust et al. [VV04] show that every hypergraph with less than
nine hyperedges has a planar support graph. In the following we will show that every
hypergraph with less than six hyperedges has an x-monotone path-based support graph.

First we look at crossing free metro map drawings of hypergraphs. In this case every
hypergraph with four or less hyperedges can be drawn.

Proposition 4.1. Every hypergraphwith atmost hyperedges has a crossing free x-monotone
metro map drawing.

Proof. Every vertex can be contained in any subset of hyperedges. So if we do not consider
the vertices that are only in one or none hyperedges and therefore easy to place we remain
with eleven different kind of vertices. As we have seen in Theorem 3.3, it is sufficient to
look at the condensation of the hypergraph H . So we only have to find a valid drawing
such that all of those eleven vertices can be added without creating crossings. Figure 4.1
shows such a drawing. The hyperedges are represented by the four horizontal edges and
the vertices by the eleven vertical ones.

In the following we will introduce grid intersection graphs (GIG).

Definition 4.2 (Intersection graph). Let S be a finite family of sets. The intersection graph
of S is a graph G = (V ,E) whose vertices corresponds to the sets, with {vi ,vj} ∈ E if and
only if si and sj intersect.

Definition 4.3 (Grid intersection graph). Let I1 and I2 be finite families of horizontal and
vertical intervals in the plane, such that no two horizontal or vertical lines intersect. The
intersection graph of I1 and I2 is called grid intersection graph.

We observe that a crossing free x-monotone metro map drawing of a hypergraph H =
(G,EH ) can be transformed into a GIG representation of a graph G = (V ∪ EH ,E) with
E = {{u, e} | u ∈ V , e ∈ EH and u ∈ EH } and vice versa. Grid intersection graphs have
been the interest of many different papers. One result about grid intersection graphs we
can use is that if the created graphG is planar thanwe can find a crossing free x-monotone
metro map drawing of H (see Hartman et al. [HNZ91]).

Next we want to show that four is a tight upper bound meaning that there exists a
hypergraph with five hyperedges such that it cannot be drawn crossing free.

Proposition 4.4. The dual hypergraph ofK5 does not have a crossing free metro map draw-
ing.
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Figure 4.1: Crossing free x-monotone metro map drawing of any hypergraph with four
hyperedges

Proof. Take the hypergraph H = (V ,EH ) = K∗
5 with the vertices

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and EH = {{1, 2, 3, 4},{1, 5, 6, 7}, {2, 5, 8, 9}, {3, 6, 8, 10},
{4, 7, 9, 10}}. The claim is that this graph cannot be drawn as a metro mapwithout having
at least one edge or vertex crossing. For the proof we will show that if we could find a
crossing free metro map drawing of H we could also find a planar drawing of K5.

So assume there is a crossing free drawing of H . First we observe that every vertex
has degree two. Now we want to look at the paths for each hyperedge. Take the metro
line ph = (a,b, c,d) with a,b, c,d ∈ V of any hyperedge h ∈ EH and subdivide each
edge in ph such that p2

h
= (a,h1,b,h2, c,h3,d). Since we do not have any crossings and

each vertex has a degree of at most two in the hypergraph we can add the edges Esub =
{{h1,h2}, {h2,h3}} without creating crossings. Next we will contract the edges in Esub .
This will not create any crossings. By repeating the same procedure for every hyperedge
we create a graph K′ which can be generated out of K5 by subdividing each edge in K5.
Since we assumed that there existed a planar drawing and we did not create any crossings
the transformation would give us a planar drawing for K5. Contradiction.

Corollary 4.5. There is a hypergraph with five hyperedges that cannot be drawn as an
x-monotone metro map without any crossings.

So in the following we will allow vertex crossings but still insist that the drawing does
not contain any edge crossings. A simple observation is that not every hypergraph with
nine hyperedges has such a drawing. Take the graph K3,3. We know that there is no
planar drawing of this graph and it has exactly nine hyperedges. Furthermore every
graph is also a hypergraph and hyperedges of size two cannot cause vertex crossings.
Therefore we found a hypergraph with nine hyperedges that cannot be drawn without
edge crossings.

Next we want to show that we can draw each hypergraph that has at most five hy-
peredges as a planar x-monotone metro map. In the crossing free case it was enough
to show that we find a crossing free x-monotone metro map drawing for a hypergraph
containing all different vertex classes of the condensation relation. This is not the case if
we allow vertex crossings because if we remove a vertexv that contains a vertex crossing
from a planar x-monotone metro map drawing the remaining drawing will have an edge
crossing. Therefore we have to show that if we remove a vertex with a vertex crossing
there is a planar x-monotone metro map drawing for the remaining hypergraph.

Proposition 4.6. Every hypergraph with five hyperedges can be drawn as a planar x-
monotone metro map.

Proof. For this proof we have to distinguish between two cases:
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(a) Case 1: There exists a vertex of degree three

(b) Case 2: There exists at least one vertex of degree two

Figure 4.2: Planar drawings of hypergraphs with less than six hyperedges

Case 1: In the graph exists a vertex that has degree at least three. Figure 4.2a shows a
way to draw every possible vertex with having exactly one vertex crossing. This crossing
seen in the middle (between the green, brown, pink metro lines) is a crossing between
three different hyperedges. So if one of those exists in the hypergraph we can use this
vertex to get a drawing as in the picture.

Case 2: So from now on assume there does not exist a vertex of degree greater than
two. Furthermore we assume that there exists one vertex of degree two since otherwise
the drawing is trivial. Figure 4.2b shows a valid drawing with a vertex crossing between
the pink and the brown hyperedge.

Next we want to show that insisting on x-monotonicity may change if we find a planar
path-based support graph for a hypergraph.

Proposition 4.7. There is a hypergraph that has a planar metro map drawing but does not
have a planar x-monotone metro map drawing.

Proof. Take the following hypergraph H = (V ,EH ) with V = {1, 2, 3, 4, 5} and EH =

{
([1,5]

3

)
}. We can think about this graph as K5 and for every edge its compliment is taken.

So at first we show that there is a planar metro map drawing of this hypergraph. The
graph K5 − {1, 3} (see Figure 4.3) is planar. Furthermore it is also a path-based support
for H . The only edge that is missing is the edge {1, 3}. But since each hyperedge has size
three every hyperedges that contains the vertices 1 and 3 also contains another vertex.
We can use the third vertex u to find a path (1,u, 3) that is in K5 − {1, 3}. Therefore there
exists a planar metro map drawing for H with Proposition 2.11.

In the following we will show that there is no planar x-monotone metro map drawing
of H . We prove this by contradiction. Every hyperedge is a subset of size three and
for every possible subset of size three there is exactly one hyperedge. So without loss
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1

2

3 45

Figure 4.3: A planar path-based support graph for H

1 2 3 4 5

(a) The first hyperedge is inserted

1 2 3 4 5

(b) The second hyperedge is inserted with-
out loss of generality above the first

1 2 3 4 5

(c) The third hyperedge is inserted between
the first two hyperedges

1 2 3 4 5

(d) The fourth hyperedge is inserted below
the first three hyperedge

1 2 3 4 5

(e) The third hyperedge is inserted below
the first two hyperedges

1 2 3 4 5

(f) The fourth hyperedge is inserted below
the first three hyperedges

Figure 4.4: Showing that H does not have a planar x-monotone metro map drawing

of generality we assume a correct x-monotone metro map drawing D of the vertices V
has the ordering (1, 2, 3, 4, 5) of the vertices. Assume the hyperedge {1, 2, 3} is placed
corresponding to D (Figure 4.4a). Furthermore assume without loss of generality that in
D the hyperedge {1, 2, 5} is drawn above the hyperedge {1, 2, 3} (Figure 4.4b). Next we
look at the hyperedge {1, 2, 4}. There are two cases:

Case 1: The hyperedge {1, 2, 4} is placed above the hyperedge {1, 2, 3} (Figure 4.4c).
Next we look at the hyperedge {1, 4, 5}. Because of the other hyperedges it has to be

below the hyperedge {1, 2, 3}. But now there is no way to add the hyperedge {1, 3, 5}
without creating an edge crossing. (Figure 4.4d)

Case 2: The hyperedge {1, 2, 4} is placed below the hyperedge {1, 2, 3} (Figure 4.4e).
Next we look at the hyperedge {1, 4, 5}. Because of the other edges it has to be below
the hyperedge {1, 2, 3}. But again there is no way to add the hyperedge {1, 3, 5} without
creating an edge crossing. (Figure 4.4f).

24



Another interesting problem occurs if we add one more restriction to the x-monotone
metro map drawings. Given a hypergraph H = (V ,EH ) we also insist that in an x-
monotone metro map drawing D of the hypergraphH which has vertex s with the lowest
x-value x(s) of the vertices V and the vertex t with the highest x-value x(t) of the ver-
tices V in D that for every metro line p ∈ EH and every y in the intervall [x(s),x(t)]
there exists a point with x-value y that lies on p. We call those metro map drawings x-
consecutive-monotone. So for every metro line p = (v1, ...,vn) that only contains vertices
with x-values in (x(s),x(t))we extendp by adding an x-montone curve fromv1 to a point
with x-value x(s) and by adding an x-montone curve fromvn to a point with x-value x(t).
We call an x-consecutive-monotone metro map drawing planar if it does not contain any
crossings of metro lines that are not at vertices of G and crossing free if it is planar and
does not contain vertex crossings.

Observation 4.8. The hypergraph K3 = ({1, 2, 3}, {{1, 2}, {1.3}, {2, 3}}) does not have a
crossing free x-consecutive-monotone metro map drawing.

Proof. Assume K3 has a crossing free x-consecutive-monotone drawing. Since a crossing
free x-consecutive-monotone drawing does not contain any crossings and the drawing is
x-consecutive monotone the hyperedges ofK3 have the same ordering at each x- position.
Without loss of generality assume that ({1, 2}, {1, 3}, {2, 3}) is that ordering. Therefore
the drawing cannot contain the vertex 2. Contradiction.

In the following we want to show that if we allow vertex crossings every hypergraph
with at most four hyperedges can be drawn in this style without edge crossings.

Proposition 4.9. Every hypergraphwith atmost four hyperedges has a planarx-consecutive-
monotone metro map drawing.

Proof. With the same argument as for planar x-monotone metro map drawings it is suf-
ficient to look at the condensation. We assume that there is at least one vertex of degree
two because otherwise the drawing is trivial. To make notation easier we will denote the
hyperedges with EH = {1, 2, 3, 4} and the verticesv as subsets s ∈ EH such that for every
h ∈ EH : h ∈ s if and only if v ∈ h.

Case 1: There exists at least one vertex of degree three and another vertex of degree at
least two.

Under this condition we can find a valid drawing of the hypergraph (Figure 4.5a).
If we only have one vertex of degree greater than one then the drawing is trivial. So

from now on we assume that there are only vertices of degree at most two. Now we
distinguish between how many vertices of degree two exist.

Case 2: There are at least five vertices of degree two.
Figure 4.5b is an example how to draw such a hypergraph if it contains at least five

vertices of degree two.
Case 3: There are at most four vertices of degree two. The drawing in Figure 4.5c

is a valid drawing even for five hyperedges that contains a vertex crossing at a vertex
v = {a,b} with a,b ∈ EH . The vertex of degree two that is missing in this drawing is the
vertexu = {c,d}with {c,d}∩{a,b} = ∅. So assume that there is no vertexv ∈ V such that
the vertex u = EH \v is not inV and |V | ≤ 4. IfV contains only two vertices the drawing

25



(a) There exists one vertex of degree at least
three and one vertex of degree at least
two

(b) There exist at least five vertices of degree
two

(c) At least one vertex v of degree two does
not exist and there exists a vertex cross-
ing at a vertex u that is not contained in
any hyperedge that contains v

1

2

3

4

(d) There are four vertices inV with the con-
dition that for every vertex v ∈ V there
is a vertex u ∈ V such that v is not con-
tained in any hyperedge that contains u

Figure 4.5: Drawings of hypergraphs with four hyperedges

is trivial. So without loss of generality assume that V = {{1, 2}, {3, 4}, {1, 4}, {2, 3}}.
Figure 4.5d is a valid drawing of this hypergraph.

Proposition 4.10. C5 does not have an x-consecutive-monotone metro map drawing with-
out edge crossings.

Proof. Assume for the sake of contradiction that there is an x-consecutive-monotone
metro map drawing of C5 which does not contain any edge crossings and let v be the
vertex with the lowest x-value in this drawing and let ord : EH → {1, 2, 3, 4, 5} be the
order of the hyperedges at the x position x(v) of vertexv . To make notation easier denote
each hyperedge h by ord(h). First we observe that for each hyperedge h there are two
other hyperedges that each have one common vertex with h and the only way to change
position is to have a common vertex since we do not allow edge crossings.

Case 1: The hyperedges 1 and 5 have a common vertex.
At position x(v) there are three hyperedges {2, 3, 4} separating the hyperedges 1 and 5.

But since 1 and 5 have a common vertex with each other each of them has only a common
vertex with one hyperedge of the hyperedges {2, 3, 4}. Therefore one of those hyperedges
will separate 1 and 5 and they cannot have a common vertex. Contradiction.

Case 2: Two hyperedges h1,h2 with |ord(h1) − ord(h2)| = 3 have a common vertex.
Without loss of generality let h1 be 1 and h2 be 4. Since there are two hyperedges {2, 3}

separating 1 and 4 we know that either 1 or 4 has a common vertex with 2 and the other
hyperedge has a common vertex with 3. Since each hyperedge has a common vertex with
exactly two other hyperedges we further know that 5 has a common vertex with 2 and a
common vertex with 3. But since 4 is separating 5 from both hyperedges 2 and 3 and 5
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does not have a common vertex with 4 both hyperedges 2 and 3 need to have a common
vertex with 4. Contradiction.

Case 3: No hyperedges h1,h2 with |ord(h1) − ord(h2)| > 2 have a common vertex.
This means that the hyperedge 1 has a common vertex with 2 and one with 3 and the

hyperedge 5 has a common vertex with 4 and a common vertex with 3. Therefore 2 and
4 have a common vertex as well. Since 2 and 4 are separated by the hyperedge 3 either 2
and 3 or 3 and 4 have to change position. Since neither 2 nor 4 has a common vertex with
3 we get a contradiction.
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5 Minimizing crossings

In the following we want to minimize different kinds of crossings in our metro map draw-
ing. In order to make the different optimization criteria more clear we need some further
notation.

The input of the problemswe study in the following is a pair (G,Π), whereG = (V ,E) is
a planar path-based support of a hypergraphH = (V ,EH ) andΠ is a set of paths inG such
that for every hyperedge h ∈ EH there exists exactly one path in Π, that is a Hamiltonian
path inG[h]. We also consider the cases where additionally a planar embedding G ofG is
provided as a part of the input; in this case we adopt the notation (G,G,Π). Letu ∈ V and
{u1, . . . ,uk} ⊂ V be the clockwise ordered neighbors of u as provided by G. Let P ⊆ Π
be the paths containing the edge {u,ui}. A line-ordering at vertex u on the edge {u,ui},
lordu(ui), is an ordering p1, . . . ,ph of P .

A metro map embedding of (G,G,Π) is a set {lordu(v), lordv(u) : (u,v) ∈ E}. In case
the embedding of G is not a part of the input, a metro map embedding of (G,Π) is an
embedding G of G and a metro map embedding of (G,G,Π). Line orderings at v and
at w on {v,w} ∈ E imply a line crossing along {v,w} if both contain the same pair of
paths in the same order. Thus, if there is no line crossing along {v,w} the line-ordering
at v on {v,w} is reverse of the line-ordering at w on {v,w}. Observe that a metro map
embedding induces a cyclic order of themetro lines at a vertexv because the embeddingG
gives an ordering of the adjacent vertices ofv which we will denote as ordv and the metro
map embedding gives an ordering of the metro lines at each edge ofG. Therefore we can
define the line-ordering at vertex v lordv with v being a vertex v of G and u1, ...,uk being
the adjacent vertices ofv inG ordered according to ordv as the concatenation lordv(u1)⊕
· · · ⊕ lordv(uk). Observe that a line-ordering at vertex v implies a vertex crossing at v if
it contains two elements i and j two times in an alternating order, i − j − i − j.

For a path p = (a, ...,b) we say that p terminates in its endpoints a and b.
Consider a metro map embedding of (G,Π) and an edge {u,v} of G, and let p1, ...,ph

be the paths that contain the edge {u,v} ordered according to lordv(u). Assume that for
some i pi , 1 ≤ i ≤ h terminates inv . We say that pi is lower peripheral atv if ∀j, 1 ≤ j ≤ i ,
pj terminates in v . Similarly, we say pi is upper peripheral at v if ∀j with i ≤ j ≤ h: pj
terminates in v . We say that a path is peripheral if it is upper or lower peripheral at both
of its end-vertices. We say that a path p is constrained peripheral if for both end-vertices
s, t it is already given whether p is upper or lower peripheral at s and t .

Furthermore we call a vertex v ∈ V with the property that every path p ∈ Π that
contains v terminates in v a terminal vertex. A simple observation about those terminal
vertices is that they do not have a vertex crossing.

We study the following problems. Given a triple (G,G,Π) construct a metro map em-
bedding with minimum number of vertex crossings or of line crossings. We denote these
problems by V-MLCM, L-MLCM, respectively. In case the embedding is not provided we
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Problem Given Find

Embedding graph Peripheral Vcros Lcros Res. Ref.

L-MLCM X caterpillar 7 7 X NP-hard [FP13]
L-MLCM-E 7 double star 7 7 X NP-hard Corollary 5.16
P-L-MLCM X path X 7 X NP-hard [Arg+10]
CP-L-MLCM X planar graph X 7 X O(|Π|2 · |V |) [AGM08]
CP-L-MLCM-E 7 tree X 7 X NP-hard Theorem 5.14
V-MLCM X planar bipartite graph 7 X 7 NP-hard Corollary 5.9
V-MLCM X tree 7 X 7 O(|Π|2) · |V |) Theorem 5.10
V-MLCM-E 7 planar bipartite graph 7 X 7 NP-hard Corollary 5.12

Table 5.1: This table gives an overview over different crossing minimization problems for
metro map drawings. We distinguish between the cases where the embedding
of the path-based support graph G is already given and the cases where it is
part of the problem to find an embedding for G. Furthermore the graph class
that is given says that the problem is considered for this class of graphs. We
distinguish between the way we want to draw the metro map. Vcros means
that we want to find a metro map drawing with a minimum amount of vertex
crossings but do not allow any line crossings, whereas Lcros means that we
want to minimize the number of line crossings but avoid vertex crossings. For
the Line crossing problem we further distinguish between the case that each
line has to terminate in a peripheral position (peripheral) and the case where
there is no restriction on where the lines can terminate at a vertex. Res. stands
for result and gives the computational complexity of this problem for this graph
class and the information in the column Ref. gives the reference where this
claim is proven.

denote the problems by V/L-MLCM-E. In case the paths of Π are required to be (con-
strained) peripheral we add (C)P to the problem notation. We observe that in these prob-
lem formulations only one type of crossing (either line or vertex) is allowed.

For our problemswewill distinguish between unavoidable crossings and avoidable cross-
ings.

Definition 5.1 (Common subpath). A common subpath of two pathsp1 andp2 in a graphG
is a pathps = (v1, ...,vn)withn ≥ 1 such thatp1 = (...,v1, ...,vn, ...),p2 = (...,v1, ...,vn, ...)
and adding any vertex of G to ps violates this condition.

Definition 5.2 (Unavoidable and avoidable crossing). A crossing between two paths p1
and p2 on a common subpath ps in a graphG with embedding G is unavoidable, if the paths
p1 and p2 cross in every metro map embedding on ps . Otherwise we call it avoidable.

In the following we make an observation when two paths have an unavoidable vertex
crossing. First we observe that the paths p1 and p2 cannot have a vertex crossing if there
common subpath is empty. Furthermore we observe that p1 and p2 may have more than
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one common subpath and that we can consider each common subpath independently for
finding unavoidable crossings.

Observation 5.3 (Unavoidable crossing). Given a triple (G,G,Π) with G = (V ,E) being
a planar path-based support graph of an ordered hypergraph H = (V ,EH ), G a planar em-
bedding ofG andΠ being the corresponding paths for the ordered hyperedges ofH . We want
to formalize when two paths p1 and p2 have an unavoidable vertex crossing on a common
subpath. If one path p1 terminates on the common subpath we can order the paths on the
common subpath according to the ordering of the other end of the subpath. Therefore they will
not create an unavoidable crossing. So assume now that neither p1 nor p2 terminates on the
common subpath. If the common subpath contains only one vertex v p1 = (..., s1,v, t1, ...)
and p2 = (..., s2,v, t2, ...) have an unavoidable crossing on (v) if and only if ordv contains
the alternating order a − b − c − d with a, c ∈ {s1, t1}, a , c and b,d ∈ {s2, t2}, b , d .
So assume now that the common subpath contains at least two vertices. Denote the common
subpath as ps = (u1, ...,ur ). Furthermore denote p1 as (..., s1,u1, ...,ur , t1, ...) and p2 as
(..., s2,u1, ...,ur , t2, ...). The paths have an unavoidable crossing on ps if and only if the order
of the vertices {s1, s2,x} in ordu1 is the same as in ordur with x = u2 in ordu1 and x = ur−1
in ordur (Figure 5.1).

Next we want to show that it is sufficient to consider the unavoidable crossings to com-
pute the minimum number of vertex crossings in a metro map embedding for (G,G,Π).
Remember that we defined that there is one vertex crossing at a vertex v if there are at
least twometro lines that cross inv and therefore we do not count the number of crossings
between metro lines but the number of vertices where metro lines cross.

Definition 5.4 (V-graph). Given a graph G = (V ,E) and a subset S ⊆ V of vertices. Let
Gcom = (Vcom,Ecom) be a component ofG − S and Vv = Vcom ∪ {s ∈ S | ∃v ∈ Vcom : {s,v} ∈
E}. Then we define G[Vv ] to be a V-graph of S in G.

Definition 5.5 (Hitting Set Problem). Given a hypergraph H = (V ,EH ) and an integer k .
Is there a set S ⊆ V with |S | ≤ k such that for all hyperedges h ∈ Eh , it holds S ∩ h , ∅.

Lemma 5.6. Given a triple (G,G,Π) with G = (V ,E) being a planar path-based support
graph of an ordered hypergraph H = (V ,EH ), G a planar embedding of G, Π being the
corresponding paths for the ordered hyperedges of H and a set of sets L that contains every
subpath ps such that there exists p1,p2 ∈ Π which have an unavoidable crossing on their
common subpath ps . (G,G,Π) has a metro map embedding with k vertex crossings if and
only if H = (V ,L) has a hitting set of size k .

Proof. For the proof we need the following result of Fink et al. [FP13]: If there are no
unavoidable crossings than there is a solution without any (vertex) crossing.

First we observe that if we have a hitting set S of a hypergraph H = (VL,L) with
VL =

⋃
l∈L l , than for every pair of paths p1,p2 ∈ Π that has an unavoidable crossing on

their common subpath ps there exists a vertex v ∈ ps ∩ S . Furthermore we observe that
two paths p1,p2 ∈ Π do not have to cross more than once on a common subpath ps .

Let v be a vertex crossing. Since we do not count the number of crossing at a vertex
v but only if there is at least one crossing between two metro lines at v this means that
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u v

(a) Two paths not causing any crossings on
their common subpath (u,v)

u v

(b) Two paths with an unavoidable crossing
on their common subpath (u,v)

Figure 5.1: Unavoidable and avoidable crossings of two paths

we can choose every line-ordering at vertex v lordv(u) with {u,v} ∈ E. Therefore for
a path pa = (a1, ...,ak ,v,b1, ...,bl) we can look at the subpaths pb = (a1, ...,ak ,v) and
pb(v,b1, ...,bl) independently.

So for our solution we will allow vertex crossings only at the vertices of S . Now we
look at any V-graph Gv = {Vv ,Ev} of S in G. So take two paths p1,p2 ∈ Π that have an
unavoidable crossing on a common subpathps = (a1, ...,ak ,v,b1, ...,bk)with a nonempty
intersection with Gv and v ∈ S ∩Vv . We know that such a vertex v exists because of the
following argument. If ps is completely in Gv we know because of S being a hitting set
that there is such a vertexv . Ifps is not completely inGv than there is a vertex x ∈ Vv such
that one of its neighbors on ps is not inVv . After the construction ofGv x ∈ S ∩Vv . With
the observations earlier we can divide ps in two from each other independent subpaths
pa = (a1, ...,ak ,v,b1, ...,bl) and pb = (a1, ...,ak ,v) and look at them independently. Since
we can choose the line-ordering at vertex v we know that p1,p2 ∈ Π do not have an
unavoidable crossing on each of those subpaths. We can repeat the same argument for
any pair of paths p1,p2 ∈ Π and can conclude with the result of Fink et al. that there is a
metro map drawing of Gv that has only vertex crossings at vertices in S .

Since the union of the V-graphs and S isG and the intersection of any two V-graphs is
inG[S] we can combine the drawing of each V-graph to get a metro map drawing for the
triple (G,G,Π) with k vertex crossings.

So the remaining part is to show that if (G,G,Π) has a metro map drawing with k
vertex crossings then L has a hitting set of size k . The way we choose L ensures that for
every set l ∈ L we have to pick at least one vertex since otherwise there are two paths
p1,p2 that have an unavoidable crossing but there is no vertex on which they intersect.
Therefore our metro map drawing has at least as many vertex crossings as a minimal
hitting set of L.

Theorem 5.7. Given a triple (G,G,Π), withG = (V ,E) being a planar path-based support
graph of an ordered hypergraph H = (V ,EH ), G a planar embedding of G and Π being
the corresponding paths for the ordered hyperedges of H and an integer k . It is NP-complete
to decide if there is a metro map drawing for (G,G,Π) with at most k vertex crossings (V-
MLCM).

Proof. First we show that the problem is inNP. Ametromap drawing of (G = (V ,E),G,Π)
without line crossings is the set {lord(e) : e ∈ E}. Going through every vertex v ∈ V we
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u v

v1{u,v}

v2{u,v} v3{u,v}

v4{u,v}

Figure 5.2: Representation of an edge

need to check whether it is a crossing vertex. This can be done by checking whether the
line ordering atv contains two elements i, j two times in an alternating order i − j − i − j.
This, can clearly be done in polynomial time.

In the following we reduce Planar Vertex Cover to our problem. A vertex cover
of G′ = (V ′,E′) is defined as a subset of vertices Vcov ⊆ V ′ such that ∀{u,v} ∈ E′ :
u ∈ Vcov ∨ v ∈ Vcov. Given a planar graph G′ Planar Vertex Cover asks whether
G′ has a vertex cover of size k . We set V = V ′ ∪ {v1

e ,v
2
e ,v

3
e ,v

4
e | e ∈ E′} and E =

E′ ∪ {(v1
e ,u), (v

2
e ,u), (v

3
e ,v), (v

4
e ,v) | e = {u,v} ∈ E′} – thus G is G′ where for each

edge we add four edges connected to newly introduced vertices; refer to Figure 5.2. We
set Π = {p1e = (v1

e ,u,v,v
3
e ),p

2
e = (v2

e ,u,v,v
4
e ) | {u,v} ∈ E′}. The embedding G of

G coincides with the embedding of G′ and new edges are inserted so that for each edge
e = {u,v}, vertices v,v1

e ,v
2
e are consecutive in the ordering ordu ; the same holds for

u,v3
e ,v

4
e in the ordering ordv . The embedding G guarantees that there is an unavoidable

vertex crossing between the paths p1e and p2e for every e = {u,v} in G. This unavoidable
crossing occurs on the common subpath of p1e and p2e and therefore they cross either in u
or in v .

Assume thatG′ has a vertex coverVcov of size k . For each edge e = {u,v} inG we define
the line ordering as follows. If u ∈ Vcov then lordu(v) = (p1e ,p

2
e ) and lordu(v) = (p2e ,p

1
e ).

Therefore the paths {p1e ,p2e } enforce a vertex crossing at vertexu but no vertex crossing at
vertex v . If u < Vcov then v ∈ Vcov and we set lordu(v) = (p2e ,p

1
e ) and lordu(v) = (p1e ,p

2
e ).

Therefore the paths {p1e ,p2e } enforce a vertex crossing at v but they do not cross in vertex
u. Thus (G,G,Π) has a metro map drawing with at most k vertex crossings.

In the reverse direction, assume that (G,G,Π) has a metro map drawing with k vertex
crossings. For each edge e = {u,v} ∈ E′ ∩ E, the corresponding paths p1e and p2e have an
unavoidable crossing on the common subpath {u,v} and therefore cross either at u or at
v . Thus the vertices with vertex crossings of the metro map drawing are a vertex cover
of G.

Example 5.8 (V-MLCM NP-reduction). In the following we give an example for this NP
reduction. Taken the graph G = (V ,E) with V = {u,v,w,x} and E = {{u,v}, {u,w},
{v,w}, {w,x}} (Figure 5.3a). Nowwewant to find aminimum vertex cover. We can trans-
form this problem into the MLCM-V problem with the hypergraph H = (V ′,EH ) with
V ′ = {u,v,w,x ,uv1,uv2,uv3,uv4,uw1,uw2,uw3,uw4,vw1,vw2,vw3,vw4,wx1,wx2,wx3,
wx4} and EH = {(uv1,u,v,uv3), (uv2,u,v,uv4), (uw1,u,w,uw3), (uw2,u,w,uw4),
(vw1,v,w,vw3), (vw2,v,w,vw4), (wx1,w,x ,wx3), (wx2,w,x ,wx4)} and the drawing of
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u

v

w
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(a) A planar graph with four
vertices

uw3 wx2 wx3u

v

w

x

vw2

vw1

vw3 vw4uv1 uv2

uv3

uv4

uw1

uw2

uw4 wx1 wx4

(b) The transformation of Figure 5.3a

Figure 5.3: Example for the NP-reduction of the V-MLCM problem from PLANAR VER-
TEX COVER

the planar path-based support G of H as seen in Figure 5.3b. In the example we choose
the verticesVcov = {u,w} both for vertex cover and for the vertices with vertex crossings.
This reduction uses a pair of hyperedges that have an unavoidable crossing on a subpath
(u,v) to enforce a vertex crossing either in u or inv and thereby create a vertex cover. To
make this relationship more obvious each of those conditions is represented by a different
type of colouring. The condition for the edge {u,v} is enforced by the two red coloured
hyperedges, the condition for the edge {u,w} by the two blue coloured, the condition for
the edge {v,w} by the two green coloured and the condition for the edge {w,x} by the
yellow and the orange coloured hyperedge.

Corollary 5.9. Given a triple (G,G,Π), with G = (V ,E) being a planar bipartite path-
based support graph of an ordered hypergraph H = (V ,EH ), G a planar embedding of G
and Π being the corresponding paths for the ordered hyperedges of H and an integer k . It is
NP-complete to decide if there is a metro map embedding for (G,G,Π) with at most k vertex
crossings (V-MLCM).

Proof. Since the problem is in NP for general planar graphs G′ it is also in NP for planar
bipartite graphs. Therefore we only need to show that the problem is NP-hard.

We know that the problem is NP-hard on general planar path-based support graphs
G′ = (V ′,E′). So given a triple (G′,G′,Π′), with G′ = (V ′,E′) being a planar path-based
support graph of an ordered hypergraph H ′ = (V ′,E′H ), G

′ a planar embedding of G′

and Π′ being the corresponding paths for the ordered hyperedges of H ′ and an integer k .
The idea is to subdivide each edge e′ ∈ E′ and subdivide e′ also in the paths p′ ∈ Π′ and
hyperedges h′ ∈ EH that contain e′, name the new vertexve and defineVsub =

⋃
e ′∈E ′{ve}.

Furthermore the embeddingG ofG coincides with the embeddingG′ ofG′. In this waywe
create a planar bipartite graphG = (V ∪Vsub ,E). First we observe that we can transform
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everymetromap embeddingM′ for (G′,G′,Π′)withk crossings into ametromap drawing
for (G,G,Π) with k crossings by using the same line-ordering for every vertex v ∈ V ′

and using the line-ordering lordv {u,v }
(u) for the vertexv{u,v} ∈ Vsub on the edge {u,v{u,v}},

which is the reversed line ordering of lordu(v{u,v}). SinceM′ is a valid metro map drawing
for (G′,G′,Π′) we know that there are no line crossings and therefore the vertices inVsub
will not contain a vertex crossing.

Next we want to show that if we have a metro map embedding M for (G,G,Π) with
k crossings there is also a metro map embedding for (G′,G′,Π′) with k crossings. Take
any metro map embedding of (G,G,Π) witk k crossings. First we observe that if all the
crossings occur on the vertices V we directly have a metro map embedding of (G,G,Π)
witk k crossings. So assumeM contains a vertex crossing at the vertexv{u,v} ∈ Vsub . Since
every path p ∈ Π that containsv{u,v} also containsv we can shift every crossing ofM that
occurs in v{u,v} to vertex v . Therefore v{u,v} does not have a vertex crossing anymore but
v will. In total we did not increase the number of vertex crossings so if we do the same
procedure for every vertex v ∈ Vsub we get a metro map embedding for (G′,G′,Π′) with
at most k vertex crossings.

Data: hyperedges: set of ordered hyperedges Π of a hypergraph H , graph:
path-based support graph of H with given embedding

Result: cond: set of all subpaths that contain an unavoidable crossing
cond = [] ;
for p1 in hyperedges do

for p2 in hyperedges, index(p1) < index(p2) do
conSub = commonSubpaths(p1,p2) ;
for ps in conSub do

if unavoidableCrossing(ps , p1, p2, graph) then
cond.add(ps ) ;

end
end

end
Algorithm 1: Computing ILP

Given a triple (G,G,Π) with G = (V ,E) being a planar path-based support graph
of an ordered hypergraph H = (V ,EH ), G a planar embedding of G and Π being the
corresponding paths for the ordered hyperedges ofH . We want to compute the set of sets
L that contains every subpathps such that there existsp1,p2 ∈ Π that have an unavoidable
crossing on their common subpath ps . Algorithm 1 computes L by selecting any two
paths p1,p2 ∈ Π taking any common subpath ps of p1 and p2 and computing if the paths
p1 and p2 have an unavoidable crossing on ps . For the running-time of the algorithm
we refer to Theorem 1 of the paper An Improved Algorithm for the Metro-line Crossing
Minimization Problem by Noellenburg [Nöl09]. Noellenburg proofs that the algorithm
runs in O(|Π|2 · |V |).
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Now we can use the algorithm to show that V-MLCM becomes polynomial if the path-
based support graph is a tree.

Theorem 5.10. Given a triple (T ,T ,Π), with T = (V ,E) being a tree and a path-based
support graph of an ordered hypergraph H = (V ,EH ), T a planar embedding of T and
Π being the corresponding paths for the ordered hyperedges of H . There is an algorithm
that decides if there is a metro map drawing for (T ,T ,Π) with at most k vertex crossings
(V-MLCM) in O(|Π|2 · |V |) time.

Proof. With Lemma 5.6 we know the following: Given a triple (G,G,Π) withG = (V ,E)
being a planar path-based support graph of an ordered hypergraph H = (V ,EH ), G a
planar embedding of G, Π being the corresponding paths for the ordered hyperedges of
H and a set of sets L that contains every subpath ps such that there exists p1,p2 ∈ Π that
have an unavoidable crossing on their common subpath ps . (G,G,Π) has a metro map
drawing with k vertex crossings if and only if L has a hitting set of size k . Therefore it is
sufficient to show that we can compute a hitting set of L efficiently.

In order to compute a hitting set of L we use the fact that T is a tree. At first we pick
any vertex r , denote it as root, do a breadth-first search starting at r and define for v ∈ V
the level(v) as the distance from v to r .

Next we do a bottom up approach and add vertices to our solution Vcros as follows:

Step 1 Take for each list l in L the vertexvl with the minimum level in l and call the union
of those vertices Vmin = {vl | l ∈ L}.

Step 2 Select a vertex vlow ∈ Vmin such that level(vlow) ≥ level(vl) for all vl ∈ Vmin.

Step 3 Add vlow to our solution Vcros , remove every list l that contains vlow and the corre-
sponding vl from Vmin and go back to Step 2 until L is empty.

In the following we want to bound the running-time of the algorithm. With Algorithm
1 we can compute L in O(|Π|2 · |V |) time. Furthermore doing a breadth-frist search on
a tree is in O(|V |) time. Next we look at the steps from our bottom up approach. Step 1
can be done in O(|V | · |Π|) time since we have to find a minimal element in |Π| lists that
contain at most |V | elements. Since finding a maximal element in a list can be computed
in linear time Step 2 is in O(|Π|) time. In Step 3 we can go over every list l ∈ L to check
if it contains vlow which can be done in O(|Π| · |V |) time.

Now we bound the number of times we repeat Step 2 and 3. Since we selected vlow in
Step 2 there is at least one set in L remaining that contains vlow . Therefore we decrease
the number of elements in L by at least one and we can bound the number of iterations
by O(|Π|). In total the algorithm runs in O(|Π|2 · |V |) time.

We observe that Vcros is a hitting set of L since we only removed sets from L that are
hit by a vertex in Vcros . So it remains to show that Vcros is an optimal solution.

First we look at any path p in T and consider the level of the vertices in the path. We
observe that since there is a unique path from each vertex v to the root r we can write
p as the concatenation of two paths p1 and p2 such that the level of the vertices in p1 is
decreasing and the level of the vertices in p2 is increasing.
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Whenever the algorithm adds a vertex v ∈ V to Vcros , there is a set l ∈ L such that
v = vl and l is not hit yet. We will denote this set as l(v).

Now we claim that the set S = {l(v) | v ∈ Vcros} of these sets is pairwise disjoint,
forcing any hitting set to have cardinality at least |S | = |Vcros |.

Assume that there are two different sets l(a), l(b)with a,b ∈ Vcros such that l(a)∩l(b) ,
∅. Therefore there exists a vertex x ∈ l(a)∩l(b). Further assumewithout loss of generality
that level(a) ≤ level(b). SinceT is a tree we know that there exists a unique path pb from
x to b and a unique path pa from x to a. We observe that since b is the vertex with minimal
level in l(b) and a is the vertex with minimal level in l(a) that both paths are subpaths
from the unique path from x to the root r and together with level(a) ≤ level(b)we know
that b ∈ l(a). Since a , b the algorithm chooses b first and therefore removes l(a) from
L. So the algorithm will not select the vertex a. Contradiction.

In the following we want to give an ILP (Integer Linear Programming) for the V-MLCM
problem. As seen in Lemma 5.6 it is sufficient to compute the set of subpaths L on which
unavoidable crossings occur and then to compute a minimum hitting set of L. So we will
give an ILP for the hitting set problem and use Algorithm 1 to compute L.

ILP

Given a hypergraph H = (V ,EH ). For each hyperedge h ∈ EH we want to select at least
one vertex v ∈ h. Define the variables xv ∈ {0, 1} for all v ∈ V . The variable xv being
1 corresponds to selecting v . Therefore we want to minimize the number of variables xv
that have value 1. We therefore define the following optimization function:

min
∑
v∈V

xv (5.1)

Further we want to ensure that for each hyperedge we select at least one vertex:
∀h ∈ EH : ∑

v∈h

≥ 1 (5.2)

We can interpret the hitting set problem also as the vertex cover problem for hyper-
graphs. To solve this problem there are different approximation algorithms [Hal02]. If the
size of the sets is bounded byk there is a polynomial-timemultiplicativek-approximation.
In the general case vertex cover for hypergraphs can only be approximated logarithmi-
cally.

So far an embedding has already been given for our path-based support graph. In the
following we will look at the same problem with the additional freedom of choosing the
embedding as well. We will call this problem V-MLCM-E.

Proposition 5.11. Given a tuple (G,Π), withG = (V ,E) being a planar path-based support
graph of an ordered hypergraph H = (V ,EH ), Π being the corresponding paths for the
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v1{u,v}

v2{u,v} v3{u,v}

v4{u,v}

Figure 5.4: Representation of an edge

ordered hyperedges of H and an integer k . It is NP-complete to decide if there exists a metro
map embedding for (G,Π) with at most k vertex crossings (V-MLCM-E).

Proof. With the same argument as in Theorem 5.7 we can see that the problem is in NP.
Next we want to show that it is NP-hard.

We use a similar reduction as in Theorem 5.7. There the vertex positions were given
which allowed us to encode a vertex cover instance into the metro map drawing. In this
more general case we do not know which embedding is optimal. Therefore the idea is
to reduce the number of possible embeddings and ensure that the embedding of The-
orem 5.7 is optimal. We will add some edges to enforce a certain vertex placement.
In the transformation of Theorem 5.7 we added four vertices Ve = {v1

e ,v
2
e ,v

3
e ,v

4
e } for

each edge e = {u,v} and the two hyperedges EHe = {(v1
e ,u,v,v

3
e ), (v

2
e ,u,v,v

4
e )}. We

will do the same transformation but we also add the edges Eemb = {{v1
e ,v

4
e }, {v2

e ,v
3
e },

{v3
e ,v

4
e }, {v

1
e ,v

2
e }} to E and the edges Eemb as hyperedges to EH . The vertices v2

e and v3
e

are connected and together with u and v they form a cycle of size four. Without loss of
generality let v1

e be outside of this cycle in an embedding of G. Since v1
e and v4

e are con-
nected v4

e has to be outside of this cycle as well. We observe the following: The vertices
{a,b, c} have the same ordering in ordu and ordv with a = v1

e , b = v2
e and c = v in ordu

and a = v3
e , b = v4

e and c = u in ordv (see Figure 5.4). Therefore we know with Observa-
tion 5.3 that the two paths EHe have an unavoidable crossing on their common subpath
(u,v) and we know that our solution has at least as many vertex crossings as the size of
a vertex cover. Moreover by using a metro map embedding as seen in Theorem 5.7 we
know there is one metro map embedding with exactly the same amount of crossings.

With the same argument as in Corollary 5.9 we can see that the problem remains NP-
hard for bipartite path-based support graphs of a hypergraph H .

Corollary 5.12. Given a tuple (G,Π), withG = (V ,E) being a planar bipartite path-based
support graph of an ordered hypergraph H = (V ,EH ), Π being the corresponding paths for
the ordered hyperedges of H and an integer k . It is NP-complete to decide if there exists a
metro map embedding for (G,Π) with at most k vertex crossings (V-MLCM-E).

So far we have only considered vertex crossings. In the following we want to look at
line crossings. Noellenburg [Nöl09] showed that the so called L-MLCM-T1 problem can
be reduced to the L-MLCM-FixedSE problem in linear time. The problem is defined as
follows:
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Definition 5.13 (L-MLCM-T1). Given a triple (G,G,Π), with G = (V ,E) being a path-
based support graph of an ordered hypergraph H = (V ,EH ) with hyperedges EH such that
each hyperedge terminates in a vertexv of degree one, G an embedding ofG,Π being the cor-
responding paths for the ordered hyperedges ofH and an integer k . Decide whether (G,G,Π)
admits a metro map embedding with at most k line crossings.

Now we want to show that this problem becomes NP-hard even on trees if we do not
fix the embedding.

Theorem 5.14. Given a tuple (G,Π), withG = (V ,E) being a tree and a path-based support
graph of an ordered hypergraph H = (V ,EH ) with hyperedges EH such that each hyperedge
terminates in a vertexv of degree one,Π being the corresponding paths for the ordered hyper-
edges ofH and an integerk . It is NP-complete to decide if there exists a metro map embedding
for (G,Π) with at most k line crossings (L-MLCM-T1-E).

Proof. Thenumber of line crossings can be computed in polynomial time if the embedding
and the ordering at every edge of the path-based support graph is given. Therefore the
problem is in NP. Now it remains to show that the problem is NP-hard. To show this
we reduce the problem BIPARTITE CROSSING NUMBER ([GJ83]) to our problem. The
problem is defined as follows: Given a bipartitioned multigraph G = (L ∪ R,E) and an
integer k . Can G be embedded in the unit square such that all vertices in L are on the
left boundary, all vertices in R are on the right boundary, all edges are within the square
and there are at most k crossings. We observe that such embeddings only differ from
each other in the order they embedded the vertices on the left boundary and in the order
they embedded the vertices on the right boundary where the ordering orders the vertices
according to their y-coordinate in the embedding. Therefore it is sufficient to represent a
solution of the BIPARTITE CROSSING NUMBER problem as an order of the vertices in L
which we will denote as ordle f t and an order of the vertices in R which we will denote as
ordriдht .

In the following let ({u,v},n) be the n-th multiedge between u and v .

Transformation: Given the graph G′ = (L ∪ R,E′) with the integer k . The idea for the
path-based support graph G = (V ,E) we create is to have one vertex s that is connected
to the vertices of L and one vertex t that is connected to the vertices in R and to s . Since
we insist that each terminal vertex has degree one we further have to add two vertices
for each edge e ∈ E′. Formally, we define G = (V ,E) and the set of paths Π as follows:
V = L∪R∪{s, t}∪

⋃
({u,v},n)∈E(v({u,v},n),l∪v(u,v,n),r ),Π = {(v({u,v},n),l ,u, s, t ,v,v({u,v},n),r ) |

{u,v} ∈ E′} and E are the edges induced by the paths in Π. This construction ensures
that every path p ∈ Π has terminal vertices of degree one. Therefore each path can be
identified by its first vertex.

Intuitively the edge {s, t} is the inside of the unit square of the BIPARTITE CROSSING
NUMBER problem. Every crossing will occur on this edge. A simple observation is that
an optimal solution does not have crossings between two paths p1,p2 if they share the
second or the second last vertex. Since the first and last vertex of each path is individual
the first/last vertices can be placed according to the relative positioning of the last/first
vertices such that p1, p2 do not intersect. Another observation is that two edges e1 =
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{l1, r1}, e2 = {l2, r2} ∈ G′ with l1, l2 ∈ L and r1, r2 ∈ R cross in an embedding of the
BIPARTITE CROSSING NUMBER problem if the order of l1 and l2 in ordle f t is the reverse
order of r1 and r2 in ordriдht .

Assume that ordle f t , ordriдht is a solution for the BIPARTITE CROSSING PROBLEM
with k crossings. Add the vertex t at the end to the ordering ordle f t and order the vertices
in L ⊆ V around s according to ordle f t . Add the vertex s at the end of the ordering ordriдht
and order the vertices in R ⊆ V around t according to the reversed order of ordriдht . This
will create k crossings on the edge {s, t}. Moreover we know with the observation above
that there are no more crossings on other edges.

In the reverse direction assume that (G,G,Π) has a metro map drawing with k cross-
ings. With the observation above every crossing that does take place on a edge different to
{s, t} is unneccesary. Therefore we assume that no such crossing exists and every cross-
ing happens on {s, t}. The line-ordering at vertex s (starting form t ) and the reversed
line-ordering at vertex t in reversed ordering (starting from s) induce orderings ordle f t
and ordriдht with k crossings.

To understand the NP-reduction we give an example for the reduction.

Example 5.15 (L-MLCM-T1-E NP-reduction). Given a bipartite multigraph Gbip = (L ∪

R,Ebip) with L = {l1, l2, l3}, R = (r1, r2),
Ebip = {{l1, r1}, {l2, r1}, {l2, r2}, {l3, r1}, {l3, r2}, {l3, r2}} and k = 1. A drawing of

Gbip is seen in (Figure 5.5a). This drawing corresponds to a solution of the created L-
MLCM-T1-E problem (Figure 5.5b) and vice versa.

Corollary 5.16. Given a tuple (G,Π), with G = (V ,E) being a double star and a planar
path-based support graph of an ordered hypergraph H = (V ,EH ) with hyperedges EH , Π
being the corresponding paths for the ordered hyperedges of H and an integer k . It is NP-
complete to decide if there exists a metro map embedding for (G,Π) with at most k line
crossings (L-MLCM-E).

Proof. In the proof for Theorem 5.14 we can remove the terminal vertices for each path.
The remaining graph will not be a T1-graph in general, since the new terminal vertices
can have a higher degree. Nevertheless this is still a valid MLCM instance. With this
exception the NP-reduction is equivalent to the proof of Theorem 5.14.

40



l1

l2

r1

r2

l3

(a) A solution for the bipartite crossing problem with one crossing

ts

l1

l2

r1

r2

l3

(b) A corresponding metro map drawing of the hypergraph H .

Figure 5.5: Example for the NP-reduction of L-MLCM-T1-E from BIPARTITE CROSSING
NUMBER
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6 Minimum path-based supports

In order to visualize a hypergraph as a metro map we require a path-based support graph
at its core. The goal of this chapter is to minimize the number of edges of the path-based
support graph. Brandes et al. [Bra+10] show by a reduction from Hamiltonian path that
minimizing the number of edges in path-based support graphs is NP-hard even if the
hypergraph is closed under intersection. We observe that since it is NP-hard to check
if a given graph G = (V ,E) is a path-based support for a hypergraph H (Theorem 3.1),
we should not just give a path-based support but also store the vertex-ordering for each
metro line in order to use G for our metro map drawing.

In the following we give an ILP for the problem.

ILP

Given a hypergraph H = (V ,EH ) we want to find a minimum path-based support graph
G. First we define an arbitrary ordering on the vertices ord : V → {1, ...|V |}. We define
the variables x{u,v} ∈ {0, 1} with u,v ∈ V and u , v such that x{u,v} = 1 is equivalent
to the edge {u,v} being in the path-based support graph. Formally, G = (V ,E) with
E = {{u,v} | x{u,v} = 1}. We need for every h ∈ EH a Hamiltonian path ph in G[h].
Therefore we define the variables yh

{u,v}
∈ {0, 1} with u,v ∈ V , u , v and h ∈ EH , where

yh
{u,v}

= 1 corresponds to {u,v} being an edge in the path ph . To guarantee that the graph
G = (h,Eh) with Eh = {{u,v} | yh

{u,v}
= 1}} is a path we need some further variabes

zt ,h
(v,u)

∈ {0, 1} with h ∈ EH , u,v, t ∈ h and u , v . In order to guarantee that Gh = (h,Eh)

is a path we ensure that no vertex has degree greater than two, that Gh is connected and
that |Eh | = |h | − 1.

So in the following we want to bound the degree of every vertex in Gh by two.
∀h ∈ EH , ∀v ∈ V : ∑

u∈V \{v}

yh
{u,v} ≤

{
2, if v ∈ h

0, otherwise
(6.1)

We want to guarantee that G is connected. Therefore we transform G into a directed
graphG′ by replacing each edge {u,v} ∈ E with two directed edges (u,v) and (v,u). We
can guarantee that G[h] is connected by finding a path from a fixed vertex sh ∈ h to any
vertex t ∈ h that only contains vertices in h. We choose for every hyperedge h one vertex
sh .
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We observe that on a directed path from sh to t the indegree of a vertex x minus the
outdegree of x equals 1 if x = t , -1 if x = sh and 0 otherwise. We can further think of this
condition as the existance of a flow of size one from sh to t . Therefore there has to be a
path from sh to t .

∀h ∈ EH ,∀v, t ∈ h with t , sh:

∑
u∈V \{v}

zt ,h
(u,v)

−
∑

u∈V \{v}

zt ,h
(v,u)

=


1, if v = t

−1, if v = sh

0, otherwise
(6.2)

Furthermore we want to ensure that we only use edges that are in Gh:
∀h ∈ Eh,∀u,v, t ∈ h with t , sh and u , v :

zt ,h
(u,v)

+ zt ,h
(v,u)

− yh
{u,v} ≤ 0 (6.3)

Nowwe know that for every h ∈ EH ,Gh is connected and every vertex ofGh has degree
at most two. To avoid creating a cycle we add the following condition:
∀h: ∑

u,v∈V ,ord(u)<ord(v)

yh
{u,v} = |h | − 1 (6.4)

In the following we want to ensure that every path ph is in G:
∀u,v ∈ V with u , v , ∀h ∈ EH :

yh
{u,v} − x{u,v} ≤ 0 (6.5)

With those conditions we guarantee thatG is a path-based support graph of H . So the
only thing missing is the optimization function for the path-based support graph:

min
∑

u,v∈V ,ord(u)<ord(v)

x{u,v} (6.6)

Correctness of ILP

Condition (6.2) ensures that for every hyperedge the graph G[h] is connected since ∀h ∈

EH there is a path between sh and any other vertex t ∈ h and every of those edges is
also picked for the path-based support graph, as ensured by condition (6.3) and (6.5). In
combination with condition (6.1) and (6.4) the edges picked for this hyperedge have to
be a path. Therefore the ILP will return a valid solution with x{u,v} being the edges of a
support graph and yh

{u,v}
being the edges of the Hamiltonian path in G[h].

Assume G = (V ,E) is a valid path-based support graph of H = (V ,EH ). Therefore each
hyperedge h ∈ EH is connected by a path ph . Choose for every hyperedge h ∈ EH a vertex
sh . We set the variables x{u,v} to 1 if {u,v} ∈ E, yh

{u,v}
to 1 if and only if {u,v} is an edge in

ph and zt ,h(u,v) to 1 if and only if the edge {u,v} is on the path ph between the vertices sh and
t andu has a smaller distance to sh on the path thanv . Since each ph is a Hamiltonian path
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in G[h] this setting of the variables will fulfill the conditions (6.2), (6.4) and (6.1). Since
each ph is a path inG condition (6.5) is fulfilled, because if we picked some variable yh

{u,v}

we also picked the corresponding variable x{u,v}. Condition (6.3) is also fulfilled because
we did not set both zt ,h

(u,v)
and zt ,h

(v,u)
to one and if we picked one we know that the edge

{u,v} belongs to the path ph and therefore we also picked the variable yh
{u,v}

.
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7 Conclusion

In this thesis we looked at metro map drawings as a way to visualize hypergraphs. With
the goal of finding a nicemetromap drawing of a hypergraphwe consideredminimization
problems for vertex crossings and line crossings of metro map drawings.

In Chapter 3 we proved that given a planar graph G and a hypergraph H it is NP-
complete to decide ifG is a planar path-based support ofH . Furthermore we showed that
there is a hypergraphH that has a planar path-based support but its condensationHC does
not and vice versa. However we did not consider if there is any property of hypergraphs
H which ensures that both H and HC do have a planar path-based support.

In Chapter 4 we proved that every hypergraph which has at most five hyperedges does
have a planar x-monotone metro map drawing and that there is one hypergraph with
nine hyperedges that does not have a planar metro map drawing. We left the following
question open:

Question 7.1. Is there a graph with k hyperedges that does not have a planar (x-monotone)
metro map drawing. (with k = 6, 7, 8).

Furthermore we proved that every hypergraph with at most four hyperedges has a pla-
nar x-consecutive monotone drawing and that the bound is tight because C5 cannot be
drawn planar x-consecutive monotone.

In Chapter 5 we proved that the V-MLCM and the V-MLCM-E problem are both NP-
complete for general planar path-based support graphs G but there exists a polynomial-
time algorithm for V-MLCM ifG is a tree. An obvious question that occurs is if the same
is true for the V-MLCM-E problem.

Question 7.2. Is there a polynomial-time algorithm for the V-MLCM-E problem if the path-
based support graph G is a tree.

We gave a polynomial-time algorithm to transform the V-MLCM problem into a hitting
set instance. Therefore we know that the problem can be approximated logarithmically
in polynomial-time. It remains open to show if the problem has a constant factor approx-
imation.

Question 7.3. Is there a constant factor approximation for the V-MLCM problem.

A different idea is to bound the number of hyperedges of EH by a constant or by restrict-
ing the type of desirable support and ask the question if the V-MLCM problem remains
NP-complete.
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An interesting problem occurs if we bound the number of crossings between metro
lines at every vertex. In such case we do not count the number of crossings on the whole
graph but only insist that on each vertex there are at most a certain number of crossings
between metro lines. This approach will create metro map drawings that do not have to
complex crossing structures at vertices but will contain more vertices that have crossings.
We did not look into this problem further but it is another optimization criteria for metro
map drawings that seems desirable.

Another problem we considered is the L-MLCM-E problem which we proved to be
NP-complete even if the path-based support graph is a double star.

Question 7.4. Does the L-MLCM-E remain NP-complete if the path-based support graph is
a star?
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