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Abstract

A directed acyclic graph (DAG) 𝐺 is called upward 𝑘-planar if there exists an embedding Γ
of 𝐺 in the plane such that every edge is a 𝑦-monotone Jordan curve and is crossed at most
𝑘 times. The upward local crossing number of a graph 𝐺 , denoted by lcr↑ (𝐺), is the smallest
integer 𝑘 such that 𝐺 is upward 𝑘-planar.

It is known that lcr↑ (𝐺) ≤ bw(𝐺)2, where bw(𝐺) denotes the bandwidth of𝐺 . We establish
improved bounds in the case where 𝐺 is the Cartesian product of two directed input graphs.
For two orientated paths 𝑃1 and 𝑃2 of lengths 𝑛1 and 𝑛2, respectively, we show, by developing
suitable embedding techniques, that lcr↑ (𝑃1 □ 𝑃2) ∈ 𝑂 (

√︁
min(𝑛1, 𝑛2)). Moreover, for two

DAGs 𝐺1 and 𝐺2, we prove that lcr↑ (𝐺1 □𝐺2) ∈ 𝑂 (max(bw(𝐺1), bw(𝐺2))3).
We call a partially ordered set (poset) P upward 𝑘-planar if its Hasse diagram is upward

𝑘-planar. We show that there exists no function that bounds the dimension of a poset by its
upward local crossing number, nor vice versa.

Zusammenfassung

Ein gerichteter azyklischer Graph (DAG) 𝐺 wird upward 𝑘-planar genannt, wenn es eine Ein-
bettung Γ von𝐺 in die Ebene gibt, in der jede Kante als 𝑦-monotone Jordan-Kurve dargestellt
wird und höchstens 𝑘 Kreuzungen mit anderen Kanten aufweist. Die upward local crossing
number eines Graphen 𝐺 , bezeichnet mit lcr↑ (𝐺), ist die kleinste natürliche Zahl 𝑘 , für die
eine solche Einbettung existiert.
Es ist bekannt, dass lcr↑ (𝐺) ≤ bw(𝐺)2 gilt, wobei bw(𝐺) die sogenannte Bandwidth von

𝐺 bezeichnet. In dieser Arbeit wird gezeigt, dass sich für das kartesische Produkt zweier
gerichteter Graphen durch geeignete Einbettungstechniken verbesserte obere Schranken
herleiten lassen. Konkret wird bewiesen, dass für zwei orientierte Pfade 𝑃1 und 𝑃2 der Längen
𝑛1 bzw. 𝑛2 gilt, dass lcr↑ (𝑃1 □ 𝑃2) ∈ 𝑂 (

√︁
min(𝑛1, 𝑛2)). Darüber hinaus zeigen wir für zwei

DAGs 𝐺1 und 𝐺2, dass lcr↑ (𝐺1 □𝐺2) ∈ 𝑂 (max(bw(𝐺1), bw(𝐺2))3).
Ferner bezeichnet man eine partiell geordnete Menge (Poset) P als upward 𝑘-planar, falls

ihr Hasse-Diagramm upward 𝑘-planar ist. Es wird gezeigt, dass es keine Funktion gibt, die
die Dimension eines Posets durch seine upward local crossing number beschränkt. Ebenso
existiert keine Funktion, die die upward local crossing number durch die Dimension des
Posets beschränkt.
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1 Introduction

A directed acyclic graph is called upward 𝑘-planar if it admits an embedding into the plane
where every edge is drawn as a 𝑦-monotone curve and crossed at most 𝑘 times. The smallest
𝑘 ∈ ℕ for which such an embedding exists is called the upward local crossing number of a
graph 𝐺 . This thesis investigates upward 𝑘-planarity for graph classes in which the edge
orientation is fixed, with a particular focus on Cartesian products and Hasse diagrams of
posets. Our goal is to derive an improved bound for the upward local crossing number of
these graph classes by analyzing its relationship to other structural graph parameters.

The notion of upward 𝑘-planarity was only recently introduced by Angelini, Biedl, Chimani,
Cornelsen, Da Lozzo, Hong, Liotta, Patrignani, Pupyrev, Rutter and Wolff [Ang+25]. It
combines the two concepts of k-planarity and upward-planarity. Graph planarity is a central
concept in graph theory. It can be generalized to the notion of 𝑘-planarity: a graph 𝐺 is
said to be 𝑘-planar if it admits a drawing in the plane in which every edge is crossed at
most 𝑘 times. The theory of 𝑘-planarity has been studied extensively in the context of
“beyond planarity”, with a wide range of bounds and structural characterizations (see the
survey [DLM19] or books [Bek20 | Sch18]). Seemingly unrelated, we can discuss the notion of
upward-planarity for directed graphs. A directed graph is called upward planar if it admits
a planar embedding, in which every edge is drawn as a 𝑦-monotone curve. The question of
how it can be determined efficiently whether a directed graph is upward planar is extensively
investigated in the literature [DT88 | GT01]. Analogous to the way 𝑘-planarity generalizes
planarity, upward 𝑘-planarity extends the notion of upward planarity.

Angelini et al. show that the upward local crossing number is unbounded for certain planar
graph classes, such as bipartite outerplanar graphs. They further show that the upward local
crossing number in general has an upper bound that is quadratic in the bandwidth of the
graph. They also demonstrate that even for planar graphs, suitable orientations of the edges
may force arbitrarily large upward local crossing numbers [Ang+25].

In this thesis, we aim to answer the question of whether the upward local crossing number
can also become arbitrarily large for graph classes with fixed edge orientations. While in
previous work the local upward crossing number of a graph was analyzed over all possible
edge orientations of the graph, we analyze graph classes with already defined, structurally
interesting edge orientations and investigate how the given orientation can be used in order
to formulate better bounds or influence the analysis of the upward local crossing number of
the respective graph, in general. In particular, we study Cartesian products of upward 𝑘-planar
graphs where the edge orientations are determined by the edge orientations of the input
graph and formulate a bound that is dependent on the graph parameters of the input graphs
and their orientations. Furthermore, we explore the upward local crossing number of posets
where the edge direction of the Hasse diagram is also already determined by the partial order
of the poset.

Our main results are the following:

For the Cartesian product of directed paths with arbitrary edge orientations, we show
that the number of crossings per edge in an upward embedding has a sublinear upper
bound in the length of the shorter path. Corollary 3.20 specifically states that the
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1 Introduction

bound lies in 𝑂 (𝑛 1
4 ) where 𝑛 is the number of vertices of the Cartesian product. This

significantly improves the bound implied by earlier results that state that the upward
local crossing number of grids lies in 𝑂 (𝑛 1

2 ) [Ang+25].

Extending this approach to general Cartesian products, we demonstrate that the number
of crossings per edge can be bounded by the maximum bandwidth of both input graphs
cubed, i.e., max(bw(𝐺1), bw(𝐺2))3; see Corollary 3.25. Previous work states that the
upward local crossing number is bounded by the quadratic bandwidth of the Cartesian
product [Ang+25]. The bandwidth of the Cartesian product can be bounded by the
number of vertices of one input graph times the bandwidth of the other input graph
[CDGK75]. If the maximum bandwidth of both input graphs 𝐺1,𝐺2 is less than the
number of vertices of each input graph, this implies an upward bound of the upward local
crossing number by max(bw(𝐺1), bw(𝐺2))4. Therefore, the result of Corollary 3.25 also
improves the known upper bound for the upward local crossing number of Cartesian
products.

Finally, we establish that there exists no function relating the dimension of a poset to its
upward local crossing number, and conversely, that the upward local crossing number
cannot be bounded by the dimension (Theorem 4.1, Theorem 4.2).

We now give an overview of related work and after that, give an outline of the thesis while
formulating the contribution in more detail.

1.1 Related Work

Upward planarity has been a long-standing topic of interest in the context of drawing directed
acyclic graphs. Specifically, algorithms to determine whether a graph is upward planar have
been studied extensively [DT88 | GT01 | DGL10]. In general, it is NP-complete to determine
whether a graph is upward planar [GT01], but there exist graph classes, for example digraphs
with additional structural properties, where it can be done in polynomial time [DGL10].

In the context of “Beyond Planarity” the notion of 𝑘-planarity and the local crossing
number, which describes the maximum number of crossings per edge in an embedding, re-
ceived considerable attention in graph theory, but largely in isolation from upward planarity
[DLM19 | Bek20 | Sch18]. In particular, the local crossing number of undirected Cartesian Prod-
ucts of cycles, stars, paths and small planar graphs is analyzed in detail [Mus19]. Furthermore,
the crossing number, which describes the sum of all crossings of an embedding, has been
investigated for special undirected Cartesian products with paths [Asi+24] and for certain
undirected poset-related structures such as the hypercube [SV91].

The unified concept of upward 𝑘-planarity for directed acyclic graphs was only introduced
recently by the paper mentioned above. In addition to the already mentioned results, it
shows that testing upward 𝑘-planarity is NP-complete, even for graph classes where upward
planarity testing can be solved in polynomial time. For a graph 𝐺 with maximum degree
Δ and bandwidth bw(𝐺) it is established that the upward local crossing number lies in
𝑂 (Δ · bw(𝐺)) ⊆ 𝑂 (bw(𝐺)2). Based on known bandwidth bounds for certain graph classes,
they obtain more specific results: for 𝑘 × 𝑘 grids, the upward local crossing number is 𝑂 (𝑘),
while for planar graphs with maximum degree Δ and 𝑛 vertices, it is in 𝑂

(
𝑛 ·Δ

logΔ (𝑛)

)
. They

also show that not every acyclic fan is upward planar, and there are directed acyclic graphs
of pathwidth 2 with the number of vertices and the maximum degree in 𝑂 (𝑘) that are not
𝑘-planar.
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1.2 Detailed Contribution and Outline

Moreover, classical results in combinatorics establish relationships between upward pla-
narity and the dimension of posets [TM77 | BFR72]. They specifically state that if a poset
has a unique greatest element or a unique smallest element and the Hasse diagram is planar,
the dimension is at most 3. If the poset has a unique greatest element and a unique smallest
element and the Hasse diagram is planar, the dimension is at most 2.

1.2 Detailed Contribution and Outline

In Chapter 2, necessary definitions and concepts from graph theory and combinatorics are
introduced.
In Chapter 3, we study the upward local crossing number of Cartesian products of two

directed acyclic graphs.
In Section 3.1, we develop upper bounds for simple cases of Cartesian products. We present

first insights into the upward local crossing number of Cartesian products of two paths that
include at least one monotone directed path: Theorem 3.3 states that these Cartesian products
admit an upward planar embedding. We further establish that, for the cubic Cartesian product
of monotone paths, the upward local crossing number has a linear upper bound in the length
of the shortest input path, see Corollary 3.5.
In Section 3.2, we develop general embedding techniques for Cartesian products and use

these to derive an upper bound for the Cartesian product of an arbitrarily orientated path
and a directed acyclic graph. The bound presented in Corollary 3.14 depends linearly on the
bandwidth and maximum degree of the input DAGs. We also formulate a bound based on
certain structural properties of the orientated path solely, which is done in Lemma 3.16 and
Lemma 3.17. We then show in Lemma 3.19 that the bandwidth of an orientated path with
length 𝑛− 1 is in𝑂 (

√
𝑛) and conclude in Corollary 3.20 that the upward local crossing number

of the Cartesian product of two paths also lies in𝑂 (
√
𝑛) with 𝑛 being the length of the shorter

path. We extend this embedding approach to general Cartesian products and obtain an upper
bound depending polynomially on the bandwidth of the input graphs in Corollary 3.25.

In Section 3.3, we turn to lower bounds for the upward local crossing number of Cartesian
products of paths. We identify in Theorem 3.26 and Theorem 3.27 structural conditions under
which upward planar embeddings are impossible.

Finally, in Chapter 4, we construct counterexamples showing that there is no general
relationship between the upward local crossing number of a poset’s Hasse diagram and the
dimension of the poset.

In Chapter 5 we summarize our results and outline directions for future research on upward
𝑘-planarity for certain graph classes and posets.
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2 Preliminaries

We begin by introducing notation and concepts that will be used throughout this thesis.

2.1 Basic Definitions and Notation

Let 𝐺 be a graph with a finite vertex set. We refer to the vertex set of 𝐺 with 𝑉 (𝐺) and to
the edge set of 𝐺 with 𝐸 (𝐺). Unless explicitly stated otherwise, all graphs in this thesis are
directed graphs without loops or multi-edges. For a directed edge (𝑢,𝑤) ∈ 𝐸 (𝐺) we also write
𝑢𝑤 and call 𝑢 and𝑤 adjacent.

Two graphs 𝐺 and 𝐻 are isomorphic, written 𝐺 ≃ 𝐻 , if there exists a bijection between
𝑉 (𝐺) and 𝑉 (𝐻 ) that preserves adjacency.

If 𝑉 ′ ⊆ 𝑉 (𝐺), the subgraph induced by 𝑉 ′ is the graph 𝐻 with vertex set 𝑉 (𝐻 ) = 𝑉 ′ and
edge set 𝐸 (𝐻 ) = {𝑢𝑤 ∈ 𝐸 (𝐺) | 𝑢,𝑤 ∈ 𝑆}. The graph𝐺 −𝑉 ′ is defined as the subgraph induced
by 𝑉 (𝐺) \𝑉 ′ subgraph of 𝐺 . If 𝐸′ ⊆ 𝐸 (𝐺), the subgraph induced by 𝐸′ is the graph that has
𝐸′ as an edge set and all incident vertices to 𝐸′ as a vertex set. The graph 𝐺 − 𝐸′ is defined as
(𝑉 (𝐺), 𝐸 (𝐺) \ 𝐸′). Given a directed graph 𝐺 , its underlying undirected graph 𝐺 ′ has the same
vertex set and adjacency relation as 𝐺 , but all edges are undirected.

A graph 𝐺 is connected if for all 𝑢, 𝜈 ∈ 𝑉 (𝐺) there exists a path between 𝑢 and 𝜈 in the
underlying undirected graph. A graph is 𝑘-connected if 𝐺 −𝑊 is connected for all vertex sets
𝑊 ⊆ 𝑉 (𝐺) with |𝑊 | ≤ 𝑘 . A cut is the partition of the vertex set into disjoint subsets. All
edges that have exactly one endpoint in each subset of the partition are referred to as the
cut-set and we say that this edge set induces the cut.

For a vertex 𝜈 ∈ 𝑉 (𝐺), the in-degree is

𝑑in(𝜈) = |{(𝑢, 𝜈) ∈ 𝐸 (𝐺) | 𝑢 ∈ 𝑉 (𝐺)}|,

and the out-degree is
𝑑out(𝜈) = |{(𝜈,𝑢) ∈ 𝐸 (𝐺) | 𝑢 ∈ 𝑉 (𝐺)}|.

A vertex 𝜈 with 𝑑in(𝜈) = 0 is called a source, while a vertex with 𝑑out(𝜈) = 0 is called a sink.
The degree of a vertex 𝜈 is defined as 𝑑 (𝜈) = 𝑑in(𝜈) + 𝑑out(𝜈). The maximum degree of a graph
𝐺 is

Δ(𝐺) ≔ max
𝜈∈𝑉 (𝐺 )

𝑑 (𝜈).

2.2 Embeddings and Upward 𝑘-Planarity

An embedding Γ of a graph𝐺 maps every vertex 𝑢 ∈ 𝑉 (𝐺) to a distinct point in the plane and
every edge 𝑒 ∈ 𝐸 (𝐺) to a continuous Jordan curve 𝑓𝑒 : [0, 1] → ℝ2 such that 𝑓𝑒 (0) and 𝑓𝑒 (1)
are the positions of its endpoints. The set 𝑓𝑒 ((0, 1)) is called the set of inner points of 𝑒 . If for
two distinct edges 𝑒, 𝑒′ ∈ 𝐸 (𝐺) the sets 𝑓𝑒 ((0, 1)) and 𝑓𝑒′ ((0, 1)) intersect, we say that 𝑒 and 𝑒′
cross. In this thesis, we only consider embeddings where no vertex is placed on the interior of
an edge, no edge crosses itself, any two edges cross at most once, and no three edges cross in
a common point.
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2 Preliminaries

Figure 2.1: This figure illustrates that not every planar graph, see embedding on the left, has
also an upward planar embedding. The given graph is upward 1-planar [Ang+25].

The local crossing number of an embedding Γ, denoted lcr(Γ), is the maximum number of
crossings per edge. The total number of crossings is the crossing number of Γ, denoted 𝑐𝑟 (Γ).
The (local) crossing number of a graph 𝐺 is defined as the minimum (local) crossing number
over all embeddings, denoted lcr(𝐺) and cr(𝐺), respectively.

An embedding Γ is called 𝑘-planar if lcr(Γ) ≤ 𝑘 . A graph 𝐺 is called 𝑘-planar if it admits a
𝑘-planar embedding. If an embedding (or graph) is 0-planar, we simply call it planar.

Lemma 2.1: Let Γ be an embedding of a graph 𝐺 . Then

lcr(Γ) ≥ 2
|𝐸 (𝐺) | · cr(Γ) .

Proof. Assume every edge 𝑒 ∈ 𝐸 (𝐺) is crossed strictly less than 2
|𝐸 (𝐺 ) | · cr(Γ) times. Summing

over all edges and dividing by two for the fact that every crossing consists out of two edge, the
total number of crossings would then be strictly less than cr(Γ), contradicting the definition
of cr(Γ).

An embedding is called upward if every edge is represented by a 𝑦-monotone curve. Not
every directed graph admits such an embedding: in particular, any graph containing a directed
cycle does not admit one. Therefore, we only consider directed acyclic graphs (DAGs), i.e.
directed graphs without directed cycles. As illustrated in Figure 2.1 not every planar graph is
also upward planar.

An embedding is upward 𝑘-planar if it is both upward and 𝑘-planar.

Definition 2.2: The upward local crossing number of a directed acyclic graph 𝐺 , denoted
lcr↑ (𝐺), is the minimum local crossing number over all upward embeddings of 𝐺 .

Clearly, it holds for every directed graph 𝐺 that lcr↑ (𝐺) ≥ lcr(𝐺).
There are a few other properties and concepts concerning embeddings that are used

throughout this thesis. For a planar embedding Γ of a graph 𝐺 , a face is a connected region
of ℝ2 \ {𝑓𝑒 ( [0, 1]) | 𝑒 ∈ 𝐸 (𝐺)}. The unbounded region is the outer face, and the remaining
regions are the internal faces. The edges whose curves are incident to a face 𝑓 are called the
boundary edges of 𝑓 . If a vertex 𝜈 is incident to a boundary edge of 𝑓 , then we say 𝜈 lies on 𝑓 .
If 𝜈 lies on 𝑓 but has no incoming boundary edges, 𝜈 is a source of 𝑓 .
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2.3 Posets

The convex hull of Γ, denoted con˚(Γ), is the smallest convex set𝑀 ⊆ ℝ2 that contains all
vertex positions and all curves representing edges.

We define the coordinate projections

𝜋𝑥 : ℝ2 → ℝ, (𝑥,𝑦) ↦→ 𝑥, 𝜋𝑦 : ℝ2 → ℝ, (𝑥,𝑦) ↦→ 𝑦.

For an embedding Γ, the projection onto the 𝑥-axis is 𝜋𝑥 (con˚(Γ)); the projection onto the
𝑦-axis is 𝜋𝑦 (con˚(Γ)).

An embedding is called straight-line if every edge is represented by a line segment, i.e. for
every 𝑒 ∈ 𝐸 (𝐺) 𝑓𝑒 ( [0, 1]) is contained in a straight line. It is called linear if all vertices share
the same 𝑥- or 𝑦-coordinate.

Finally, we define two families of graphs used throughout this thesis: A path on 𝑛 vertices
is an undirected graph that is isomorphic to ({1, . . . , 𝑛}, {{𝑖, 𝑖 + 1} | 1 ≤ 𝑖 < 𝑛}). The length of
the path is the number of edges. The complete bipartite graph 𝐾𝑚,𝑛 is an undirected graph
that is isomorphic to the graph (𝐴 ∪ 𝐵, {{𝑎, 𝑏} | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}) with |𝐴| = 𝑚, |𝐵 | = 𝑛, and
𝐴 ∩ 𝐵 = ∅.

2.3 Posets

For Chapter 4 we introduce a number of definitions and basic concepts concerning partially
ordered sets and their notation.

A partially ordered set (poset) is a pair P = (𝑃, 𝐸) with 𝐸 ⊆ 𝑃 × 𝑃 such that 𝐸 is

reflexive: (𝑥, 𝑥) ∈ 𝐸 for all 𝑥 ∈ 𝑃 ,

transitive: if (𝑥,𝑦) ∈ 𝐸 and (𝑦, 𝑧) ∈ 𝐸, then (𝑥, 𝑧) ∈ 𝐸 for all 𝑥,𝑦, 𝑧 ∈ 𝑃 ,

antisymmetric: if (𝑥,𝑦) ∈ 𝐸 and (𝑦, 𝑥) ∈ 𝐸, then 𝑥 = 𝑦 for all 𝑥,𝑦 ∈ 𝑃 .

If (𝑥,𝑦) ∈ 𝐸 we also write 𝑥 ≤ 𝑦 and say that 𝑥 is smaller than 𝑦, or 𝑦 is greater than 𝑥 . If
𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦, we write 𝑥 < 𝑦. A poset P is finite if 𝑃 is a finite set; in this thesis, we only
consider finite posets.

Two elements 𝑥,𝑦 ∈ 𝑃 are comparable if 𝑥 ≤ 𝑦 or𝑦 ≤ 𝑥 . Otherwise 𝑥 and𝑦 are incomparable,
denoted b< 𝑥 ∥ 𝑦. An element 𝑥 ∈ 𝑃 is called a minimal element if no 𝑦 ∈ 𝑃 satisfies 𝑦 < 𝑥 ,
and a maximal element if no 𝑦 ∈ 𝑃 satisfies 𝑥 < 𝑦. A poset is called bounded if it has both a
unique minimal and a unique maximal element. The unique minimal or maximal element
is often denoted by 0 or 1, respectively. The downset of an element 𝑥 , denoted by 𝐷 (𝑥), is
defined as 𝐷 (𝑥) ≔ {𝑦 ∈ 𝑃 | 𝑦 < 𝑥}.
The element 𝑧 ∈ 𝑃 is a meet of 𝑥,𝑦 ∈ 𝑃 if 𝑧 ≤ 𝑥, 𝑧 ≤ 𝑦 and 𝑧 is maximal among all such

elements. The element 𝑧 ∈ 𝑃 is a join of 𝑥,𝑦 if 𝑥 ≤ 𝑧,𝑦 ≤ 𝑧 and 𝑧 is minimal among all such
elements. If every pair of elements in P has a unique meet and join, then P is a lattice.

For 𝑥,𝑦 ∈ 𝑃 , we say that 𝑥 covers 𝑦 if 𝑦 < 𝑥 and there is no 𝑧 ∈ 𝑃 with 𝑦 < 𝑧 < 𝑥 . The Hasse
diagram of a poset P is the directed graph with vertex set 𝑃 and edges (𝑦, 𝑥) whenever 𝑥
covers 𝑦, drawn in the plane so that all edges are 𝑦-monotone Jordan curves. Thus, the Hasse
diagram can be seen as an upward embedding of the graph (𝑃, {(𝑦, 𝑥) | 𝑥 covers 𝑦}).
A poset Q = (𝑄, ≤𝑄 ) is a subposet of P = (𝑃, ≤𝑃 ) if 𝑄 ⊆ 𝑃 and 𝑥 ≤𝑄 𝑦 implies 𝑥 ≤𝑃 𝑦 for

all 𝑥,𝑦 ∈ 𝑄 . A poset L = (𝐿, ≤ℓ ) is a linear extension of P = (𝑃, ≤𝑃 ) if P is a subposet of L and
every two elements of 𝐿 are comparable under ≤ℓ . The intersection of two posets P1 = (𝑃, ≤1)
and P2 = (𝑃, ≤2) is P1 ∩ P2 = (𝑃, ≤) where 𝑥 ≤ 𝑦 if and only if 𝑥 ≤1 𝑦 and 𝑥 ≤2 𝑦.
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2 Preliminaries

𝑎1 𝑎2 𝑎3 𝑎4

𝑏1 𝑏2 𝑏3 𝑏4

Figure 2.2: This illustrates the standard example 𝑆4.

The (Dushnik-Miller-)dimension of a poset P , denoted dim(P), is the smallest integer 𝑛 for
which there exist linear extensions ℓ1, . . . , ℓ𝑛 such that

ℓ1 ∩ · · · ∩ ℓ𝑛 = P .

This dimension concept was introduced by Dushnik and Miller in 1941 [DM41]. For every
subposet Q of P , it holds that dim(Q) ≤ dim(P).
Finally, the so-called standard example 𝑆𝑛 is the poset

𝑆𝑛 =
(
{𝑎1, . . . , 𝑎𝑛} ∪ {𝑏1, . . . , 𝑏𝑛}, {(𝑎𝑖 , 𝑏 𝑗 ) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗}

)
.

𝑆4 is illustrated in Figure 2.2.
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3 Cartesian Products and Upward
𝒌-Planarity

In this chapter we analyze the upward local crossing number of Cartesian products and
formulate improved upper bounds for the Cartesian Product of paths as well as for the
Cartesian Products in general. Furthermore, we investigate the structural properties of
Cartesian Products of paths that cannot be embedded upward planar.

We begin by examining basic products of graphs in order to explore some first arguments
concerning upward planar embeddings. In particular, we start by focussing on the Cartesian
product of (directed) paths that admit an upward planar embedding. More complex graph
products and their embedding properties are in subsequent sections.

All Cartesian products examined in the first section contain a directed path component in
which all edges are orientated consistently in the same direction. An example of such a path
of length 5 is illustrated in Figure 3.1.

We refer to such paths as (monotone) directed paths and define them in the formal, following
way: An orientation of a path with vertex set {1, . . . , 𝑛}, 𝑛 ∈ ℕ is said to be (monotone) directed
if its vertices can be labeled such that each edge is of the form (𝑖, 𝑖 + 1) for all 𝑖 ∈ {1, . . . , 𝑛− 1}.
Paths with arbitrary edge orientation are referred to as orientated paths. In contrast to

orientated paths, monotone paths on𝑚 vertices are indicated by an arrow, specifically as ®𝑃𝑚 .
Although upward planar embeddings for arbitrary paths are generally easy to obtain, we

emphasize that every path admits an upward planar embedding in which the 𝑥-coordinates
of the vertices strictly increase along the underlying undirected path. We refer to such
embeddings as 𝑥-unique. An example of a 𝑥-unique embedding, alongside an embedding that
does not satisfy this requirement, is illustrated in Figure 3.2.

Lemma 3.1: Every orientated path admits an upward planar embedding in which the 𝑥-
coordinates of the vertices strictly increase with increasing vertex index, and all vertex coordinates
lie in ℤ × ℤ.

Proof. Given an orientated path 𝑃 with length 𝑛 ∈ ℕ, we construct an embedding in which
all vertices are assigned to integer coordinates with strictly increasing 𝑥-coordinates along
the path and show that this embedding is upward planar.
We label the vertices of 𝑃 as {0, . . . , 𝑛}, such that the labels increase along the underlying

undirected path. The vertex with label 0 is placed at the origin. Now, we construct the rest of
the embedding.
We construct the embedding by traversing the path in label order. Suppose vertex 𝑖 ∈

{1, . . . , 𝑛} has neighbor 𝑖 − 1 already embedded at coordinates (𝑥𝑖−1, 𝑦𝑖−1). Then we embed
vertex 𝑖 at (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 = 𝑥𝑖−1 + 1, and

𝑦𝑖 =

{
𝑦𝑖−1 + 1, if (𝑖 − 1, 𝑖) ∈ 𝐸 (𝑃),
𝑦𝑖−1 − 1, if (𝑖, 𝑖 − 1) ∈ 𝐸 (𝑃) .

9



3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.1: Example for a (monotone) directed path with length 5, denoted by ®𝑃6.

(a) 𝑃

𝑥

𝑦

(b)

Figure 3.2: Two embeddings of an orientated path 𝑃 are shown. The embedding in Figure 3.2a
does not satisfy the properties stated in Lemma 3.1, whereas the embedding in Figure 3.2b
is constructed according to the steps of the proof of Lemma 3.1 and satisfies all required
properties.

All edges are drawn as straight-line segments.
By induction on 𝑖 , we observe that 𝑥𝑖 = 𝑖 for all 𝑖 , so the 𝑥-coordinate strictly increases

along the vertex labels. Moreover, all vertex coordinates lie in ℤ × ℤ.
Next, we show that the embedding is upward. For any edge 𝑒 ∈ 𝐸 (𝑃), we have 𝑒 = (𝑖 − 1, 𝑖)

or 𝑒 = (𝑖, 𝑖 − 1) for some 𝑖 . In the cases that 𝑒 connects (𝑖 − 1, 𝑦𝑖−1) to (𝑖, 𝑦𝑖), we always have
𝑦𝑖 = 𝑦𝑖−1 + 1 > 𝑦𝑖−1. Otherwise, if 𝑒 connects (𝑖, 𝑦𝑖) to (𝑖 − 1, 𝑦𝑖−1) then 𝑦𝑖 = 𝑦𝑖−1 − 1 < 𝑦𝑖−1
by construction. Therefore, all edges are embedded in an upward direction.
We discuss planarity next. For this, recall that each vertex lies at a unique integer coordinate

in ℤ × ℤ. The inner points of all edges lie in (ℝ \ ℤ) × (ℝ \ ℤ). For any edge 𝑒 connecting
vertex 𝑖 to 𝑖 + 1, the 𝑥-coordinate of its inner points lies strictly between 𝑖 and 𝑖 + 1. Since there
are 𝑛 edges and 𝑛 such non-overlapping intervals on the 𝑥-axis, no two edges share the same
𝑥-interval. So, no two edges can cross in their inner points. Hence, the embedding is planar.

Since this construction can be applied to any orientated path and the resulting embedding
is both upward and planar, the claim is proven.

Now we introduce the Cartesian product of directed graphs as a method to construct new
graphs.

Definition 3.2 (Cartesian product of directed graphs): Let 𝐺1,𝐺2 be arbitrary graphs with a
set of vertices 𝑉 (𝐺𝑖) and an edge set 𝐸 (𝐺𝑖) for 𝑖 ∈ {1, 2}. The Cartesian product of 𝐺1 and 𝐺2,
denoted by 𝐻 = 𝐺1 □𝐺2, is defined by

𝑉 (𝐻 ) ≔ 𝑉 (𝐺1) ×𝑉 (𝐺2),

𝐸 (𝐻 ) ≔ 𝐸1(𝐻 ) ∪ 𝐸2(𝐻 ),
where 𝐸𝑖 (𝐻 ) represents the vertex relation ∼𝑖 , 𝑖 ∈ 1, 2:

(𝑢1, 𝑢2) ∼1 (𝜈1, 𝜈2) ⇐⇒ (𝑢1, 𝜈1) ∈ 𝐸 (𝐺1) ∧ 𝑢2 = 𝜈2
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□ =

Figure 3.3: The Cartesia product 𝐻 = 𝐺 □ ®𝑃3 of a graph 𝐺 and a monotone directed path ®𝑃3:
The edges of 𝐸𝐺 (𝐻 ) are colored black and induce three copies of𝐺 , whereas the edges of 𝐸 ®𝑃2

are colored thick gray and induce 5 = |𝑉 (𝐺) | copies of ®𝑃3.

Figure 3.4: This figure illustrates an upward planar embedding of the Cartesian product of
®𝑃4 and ®𝑃5. The Cartesian product of other monotone paths can be embedded in a similar way,
also yielding upward planar embeddings.

(𝑢1, 𝑢2) ∼2 (𝜈1, 𝜈2) ⇐⇒ 𝑢1 = 𝜈1 ∧ (𝑢2, 𝜈2) ∈ 𝐸 (𝐺2) .

with 𝐺1 being the first and 𝐺2 being the second input graph.

It is easy to see that the subgraph of 𝐻 induced by 𝐸1(𝐻 ) consists of pairwise disjoint
|𝑉 (𝐺2) | copies of𝐺1 and the subgraph of 𝐻 induced by 𝐸2(𝐻 ) consists of |𝑉 (𝐺1) | copies of𝐺2.
This observation is illustrated in Figure 3.3. In general, for Cartesian product 𝐻 we refer to
the edge set 𝐸𝑖 (𝐻 ) as the edges inducing pairwise disjoint copies of the 𝑖th input graph or for
an input graph𝐺 with the edge set 𝐸𝐺 (𝐻 ) to the edges inducing pairwise disjoint copies of𝐺 .
Moreover, depending on the input graph 𝐺 we can describe 𝐸𝐺 (𝐻 ) in more detail. For

example, if one of the input graphs of the Cartesian product is a monotone directed path on𝑚
vertices and the other input graph an arbitrary graph 𝐺 , we can describe one edge subset as

𝐸 ®𝑃𝑚 (𝐻 ) = {((𝑖, 𝜈), (𝑖 + 1, 𝜈)) | 𝑖 ∈ {1, . . . ,𝑚 − 1}, 𝜈 ∈ 𝑉 (𝐺)}.
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3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.5: Part of the Cartesian product of an arbitrary orientated graph 𝑃 and a monotone
directed path ®𝑃𝑛 . The black edges highlight a 𝑥-unique embedding of 𝑃 . The pattern gets
repeated depending on 𝑛.

3.1 Upper Bounds for Cartesian Products With Monotone Paths

In order to become familiar with the Cartesian product and its characteristics, we show a
simple first result concerning upward planarity of the Cartesian product of two directed paths.
The Cartesian product of two monotone directed paths ®𝑃4 and ®𝑃5 is illustrated in Figure 3.4.
Observe, that the Cartesian product of two monotone paths is always upward planar. By using
the result of Lemma 3.1 we can generalize this observation and make a statement concerning
the upward planarity of the Cartesian product of a monotone directed path and an arbitrarily
orientated path. An example for such an Cartesian product is given in Figure 3.5, already
using the embedding proposed in the proof of the following statement.

Theorem 3.3: The Cartesian product 𝐺 = ®𝑃𝑛 □ 𝑃𝑚 ,𝑚,𝑛 ∈ ℕ of a monotone directed path ®𝑃𝑛
and an arbitrary orientated path 𝑃𝑚 is upward planar.

Proof. Given a monotone directed path ®𝑃𝑛 with 𝑛 ∈ ℕ vertices and some other orientated
path 𝑃𝑚 with𝑚 ∈ ℕ vertices we construct an embedding for 𝐺 = ®𝑃𝑛 □ 𝑃𝑚 that is both planar
and upward. An example of this construction is shown in Figure 3.5.
According to Lemma 3.1, every orientated path admits an upward planar embedding in

which all vertices and inner edge points have distinct 𝑥-coordinates. We choose such an
embedding for 𝑃𝑚 .
Next, we construct 𝑛 copies of this embedding of 𝑃𝑚 , each translated by one unit in the

𝑦-direction relative to the previous one. Then, for every pair of vertically aligned vertices
in successive layers — i.e., vertices sharing the same 𝑥-coordinate and differing by one unit
in the 𝑦-coordinate—we add an upward edge connecting them. Observe that with this we
created an embedding of 𝐺 = ®𝑃𝑛 □ 𝑃𝑚 .
We now verify the upwardness of this embedding. By construction, all edges in 𝐸 ®𝑃𝑛—which

connect vertices across adjacent layers—are explicitly drawn upward. The edges in 𝐸𝑃𝑚
forming each a copy of the 𝑥-unique embedding of 𝑃𝑚 are also upward due to Lemma 3.1.
Since every edge in 𝐺 belongs to either 𝐸 ®𝑃𝑛 or 𝐸𝑃𝑚 , the overall embedding is upward.

Next, we prove that it is also planar. We discuss possible crossings within the two defined
edge subsets first and take a look at crossings between them afterward.
We start with 𝐸 ®𝑃𝑛 , which are the edges added between the copies of 𝑃𝑚 . Each edge in 𝐸 ®𝑃𝑛

lies in ℤ ×ℝ and is a vertical segment of unit length. These edges are translated copies of the
segment from (0, 0) to (0, 1) and thus do not cross each other.
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3.1 Upper Bounds for Cartesian Products With Monotone Paths

Next, we analyze the other edge subset 𝐸𝑃𝑚 to show that there are no crossings between
two edges that are both in 𝐸𝑃𝑚 . Every edge 𝑒 ∈ 𝐸𝑃𝑚 lies within a copy of 𝑃𝑚 whose embedding
ensures planarity within that copy.
The only potential crossings with other edges 𝑃𝑚 would be with edges sharing the at least

one 𝑥-coordinate from another copy. However, since each copy of 𝑃𝑚 is a vertical translation
of the same embedding and the original embedding of 𝑃𝑚 prohibits two edges from sharing
an 𝑥-coordinate, no such conflicting edge exists. Thus, edges from different copies of 𝑃𝑚 are
pairwise non-crossing.
Lastly, we discuss whether an edge 𝑒 ∈ 𝐸𝑃𝑚 crosses an edge from 𝐸 ®𝑃𝑛 . Observe, that the

inner points of 𝑒 lie in (ℝ\ℤ) × (ℝ\ℤ), which implies that 𝑒 can only intersect an edge from
𝐸 ®𝑃𝑛 at one of its endpoints, since the coordinates of the inner points of the edges in 𝐸 ®𝑃𝑛 lie in
ℤ × (ℝ \ ℤ). We conclude that this embedding of 𝐺 = ®𝑃𝑛□𝑃𝑚 is both upward and planar.

3.1.1 The Cubic Cartesian Product of Monotone Paths

After discussing some basic results on the Cartesian product of two paths, we extend the
concept to Cartesian product involving more than two input graphs and derive an upper
bound for the upward local crossing number for the Cartesian product of three monotone
paths, building on the insights developed in the previous section.

We define the ternary Cartesian product as follows:

𝐺1 □𝐺2 □𝐺3 ≔ (𝐺1 □𝐺2) □𝐺3 = 𝐺1 □ (𝐺2 □𝐺3) .

Before addressing the Cartesian product of three monotone directed paths of arbitrary
lengths, we begin with a simpler case: the ternary Cartesian product of a monotone path with
itself, what already allows us to discuss the core ideas and challenges.

Theorem 3.4: For every graph𝐺 = ®𝑃𝑛 □ ®𝑃𝑛 □ ®𝑃𝑛 , where ®𝑃𝑛 denotes a monotone directed path of
on 𝑛 ∈ ℕ vertices, there exists an upward (𝑛 − 1)-planar embedding of 𝐺 .

Proof. Similar to the proof in Section 3.1 given a monotone path on 𝑛 vertices with vertex set
𝑉 ( ®𝑃𝑛) = {0, . . . , 𝑛 − 1} we introduce a construction in order to embed the Cartesian product
and proof that the constructed embedding is upward (𝑛 − 1)-planar, i. e. that all edges are
upward and that there is no edge with more than (𝑛 − 1) crossing.
We embed each vertex (𝑖, 𝑗, 𝑘) ∈ 𝑉 (𝐺) = 𝑉 ( ®𝑃𝑛)3 at the coordinate (𝑖 · 𝑛 + 𝑘, 𝑗 · 𝑛 + 𝑘),

and represent all edges as straight-line segments between the coordinates of their respective
endpoints. This embedding for ®𝑃4 and the context of the coordinates is illustrated in Figure 3.6.
Before discussing the characteristics of the embedding, we introduce some notation sim-

ilar to the beginning of Chapter 3 in order to structure our argumentation and get some
intuition for the embedding itself. We partition the edge set 𝐸 (𝐺) into three disjoint subsets
𝐸1(𝐺), 𝐸2(𝐺), 𝐸3(𝐺). 𝐸1(𝐺) is given by

𝐸1(𝐺) = {((𝑖, 𝑗, 𝑘), (𝑖 + 1, 𝑗, 𝑘)) | 𝑖 ∈ {0, . . . , 𝑛 − 1}, 𝑗, 𝑘 ∈ {0, . . . , 𝑛}},

and 𝐸2(𝐺) and 𝐸3(𝐺) are defined analogously with respect to the second and third coordinates.
Observe that 𝐸1(𝐺) holds all the horizontal, 𝐸2(𝐺) all the vertical and 𝐸3(𝐺) all the diagonal
embedded edges.
We start by discussing the upwardness of the embedding. With the described construction

and Figure 3.6, it is easy to observe that if we rotate the embedding around the bisector of the
positive 𝑥- and 𝑦-axes by an angle 0 < 𝛼 < 𝜋/2, then every edge becomes upward.
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3 Cartesian Products and Upward 𝑘-Planarity

(0, 2, 0)

(0, 2, 2)

𝑖

𝑗
𝑘

Figure 3.6: An upward 3-planar embedding of 𝐺 = ®𝑃4 □ ®𝑃4 □ ®𝑃4. We can interpret it as four
copies of the grid ®𝑃4 □ ®𝑃4 with each cell of the grid big enough to contain a diagonal version
of ®𝑃4. All vertices inside one copy of the grid ®𝑃4 □ ®𝑃4 have therefore a distance of at least 𝑛.
If we want to determine the coordinates of a vertex (0, 2, 2), we can find the vertex (0, 2) in
the foremost grid, highlighted, and then follow the incident path embedded two steps into
the adjacent cell and reach (0, 2, 2), highlighted violet. So the coordinates of (0, 2, 2) are those
of the vertex (0, 2) plus the vector (2, 2) for traversing the diagonal 𝑘 = 2 steps, meaning
the coordinates are (0 · 4 + 2, 2 · 4 + 2) = (2, 10). The orange highlighted edges illustrates all
crossing opportunities from vertical edges with integer coordinates.
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3.1 Upper Bounds for Cartesian Products With Monotone Paths

Already ensuring the upwardness, we now discuss the planarity, ignoring any possible
rotation. In order to do so, we determine between which edge subsets potential crossings can
occur. First, we analyze whether edges from the same subset cross each other. As already
observed, edges in 𝐸1(𝐺) are always horizontal, each of length exactly 𝑛 and therefore a
translation of the edge connecting the origin to (𝑛, 0). Thus, edges in 𝐸1(𝐺) do not cross each
other. Analogously, edges in 𝐸2(𝐺) are also translations of one another and do not cross each
other. The same argument holds for 𝐸3(𝐺)
It is left to show whether edges from different subsets do cross each other. The edges in

𝐸3(𝐺) are neither crossed by edges from 𝐸1(𝐺) or 𝐸2(𝐺), since the edges of 𝐸3(𝐺) as diagonal
edges between adjacent integer coordinates have no inner points with integer coordinates.
We conclude that every edge 𝑒 ∈ 𝐸3(𝐺) is crossing-free.

Now, we take a look at the edge set 𝐸1(𝐺), which holds all the horizontal edges. Since
all edges in 𝐸3(𝐺) are crossing-free, they do not cross edges from 𝐸1(𝐺) and we already
established that edges from 𝐸1(𝐺) do not cross other edges from 𝐸1(𝐺). Thus, an edge
𝑒 ∈ 𝐸1(𝐺) can only be crossed by edges from 𝐸2(𝐺), i.e. can only be crossed by vertical edges.

In order to bound the number of crossings with vertical edges we count the inner coordinates
where crossings can occur. Since the 𝑥- coordinates of edges from 𝐸2(𝐺) are always integer
crossings can only occur at integer-coordinates. Also because the set 𝐸2(𝐺) is crossing-free
within itself, there can only be one crossing per integer-coordinate. The horizontal edge 𝑒 has
length 𝑛 and therefore 𝑛 + 1 integer-coordinates, two of those are endpoints, leaving 𝑛 − 1
inner integer-coordinates, where crossings can occur. Consequently, the edge 𝑒 is not crossed
by more than 𝑛 − 1 other edges. The situation is also illustrated in Figure 3.3.
An analogous description holds for a vertical edge 𝑒′ ∈ 𝐸2(𝐺), which can only be crossed

by horizontal edges of 𝐸1(𝐺) up to 𝑛 − 1 times.
Since the rotation described earlier does not change the crossing number, and no edge is

crossed more than 𝑛 − 1 times, the rotated embedding is upward (𝑛 − 1)-planar.

After establishing the main arguments for 𝑘-planarity and upwardness for this type of
embedding of the cubic Cartesian products of monotone paths with the same length, we
now consider Cartesian products of monotone paths with differing lengths. As observed
previously, the number of crossings is strongly influenced by the length of the path that is
embedded diagonally, since it defines the length of the vertical and horizontal edges and
therefore number of integer coordinates from 𝐸1(𝐺) and 𝐸2(𝐺). Taking this into account,
we construct a corresponding embedding that accommodates paths of arbitrary lengths. An
example of such a Cartesian product is illustrated in Figure 3.7.

Corollary 3.5: For every graph 𝐺 = ®𝑃𝑚 □ ®𝑃𝑛 □ ®𝑃𝑝 , where each ®𝑃𝑘 denotes a monotone directed
path on 𝑘 ∈ {𝑚,𝑛, 𝑝} ⊂ ℕ vertices, there exists an upward (min(𝑚,𝑛, 𝑝) − 1)-planar embedding
of 𝐺 .

Proof. Given three monotone directed paths ®𝑃𝑚, ®𝑃𝑛, ®𝑃𝑝 with𝑚,𝑛, 𝑝 ∈ ℕ and without loss of
generality 𝑝 = min(𝑚,𝑛, 𝑝), we embed the Cartesian product𝐺 = ®𝑃𝑚 □ ®𝑃𝑛 □ ®𝑃𝑝 dependent on
𝑝 , such that it is upward (𝑝 − 1)-planar.

Similar to the proof of Theorem 3.4, we embed each vertex (𝑖, 𝑗, 𝑘) ∈ 𝑉 (𝐺) at the coordinate
(𝑖 · 𝑝 + 𝑘, 𝑗 · 𝑝 + 𝑘) with 𝑖 ∈ {0, . . . ,𝑚 − 1}, 𝑗 ∈ {0, . . . , 𝑛 − 1}, 𝑘 ∈ {0, . . . , 𝑝 − 1}, and represent
all edges as straight-line segments between the coordinates of their respective endpoints.
Applying the same arguments as in the proof of Theorem 3.4, we conclude the desired
properties for this embedding.
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3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.7: An upward 2-planar embedding of 𝐺 = ®𝑃5 □ ®𝑃4 □ ®𝑃3. The edges are colored for a
clearer arrangement. Observe that in order to minimize crossings, the shortest path has to be
embedded diagonal.
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3.2 Upper Bounds for Cartesian Products

3.2 Upper Bounds for Cartesian Products

In this section, we formulate upper bounds for the upward local crossing number Cartesian
Products depending on the input graphs by transmitting the simple results of Section 3.1 onto
more complex scenarios, namely substituting the monotone directed path by an arbitrarily
orientated path as an input graph and generalizing it for two arbitrary input graphs afterward.
There is a special focus on the Cartesian Product of two arbitrary orientated paths, where we
derive bounds dependent on the orientation of the paths, which results in an improved bound.
In contrast to before, we do not always embed edges as straight line segments in this section.
We introduce basic embedding techniques and additional graph parameters in order to argue
for the bounds.

3.2.1 Embeddings of Cartesian Products

Before discussing Cartesian products of more complex graphs we introduce some terminology
in order to describe general embedding techniques. An embedding into the Euclidean plane is
characterized by the position of the vertices and Jordan curves representing the edges. We
call two embeddings equivalent if the planarization of the embeddings are equivalent. The
planarization of an embedding Γ of a graph𝐺 describes a planar embedding of the graph 𝐺 ′

derived from 𝐺 by replacing all crossings in Γ with vertices.
Recall the edge partition of the edges of a Cartesian product we introduced in the beginning

of Chapter 3. The edge set 𝐸𝐺1 (𝐺1 □𝐺2) holds all the edges that induce copies of𝐺1. 𝐺1-edges
refers to the same set of edges.
There are numerous approaches to embed the Cartesian product of two graphs into the

Euclidean plane. We introduce an embedding technique that depends on given embeddings of
the input graphs. An example is illustrated in Figure 3.8.

For a graph 𝐺 = 𝐺1 □𝐺2 and embeddings Γ𝐺1 of 𝐺1 and Γ𝐺2 of 𝐺2, the Γ𝐺1 (Γ𝐺2)-embedding
of𝐺 refers to the following construction: We begin with the embedding Γ𝐺1 of𝐺1, focusing
only on the vertex positions. It is possible to modify this embedding such that each vertex can
be replaced by a copy of Γ𝐺2 , with the property that the minimal enclosing spheres of these
copies are pairwise disjoint. This process yields an embedding of the vertices of 𝐺 = 𝐺1□𝐺2,
where a vertex (𝑖, 𝑗) ∈ 𝑉 (𝐺), for 𝑖 ∈ {0, . . . , |𝑉 (𝐺1) | − 1} and 𝑗 ∈ {0, . . . , |𝑉 (𝐺2) | − 1} is
embedded as the 𝑗-th vertex of the 𝑖-th copy of 𝐺2 (replacing the former 𝑖-th vertex of the
adapted embedding of 𝐺1). All 𝐺2-edges in each copy appear as they are embedded in Γ𝐺2 .
In order to complete the construction of this embedding the embedding of the 𝐺1-edges
still has to be defined. A 𝐺1-edge 𝑒 connects vertices from two different 𝐺2-copies. Those
copies correspond to vertices 𝜈,𝑤 ∈ 𝑉 (𝐺1) in Γ𝐺1 . We embed 𝑒 as a scaled version of Jordan
curve representing the edge 𝑒′ = (𝜈,𝑤) ∈ 𝐸 (𝐺1) in Γ𝐺1 . With this, we have characterized the
position of the vertices as well as the Jordan curves representing the edges and therefore
created a well-defined embedding of 𝐺 = 𝐺1 □𝐺2. The Γ𝐺2 (Γ𝐺1)-embedding of the vertices
of 𝐺 is constructed analogously. For comparison, the minimal example from Figure 3.8 is
used again in Figure 3.9 but this time the roles of the input graphs and their embeddings are
swapped.

We can identify an embedding as a Γ𝐺1 (Γ𝐺2)-embedding with the following formal definiton.

Definition 3.6: Given two graphs 𝐺1,𝐺2 and embeddings Γ𝐺1 of 𝐺1 and Γ𝐺2 of 𝐺2, we call an
embedding of the Cartesian product 𝐺1 □𝐺2 an Γ𝐺1 (Γ𝐺2)-embedding if
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0

1

2

3

4

0 1 2

(2,1)

□ =

Γ𝐺 Π ®𝑃2

Figure 3.8: On the right: the Cartesian product of the graph 𝐺 and ®𝑃2, with a straight-line
Γ𝐺 (Π ®𝑃2

)-embedding of vertices and edges. On the left: the respective embeddings of the
input graphs with labeled vertices. We observe that the minimal enclosing spheres, as well
as the individual copies of ®𝑃2 in the embedded product, do not intersect. The vertex (2, 1) is
highlighted.

all induced copies of 𝐺2 are embedded as in Γ𝐺2 ,

the convex hulls of the copies of 𝐺2 within the embedding of the product do not intersect
and

all induce copies of 𝐺1 are embedded equivalent to Γ𝐺1 .

We call an embedding Γ𝐺1 (·)-embedding, if only the last two requirements are met.

An important observation is the following: In a Γ𝐺1 (·)-embedding of 𝐺 edges within
individual copies of 𝐺2 do not cross edges from other 𝐺2-copies. If there are two upward
planar input graphs, even more possible crossings are prevented.

Lemma 3.7: Let 𝐺1 and 𝐺2 be upward planar graphs. For upward planar embeddings Γ𝐺1, Γ𝐺2

of 𝐺1 and 𝐺2 a Γ𝐺1 (Γ𝐺2)-embedding of the Cartesian product 𝐺1 □ 𝐺2 satisfies the following
properties:

the set of 𝐺2-edges is crossing-free,

each copy of 𝐺1 in 𝐺 induces a crossing-free embedding and

the embedding is upward.

Proof. We analyze the given embedding concerning the desired properties by analyzing the
𝐺2-edges and 𝐺1-edges after one another.
We start with the 𝐺2-edges, which by construction, appear exactly as in Γ𝐺2 . Since Γ𝐺2

is upward planar, these edges do not cross within their respective copies and are upward.
Furthermore, since the minimal enclosing spheres of the embedded copies are disjoint, no
edge within one copy can cross an edge from another copy. Consequently, the set of𝐺2-edges
is crossing free and we satisfied the first property.
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(2,1)

Figure 3.9: The Cartesian product of the graph 𝐺 from Figure 3.8 and ®𝑃2, with a straight-line
Π ®𝑃2

(Γ𝐺 )-embedding of vertices and edges. The vertex (2, 1) is highlighted, again.

Next, we verify that each copy of 𝐺1 embedded within 𝐺1 □ 𝐺2 is itself crossing free.
By construction, each such copy is a scaled version of Γ𝐺1 . Since scaling and translation
preserve planarity and upwardness, the embedding of each𝐺1-copy retains the upward planar
properties of the original and therefore there are no crossings between the edges of one copy.
Finally, we observed that both edge sets only contain upward edges and we can conclude

the last property.

According to Di Battista and Tamassia [DT88], there also exists a straight-line embedding
of 𝐺1 that is upward planar. If we use this embedding instead of Γ𝐺1 we can also ensure that
for each edge 𝑒 ∈ 𝐸 (𝐺1) the copies of 𝑒 do not cross each other.

In contrast to the property of𝐺2-edges stated in Lemma 3.7,𝐺1-edges from different copies
of 𝐺1, may cross each other (and vice versa if it is an Γ𝐺2 (·)-embedding instead), as we can
see in Figure 3.8 and Figure 3.9.
There are two restrictions whose application is interesting in order to analyze potential

crossings in the embedding of a Cartesian product.
One restriction is to require that edges belonging to the copies of 𝐺1 are not allowed to

cross edges from the copies of 𝐺2; that is, the only crossings, aside from those internal to the
copies themselves, may occur between edges from different copies of 𝐺1. Those crossing are
referred to as 𝐺1-crossings.
An alternative restriction is to require that edges in the copies of 𝐺1 are not allowed to

cross through other copies of𝐺1. Thus, crossings may only occur between edges belonging to
𝐸1(𝐺) and 𝐸2(𝐺). These are called (𝐺1,𝐺2)-crossings.

So, one restriction states that there are no (𝐺1,𝐺2)-crossings, whereas the other forbids𝐺1-
and 𝐺2-crossings.
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3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.10: Both edge restriction applied to the same product structure of a monotone
path 𝑃 and a graph 𝐺 . On the left there are only 𝑃-crossings. On the right there are only
𝐺-𝑃-Crossings and no 𝐺-Crossings. The 𝐺-edges are highlighted violet and the 𝑃-edges are
orange.

In order to illustrate both restrictions, we use the a ®𝑃2(·)-embedding of the Cartesian
product of ®𝑃2 and a graph 𝐺 , but change the edge embedding, accordingly. The result is
presented in Figure 3.10. Observe, that the properties of Lemma 3.7 still hold. This distinction
can significantly affect the resulting upward local crossing number.
We can state, that with a fitting embedding of the vertices the first restriction can always

be met.

Lemma 3.8: For every two graphs 𝐺 and 𝐻 there exists an upward embedding of the Cartesian
product 𝐺 □ 𝐻 without (𝐺,𝐻 )-crossings.

Such an embedding for the product from Figure 3.10 is presented in Figure 3.11. Observe,
that this embedding is not interesing for us because the upward local crossing number is big.

Proof. We construct a fitting embedding using linear embeddings. We choose upward em-
beddings of 𝐺 and 𝐻 , denoted by Γ and Θ, where all vertices have the same 𝑥-coordinate
and every edge in Γ is embedded on the left side of the spine, whereas every edge in Θ is
embedded on the right side of the spine. We construct an Γ(Θ)-embedding of the Cartesian
product. Due to construction all vertices have the same 𝑥-coordinate and form a vertical line,
with the 𝐺-edges on the left side and the 𝐻 -edges on the right side. Therefore there are no
(𝐺,𝐻 )-crossings.

Analogous to the first restriction, the second restriction can also always be satisfied if
we create a fitting vertex embedding and the input graphs are upward planar. Otherwise
crossings within one copy and therefore the whole edge set are not preventable.
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Figure 3.11: Embedding without crossings between 𝐺-edges (violet) and 𝐻 -edges (orange).

21



3 Cartesian Products and Upward 𝑘-Planarity

Lemma 3.9: For every two upward planar graphs 𝐺 and 𝐻 there exists an embedding of the
Cartesian product 𝐺 □ 𝐻 without 𝐺- and without 𝐻 -crossings.

To illustrate the embedding process, Figure 3.13 shows the same Cartesian Product as
Figure 3.12 but without 𝐺- and 𝐻 -crossings.

Proof. We construct an embedding using special upward planar embeddings of the input
graphs Γ𝐺 and Γ𝐻 , such that there are no crossings within the 𝐺- or within 𝐻 edges.
We start by specifying these special embeddings. We choose Γ𝐺 as an upward planar

embedding of𝐺 , where every vertex has a unique 𝑥-coordinate. Furthermore we choose Γ𝐻 as
an upward planar embedding, where every vertex has a unique 𝑦-coordinate. Such embedding
always exists, since we can take an arbitrary embedding and alter the vertex position by some
small translation vector and create an equivalent embedding with unique 𝑥- or 𝑦-coordinates
of the vertices. Now we alter both embeddings to new embeddings Γ′

𝐺
and Γ′

𝐻
by increasing

the distance between the respective vertices such that we can replace each vertex in Γ′
𝐺
by a

copy of Γ′
𝐻
such that projection of the convex hulls of these copies onto the x-axis are not

intersecting (and the other way around, i.e. replacing the each vertex in Γ′
𝐻
by a copy of Γ′

𝐺

where the projection of the convex hull onto the 𝑦-axis should be non intersecting).
We use these embeddings to create a Γ′

𝐻
(Γ′

𝐺
)-embedding of the product graph.

Now, we check for potential crossings between and within copies of the same graph. Note
that since the vertices of Γ𝐻 (and therefore Γ′

𝐻
) have unique y-coordinates it is possible to

assign each copy of 𝐺 their own layer, i. e. interval on the 𝑦-axis, as they replace the original
vertices in the construction. Since every copy has their own layer, the copies do not cross each
other. Every Γ′

𝐻
-copy is induced by vertices that have the same position in each Γ′

𝐺
-copy and

since in Γ′
𝐺
every vertex can by replaced by a copy of Γ′

𝐻
without there convex hulls projected

on the 𝑥-axis intersecting, we can assign every copy of 𝐻 their own interval on the 𝑥-axis
which implies that the 𝐻 -copies also do not cross other 𝐻 -copies. This is also illustrated in
Figure 3.13 Due to the planarity of Γ𝐺 and Γ𝐻 there are no crossings within a copy, either. So,
there are no crossings within the 𝐻 - or 𝐺-edges and the only possible crossings must appear
between 𝐺- and 𝐻 -edges.

We observe that an alternative proof can be found by proving that the created embedding
is a Γ𝐺 (·)-embedding according as well as Γ𝐻 (·)-embedding according to Definition 3.6. Then
Lemma 3.7 leads to the result, immediately. The described embedding in the proof of Lemma 3.9
will be relevant in Section 3.2.2 and Section 3.2.3 and is referred to as the canonical (Γ𝐺 , Γ𝐻 )-
embedding.

3.2.2 The Cartesian Product With One Arbitrarily Orientated Path

In this subsection, we analyze Cartesian products where one of the input graphs is a path, but
not necessarily a monotone path. We discuss different embedding techniques introduced in
Section 3.2.1 in order to explore possible upper bounds for the 𝑙𝑐𝑟 ↑ of the Cartesian product
of a graph 𝐺 with an embedding Γ and an orientated path 𝑃 .
We first motivate why Cartesian products with arbitrarily orientated paths do not admit

intuitive embeddings that minimise the upward local crossing number. A naive approach to
embedding the Cartesian product of 𝑃 and 𝐺 would be a Π(Γ)-embedding with an 𝑥-unique
embedding Π of 𝑃 , similar to Figure 3.9. However, since 𝑃 is not necessarily monotone, this
construction introduces not only (𝑃,𝐺)-crossings as already observed in Figure 3.9, but also
up to |𝑉 (𝐺) | additional 𝑃-crossings for a single 𝑃-edge.
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Figure 3.12: Embedding of the Cartesian product of the graphs 𝐺 = 𝐻 =

({0, 1, 2, 3}, {(0, 1), (0, 2) (1, 3), (2, 3)}. The 𝐺-edges are orange and the 𝐻 -edges are black.
Observe that there are 𝐻 -crossings.

Figure 3.13: Embedding of the same Cartesian product as in Figure 3.12, but this time the
construction is based on the proof of Lemma 3.9 and therefore there are no 𝐺-crossings
(between the orange edges) or 𝐻 -crossings (crossings between the black edges). The dotted
lines illustrate the layers of the of the 𝐺-copies on the 𝑥-axis or of the 𝐻 -copies on the 𝑦-axis.
The Figure also illustrates that the embedding of the product could be an Γ(·)-embedding
with Γ being the embedding on the left or at the top, as well.

23



3 Cartesian Products and Upward 𝑘-Planarity

Alternatively, one could use a Γ(Π)-embedding similar to Figure 3.8, which avoids all
𝑃-crossings. Nevertheless, as illustrated in Figure 3.8, there can still be up to |𝑉 (𝑃) | crossings
for a single 𝐺-edge. In both cases, the next natural idea can be to stack the copies of one
input graph and route the edges of the other input graph around these copies. However, this
only reduces the number of 𝑃-crossings or 𝐺-crossings, respectively, by a factor of 1

2 , and the
upward local crossing number remains linear in the number of vertices of at least one input
graph. This contrasts with the monotone case, where we have already established that an
upward planar embedding of the Cartesian product exists.
To address this problem, we aim to construct embeddings that explicitly depend on the

orientation of one of the input graphs. The key idea is that the closer a path’s orientation
resembles a monotone path, the fewer crossings should occur in its Cartesian product with
another orientated path or with another graph. We see that the canonical embedding for
special embeddings of the input graphs could be a fitting embedding technique to enforce
this behavior and the crossings can be described easily.

The approach presented here relies on two structural parameters of the input graphs: their
cutwidth and bandwidth. In the theorems that follow, we show in particular that for paths
both parameters can be expressed in terms of the orientation of their edges.
To define these parameters formally, we first introduce the concept of a linear ordering

of the vertices of a graph. An ordering 𝜑 of a graph 𝐺 is a bijection from 𝑉 (𝐺) to the set
{0, 1, . . . , 𝑛 − 1}, where 𝑛 = |𝑉 (𝐺) |, and 𝜑 (𝜈) is called the label of 𝜈 . We denote by Φ(𝐺) the
set of all such orderings of 𝐺 . If 𝐺 is a directed graph we say 𝜑 is a topological ordering
if 𝜑 (𝑢) < 𝜑 (𝑤) for all (𝑢,𝑤) ∈ 𝐸 (𝐺). Then, Φ(𝐺) is defined as the set of all topological
orderings of𝐺 . The length of an edge 𝑢𝑤 ∈ 𝐸 (𝐺) with respect to an ordering 𝜑 is defined as
the difference of the labels of their endpoint |𝜑 (𝑢) − 𝜑 (𝑤) |.

The bandwidth of an ordering 𝜑 is defined as the length of the longest edge in the ordering.
The cutwidth of an ordering 𝜑 is the smallest integer 𝑘 such that all cuts of the ordering, i.e.,
partitions of the ordering into two subsets with subsequent labels, are crossed by at most 𝑘
edges.

Formally, these quantities are given by:

bw(𝜑,𝐺) := max
(𝑢,𝑤 ) ∈𝐸 (𝐺 )

|𝜑 (𝑢) − 𝜑 (𝑤) |

cw(𝜑,𝐺) =: max
𝜈∈𝑉 (𝐺 )

|{𝑢𝑤 ∈ 𝐸 (𝐺) | 𝜑 (𝑢) < 𝜑 (𝜈) ≤ 𝜑 (𝑤)}|.

The bandwidth of G is then defined as

bw(𝐺) = min
𝜑∈Φ(𝐺 )

bw(𝜑,𝐺)

and the cutwidth of G as
cw(𝐺) = min

𝜑∈Φ(𝐺 )
cw(𝜑,𝐺) .

Note, that this definition ensures that for the bandwidth and cutwidth of directed graphs
only topological orderings matter. If its is clear from the context that 𝜑 is an ordering of𝐺 we
sometimes write bw(𝜑) instead of bw(𝜑,𝐺).
In the following, we observe that the cutwidth of every ordering of a graph 𝐺 is bounded

by its bandwidth.

Lemma 3.10: Let 𝐺 be a graph and 𝜑 an ordering of 𝐺 . Then cw(𝜑,𝐺) ≤ Δ(𝐺) · bw(𝜑,𝐺).
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𝜈

Figure 3.14: The cut between the vertex 𝜈 and its predecessor in the ordering is illustrated as a
dotted line. All edges in the ordering that cross this cut are highlighted in orange; collectively,
these edges form the set𝑈𝜈 .

𝜈𝑏𝑤 (𝜑,𝐺)

Figure 3.15: The edge colored in red is an edge that crosses the cut at 𝜈 and is therefore
an element of 𝑈𝜈 , while its starting vertex at a distance greater than bw(𝜑,𝐺) from 𝜈 in
the ordering. Hence, the length of the edge is greater than bw(𝜑,𝐺), which contradicts the
definition of the bandwidth itself.

Proof. Let 𝐺 be a graph and let 𝜑 be an ordering of its vertices. Recall that the cutwidth of an
ordering 𝜑 is the smallest integer 𝑘 such that every cut that partitions the ordering into two
subsets with subsequent labels is crossed by at most 𝑘 edges.
Let 𝜈 ∈ 𝑉 (𝐺) be an arbitrary vertex with label 𝜑 (𝜈). We show that the cut between 𝜈

and the vertex with label 𝜑 (𝜈) − 1 is crossed by at most Δ(𝐺) · bw(𝜑,𝐺) edges, where Δ(𝐺)
denotes the maximum degree of 𝐺 . This cut is illustrated in Figure 3.14.
To formalize this, let us define the set of edges crossing the cut at 𝜈 as 𝑈𝜈 := |{𝑢𝑤 ∈ 𝐸 (𝐺) |

𝜑 (𝑢) < 𝜑 (𝜈) ≤ 𝜑 (𝑤)}|. These are precisely the edges with one endpoint on each side of the
cut.
Note that, for every edge 𝑢𝑤 ∈ 𝑈𝜈 , the smaller of the two labels, say 𝜑 (𝑢), differs from

𝜑 (𝜈) by at most bw(𝜑,𝐺). Otherwise, the length of 𝑢𝑤 would exceed the bandwidth, since
𝜑 (𝑤) ≥ 𝜑 (𝜈). This is illustrated in Figure 3.15.
Thus, the edges in 𝑈𝜈 originate from at most bw(𝜑,𝐺) vertices lying to the left of 𝜈 , and

each of these vertices has degree at most Δ(𝐺). Hence, the number of such edges is bounded
by |𝑈𝜈 | ≤ Δ(𝐺) · bw(𝜑,𝐺) and therefore we have that cw(𝜑,𝐺) ≤ Δ(𝐺) · bw(𝜑,𝐺).

We restrict our attention to topological orderings of the vertices in order to define the
upward local crossing number of orderings. In a linear ordering, two edges are said to cross if
their endpoints alternate in the ordering.
The upward local crossing number of a topological ordering 𝜑 of a graph 𝐺 , denoted by

lcr↑ (𝜑,𝐺), is the smallest integer 𝑘 such that no edge is crossed more than 𝑘 times in 𝜑 . We
can establish an upper bound for the upward local crossing number in terms of the bandwidth
bw(𝐺).

Lemma 3.11: Let 𝐺 be a directed acyclic graph and 𝜑 a topological ordering of 𝐺 . Then
lcr↑ (𝜑,𝐺) ≤ Δ(𝐺) · (bw(𝜑,𝐺) − 1).
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Proof. Let 𝐺 be a directed, acyclic graph and 𝜑 be a topological ordering of its vertices. We
aim to show that every edge 𝑒 = (𝑢,𝑤) ∈ 𝐸 (𝐺) is crossed at most Δ(𝐺) · (bw(𝜑,𝐺) − 1) times
in the ordering 𝜑 .

Recall that two edges in a linear ordering cross if their endpoints alternate. Thus, an edge
𝑒′ ∈ 𝐸 (𝐺) crosses 𝑒 if and only if it has exactly one endpoint 𝜈 satisfying 𝜑 (𝑢) < 𝜑 (𝜈) < 𝜑 (𝑤),
i.e., exactly one of its endpoints lies between the endpoints of 𝑒 in the ordering.

By the definition of bandwidth, there are at most bw(𝜑,𝐺) − 1 vertices between 𝑢 and𝑤 in
𝜑 ; otherwise, the edge 𝑒 = (𝑢,𝑤) would exceed the bandwidth of 𝜑 .

Since every vertex is incident to at most Δ(𝐺) edges the edge 𝑒 is crossed by at most
Δ(𝐺) · (bw(𝜑,𝐺) − 1) other edges, and we have that lcr↑ (𝜑,𝐺) ≤ Δ(𝐺) · (bw(𝜑,𝐺) − 1).

Now, that we have introduced the crucial parameters of this chapter and the relation under
each other, we start by constructing an embedding of the Cartesian product of two paths
𝑃1□𝑃2, which local crossing number depends only of a given topological ordering of one input
path. For this we will use the so called canonical embedding that was introduced in the end
of Section 3.2.1. The properties of the canonical embedding depend on the chosen embedding
of the input graphs. For the path we choose a 𝑥-unique embedding to avoid unnecessary
𝑃-crossings. For the graph 𝐺 we define an embedding based on an ordering in the following
way.

Given a directed graph 𝐺 and a topological ordering 𝜑 of 𝐺 , we define an embedding Γ(𝜑)
of 𝐺 by placing each vertex 𝜈 ∈ 𝑉 (𝐺) at the coordinate (0, 𝜑 (𝜈)) and embedding all edges
to the right side of the vertices. We say that a vertex 𝜈 lies between two vertices 𝑢 and 𝑤 if
𝜑 (𝑢) < 𝜑 (𝜈) < 𝜑 (𝑤). Using this definition, every topological ordering of𝐺 yields a unique
corresponding embedding of the graph.
There are important connections between the parameters of the topological ordering 𝜑

discussed above and the embedding Γ(𝜑), which will be relevant later in this section:

i The number of vertices 𝜈 ∈ 𝑉 (𝐺) that lie between two adjacent vertices 𝑢,𝑤 with
(𝑢,𝑤) ∈ 𝐸 (𝐺) — that is, vertices for which 𝜑 (𝑢) < 𝜑 (𝜈) < 𝜑 (𝑤) — equals the length of
𝑢𝑤 minus 1 and this is bounded by 𝑏𝑤 (𝜑,𝐺) − 1.

ii The set of edges that nest a vertex 𝜈 , meaning 𝜈 lies strictly between the endpoints of
the edge, can be described as {(𝑢,𝑤) ∈ 𝐸 (𝐺) | 𝜑 (𝑢) < 𝜑 (𝜈) < 𝜑 (𝑤)}. Comparing this
with the definition of the cutwidth, it is clear that the cardinality of this set is bounded
by 𝑐𝑤 (𝜑,𝐺).

iii The embedding Γ(𝜑) is upward because 𝜑 is a topological ordering.

iv Since the construction of Γ(𝜑) is identical to the construction of the embedding used to
define 𝑙𝑐𝑟 ↑ (𝜑), except for a mirroring along the bisector of the first quadrant’s angle, it
follows that 𝑙𝑐𝑟 ↑ (Γ(𝜑)) = 𝑙𝑐𝑟 ↑ (𝜑,𝐺).

In particular, the relative positioning of edges and vertices of the embedding Γ(𝜑) can be
expressed via the parameters of the ordering. With these observations we can discuss all the
crossings that appear in the canonical (Γ(𝜑),Πℎ)-embedding of the Cartesian product 𝐺 □ 𝑃
for a topological ordering 𝜑 of𝐺 and a 𝑥-unique embedding of the orientated path 𝑃 . We start
by analyzing the crossings of 𝐺- and 𝑃-edges separately and derive from both result a first
improved upper bound that is refined for the case that 𝐺 is also a path, afterward.
We begin by analyzing the crossings of the 𝐺-edges.
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Γℎ

Γ(𝜑)

Figure 3.16: This figure illustrates the canonical (Γ(𝜑), Γℎ)-embedding, where Γ(𝜑) is the
vertical embedding shown on the left, and Γℎ is the horizontal embedding shown at the top. For
this example, Γ(𝜑) yields the following parameters: 𝑙𝑐𝑟 ↑ (𝜑) = 1, 𝑏𝑤 (𝜑) = 3, and 𝑐𝑤 (𝜑) = 3.
The crossing analysis of the 𝑃𝜈-edges is highlighted in violet. The chosen 𝑃𝜈-edge 𝑒 in the
embedding of the Cartesian product is crossed by every edge whose left endpoint is nested by
𝑒 (these are marked in magenta), as well as by the crossings that already occur in Γ(𝜑) (circled
in pink). The crossing analysis of the 𝑃ℎ-edges is indicated in orange. Here, the chosen edge is
crossed by every 𝑃𝜈 -edge that nests its left endpoint; these edges are marked in yellow. Using
the formula from Corollary 3.15, we find that the upward local crossing number is at most 3.
By explicitly counting the crossings in the figure, we confirm that this bound is tight.
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Lemma 3.12: Let 𝑃 be and orientated path and𝐺 a directed acyclic graph, let 𝜑 be a topological
ordering of 𝐺 and Γℎ a 𝑥-unique embedding of 𝑃 . Then, in the canonical (Γ(𝜑), Γℎ)-embedding
no 𝐺-edge is crossed more than 𝑏𝑤 (𝜑) − 1 + 𝑙𝑐𝑟 ↑ (𝜑) times.

The general idea of the embedding that leads to this bound and the analysis of potential
crossings is illustrated in Figure 3.16.

Proof. To establish the bound, we count the maximum possible number of crossings for an
arbitrary𝐺-edge 𝑒 = (𝑢,𝑤). Recall, that the canonical embedding ensures that𝐺-copies do
not cross other 𝐺-copies. The only possible crossings occur either within the 𝐺-copy of 𝑒 ,
where 𝑒 can cross other𝐺-edges, or with 𝑃-edges whose left endpoint lies in the same𝐺-copy
as 𝑒 .
The crossings within a 𝐺-copy are bounded by 𝑙𝑐𝑟 ↑ (Γ(𝜑)) = 𝑙𝑐𝑟 ↑ (𝜑).
Furthermore, for 𝑒 to cross a 𝑃-edge, the left endpoint of that 𝑃-edge must lie between 𝑢

and𝑤 . By observation (i) and due to the fact that in a path every vertex is the left endpoint of
at most one edge, this can happen for at most 𝑏𝑤 (𝜑) − 1 such 𝑃-edges.
In total, 𝑒 can therefore be crossed at most (𝑏𝑤 (𝜑) − 1) + 𝑙𝑐𝑟 ↑ (𝜑) times.

Note that, in every 𝐺-copy (except for the copy most on the right), the longest edge is
crossed at least 𝑏𝑤 (𝜑) − 1 times. If this longest edge is also the edge with the most crossings
in Γ(𝜑), then this bound is tight for the 𝐺-edges.
Next, we analyze the crossings of the 𝑃-edges.

Lemma 3.13: Let 𝑃 be and orientated path and𝐺 a directed graph, let 𝜑 be a topological ordering
of 𝐺 and Γℎ a 𝑥-unique embedding of 𝑃 . Then, in the canonical (Γ(𝜑), Γℎ) no 𝑃-edge is crossed
more than 𝑐𝑤 (𝜑) times.

Proof. Analogous to the proof of Lemma 3.12, we count the maximum number of crossings
of an arbitrary 𝑃-edge 𝑒′ = (𝜈, 𝑥). The only possible crossings occur within the 𝑃-copy of 𝑒′
with other 𝑃-edges or with 𝐺-edges that lie in the same𝐺-copy as the left endpoint of 𝑒′. We
begin with the crossings other 𝑃-edges. By Lemma 3.1, the embedding of every 𝑃-copy is
upward planar; so there are no other crossings between the 𝑃-edges within a copy. Therefore,
the only possible crossings are with𝐺-edges. For 𝑒′ to cross a𝐺-edge 𝑒 , the left endpoint of
𝑒′ must be nested between the endpoints of 𝑒 . According to observation (ii), there are at most
𝑐𝑤 (𝜑) edges that satisfy this condition. Thus, 𝑒′ is crossed at most 𝑐𝑤 (𝜑) times.

Similar to before, we can also analyze in which cases the boundary is tight. For this, we
call a vertex 𝜈 ∈ 𝑉 (𝐺) with

|{𝑢𝑤 ∈ 𝐸 (𝐺) | 𝜑 (𝑢) < 𝜑 (𝜈) ≤ 𝜑 (𝑤) }| = 𝑐𝑤 (𝜑)

a cutwidth-certifying vertex. That is, when the gap between 𝜈 and its predecessor certifies the
cutwidth of the embedding. By comparing this property with observation (ii), we conclude
that a cutwidth-certifying vertex 𝜈 must be nested between exactly 𝑐𝑤 (𝜑) − 𝑑𝑖𝑛 (𝜈) vertices in
Γ(𝜑). Consequently, any 𝑃-edge whose left endpoint is such a vertex 𝜈 is crossed precisely
𝑐𝑤 (𝜑) − 𝑑𝑖𝑛 (𝜈) times. We further observe that a vertex with 𝑑𝑖𝑛 (𝜈) = 0 can never be a
cutwidth-certifying vertex. Moreover, since it is possible that 𝑑𝑖𝑛 (𝜈) < Δ𝑖𝑛 (𝐺), a tight upper
bound can only be formulated under the assumption that all vertices with 𝑑𝑖𝑛 (𝜈) > 0 have
the same in-degree—for example, when 𝐺 is a path. In particular, if 𝐺 is an orientated path,
the bound for the number of crossings of 𝑃-edges is tight and equals 𝑐𝑤 (𝜑) − 1.
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To conclude, from Lemma 3.12 and Lemma 3.13, any edge in the canonical (Γ(𝜑), Γℎ)-
embedding is crossed at most

max
(
𝑏𝑤 (𝜑) + 𝑙𝑐𝑟 ↑ (𝜑) − 1, 𝑐𝑤 (𝜑)

)
(3.1)

times.
Considering Lemma 3.10 and Lemma 3.11 and the fact that 𝑏𝑤 (𝐺) ≤ 𝑏𝑤 (𝜑) for all topolog-

ical orderings 𝜑 we conclude the following corollary.

Corollary 3.14: There exists an embedding Γ𝐶 of the Cartesian product of a directed graph 𝐺
and an orientated path 𝑃 , with 𝑙𝑐𝑟 ↑ (Γ𝑐) ∈ 𝑂 (Δ(𝐺) · 𝑏𝑤 (𝐺))

To find a more specific and better bound, we have to find a topological ordering that
minimize the maximum in Equation (3.1). Furthermore, if 𝐺 is a path as well, we may switch
the roles of 𝐺 and 𝑃 and choose a topological ordering of 𝑃 that minimizes the value even
further. This leads to the following conclusion.

Corollary 3.15: There exists an embedding of the Cartesian product of two orientated paths 𝑃1
and 𝑃2 that is 𝑝∗-upward planar, where

𝑝∗ := min
(
𝑝∗(𝑃1), 𝑝∗(𝑃2)

)
and

𝑝∗(𝑃𝑖) := min
𝜑∈Φ(𝑃𝑖 )

max
(
𝑏𝑤 (𝜑) + 𝑙𝑐𝑟 ↑ (𝜑) − 1, 𝑐𝑤 (𝜑)

)
for 𝑖 ∈ {1, 2}.

Instead of expressing the bound in terms of the cutwidth and bandwidth of the path, we
can formulate it now based on structural characteristics of the orientated path itself.
Suppose we label the vertices of a path according to their order along the underlying

undirected path. This naturally induces two directions: one in which the label increases along
an edge, and one in which it decreases. A sequence of consecutive edges that are all orientated
in the same direction is referred to as a monotone subpath. A subpath is maximal monotone
if it cannot be extended further by including adjacent edges that follow the same direction.
Depending on the orientation, a monotone subpath is called increasing or decreasing.

Let ℓ↑ denote the length of the longest increasing subpath, and ℓ↓ the length of the longest
decreasing subpath. By appropriately labeling the vertices of the path, we can always ensure
that one of the longest maximal monotone subpaths is increasing.

Figure 3.17 illustrates these relevant characteristics and will be used throughout this section
to demonstrate the construction of an ordering based on these different structural properties.
Using the formula from Corollary 3.15, we can derive a more refined upper bound for

the upward local crossing number of the Cartesian product of two orientated paths. This
bound depends on the number of maximal monotone subpaths and the length of the longest
monotone decreasing subpath.

Lemma 3.16: For an orientated path 𝑃1 on 𝑛 vertices with 𝑘 maximal monotone subpaths and
an arbitrarily orientated path 𝑃2 the upward local crossing number of their Cartesian product is
bounded by:

𝑙𝑐𝑟 ↑ (𝑃1 □ 𝑃2) ≤
{

3(𝑘 − 1) 𝑘 > 2
4 𝑘 = 2

.
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𝑙↓

𝑙↑

Figure 3.17: An orientated path on 13 vertices with 4 maximal monotone subpaths. The
longest maximal monotone subpath is the one embedded most on the right, with ℓ↑ = 4. If
we label the vertices from right to left, this subpath is increasing. Then longest monotone
decreasing subpath has length ℓ↓ = 3.

Note that for 𝑘 = 1, 𝑃1 is a monotone path and we have already shown that the embedding
of the Cartesian product with any other path is upward planar.

Proof. We construct an topological ordering 𝜑1 of 𝑃1 such that 𝑏𝑤 (𝜑1, 𝑃1) ≤ 𝑘 and use this to
derive the desired bound with the help of the formula from Corollary 3.15 in combination with
Lemma 3.10 and Lemma 3.11 which bounds the cutwidth and upward local crossing number
by the bandwidth. To construct 𝜑1, we first create a horizontal embedding of 𝑃1 and then
label the vertices according to their position along the 𝑥-axis. This is illustrated in Figure 3.18,
based on the path from Figure 3.17. After the construction we show that 𝜑1 fulfills all the
wanted properties.

To construct the embedding, we divide the 𝑥-axis into disjoint segments, which we refer to
as buckets. Each bucket contains 𝑘 distinct horizontal positions or slots. We label the slots in
every bucket from left to right using the labels {0, 1, . . . , 𝑘 − 1}.

Next, we traverse the underlying undirected path of 𝑃1, processing it onemaximal monotone
subpath at a time, from left to right. We assign each of these 𝑘 subpaths a unique identifier
from the set {0, 1, . . . , 𝑘 − 1}, according to their position in the sequence of the subpaths.
We begin with the first subpath, which is assigned the number 0. The vertices of this

subpath are placed into consecutive buckets such that each vertex occupies the slot labeled 0.
The direction of the edges between these vertices is left to right, ensuring consistency with
an upward orientation.

For the second subpath (assigned the label 1), we place its next vertex in the next available
slot labeled 1, directly above or below the previous subpath’s last vertex—depending on the
edge orientation. Note that the first vertex of the second subpath was already embedded as
part of the first subpath - therefore the next vertex is the second vertex of the path. We then
embed the remaining vertices of this subpath into successive buckets, always placing them in
the slot labeled 1, and maintaining a left-to-right edge direction.
We repeat this embedding process for all remaining maximal monotone subpaths, always

embedding the vertices into slots with the respective identifier of the subpath. After embedding
all vertices, we define the ordering 𝜑1 by scanning the embedding from left to right and
assigning the vertex labels accordingly.
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1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

1 2 30 0 0 01 1 12 2 2 23 3 3 3

Figure 3.18: This illustrates the construction process in the proof of Lemma 3.16. In the
first step we divide the 𝑥-axis into buckets with 𝑘 = 4 spots each. After that, we place the
first subpath in the spot “0” of consecutive buckets. Dependent on the edge orientation we
place the next vertex in a slot “1” below or above the last vertex of our previous path. In the
illustration it is easy to see, that this slot has always a distance less than 𝑘 − 1. The rest of the
second subpath is inserted in slots with label “1”. The other subpath are embedded the same
way in slots with increasing label. The final result is presented in the last row: The vertex
embedded most on the left in Figure 3.17 is marked by an arrow. We see, that the vertices of
one subpath except for first vertex are always equidistant. We receive a topological ordering
by scanning the vertex order from left to right.
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3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.19: The ordering of the path shown in Figure 3.17 based on ℓ↓, as described in the
proof of Lemma 3.17. The vertex embedded furthest to the left in Figure 3.17 is marked with
an arrow.

Figure 3.20: A section of a possible path ordering according to Figure 3.19. This occurs when
two decreasing subpaths are connected by a single increasing edge, which then spans both
decreasing subpaths.

Now we show that 𝜑1 is a topological ordering with 𝑏𝑤 (𝜑1, 𝑃1) ≤ 𝑘 . Since every edge is
directed from left to right and we assign the vertex labels for the ordering by scanning from
left to right, 𝜑1 is indeed a topological ordering.

Furthermore, recall that the length of an edge in the ordering corresponds to the number of
vertices (or positions) between its endpoints in the initial embedding. Due to our construction,
except for the first vertex of a monotone subpath, all vertices of the same subpath are placed
in spots with the same label across adjacent buckets. As a result, there are exactly 𝑘 − 1 spots
between any two such adjacent vertices along the 𝑥-axis, leading to a edge length of at most
𝑘 .

The length of the edge between the first and second vertex of a maximal monotone subpath
can differ. The second vertex of the subpath with identifier 𝑗 is placed in a spot labeled 𝑗 ,
either above or below the previous subpath’s last vertex (which is also the first vertex of the
subpath 𝑗 ), which was placed in a spot labeled 𝑗 − 1. Since these labeled spots are within the
same bucket or adjacent buckets, the distance between label 𝑗 − 1 and label 𝑗 is at most 𝑘 − 1,
regardless of whether it is positioned above or below. Thus, the edge connecting these two
vertices has length at most 𝑘 − 1. Consequently, the number of positions (and thus vertices)
between the endpoints of any edge is at most 𝑘 − 1. This implies that the bandwidth of the
ordering is at most 𝑘 , i.e., 𝑏𝑤 (𝜑1, 𝑃1) ≤ 𝑘 .

By applying Lemma 3.10 and Lemma 3.11, we obtain the following bound:

𝑝∗(𝑃1) ≤ max(𝑏𝑤 (𝜑) + 𝑙𝑐𝑟 ↑ (𝜑) − 1, 𝑐𝑤 (𝜑)) ≤ max(𝑘 + 2(𝑘 − 1) − 1, 2𝑘) = max(3(𝑘 − 1), 2𝑘) .

With this result and Corollary 3.15, the claim follows immediately.

Next, we define a bound dependent on the length of the longest maximal monotone de-
creasing subpath.

Lemma 3.17: For an orientated path 𝑃1 with 𝑛 vertices and a longest maximal monotone
decreasing subpath of length ℓ↓, and for an arbitrary orientated path 𝑃2, the upward local crossing
number of their Cartesian product satisfies:

𝑙𝑐𝑟 ↑ (𝑃1 □ 𝑃2) ≤ 2𝑙↓ + 3
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Proof. Let 𝑃1 be a path whose longest maximal monotone decreasing subpath has length ℓ↓.
We denote this subpath by 𝑃𝑙 . Similar to the proof of Lemma 3.16, we begin by constructing a
topological ordering 𝜑1 of 𝑃1, this time based on the parameter ℓ↓.
We show that 𝜑1 is a valid topological ordering and that its bandwidth, cutwidth, and

upward local crossing number are each bounded by either ℓ↓ or a constant. Using these
bounds, we apply Corollary 3.15 to derive the desired result.
The construction of this ordering for the path in Figure 3.17 is illustrated in Figure 3.19.
Now, suppose vertex 𝑖 ∈ {1, . . . , 𝑛 − 1} has a neighbor 𝑖 − 1 already placed in the ordering.

There are two possibilities for the direction of the edge 𝑒 between 𝑖 and 𝑖 − 1: If 𝑒 = (𝑖 − 1, 𝑖),
then we insert vertex 𝑖 at the rightmost position in the ordering. In particular, this means
placing 𝑖 to the right of 𝑖 − 1. Otherwise, if 𝑒 = (𝑖, 𝑖 − 1), then we insert 𝑖 directly to the left of
𝑖 − 1.

Due to the construction process 𝜑1 is a topological embedding.
Before analyzing the parameters of the ordering, we highlight an important observation to

understand its structure: With this construction, any increasing edge adjacent to a decreasing
subpath always spans that subpath. This is because the vertices of the decreasing subpath
are inserted between the endpoints of the increasing edge, or the increasing edge spans the
entire subpath to ensure that the next vertex is assigned the rightmost label. All other edges
have length 1.
A single edge can be adjacent to at most two decreasing subpaths. In such a case, the edge

spans both subpaths, as illustrated in Figure 3.20.
With these insights, we analyze the bandwidth first. Since an edge can span at most two

decreasing subpaths, and each subpath contains at most ℓ↓ + 1 vertices, the bandwidth is
bounded by:

𝑏𝑤 (𝜑1, 𝑃1) ≤ 2(ℓ↓ + 1)

Next, we consider the cutwidth. Because only decreasing subpaths are spanned by other
edges, cuts at vertices in increasing subpaths are only crossed by the incident edges. A cut
within a decreasing subpath can be crossed by the edge within the subpath itself and up to
two increasing edges that span the entire subpath. Thus, we conclude:

𝑐𝑤 (𝜑1, 𝑃1) ≤ 3

Lastly, we analyze the upward local crossing number. Crossings can only occur between
edges that span the same decreasing subpath. Since at most two edges can span a given
subpath, an edge that spans one subpath can be crossed at most once. An edge that spans two
subpaths can be crossed by at most two other edges. Therefore:

𝑙𝑐𝑟 ↑ (𝜑1) ≤ 2

Now we can use these bounds and the formula from Corollary 3.15. In conclusion, for this
embedding 𝜑1, it holds that:

max(𝑏𝑤 (𝜑1) + 𝑙𝑐𝑟 ↑ (𝜑1) − 1, 𝑐𝑤 (𝜑1)) ≤ max(2(ℓ↓ + 1) + 2 − 1, 3) = 2ℓ↓ + 3

Using Corollary 3.15 and Lemma 3.10, we establish an upper bound on the upward local
crossing number of the Cartesian product of two arbitrarily orientated paths 𝑃1 and 𝑃2. Given a
topological ordering 𝜑1 of 𝑃1, it holds that lcr↑ (𝑃1□𝑃2) ≤ max(bw(𝜑1) + lcr↑ (𝜑1) −1, 𝑐𝑤 (𝜑1)).
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𝜈𝑙

𝜈𝑟

𝑃 ′ 𝑃𝑟𝑃𝑙

Figure 3.21: This figure illustrates the structure of a path 𝑃 containing 𝑝 + 1 monotone
subpaths with length greater than

√
𝑛, as introduced in the proof of Lemma 3.19. The subpath

𝑃 ′ highlighted in black is one such maximal monotone subpath, with endpoints labeled 𝜈𝑙
and 𝜈𝑟 . The vertex 𝜈𝑙 denotes the start vertex of 𝑃 ′. The subpath 𝑃𝑙 , here, located to the left of
𝑃 ′, is highlighted in orange, while 𝑃𝑟 , located to the right of 𝑃 ′, is shown in violet. Note that
𝜈𝑙 belongs to both 𝑃𝑙 and 𝑃 ′, and similarly, 𝜈𝑟 belongs to both 𝑃𝑟 and 𝑃 ′.

Applying the bounds from Lemma 3.10 and Lemma 3.11, we get lcr↑ (𝑃1 □ 𝑃2) ≤ max(3 ·
bw(𝜑1), 2 · bw(𝜑1)) = 3 · bw(𝜑1). Since we can choose 𝜑1 such that bw(𝜑1) = bw(𝑃1), it
follows that lcr↑ (𝑃1 □ 𝑃2) ≤ 3 · bw(𝑃1). We argue analogously for a topological ordering 𝜑2 of
𝑃2 and combine both insights in the following corollary.

Corollary 3.18: For all orientated paths 𝑃1, 𝑃2 it holds that lcr↑ (𝑃1□𝑃2) ≤ 3·min(bw(𝑃1), bw(𝑃2)).

Therefore, by bounding the bandwidth of orientated paths, we obtain a general upper
bound for the upward local crossing number of their Cartesian product.

Lemma 3.19: For all orientated paths 𝑃 on 𝑛 vertices it holds that bw(𝑃) ≤ 4
√
𝑛.

Proof. Let 𝑃 be an orientated path on 𝑛 vertices. In order to show this claim we prove that
bw(𝑃) ≤ 2 · (

√
𝑛 + 𝑝) with 𝑝 being the number of maximal monotone subpaths with length at

least
√
𝑛. We proceed by induction on 𝑝 . For the base case 𝑝 = 0, the longest monotone subpath

has length smaller than
√
𝑛. Thus, by Lemma 3.17 it holds that bw(𝑃) ≤ 2 ·

√
𝑛. Assume that

the inequality holds for all paths with 𝑝 maximal monotone subpaths with length at least
√
𝑛

for some 𝑝 ∈ ℕ0 and let 𝑃 be a path with 𝑝 + 1 maximal monotone subpaths with length at
least

√
𝑛. Then we construct a topological ordering 𝜑 of 𝑃 with bw(𝜑, 𝑃) ≤ 2 · (

√
𝑛 + 𝑝 + 1).

Let 𝑃 ′ be a monotone subpath of 𝑃 with length at least
√
𝑛. Denote the endpoints of 𝑃 ′ by 𝜈𝑙

and 𝜈𝑟 , where the edges of 𝑃 ′ are directed from 𝜈𝑙 to 𝜈𝑟 . Define 𝑃𝑙 as the connected component
of the graph 𝑃 − (𝑃 ′ − {𝜈𝑙 , 𝜈𝑟 }) that contains 𝜈𝑙 . Analogously, let 𝑃𝑟 be the component that
contains 𝜈𝑟 . Thus, 𝑃𝑙 and 𝑃𝑟 represent the two subpaths on either side of 𝑃 ′, as illustrated in
Figure 3.21.
Observe that both 𝑃𝑙 and 𝑃𝑟 contain at most 𝑝 monotone subpaths of length at least

√
𝑛.

So we may assume by induction that there exist topological orderings 𝜑𝑙 and 𝜑𝑟 of 𝑃𝑙 and 𝑃𝑟 ,
respectively, such that bw(𝜑𝑘 , 𝑃𝑘 ) ≤ 2 · (

√
𝑛 + 𝑝) for 𝑘 ∈ {𝑙, 𝑟 }.

We now construct a topological ordering 𝜑 of 𝑃 based on 𝜑𝑙 and 𝜑𝑟 . This construction is
illustrated in Figure 3.22. First, we concatenate 𝜑𝑙 and 𝜑𝑟 into an auxiliary ordering, denoted
by 𝜑𝑙+𝑟 , such that all vertices of 𝑃𝑟 receive a higher label than all vertices of 𝑃𝑙 . That is, for all
𝜈 ∈ 𝑉 (𝑃𝑙 ) and 𝜈 ′ ∈ 𝑉 (𝑃𝑟 ) it holds that 𝜑𝑙+𝑟 (𝜈) < 𝜑𝑙+𝑟 (𝜈 ′).

Define 𝜈∗
𝑙
as the vertex in 𝑃𝑙 with the highest label under 𝜑𝑙+𝑟 , i.e., 𝜑𝑙+𝑟 (𝜈∗𝑙 ) = max{𝜑𝑙+𝑟 (𝜈) |

𝜈 ∈ 𝑉 (𝑃𝑙 )}, and 𝜈∗𝑟 as the vertex in 𝑃𝑟 with the lowest label under 𝜑𝑙+𝑟 , i.e., 𝜑𝑙+𝑟 (𝜈∗𝑟 ) =

min{𝜑𝑙+𝑟 (𝜈 ′) | 𝜈 ′ ∈ 𝑉 (𝑃𝑟 )}. Note, that 𝜈∗𝑙 and 𝜈
∗
𝑟 have consecutive labels under 𝜑𝑙+𝑟 .

34



3.2 Upper Bounds for Cartesian Products

𝜑 ′ :
𝜈𝑙 𝜈𝑟

𝜑𝑙 𝜑𝑟

𝜈∗
𝑙

𝜈∗𝑟

𝜑 :
𝜈𝑙 𝜈𝑟

= ⌈
√
𝑛 + 𝑝⌉< ⌈

√
𝑛 + 𝑝⌉< ⌈

√
𝑛 + 𝑝⌉

Figure 3.22: This illustrates the construction process of 𝜑 under the assumption that ⌈
√
𝑛 +𝑝⌉

= 3. The first steps shows the concatenation of 𝜑𝑙 and 𝜑𝑟 , the second the insertion of the
internal vertices of 𝑃 ′. The characteristic vertices 𝜈∗

𝑙
and 𝜈∗𝑟 are marked by a cross.

Next, we insert the internal vertices of 𝑃 ′ into𝜑𝑙+𝑟 to obtain a total ordering of 𝑃 . Specifically,
we place the vertices such that between any two adjacent vertices 𝑢,𝑤 ∈ 𝑉 (𝑃 ′) with (𝑢,𝑤) ∈
𝐸 (𝑃 ′), there are at most ⌈

√
𝑛 + 𝑝⌉ vertices between them. Additionally, between any two

adjacent vertices 𝑥,𝑦 in 𝑃𝑙 or 𝑃𝑟 , there are only a bounded number of vertices of 𝑃 ′ inserted.

We define this embedding formally by inserting the first |𝜑𝑙 (𝜈𝑙 )−𝜑𝑙 (𝜈𝑙∗) |
⌈
√
𝑛+𝑝 ⌉ of 𝑃 ′ between 𝜈𝑙 and

𝜈𝑙∗, such that there are exactly ⌈
√
𝑛 + 𝑝⌉ vertices between two adjacent vertices of 𝑃 ′. Recall,

that 𝜈𝑙 is also a vertex of 𝑃 ′. Analogously, we insert the last |𝜑𝑟 (𝜈𝑟 )−𝜑𝑟 (𝜈𝑟 ∗) |
⌈
√
𝑛+𝑝 ⌉ of 𝑃 ′ between 𝜈∗𝑟

and 𝜈𝑟 , such that there are also exactly ⌈
√
𝑛 + 𝑝⌉ vertices between two adjacent vertices of 𝑃 ′.

All the other vertices are inserted consecutively between 𝜈∗
𝑙
and 𝜈∗𝑟 . The resulting order ist

denoted by 𝜑 .
We show that 𝜑 is a topological ordering of 𝑃 and that bw(𝜑, 𝑃) ≤ 2 · (

√
𝑛 + 𝑝 + 1) by

showing that the length of every edge with respect to 𝜑 is at most 2 · (
√
𝑛 + 𝑝 + 1).

First, we verify that𝜑 is a valid ordering of 𝑃 . Assume, for contradiction, that |𝜑𝑙 (𝜈𝑙 )−𝜑𝑙 (𝜈𝑙∗) |
⌈
√
𝑛+𝑝 ⌉ +

|𝜑𝑟 (𝜈𝑟 )−𝜑𝑟 (𝜈𝑟 ∗) |
⌈
√
𝑛+𝑝 ⌉ > |𝑉 (𝑃 ′) |. However, since 𝑃 ′ contains at least

√
𝑛 vertices, this would mean

that there are more than
√
𝑛 · ⌈

√
𝑛 + 𝑝⌉ ≥ 𝑛 vertices between 𝜈𝑙 and 𝜈𝑟 , which contradicts the

fact that 𝑃 contains only 𝑛 vertices in total.
Moreover, note that the restriction of 𝜑 to the vertices of 𝑃𝑙 , 𝑃𝑟 , or 𝑃 ′ coincides with the

topological orderings 𝜑𝑙 , 𝜑𝑟 and the unique topological ordering of the monotone subpath 𝑃 ′,
respectively (particularly since 𝜑 (𝜈𝑙 ) < 𝜑 (𝜈𝑟 )). Therefore, 𝜑 is indeed a topological ordering
of 𝑃 .
Before analyzing the lengths of various edges, we make the following observation: for

every 𝑘 ∈ ℕ, if two vertices 𝑢,𝑤 ∈ 𝑉 (𝑃𝑙 ) have a distance of at most 𝑘 · ⌈
√
𝑛 + 𝑝⌉ with respect

to the auxiliary ordering 𝜑𝑙+𝑟 , then by the construction of 𝜑 , at most 𝑘 vertices from 𝑃 ′ are
inserted between 𝑢 and𝑤 in 𝜑 . An analogous statement holds for vertices in 𝑃𝑟 .
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Now, we analyze the length of edges with respect to the ordering 𝜑 . Recall that the length
of an edge is defined as the absolute difference between the labels of its endpoints, and the
bandwidth of an ordering is the maximum length over all edges. For any edge 𝑒 ∈ 𝐸 (𝑃 ′), the
construction ensures that the labels of its endpoints differ by at most ⌈

√
𝑛 + 𝑝⌉, since at most

this many vertices are inserted between any two adjacent vertices in 𝑃 ′.
Consider an edge 𝑒 = (𝑢,𝑤) ∈ 𝐸 (𝑃𝑙 ). The length of 𝑒 with respect to 𝜑 depends on its

length under 𝜑𝑙 , plus the number of vertices from 𝑃 ′ that were inserted between 𝑢 and 𝑤
during the construction of 𝜑 . Since we assumed that bw(𝜑𝑙 , 𝑃𝑙 ) ≤ 2(

√
𝑛 + 𝑝), the previously

established observation implies that at most two vertices from 𝑃 ′ were inserted between 𝑢
and𝑤 .
Therefore, we obtain the following bound:

|𝜑 (𝑢) − 𝜑 (𝑤) | ≤ |𝜑𝑙 (𝑢) − 𝜑𝑙 (𝑤) | + 2 ≤ 2(
√
𝑛 + 𝑝) + 2 = 2(

√
𝑛 + 𝑝 + 1) .

The second inequality holds because we assumed that 𝜑𝑙 satisfies bw(𝜑𝑙 , 𝑃𝑙 ) ≤ 2(
√
𝑛 + 𝑝).

A similar argument applies to every edge 𝑒 ∈ 𝐸 (𝑃𝑟 ). Since 𝐸 (𝑃) = 𝐸 (𝑃𝑙 ) ∪ 𝐸 (𝑃 ′) ∪ 𝐸 (𝑃𝑟 ),
we conclude that the length of every edge in 𝑃 is at most 2(

√
𝑛 + 𝑝 + 1), and hence bw(𝜑, 𝑃) ≤

2(
√
𝑛 + 𝑝 + 1). This concludes the induction and we have that bw(𝑃) ≤ 2 · (

√
𝑛 + 𝑝).

Finally, since 𝑝 ≤
√
𝑛, it follows that bw(𝑃) ≤ 4

√
𝑛.

By combining Lemma 3.19 and Corollary 3.18, we arrive at the following result:

Corollary 3.20: Let 𝑃𝑛 and 𝑃𝑚 be arbitrary orientated paths. Then, the Cartesian product
𝑃𝑛 □ 𝑃𝑚 is 𝑘-upward planar with 𝑘 ∈ O(

√︁
min(𝑛,𝑚)).

3.2.3 Upper Bound for Cartesian Products of Upward 𝑘-Planar Graphs

In this section we derive an improved upper bound for the Cartesian product of two directed,
acyclic graphs by using the in Section 3.2.1 introduced canonical embedding. Before extending
our own results onto the Cartesian product of directed graphs, we first establish an upper
bound that follows directly from previously published work.

Theorem 3.21 ([Ang+25]): For every directed acyclic graph it holds that

lcr↑ (𝐺) ≤ bw(𝐺)2,

.

If we bound the bandwidth of the Cartesian product dependent on the input graph, we
can derive an upper bound immediately. For this purpose, we rely on a result mentioned
by Kojima and Ando [KA02] and introduced by Chvátalová, Dewdney, Gibbs, and Korfhage
[CDGK75].

Theorem 3.22: For two graphs 𝐺 and 𝐻 it holds that

bw(𝐺 □ 𝐻 ) ≤ min
(
bw(𝐻 ) · |𝑉 (𝐺) |, bw(𝐺) · |𝑉 (𝐻 ) |

)
.
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Proof. We illustrate the idea of the proof. First we show that bw(𝐺□𝐻 ) ≤ bw(𝐻 )·|𝑉 (𝐺) |. Take
an ordering 𝜑𝐻 that minimzises the bandwidth for the graph 𝐻 . We substitute every vertex
in the ordering by a vertex set of 𝐺 . With this, we obtain an ordering of Cartesian product
𝐺 □𝐻 where a vertex (𝑔, ℎ) ∈ 𝑉 (𝐺 □𝐻 ), 𝑔 ∈ 𝑉 (𝐺), ℎ ∈ 𝑉 (𝐻 ) inherits the label of the vertex 𝑔
in that copy of𝐺 that replaced ℎ in the ordering 𝜑𝐻 . Then every edge in a𝐺-copy as length of
at most |𝑉 (𝐺) | and every edge in a 𝐻 -copy has length of bw(𝜑𝐻 ) · |𝑉 (𝐺) | = bw(𝐻 ) · |𝑉 (𝐺) |.
We switch the roles of 𝐺 and 𝐻 and take the minimum of both bounds, which leads to the
result.

Combining Theorem 3.21 and Theorem 3.22 we conclude the following corollary.

Corollary 3.23: The upward local crossing number of the Cartesian product of two directed
graphs 𝐺 and 𝐻 can be bounded by

lcr↑ (𝐺 □ 𝐻 ) ≤ min
(
bw(𝐻 )2 · |𝑉 (𝐺) |2, bw(𝐺)2 · |𝑉 (𝐻 ) |2

)
.

We now construct a more specific upper bound based on our previous results. To this end,
we define special topological orderings that are induced by a given upward embedding. For
an upward embedding Γ(𝐺) of a graph 𝐺 , we define the topological ordering 𝜑 (Γ (𝐺 ),𝑥 ) as
the ordering obtained by altering the embedding in a way that every vertex has a unique
𝑥-coordinate such that the resulting embedding is still equivalent to Γ(𝐺) and then scanning
the vertices of Γ(𝐺) from left to right. Analogously, we define the topological ordering
𝜑 (Γ (𝐺 ),𝑦) as the ordering obtained by altering the embedding such that every vertex has a
unique 𝑦-coordinate and then scanning the vertices of Γ(𝐻 ) from bottom to top.
With these definitions, we can formulate the following statement.

Theorem 3.24: Let 𝐺ℎ and 𝐺𝜈 be two directed graphs. Suppose 𝐺ℎ admits an upward 𝑘ℎ-
planar embedding Γℎ ≔ Γ(𝐺ℎ) and 𝐺𝜈 an upward 𝑘𝜈-planar embedding Γ𝜈 ≔ Γ(𝐺𝜈 ). Define
𝜑ℎ := 𝜑 (Γ (𝐺ℎ ),𝑥 ) and𝜑𝜈 := 𝜑 (Γ (𝐺𝜈 ),𝑦) . Then, the upward local crossing number 𝑘 ′ of the Cartesian
product 𝐺ℎ □𝐺𝜈 is bounded by

𝑘 ′ ≤ max
(
bw(𝜑ℎ) · cw(𝜑𝜈 ) + 𝑘ℎ, bw(𝜑𝜈 ) · cw(𝜑ℎ) + 𝑘𝜈

)
.

The proof strategy closely parallels the reasoning applied in Corollary 3.14. In particular,
the construction of the embedding and the subsequent analysis follow the same structural
principles. Figure 3.23 highlights the central ideas underlying this argument.

Proof. We show that the canonical (Γℎ, Γ𝜈 )-embedding of the Cartesian product already yields
the stated bound. To this end, we estimate the maximum number of crossings of a 𝐺𝜈-edge
and, analogously, of a 𝐺ℎ-edge.
Consider an arbitrary 𝐺𝜈-edge 𝑒 = (𝑢,𝑤). Let 𝐺 ′ denote the subgraph of the Cartesian

product induced by the𝐺𝜈 -copy containing 𝑒 . Since𝐺 ′ is isomorphic to𝐺𝜈 , we may interpret
𝜑𝜈 as a valid ordering of 𝐺 ′. By construction, the canonical embedding guarantees that edges
of𝐺 ′ do not intersect edges of other𝐺𝜈 -copies. Consequently, 𝑒 can only be crossed either by
other 𝐺𝜈-edges within 𝐺 ′ or by edges of 𝐺ℎ .
We first analyze the crossingswith other𝐺𝜈 -edges inside the same copy. Since lcr↑ (Γ(𝐺𝜈 )) =

𝑘𝜈 , the edge 𝑒 can be crossed by at most 𝑘𝜈 additional 𝐺𝜈-edges.
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𝜈4

𝜈3

𝜈2

𝜈1

𝜑𝜈 (𝜈4) = 4

𝜑𝜈 (𝜈3) = 3

𝜑𝜈 (𝜈2) = 2

𝜑𝜈 (𝜈1) = 1

Γ(𝐺𝜈 )

Γ(𝐺ℎ)

𝐺 ′

≤ cw(ΓGh) crossings

≤ cw(ΓGh) crossings

𝑒

Figure 3.23: The given embeddings Γ(𝐺ℎ) and Γ(𝐺𝜈 ) are illustrated in orange. Both embed-
dings are upward planar. For 𝐺𝜈 is ordering 𝜑𝜈 is derived. A 𝐺𝜈-egde 𝑒 in is highlighted in
violet in the embedding of the Cartesian product, the copy of 𝐺𝜈 that contains is is illustrated
in gray and denoted as𝐺 ′. Observe that 𝑒 crosses one𝐺ℎ-copy per vertex hat lie between it is
endpoints. In every copy 𝑒 crosses at most cw(Γ𝐺𝜈

) edges. Additionally it crosses edges in the
copies of the endpoints, but also at most cw(Γ𝐺𝜈

), as illustrated in Figure 3.24.
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≤ cw(Γ𝐺𝐻
) crossings

Figure 3.24: Above the dotted line lies the part of the𝐺ℎ-copy corresponding to the starting
vertex of 𝑒 that can be crossed by 𝑒 , i.e., the portion embedded above the starting vertex.
Below the dotted line lies the part of the 𝐺ℎ-copy corresponding to the endpoint of 𝑒 that
can be crossed by 𝑒 , i.e., the portion embedded below the endpoint. Observe that these two
parts together form a complete Γ𝐺ℎ

-copy. Hence, we may conclude that the total number of
crossings of 𝑒 within the copies corresponding to its endpoints is bounded by cw(Γ𝐺ℎ

).

The analysis of the crossings with𝐺ℎ-edges is more complex. We say that an edge 𝑒 crosses
a𝐺ℎ-copy if there exists a point on the Jordan curve representing 𝑒 in the embedding that lies
below all vertices of the 𝐺ℎ-copy (with respect to the 𝑦-coordinate) and another point that
lies above all vertices of the copy. If 𝑒 crosses a 𝐺ℎ-copy, then all 𝐺ℎ-edges intersected by 𝑒
in this copy define a cut of the graph 𝐺ℎ . By the definition of cutwidth, such a cut contains
at most cw(𝜑ℎ) edges. Hence, for each 𝐺ℎ-copy that 𝑒 crosses, it contributes at most cw(𝜑ℎ)
crossings.
We now estimate how many 𝐺ℎ-copies can be crossed by 𝑒 . Recall, that every𝐺ℎ-copy has

their own layer on the 𝑦-axis, i.e. the projection of the convex hull onto the 𝑦-axis does not
intersect with the projection of other 𝐺ℎ-copies. For each 𝐺ℎ-copy there exists exactly one
vertex in 𝐺 ′ that belongs to this copy; we refer to it as the corresponding vertex. Naturally,
the corresponding vertex resides also within this layer. Since 𝑒 is upward, the edge 𝑒 can
cross edges in a 𝐺ℎ-copy whenever the corresponding vertex in 𝐺 ′ lies between 𝑢 and 𝑤
with respect to 𝜑𝜈 , as illustrated in Figure 3.23. The number of such vertices is bounded by
bw(𝜑𝜈 ) − 1.

In addition to these full copies, 𝑒 may also cross edges in the copy corresponding to 𝑢 (those
lying above𝑢) and in the copy corresponding to𝑤 (those lying below𝑤 ). Since the embeddings
of the copies are identical and 𝑢 and𝑤 coincide in both copies, we can conservatively account
for these cases by adding one more copy. This is also illustrated in Figure 3.24. Thus, in total,
𝑒 may cross at most bw(𝜑𝜈 ) many 𝐺ℎ-copies, each contributing at most cw(𝜑ℎ) crossings.
Together with the crossings inside 𝐺 ′, this yields the bound; 𝑒 is crossed by at most

bw(𝜑𝜈 ) · cw(𝜑ℎ) + 𝑘𝜈 edges.
An analogous argument applies to any 𝐺ℎ-edge 𝑒′, where the roles of the 𝑥- and 𝑦-axis are

swapped. We obtain the bound that every𝐺ℎ-edge is crossed by at most bw(𝜑ℎ) · cw(𝜑𝜈 ) +𝑘ℎ
edges.
Taking the maximum of the two estimates completes the proof.

Considering Lemma 3.10 and Lemma 3.11, and using the fact that bw(𝐺) ≤ bw(𝜑) for every
topological ordering 𝜑 of a graph 𝐺 , we obtain the following corollary.
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□

Figure 3.25: A subgraph present in every Cartesian product of two paths where one path has
at least one vertex with 𝑑in = 2 and the other path has at least one vertex with 𝑑out = 2. This
subgraph is not upward planar.

(𝜈2, 𝑤2 )

(𝜈2, 𝑤1 ) (𝜈2, 𝑤3 )

𝑓1 𝑓2

𝑃

(a) First approach

(𝜈2, 𝑤2 )

(𝜈2, 𝑤1 )

(𝜈2, 𝑤3 )

𝑓1

𝑓2

𝑃

(b) Second (and third) approach

Figure 3.26: Illustration of the approaches explained in the proof of Theorem 3.26 trying
to embed the graph of Figure 3.25 planar. It illustrates that after embedding the two circles
𝐶1, 𝐶2 without crossings there is no way to embed the rest of the Cartesian product – the
subgraph 𝑃— without crossings. The vertex set 𝑉 ′ is illustrated in gray.

Corollary 3.25: Let 𝐺1 and 𝐺2 be two directed acyclic graphs. Then, there exists an embedding
Γ of the Cartesian product of two directed graphs 𝐺1,𝐺2 such that

lcr↑ (Γ) ∈ 𝑂
(
max

(
bw(𝐺1), bw(𝐺2)

)3
)
.

3.3 Lower Bound for Cartesian Product of Paths

After analyzing an upper bound for the upward local crossing number of Cartesian products
of paths, the question we are about to investigate is how complex must the orientation of the
two paths be so that no upward planar embedding of their Cartesian product is possible. We
show that it is impossible if the Cartesian product contains Figure 3.25 or Figure 3.29 as a
subgraph.

Theorem 3.26: For two orientated paths 𝑃1 and 𝑃2, where 𝑃1 contains at least one vertex with
𝑑in = 2 and 𝑃2 contains at least one vertex with 𝑑out = 2, there exists no upward planar embedding
of the Cartesian product 𝑃1 □ 𝑃2.

Proof. We show that the Cartesian product illustrated in Figure 3.25 — which is a subgraph
of every Cartesian product of two paths 𝑃1 and 𝑃2 with 𝑃1 having at least one vertex with
𝑑𝑖𝑛 = 2 and 𝑃2 having at least one vertex with 𝑑𝑜𝑢𝑡 = 2 — cannot be embedded upward planar.
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□ =

Figure 3.27: Upward planar embedding of the Cartesian product of the graph 𝐺 =

({0, 1, 2}, {(0, 1), (2, 1)} with itself.

We denote the vertices of the left input graph in Figure 3.25 by {𝜈1, 𝜈2, 𝜈3} such that𝑑𝑖𝑛 (𝜈2) =
2, and the vertices of the right input graph by {𝑤1,𝑤2,𝑤3} such that 𝑑𝑜𝑢𝑡 (𝑤2) = 2. The
Cartesian product of these two input graphs has nine vertices {𝜈1, 𝜈2, 𝜈3} × {𝑤1,𝑤2,𝑤3}. We
attempt to construct an upward planar embedding.

Consider the two cycles in the Cartesian product: 𝐶1 induced by {(𝜈1,𝑤1), (𝜈1,𝑤2), (𝜈2,𝑤1), (𝜈2,𝑤2)}
and𝐶2 induced by {(𝜈1,𝑤3), (𝜈1,𝑤2), (𝜈2,𝑤3), (𝜈2,𝑤2)}. They share the edge ((𝜈1,𝑤2), (𝜈2,𝑤2)).
There are only three ways to embed 𝐶1 and 𝐶2 together without crossings in the plane: side-
by-side, or one cycle nested inside the other. These configurations are illustrated in Figure 3.26
with 𝑓𝑖 being the face that is bounded by 𝐶𝑖 for 𝑖 ∈ {1, 2}. Note that the third configuration is
essentially the second configuration in Figure 3.26b, but with the roles of 𝐶1 and 𝐶2 swapped.

In each scenario, we must still embed the subgraph 𝑃 induced by {(𝜈3,𝑤1), (𝜈3,𝑤2), (𝜈3,𝑤3)}
in order to obtain a full embedding of the Cartesian product. The vertices𝑉 ′ = {(𝜈2,𝑤1), (𝜈2,𝑤2), (𝜈2,𝑤3)}
each have edges to 𝑃 .

In the first approach (Figure 3.26a), all of these vertices 𝑉 ′ lie on the outer face. There is no
other face, on which all of these vertices of 𝑉 ′ lie. Thus, 𝑃 must also be embedded into the
outer face. However, (𝜈2,𝑤2) can only have incoming edges from the inner faces; otherwise,
those edges are not upward. Hence, the configuration in Figure 3.26a does not yield an upward
planar embedding.
In the second approach (Figure 3.26b), the vertices 𝑉 ′ lie on the inner face 𝑓2. In this case,

this face is the only face, on which all of these vertices lie. This forces the subgraph 𝑃 , which
has to be connected with all three vertices from𝑉 ′, to be embedded into 𝑓2 as well. Yet (𝜈2,𝑤2)
cannot have incoming upward edges from 𝑓2, so the configuration again fails. The same
reasoning applies to the third approach.
Therefore, no upward planar embedding exists for this specific Cartesian product, which

proves the claim.

Since any path with more than two maximal monotone subpaths necessarily contains a
vertex 𝜈 with 𝑑𝑖𝑛 (𝜈) = 2 and a vertex𝑤 with 𝑑𝑜𝑢𝑡 (𝑤) = 2, we have established in particular
that the Cartesian product of two paths is not upward planar whenever one path has more
than two maximal monotone subpaths and the other has at least two. On the other hand,
recall that if one path is monotone, the Cartesian product is upward planar. Thus, the only
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(a) 𝑃↑ (b) 𝑃↓

Figure 3.28: Definition of two graphs that are needed in Theorem 3.27.

□

Figure 3.29: Subgraph of every Cartesian product that fulfills the requirements of Theo-
rem 3.27

.

remaining case to analyze regarding the upward planarity of the Cartesian product of two
orientated paths arises when both paths consist of exactly two maximal monotone subpaths
and both contain precisely one vertex with 𝑑𝑖𝑛 = 2 (or, equivalently, one vertex with 𝑑𝑜𝑢𝑡 = 2).
Observe that we can embed the product of two paths of length 2, each with exactly one

vertex with 𝑑𝑖𝑛 = 2, in an upward planar way; see Figure 3.27 for an example.
From this illustration, we can also see that if the subpath on one side of the vertex with

𝑑𝑖𝑛 = 2 becomes longer-regardless of whether this occurs in just one path or in both paths —
we can still construct an upward planar embedding. However, if we have longer subpaths on
both sides of such a vertex, then an upward planar embedding is no longer possible.

Theorem 3.27: Let 𝑃1 be a path containing the subgraph 𝑃↑ illustrated in Figure 3.28a, and let
𝑃2 be a path containing a vertex with 𝑑𝑖𝑛 = 2. Then there is no upward planar embedding of the
Cartesian product 𝑃1 □𝑃2. Equivalently, if 𝑃1 contains the subgraph 𝑃↓ illustrated in Figure 3.28b,
and 𝑃2 contains a vertex with 𝑑𝑜𝑢𝑡 = 2, then there is also no upward planar embedding of the
Cartesian product 𝑃1 □ 𝑃2.

We only prove the first statement of the theorem; the second statement can be shown by
a symmetric argument. Note that we could proceed in the same way as in Theorem 3.26,
showing that the embedding of certain cycles makes an upward planar embedding impossible.
However, in this case we will present a different argument, which could also have been applied
in the proof of Theorem 3.26.

Proof of Theorem 3.27. We show that the Cartesian product illustrated in Figure 3.29 does not
admit an upward planar embedding.
The underlying graph of this product is a grid, as illustrated in Figure 3.30a. We replace all

vertices of degree 2 with a single edge, obtaining the 3-connected graph shown in Figure 3.30b.
According to Whitney [Whi32], a 3-connected graph has a unique planar embedding, except
for the choice of the outer face. Since we can reconstruct the original graph by subdividing
edges with one vertex, the Cartesian product also has a unique planar embedding, again up to
the choice of the outer face.
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3.3 Lower Bound for Cartesian Product of Paths

𝑓0 𝑓1 𝑓2 𝑓3

𝑓4 𝑓5 𝑓6 𝑓7

(a) (b)

Figure 3.30: On the left, the Cartesian product of Figure 3.29 as a grid. On the right, the
3-connected graph we get by substituting the vertices with degree 2 with an edge.

We now demonstrate that, for every possible choice of the outer face, the resulting planar
embedding is not upward. In particular, it is evident from Figure 3.30a that the depicted
embedding is not upward, even if the vertex positions were rearranged. Hence, the outer face
chosen in this embedding cannot yield an upward planar embedding.
Note that any face with a unique source 𝑠 that has an incoming edge is unsuitable as the

outer face, because the other endpoint of that incoming edge must be embedded below 𝑠 .
At the same time, 𝑠 is the unique source of the outer face - i.e., the vertex with the lowest
𝑦-coordinate in an upward embedding. This rules out all but the faces 𝑓0, 𝑓3, 𝑓4, and 𝑓7 of
Figure 3.30a.
Observe that choosing any of these faces as the outer face yields a planar embedding

equivalent (up to mirroring) to choosing any of the others. Figure 3.31 illustrates the unique
planar embedding with 𝑓4 as the outer face, with vertex positions chosen to make as many
edges as possible upward. Even in this optimized placement, the embedding is still not upward,
regardless of how we adjust the vertex positions. Therefore, the planar embeddings with 𝑓0,
𝑓3, or 𝑓7 as the outer face are also not upward.
It follows that there is no upward planar embedding for the Cartesian product in Figure 3.29,

and hence no upward planar embedding for the Cartesian products of paths satisfying the
conditions of Theorem 3.27.
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3 Cartesian Products and Upward 𝑘-Planarity

Figure 3.31: The (unique) planar embedding of Figure 3.29 with 𝑓4 of Figure 3.30a as the outer
face.
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4 Posets and Upward 𝒌-Planarity

In this chapter we address another interesting graph class in the context of upward 𝑘-planarity
that is given by the Hasse diagrams of posets, since the direction of the edges in a Hasse
diagram is always inherently upward.

We call a poset (upward) 𝑘-planar if its Hasse diagram admits an upward 𝑘-planar embed-
ding.
The relationship between the dimension of a poset and structural parameters of its em-

bedding has been studied extensively. In particular, the connection between dimension and
planar embeddings of Hasse diagrams has received significant attention. Baker, Fishburn and
Roberts showed that a bounded poset has dimension ≤ 2 if and only if it is a 2-dimensional
lattice [BFR72]. Trotter and Moore proved that the dimension of a planar poset with a greatest
lower bound is at most 3 [TM77].
It is therefore natural to ask whether similar relationships can be established for upward

𝑘-planarity when 𝑘 > 0. However, such connections do not appear to exist, as demonstrated
by the following two theorems. In particular, the dimension of a poset cannot be bounded in
terms of its upward local crossing number.

Theorem 4.1: There exists no function 𝑓 : ℕ ↦→ ℕ such that for every upward 𝑘-planar poset P
it holds that dim(P) ≤ 𝑓 (𝑘).

Proof. We prove that for every𝑛 ∈ ℕ there exists an𝑛-dimensional posetP𝑛 with dim(P𝑛) = 𝑛
and lcr↑ (P𝑛) = 1.
Consider the standard example 𝑆𝑛 . It is well known that dim(𝑆𝑛) = 𝑛, and that 𝑆𝑛 is

non-planar for 𝑛 ≥ 5. Thus, we start with an arbitrary upward 𝑘-planar embedding of the
Hasse diagram of 𝑆𝑛 and derive from it a new poset that remains 𝑛-dimensional but admits an
upward 1-planar embedding.

Let 𝑒0 = 𝑢𝑤 be an edge that is crossed 𝑘0 > 1 times. We subdivide 𝑒0 exactly 𝑘0 times, that
is, at each segment between two consecutive crossings we replace a point on the edge with a
new vertex. As a result, 𝑒0 is replaced by 𝑘0 edges, each of which is crossed at most once.
We define P𝑛 as the poset whose Hasse diagram results from this subdivision process for

all edges that are crossed more than one time. Importantly, subdividing an edge — i.e., for
adjacent elements 𝑢,𝑤 introducing a new element 𝜈 with 𝑢 < 𝜈 < 𝑤 — does not decrease the
dimension of the poset because it contains the original poset still as a subposet and for every
posets Q and subposet S it holds that dim(S) ≤ dim(Q). Hence, dim(P𝑛) ≥ dim(𝑆𝑛) = 𝑛.
At the same time, by construction the Hasse diagram of P𝑛 admits an upward 1-planar

embedding. Thus, we have lcr↑ (P𝑛) ≤ 1. Together, this proves the claim.

We now demonstrate that the upward local crossing number cannot, in general, be bounded
by a function of the dimension.

Theorem 4.2: There exists no function 𝑓 : ℕ → ℕ such that for every 𝑘-dimensional poset 𝑃 it
holds that lcr↑ (𝑃) ≤ 𝑓 (𝑘).
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4 Posets and Upward 𝑘-Planarity

P1

𝜈1

𝑏1

𝑎′

𝑎

P3

𝑎′

𝑎

𝜈1 𝜈2 𝜈3

𝑏1 𝑏2 𝑏3

P5

𝑎′

𝑎

𝜈5
𝜈1

𝑏5
𝑏1

Figure 4.1: P𝑖 for 𝑖 ∈ {1, 3, 5}; The subset of elements𝑉𝑖 = {𝜈1, . . . , 𝜈𝑖} is illustrated with blue
vertices, the vertices {𝑎′, 𝑎} with violet vertices and the subset 𝐵𝑖 = {𝑏1, . . . , 𝑏𝑖} with orange
vertices. All edges are implicitly upward.

To prove this statement, it suffices to construct a family of posets of constant dimension
whose upward local crossing number is unbounded. We explicitly define such a family and
show that it satisfies these requirements. After the definition we motivate shortly, that the
graphs presented in Figure 4.1 are isomorphic to the Hasse diagrams of the defined posets.
The paranthesis behind the defintion of the order relation describe the visualization of the
relation illustrated in Figure 4.1.

Definition 4.3: For every 𝑖 ∈ ℕ, define the poset P𝑖 := (𝑃𝑖 , <𝑖) as follows. The vertex set is

𝑃𝑖 = {0, 𝑎′, 𝑎, 1} ∪ {𝜈1, . . . , 𝜈𝑖} ∪ {𝑏1, . . . , 𝑏𝑖}

and the order relation <𝑖 is given as the transitive closure of:

1 0 < 𝑥 for 𝑥 ∈ 𝑃𝑖 (black vertex, unique minimum)

2 𝑎′ < 𝑎 (violet vertices)

3 𝜈 𝑗 < 𝑎 for 𝑗 ∈ {1, . . . , 𝑖} (blue and violet vertices)

4 𝜈 𝑗 < 𝑏 𝑗 for 𝑗 ∈ {1, . . . , 𝑖} (blue and orange vertices)

5 𝑥 < 1 for 𝑥 ∈ 𝑃𝑖 (black vertex, unique maximum)

We analyze whether the graphs illustrated in Figure 4.1 are isomorphic to the Hasse
diagrams of the posets of Definition 4.3. Clearly, the graphs do not contain any transitive
edges and have the same vertex set as the respective poset. The relations 2 - 4 in Definition 4.3
are cover relations and represented by distinct edges in each graph. Moreover, according to
Definition 4.3 0 is covered only by elements in {𝑎′, 𝜈1, . . . , 𝜈𝑛} and 1 covers only the elements
in {𝑎, 𝑏1, . . . , 𝑏𝑛}, these cover relations are also represented by edges. There are no more cover
relations and the graphs in Figure 4.1 realize all the defined cover relations. Therefore, the
motivated graphs are isomorphic to the respecive Hasse diagram.
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comparable pairs incomparable pairs Due to relation:
𝑉𝑖 𝑉𝑖 ∅ (𝜈 𝑗 , 𝜈𝑘 ) for 𝑗 ≠ 𝑘 -
𝑉𝑖 {𝑎, 𝑎′} (𝜈 𝑗 , 𝑎) (𝜈 𝑗 , 𝑎′) 3
𝑉𝑖 𝐵𝑖 (𝜈 𝑗 , 𝑏𝑘 ) for 𝑗 = 𝑘 (𝜈 𝑗 , 𝑏𝑘 ) for 𝑗 ≠ 𝑘 4
{𝑎} {𝑎′} (𝑎′, 𝑎) ∅ 2

{𝑎, 𝑎′} 𝐵𝑖 ∅ (𝑎, 𝑏 𝑗 ), (𝑎′, 𝑏 𝑗 ) -
𝐵𝑖 𝐵𝑖 ∅ (𝑏 𝑗 , 𝑏𝑘 ) for 𝑗 ≠ 𝑘 -

Table 4.1: This table sums up the comparable and incomparable elements of 𝑃𝑖 , structured by
the defined subsets. Recall that the comparability and incomparability relations are symmet-
rical. The last column refers to the order relations from Definition 4.3 and functions as an
argument which elements from the subsets defined before are comparable. Not represented
are the elements 0 and 1. Recall that these elements are comparable with all other elements in
𝑃𝑖 .

We will now prove a series of lemmas that state that the posets P𝑖 are 3-dimensional lattices
and that the upward local crossing number of the Hasse diagram lies in Ω(𝑖). This will later
prove Theorem 4.2.
Our main arguments for the lemmas rely on the structure of incomparable elements in P𝑖 .
First, let us clarify which elements are comparable and which are not. Obviously, the

elements {0, 1} ⊆ 𝑃𝑖 are comparable with every other element of 𝑃𝑖 and the element 𝑎′
is incomparable with all elements in 𝑃𝑖 except for {0, 𝑎, 1}. Recall that comparability is a
symmetric relation.
In order to analyze the comparability of the other elements {𝑎, 𝜈1, . . . , 𝜈𝑖 , 𝑏1, . . . , 𝑏𝑖} we

define the following subsets

𝑉𝑖 = {𝜈 𝑗 | 1 ≤ 𝑗 ≤ 𝑖}, 𝐵𝑖 = {𝑏 𝑗 | 1 ≤ 𝑗 ≤ 𝑖}.

With these subsets, we can furthermore analyze, that the element 𝑎 is comparable to every
element 𝜈 ∈ 𝑉𝑖 and incomparable to every 𝑏 ∈ 𝐵𝑖 . For 𝑗, 𝑘 ∈ {1, . . . , 𝑖} the element 𝜈 𝑗 ∈ 𝑉𝑖 is
incomparable to every 𝜈𝑘 ∈ 𝑉𝑖 , 𝑗 ≠ 𝑘 and only comparable to 𝑏𝑘 ∈ 𝐵𝑖 if 𝑗 = 𝑘 , otherwise 𝜈 𝑗
incomparable to 𝑏𝑘 . Finally, the element 𝑏𝑘 ∈ 𝐵𝑖 is incomparable to every other 𝑏 𝑗 ∈ 𝐵𝑖 , 𝑗 ≠ 𝑘 .
The relations are summarized in the Table 4.1 except for the elements {0, 1}.

So, the list of incomparable elements can be described by the fourth column of Table 4.1.

Lemma 4.4: Every poset in the family of posets (P𝑖 , <𝑖)𝑖∈ℕ forms a lattice.

Proof. We prove that for every pair of elements in P𝑖 there exists a unique meet and a unique
join.
First, consider an element 𝑥 ∈ P𝑖 that has a unique directed path in the Hasse diagram

from 0 to 𝑥 . Then 𝑥 has a unique meet with every element 𝑦 ∈ P𝑖 , 𝑥 ≠ 𝑦. Indeed, if 𝑥 has a
unique directed path in the Hasse diagram from 0 to 𝑥 , this means that <𝑖 restricted to the
downset 𝐷 (𝑥) is a total order. The intersection of the downset of every element 𝑦 ∈ P𝑖 𝐷 (𝑦)
and 𝐷 (𝑥) is not empty, since 0 ∈ 𝐷 (𝑥) ∩ 𝐷 (𝑦). Among all vertices 𝜈 ∈ 𝐷 (𝑥) ∩ 𝐷 (𝑦), the
greatest element with respect to the order of the poset is uniquely determined by the total
order of 𝐷 (𝑥). Consequently, this element is the unique greatest element below both 𝑥 and 𝑦,
and therefore the unique meet of 𝑥 and 𝑦. By a symmetric argument, if 𝑥 has a unique path to
1 in the Hasse diagram, then 𝑥 has a unique join with every element 𝑦 ∈ P𝑖 , 𝑥 ≠ 𝑦.
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4 Posets and Upward 𝑘-Planarity

It is straightforward to see that the elements 𝑎′ and 𝑏1, . . . , 𝑏𝑖 each admit both a unique
path from 0 and a unique path to 1. Hence, each of these elements has a unique meet and join
with every other element in P𝑖 .

Next, observe that if two elements are comparable, say 𝑥 < 𝑦, then their meet is 𝑥 and their
join is 𝑦. Thus, for the analysis of P𝑖 it remains to consider only incomparable pairs that do
not contain any element from {𝑎′, 𝑏1, . . . , 𝑏𝑖}. According to the list of incomparable elements,
the only such pairs are (𝜈 𝑗 , 𝜈𝑘 ) with 𝑗 ≠ 𝑘 .
Since every 𝜈 𝑗 ∈ 𝑉𝑖 has a unique path from 0, each pair (𝜈 𝑗 , 𝜈𝑘 ) has a unique meet. By

inspecting the Hasse diagram, we see that the only elements greater than both 𝜈 𝑗 and 𝜈𝑘 are 𝑎
and 1, and since 𝑎 < 1, it follows that 𝑎 is their unique join.
Therefore, every pair of elements in P𝑖 admits a unique meet and a unique join. Hence, P𝑖

is a lattice for all 𝑖 ∈ ℕ.

Lemma 4.5: For the posets (P𝑖)𝑖∈ℕ it holds that lcr↑ (P𝑖) ≥ 1
2(3𝑖+2) ⌊

𝑖
2⌋ ⌊

𝑖−1
2 ⌋ and therefore

lcr↑ (P𝑖) ∈ Ω(𝑖).

Proof. We define an auxiliary graph 𝐺𝑖 by contracting certain edges of the Hasse diagram
of P𝑖 and show that lcr↑ (𝐺𝑖) ≥ 1

3𝑖+2 ⌊
𝑖
2⌋ ⌊

𝑖−1
2 ⌋. Using the structural connection of the Hasse

diagram of P𝑖 and 𝐺𝑖 , we derive the lower bound for the upward local crossing number of P𝑖 .
Define 𝐺𝑖 = (𝑃 ′𝑖 , 𝐸𝑖) by contracting the edges (0, 𝑎′) and (𝜈 𝑗 , 𝑏 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑖 in the

Hasse diagram of P𝑖 . Recall, that these edges exist, because they represent cover relations.
For example, Figure 4.2 illustrates 𝐺3 and 𝐺5. For 𝑖 ∈ ℕ, 𝐺𝑖 contains the subgraph 𝐺 ′

𝑖 :=
𝐺𝑖 − {(0, 𝑎), (𝑎, 1)} whose underlying undirected graph is isomorphic to the complete bipartite
graph 𝐾3,𝑖 . This is illustrated in Figure 4.3.
Is is already shown by Kleitmann[Kle70], that the crossing number of 𝐾𝑚,𝑛 is given

by 𝑐𝑟 (𝐾𝑚,𝑛) = ⌊𝑚2 ⌋ ⌊
𝑚−1

2 ⌋ ⌊𝑛2 ⌋ ⌊
𝑛−1

2 ⌋ for 𝑚 ≤ 6. Therefore, 𝑐𝑟 (𝐾3,𝑖) = ⌊ 3
2⌋ ⌊

2
2⌋ ⌊

𝑖
2⌋ ⌊

𝑖−1
2 ⌋ =

⌊ 𝑖2⌋ ⌊
𝑖−1

2 ⌋.
For a subgraph 𝐻 of a graph𝐺 it holds that 𝑐𝑟 (𝐺) ≥ 𝑐𝑟 (𝐻 ), so we can derive that 𝑐𝑟 (𝐺𝑖) ≥

𝑐𝑟 (𝐺 ′
𝑖 ) = 𝑐𝑟 (𝐾3,𝑖) = ⌊ 𝑖2⌋ ⌊

𝑖−1
2 ⌋.

It holds that |𝐸𝑖 | = 3𝑖 + 2. That means there has to be at least one edge 𝑒 ∈ 𝐸𝑖 that has at
least 1

3𝑖+2𝑐𝑟 (𝐺𝑖) crossings, therefore the local crossing number of 𝐺𝑖 is at least 1
3𝑖+2 ⌊

𝑖
2⌋ ⌊

𝑖−1
2 ⌋.

With the fact that lcr↑ (𝐺) ≥ lcr(𝐺) for every directed graph 𝐺 , we derive lcr↑ (𝐺𝑖) ≥
lcr(𝐺𝑖) ≥ 1

3𝑖+2 ⌊
𝑖
2⌋ ⌊

𝑖−1
2 ⌋.

Since 𝐺𝑖 is constructed by the contraction of edges of the Hasse diagram of P𝑖 , where
at least one endpoint has a vertex degree of 2, we can reconstruct the Hasse diagram by
subdividing certain edges. In particular, we have to subdivide the edges (0, 𝑎), (𝜈1, 1), . . . (𝜈𝑖 , 1)
once.
Since every edge in 𝐺𝑖 is only divided into at most two new edges to create the Hasse

diagram of P𝑖 , the crossing per edge are also divided by at most two. Consequently, lcr↑ (P𝑖) ≥
1
2 lcr↑ (𝐺𝑖) ≥ 1

2(3𝑖+2) ⌊
𝑖
2⌋ ⌊

𝑖−1
2 ⌋.

Lemma 4.6: Every poset in the family of posets (P𝑖 , <𝑖)𝑖∈ℕ has dimension 3.

Proof. First, we define three linear extensions and show that dim(P𝑖) ≤ 3, and then argue for
equality.
Define the linear extensions
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𝐺3 𝐺5

Figure 4.2: This illustrates the auxiliray graphs 𝐺3 and 𝐺5. The vertices 𝜈 𝑗 are illustrated
in blue, the vertex 𝑎 is illustrated in violet, 0 and 1 as a black vertex at the bottom and top,
respectively. We can construct the Hasse diagrams from Figure 4.1 by subdividing the edges
from the blue vertices to 1 and the edge from 𝑎 to 0. .

𝐺 ′
4 𝐾3,4

Figure 4.3: This figure illustrates the graph𝐺 ′
4 on the left, whose underlying undirected graph

is isomorphic to 𝐾3,4 on the right. The coloring of the vertices motivates the isomorphism.
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4 Posets and Upward 𝑘-Planarity

ℓ1(𝑖 ) = 0, 𝜈1, 𝑏1, 𝜈2, 𝑏2, . . . , 𝜈𝑖 , 𝑏𝑖 , 𝑎
′, 𝑎, 1;

ℓ2(𝑖 ) = 0, 𝜈𝑖 , 𝑏𝑖 , 𝜈𝑖−1, 𝑏𝑖−1, . . . , 𝜈1, 𝑏1, 𝑎
′, 𝑎, 1;

ℓ3(𝑖 ) = 0, 𝑎′, 𝜈1, 𝜈2, . . . , 𝜈𝑖 , 𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑖−1, 1.

We claim that ℓ1(𝑖 ) ∩ ℓ2(𝑖 ) ∩ ℓ3(𝑖 ) = P𝑖 . It is straightforward to verify that these three linear
extensions respect all order relations specified in Definition 4.3. What remains is to show that
all pairs of incomparable elements in P𝑖 remain incomparable under the intersection.
For and 𝑗, 𝑘 ∈ {1, . . . , 𝑖}, 𝑗 ≠ 𝑘 :

(𝜈 𝑗 , 𝜈𝑘 ) for 𝑘 ≠ 𝑗 are incomparable due to ℓ1(𝑖 ) ∩ ℓ2(𝑖 ) ,

(𝜈 𝑗 , 𝑎′) are incomparable due to ℓ1(𝑖 ) ∩ ℓ3(𝑖 ) ,

(𝜈 𝑗 , 𝑏𝑘 ) for 𝑘 ≠ 𝑗 are incomparable due to ℓ1(𝑖 ) ∩ ℓ2(𝑖 ) ,

(𝑎, 𝑏 𝑗 ) are incomparable due to ℓ1(𝑖 ) ∩ ℓ3(𝑖 ) ,

(𝑎′, 𝑏 𝑗 ) are incomparable due to ℓ1(𝑖 ) ∩ ℓ3(𝑖 ) and

(𝑏𝑘 , 𝑏 𝑗 ) are incomparable due to ℓ1(𝑖 ) ∩ ℓ2(𝑖 ) .

Hence, dim(P𝑖) ≤ 3.
As established in Lemma 4.5, the Hasse diagram of P𝑖 is not planar and P𝑖 is a lattice.

By the result of Baker, Fishburn and Roberts [BFR72], it follows that dim(P𝑖) > 2. Thus,
dim(P𝑖) = 3.

Proof of Theorem 4.2. This follows directly the properties of the poset family (P𝑖)𝑖∈ℕ that
were proven in Lemma 4.4, Lemma 4.5 and Lemma 4.6.

50



5 Conclusion

The main focus of this thesis is to investigate whether it is possible to establish improved
bounds for the upward local crossing number of graph classes with a fixed edge orientation.

We show that such improved bounds can indeed be formulated, both for Cartesian products
of upward 𝑘-planar graphs in general and for Cartesian products of orientated paths in
particular. Since the bound obtained for the Cartesian product of paths is stronger than the
improved bound for general Cartesian products of upward 𝑘-planar graphs, this suggests
that improved bounds may also be found for other specific Cartesian products. Given that
the local crossing number of Cartesian products of cycles and stars has also been studied in
the undirected case [Mus19], it would be of interest to investigate the upward local crossing
number of these Cartesian products and to compare the results with those known for the
undirected setting.

Unfortunately, we were not able to establish a general lower bound for Cartesian products.
In the case of Cartesian products of paths, our analysis was limited to identifying the conditions
under which 𝑙𝑐𝑟 (𝑃1□𝑃2) > 0. Hence, deriving stronger lower bounds for Cartesian products
of paths as well as for upward 𝑘-planar graphs remains an open and interesting problem.
Initial arguments in this direction could be developed by establishing a lower bound for the
bandwidth of orientated paths.

Our analysis of Cartesian products demonstrates that it is possible to obtain better bounds
depending on the choice of the input graphs. Another promising research direction would
be to study other graph products, such as the strong product, to formulate upper bounds,
and to compare embedding techniques in terms of their ability to minimize the upward local
crossing number. It would also be interesting to explore potential relationships between the
upward local crossing number of Cartesian products and that of other graph products on the
same input graphs.

In Chapter 4 we observed that the upward local crossing number of posets does not appear to
be related to the dimension of the poset. Since many poset parameters are typically connected
to dimension, it may be difficult to identify a parameter that directly correlates with the
upward local crossing number. Nevertheless, it may be worthwhile to study lower bounds
for the upward local crossing number based on structural patterns in the partial order or on
other combinatorial properties of the poset. Determining the upward local crossing number
of specific posets, such as the standard example 𝑆𝑛 or the Boolean lattice 𝐵𝑛 , could provide a
deeper understanding of the relationship between the upward local crossing number and the
combinatorial properties of posets.
Another possible approach for combining posets with upward 𝑘-planarity would be to

analyze the upward local crossing number of comparability or incomparability graphs instead
of the Hasse diagrams.
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