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Abstract

Proteins are part of all cells of living organisms. Therefore, they are the focus of
various research, especially those aiming to get a better understanding of the human
body. The spatial structure of a protein is examined using four distinctive structure
layers. This bachelor thesis particularly deals with the secondary structure layer,
the so-called secondary structure of the protein. We model the protein as a graph
and formulate a mixed-integer program with the goal to automatically generate a
schematic representation of the secondary structure of a protein. We define hard
constraints which the representation has to fulfil and soft constraints, which affect its
visual aspects. These constraints are implemented using the interface of the optimiser
Gurobi. Then they are evaluated regarding their impact on the representation using
two of our given graphs. At last, we show computed schematic representations of
various proteins and compare these to already existing, but manually drawn ones.
We also discuss why the mixed-integer program fails to generate representations for
some proteins and which improvements can be made to speed up the computation.

Deutsche Zusammenfassung

Proteine sind Bestandteil aller Zellen lebender Organismen. Sie sind daher der
Schwerpunkt vieler Untersuchungen, besonders derjeniger, in denen es um das bessere
Verständnis des menschlichen Körpers geht. Die räumliche Struktur eines Proteins
wird auf verschiedenen Ebenen betrachtet. Diese Bachelorarbeit beschäftigt sich
insbesondere mit der zweiten Ebene, der sogenannten Sekundärstruktur des Proteins.
Wir modellieren das Protein als Graph und stellen anhand dieses Modells ein gemischt-
ganzzahliges Programm auf, mit dem Ziel, eine schematische Darstellung der Protein-
Sekundärstruktur automatisch zu erzeugen. Wir definieren notwendige Kriterien,
die die Darstellung erfüllen muss, und hinreichende, welche sich auf die visuellen
Aspekte jener auswirken. Diese Kriterien implementieren wir für die Schnittstelle
des Optimierers Gurobi. Danach folgt eine Evaluation ihrer Auswirkung auf die
Darstellung mit Hilfe zweier von uns selbst vorgegebenen Graphen. Schließlich
zeigen wir die von uns berechneten schematischen Darstellungen einiger Proteine
und vergleichen diese mit bereits existierenden, die jedoch manuell gezeichnet sind.
Wir diskutieren zudem, warum das gemischt-ganzzahlige Programm die Darstellung
einiger Proteine nicht generiert und welche Verbesserungen vorgenommen werden
können, um die Berechnung zu beschleunigen.
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1. Introduction

Bioinformatics as interdisciplinary science aims to find solutions to problems in biology
with the aid of computers. One field of research is the theoretical analysis and modification
of proteins as well as the simulation of the behaviour of these modified proteins. Protein
modification is used, for example, "for the production of protein therapeutic products
and use of proteins as plastics and adhesives".[Lun14] Biobased polymer, also known as
bioplastic, is used in the manufacturing of casings for personal computers and provides less
of an environmental burden than other plastics.[Hor05]

To find these modifications it is first necessary to analyse proteins and identify secondary
protein structures. The three-dimensional protein model contains the placement of a
proteins chemical atoms. Figure 1.1 shows such a model, in which atoms are represented
as coloured sticks. It is also possible to combine the atoms into residues and illustrate how
these residues form structures in the protein. This abstraction can be seen in Figure 1.2.
It is taken from the same perspective as Figure 1.1.

The advantage of the three-dimensional protein model is that there are many existing
programs like PyMOL [Sch10b], Jmol [Han14] and BallView [MHLK05], which we used
to create these screenshots. Using these programs, we can view and modify the protein
and run simulations on it. Another advantage is that the spatial arrangement of the atoms
is preserved and can be taken into account in simulations. However, modifications in a
protein do not only have local effects. Hence it is usually hard to immediately spot all
changes of the protein in this model, especially if they occur behind other structures. The
view then needs to be rotated, which is tedious and also leads to disorientation. This
can be avoided by using a two-dimensional representation of the protein model. These
representations are sought when it is more important to see the order of the secondary
structures and their closeness to other ones. A sample is provided in Figure 1.3, which is
manually drawn.

The idea of this bachelor thesis therefore is to find a two-dimensional model of a protein
and automatically visualise protein secondary structures and their bonds using graph
layout techniques. We want our schematic representation to be visually pleasing and
calculated in a reasonable amount of time. Since automatic graph layout creation is a broad
domain, we first find a suitable approach that supports our desired criteria. Our choice is
to use a mixed-integer program. Afterwards, we develop a model for protein secondary
structures and informally describe the criteria. We then provide formal constraints that are
implemented in Python for the interface of the optimiser Gurobi.[GO14] Then we discuss
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1. Introduction

Figure 1.1: A stick model of the protein 8TLI. Atoms are presented as sticks and different
atoms use different colours.

how well our constraints work using example graphs, how we can improve the model and
also elaborate where shortcomings lie. In the last chapter we conclude and provide points
for further research.

Note that this bachelor thesis is developed in cooperation with the group of Prof. Dr.
Holger Gohlke at Universität Düsseldorf. All input data for the methods used in this
thesis is generated by the VisualCNA [PM14] tool, a graphical user interface for constraint
network analysis (CNA). The layout therefore depends on that data.

Also, to the best of our knowledge, no other documented automated graph-based visualisa-
tion approach exists for proteins and their secondary structures.
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Figure 1.2: A cartoon model of the protein 8TLI. Residues are coloured and shaped,
depending on which structure they form.

Figure 1.3: A manually drawn schematic for the protein 4CKB, taken from [KCdlP+14].
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2. Related Work

In this chapter we describe approaches that are used for similar problems. We also elaborate
on how these approaches work in regard to our problem.

In the book of Tamassia, there are several methods described to create a visually pleasing
graph layout. A common "highly effective way to draw graphs [. . . ] is to use only edges
that are rectilinear, or orthogonal." [Tam13] This means that edges are either horizontal or
vertical. An example drawing is shown in Figure 2.1. While there are no crossing edges,
the restriction to limit the edges to two axes is too tight. However, we refine the idea to
limit edges to axes in general manner.

Figure 2.1: An orthogonal graph drawing, taken from [Tam13]. v1 through v6 represent
vertices, whereas the edges are aligned on a grid.

Since our problem is similar to drawing metro-map based layouts, we take a look at two
approaches that are used to create those.

Chivers and Rodgers [CR14] use a multi-levelled, force-directed approach, as seen in Figure
2.2. They define an initial repelling force between vertices of the graph and then, while
weakening this force, apply a second force to transform the graph into desired layout. The
advantage of this approach is the small amount of forces needed to create a good layout
and therefore easy to implement. However, the disadvantage is the need to repeatedly
adjust force coefficients until the layout is satisfying. This makes predicting the final layout
difficult.

Nöllenburg and Wolff [NW11] use a mixed-integer linear program. They define mandatory
constraints, also called hard constraints, which the resulting layout must conform to. Then
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2. Related Work

Figure 2.2: A force-directed drawing process, taken from [CR14]. The left picture shows
the initial layout, and the following pictures illustrate how it is modified during
the application of forces.

they add soft constraints which tweak several aspects, like total edge length, of the resulting
layout. This allows them to choose criteria which the layout must fulfil and therefore
predict it. Figure 2.3 shows how the initial layout is modified and customised using different
weights for the soft constraints. Additionally, the optimiser finds a first layout in less time
than the force-directed approach of Chivers and Rodgers.[NW11] However, preliminary
work is required and a good optimiser must be found for this approach to work. It is also
required to implement the constraints using the interface given by the optimiser.

Figure 2.3: A mixed-integer program generated layout, taken from [NW11]. The left picture
shows the initial layout, and the following pictures show layouts in which certain
aspects are more prevalent than others.

Therefore, we decide to use a mixed-integer program, since it is faster and gives us more
control over the representation of the graph. The optimiser we choose is Gurobi. [GO14]
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3. Composition of Proteins

In this chapter we explain the basic principles of proteins that are used throughout the
rest of our thesis. First we explain what proteins are composed of, since this composition
is important for our model.

Biological molecules which are composed of amino acids are called proteins. Amino acids
are chemical molecules which possess at least one carboxylic (-COOH) and one amine
(-NH2) group. The carboxylic group is referred to as the C-terminus, whereas the amine
group is called the N-terminus. The amino acids form a chain in the protein and are
interconnected by the respective C- and N-termini of each amino acid. This chain is also
called the backbone of the protein. The sequence of the amino acids in the backbone is
called the primary structure. Given the direction from which it starts, the sequence is
non-ambiguous and can be numbered. When looking at the spatial arrangement of the
protein’s amino acids, repeating patterns can be identified, as seen in Figure 1.2. These
patterns include α-helices, β-sheets and loops. Figure 3.1 shows a pair of such helices. The
mapping of amino acids to these patterns, also known as structures, is called the secondary
structure. Structures appear due to interactions and bonds between different amino acids.
There are multiple bond types, which are categorised as covalent and non-covalent bonds.
Covalent bonds are strong bonds between atoms and make up the cohesion of a chemical
molecule. Non-covalent bonds, of which the most common type is the hydrogen bond,
stabilise a structure. The more non-covalent bonds a structure has, the more stable it is.
[Sch10a]

Figure 3.1: Two parallel helices, connected by a loop.
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4. Model

In this chapter we create, based on the data provided by VisualCNA, a graph model and
informally describe features we want our protein secondary structure to have.

The output data of VisualCNA contains three-dimensional coordinates of all atoms of
a given protein. Furthermore the atoms’ mapping to their amino acid and structure is
provided. It also contains the bonds between all amino acids and their respective bond
type. Table 4.1 lists several attributes that are given.

To model our graph based on that data, residues are treated as vertices and bonds between
residues as edges of the graph. The residues then can be grouped together to form the
secondary structures in the graph. Since the given coordinates are three-dimensional,
an appropriate projection to two dimensions must be found for the graph layout. For
visual reasons the resulting graph should also be planar while still showing the original
arrangement of the structures as good as possible. Unfortunately, in most cases these two
characteristics contradict each other.

Before any steps towards an implementation are taken, we first need to define the abstract
framework for the data that is provided.

Let G = (V,E) be the directed input graph and let |V | = n and |E| = m. For every
vertex v ∈ V , a position attribute pos(v) = (x(v), y(v), z(v))T , modelling the real-world

Section Identifier Description
Vertices atom_id Unique ID of the node

atom_code PDB code for the atom
atom_name Atom name, i.e. C for carbon
residue_id Residue number in the chain
residue_name PDB residue name, i.e. ALA for alanine
coordinates Tuple containing the x, y, z coordinates
backbone True if atom is in the backbone
structure Simplified secondary structure identifier, i.e. H for helix

Edges nodes Tuple containing the IDs of the atoms the edge connects
type The constraint type, i.e. COV for covalent, HBOND

for hydrogen bond

Table 4.1: An excerpt of the data provided by Universität Düsseldorf.
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4. Model

three-dimensional coordinates, as well as a structure information attribute struct(v), with
struct(v) ∈ structureTypes = {HELIX, SHEET, LOOP, NONE}, is given. The latter
models the secondary structure an atom belongs to. For every edge e ∈ E there is a bond
type attribute bond(e) ∈ bondTypes = {COV, HBOND, HPHOB, SBRIDGE, DBRIDGE}.

With the basic model above, we identify structures in the graph. These model residues,
which represent the primary structure. However, if vertices are treated as residues and edges
as the bonds between them, then the graph structures represent the secondary structure of
a protein. The following definition describes what a structure in a graph is.

Definition 4.1. A subgraph of G is a structure S = (V ′ ⊆ V,E′ ⊆ E), if it is a maximal
long directed path in V such that

• V ′ contains at least two vertices,

• each edge in E′ is of COV type,

• each vertex in V ′ has the same structure type.

Then the first vertex of the directed path is denoted by first(S) and the last vertex by
last(S) respectively. The type of the structure is denoted by struct(S). To obtain an
unique structure representation of a protein, we define what it means for a set of structures
to be ordered.

Definition 4.2. A set S∗ = {S0, S1, . . . } of structures is ordered if and only if for every
structure Si, i ∈ 0 ≤ i ≤ |S∗|−1, the last vertex last(Si) is adjacent to first vertex first(Si+1)
of the next structure in the given ordering.

If S∗ is ordered, we will use round brackets S∗ = (S0, S1, . . . ).

Definition 4.3. An ordered set of structures S∗ = (S0, S1, . . . ) is valid if for every i,
i ∈ 0 ≤ i ≤ |S∗| − 1, the current structure Si is a loop structure and the next one Si+1 is
either a helix or a sheet, or vice versa.

In a valid, ordered set of structures, covalent edges between structures are assigned to
their corresponding loop structures. The goal is to find a layout, as given in the following
definition, for such a set of structures.

Definition 4.4. A layout of a graph G = (V,E) is a mapping of the vertices of V to fixed
two-dimensional coordinates (x, y).

We will use a mixed-integer programming approach to achieve said goal. A mixed-integer
program consists of a target function which should be minimized/maximized under a given
set of restrictions for variables. These restrictions are also called constraints. We distinguish
these by formulating constraints which must be met under all circumstances, so-called hard
constraints, and constraints with weights that directly affect the target function. We refer
to these as soft constraints.

4.1 Hard Constraints
We want the layout of our graph to fulfil certain requirements. For that, we first informally
describe the constraints and then summarise them in a formal way.

Starting with the placement of the graph’s edges, our goal is too reduce the amount of
options to place an edge around a vertex. Therefore the edges of the graph should follow
given axes. The axes are numbered from zero to k − 1, which totals to k axes and 2k
directions. The following definition shows what it means for an edge to be aligned on an
axis.

10



4.2. Soft Constraints

Definition 4.5. Given a directed graph G = (V,E) and a layout Γ of G, an edge in the
layout Γ(e) is k-linear if its direction follows one of the axises which divide a half-plane of
R2 into k equal parts.

Another goal is to make the layout as planar as possible, which means that the amount
of crossing edges should be minimal. In [NW11], Nöllenburg and Wolff describe that this
characteristic can be achieved by forcing pairwise non-incident edges to be placed such
that an area around an edge does not contain another edge. We apply this criterion to all
covalent edges in the graph to improve its readability, but we will still allow overlapping
where it is necessary. To further improve the visual aspect of the layout, each helix and
sheet should be represented as a straight path without bends. We extend this aspect to
also include the incident edges of these structures. Furthermore, the length of each covalent
edge of the graph should exceed a given minimum value to further spread out the vertices.
To control the length of loop structures, we add another constraint which requires these to
have a given minimum length.

The aforementioned constraints are summed up as follows.

(H1) For each covalent edge e ∈ E, Γ(e) must be k-linear, k ∈ N, k ≥ 2.
(H2) Additionally, every covalent edge must be a least dmin > 0 units away from every

other non-incident covalent edge.
(H3) All covalent edges in a non-loop structure must face the same direction in the

layout Γ.
(H4) The sum of the lengths of all covalent edges in a loop structure must be at least

lLOOPmin > 0 units.
(H5) Every covalent edge must have a length of at least lmin > 0 units.

4.2 Soft Constraints
Soft constraints help making certain features, e.g. the total size of the graph layout, more
controllable. By giving each a coefficient and summing the constraints up, we can decide
which feature should gain a greater weight in the layout.

One of these constraints is the amount of overlaps we allow in the layout. For each
overlap the penalty in the target function increases linearly. By increasing the cost of these
penalties, edges are more likely to be placed with a gap between each other, as seen in
Figure 4.1. In the hard constraints section we introduced several requirements to ensure
that the layout is not cramped. Since these are just lower bounds for distances between
edges, we also need to introduce an upper bound. This is realized by minimizing the total
edge length of covalent edges of the graph. The same is introduced for hydrogen bonds. It
ensures that structures having many hydrogen bonds to other structures are more tightly
placed together. Finally, we want the paths of loop structures which connect helices and/or
sheets to have as few bends as possible. Thus the structure path is easier to follow in the
layout.

The soft constraints are summed up as follows.

(S1) The total edge length of the layout Γ should be small.
(S2) The number of overlapping structures should be minimized.
(S3) The length of all hydrogen edges should be minimized.
(S4) The number of line bends of loop structures should be small.

Since all constraints are now formally drafted, the next step is to find linear expressions
which can be used by a mixed-integer program.

11



4. Model

u

v

u

v

Figure 4.1: Left side: edges u and v overlapping, right side: by giving overlapping a higher
cost, u or v will be placed in a non-intersecting way
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5. Mixed-Integer Program

In this chapter we formalise the constraints mentioned in Chapter 4 so that they can be
implemented for an optimiser.

5.1 Coordinate System
The given atom coordinates are given in a Cartesian coordinate system, which therefore
is applied to all of our constraints as well. To allow some generalisation however, we use
k axes instead of just two. Henceforth for our k-linear system we refer to our axes as zi,
0 ≤ i < k. Given a vertex v ∈ V , each zi is defined as zi(v) := x(v) · cos(θ) + y(v) · sin(θ),
θ = πi

k . These axes are numbered counter-clockwise, starting with the positive x-axis. For
example, using k = 4, the usual x-axis would be z0, whereas the y-axis would be z2. Figure
5.1 illustrates this.

To measure distances in the k-linear system, we use the L∞-metric, which is defined as
max{|x(u)− x(v)| , |y(u)− y(v)|} for two vertices u, v ∈ V .

z0

z1

z0

z1

z2
z3

Figure 5.1: Left side: A 2-linear coordinate system. Right Side: A 4-linear one.
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5. Mixed-Integer Program

5.2 k-linearity for Covalent Edges and Edge Lengths
Nöllenburg and Wolff [NW11] describe an octalinear system, which is a special case of
our approach when using k = 4. Therefore as a more general version for each vertex
u we define a partition of the plane into 2k sectors. Each sector is a 180◦

k -wedge with
apex u. The wedges are centred around rays that emanate from u and follow the k-linear
directions. The sectors are numbered from 0 to 2k counterclockwise starting with the
positive x-direction. For each pair of covalent edges (u, v) and (v, u), we introduce variables
dir(u, v) and dir(v, u) to denote the k-linear directions of (u, v) and (v, u) in layout Γ. We
identify each k-linear direction with its corresponding sector, as seen in Figure 5.2.

With the given sectors, first of all, we limit the amount of directions an edge can have to
one. Equation 5.1 models that the binary variable αi is 1 for the sector i that an adjacent
vertex v lies in when centred on vertex u.

∑
i∈{0,...,2k−1}

αi(u, v) = 1 (5.1)

Since the sum equals one, only one sector is active. Then the correct sector index is assigned
to each edge and for each of the 2k directions, as well as its opposite direction, as seen in
equation 5.2. Because the graph is a directed tree, setting the opposite direction to the
reverse edge is impossible. Therefore, dummy reverse edges are added.

dir(u, v) =
∑
i∈{0,...,2k−1} i · αi(u, v)

dir(v, u) =
∑
i∈{0,...,2k−1}((i+ k) mod 2k) · αi(u, v) (5.2)

Finally, depending on which direction is chosen for an edge, we require its length to be at
least lmin in said direction. The value of lmin is set by the user.

zorth(i)(u)− zorth(i)(v) ≤ M(1− αi(u, v))
−zorth(i)(u) + zorth(i)(v) ≤ M(1− αi(u, v))

−zi(u) + zi(v) ≥ −M(1− αi(u, v)) + lmin(u, v)
(5.3)

∀i ∈ {0, . . . , 2k − 1}
orth(i) := (i+ k

2 ) mod k

These equations work, because for a chosen direction i, the edge must follow the corre-
sponding zi axis and extend at least lmin units in said direction. The length of the edge in
the orthogonal direction equals zero, which ensures that the edge is indeed on the correct
axis. The constraints for all other directions are easily satisfied using the large constant M .

0

1
2

3

4

5
6

7

u

Figure 5.2: Sectoring for a 4-linear coordinate system, centred on a vertex u.
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5.3. Covalent Edge Spacing

5.3 Covalent Edge Spacing

To make the layout as planar as possible, we will use the same method as Nöllen-
burg and Wolff.[NW11] That is, for each pair of non-incident covalent edges (e1, e2) =
((u1, v1), (u2, v2)) we require ∑

i∈{0,...,k−1}
βi(e1, e2) ≥ 1 (5.4)

where βi is a binary variable and denotes the zi direction. The next four inequalities (5.5)
make sure that each two edges are at least dmin units apart for each other. Since we do not
require our layout to be strictly planar, overlapping, denoted by a binary variable ω(e1, e2),
is also possible. Overlapping occurs when the associated cost of ω(e1, e2) in the target
function is less expensive than adding enough edge spacing between all necessary edges
and thus increasing the total edge length.

zi(u2)− zi(u1) ≤ M(1− βi(e1, e2)) +M · ω(e1, e2)− dmin
zi(u2)− zi(v1) ≤ M(1− βi(e1, e2)) +M · ω(e1, e2)− dmin
zi(v2)− zi(u1) ≤ M(1− βi(e1, e2)) +M · ω(e1, e2)− dmin
zi(v2)− zi(v1) ≤ M(1− βi(e1, e2)) +M · ω(e1, e2)− dmin

(5.5)

∀i ∈ {0, . . . , k − 1}

5.4 Helix/Sheet Size and Direction

As mentioned in the hard constraints explanation 4.1, the structure direction serves as a
purely cosmetic constraint to reduce the time needed to spot helices and sheets in the layout.
Therefore, for our ordered set of all structures of the graph, we require that all covalent
edges of a helix or sheet structure S = (V ′, E′) use the same direction. Additionally, to
make the layout more visually pleasing, we include the incident edges of first(S) and last(S)
in G in this constraint. This is achieved by simply equalising all covalent edge directions
within the structure.

dir(u, v) = dir(v, w) (5.6)

∀u,w ∈ V,∀v ∈ V ′

However, when using only the constraints above, structures are of arbitrary size and do
not reflect the size of the structure given in the data. Since we want the size of helices and
sheets to be preserved, we also require that each covalent edge in a said structure has the
same length. Together with the minimum covalent edge length and the fact that we want
to minimize the total edge length of all structures, the size of a structure is proportional to
its amount of vertices.

x(u)− x(v) = x(v)− x(w)
y(u)− y(v) = y(v)− y(w) (5.7)

∀u, v, w ∈ V ′
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5. Mixed-Integer Program

5.5 Loop Structure Length
We do not want to restrict the size of loops as much as helices and sheets. Therefore, we
only require that the length of all covalent edges of each loop structure S = (V ′, E′) sum
up to at least lLOOPmin . To achieve that, we define a new real-valued, non-negative variable
λ(u, v) for each covalent edge (u, v) in the graph. λ(u, v) serves as an upper bound for the
corresponding edge length, which is minimized in one of the following soft constraints.

∑
(u,v)∈E′ λ(u, v) ≥ lLOOPmin (5.8)

5.6 Total Covalent Edge Length
As defined in Section 5.5, the variable λ(u, v), that denotes the edge length of the covalent
edge (u, v), is measured in the L∞-metric. The sum of all λ(u, v) directly affects the target
function and is one goal of the minimisation.

cost(S2) =
∑

(u,v)∈E λ(u, v) (5.9)

x(u)− x(v) ≤ λ(u, v)
−x(u) + x(v) ≤ λ(u, v)
y(u)− y(v) ≤ λ(u, v)
−y(u) + y(v) ≤ λ(u, v)

(5.10)

5.7 Overlapping
As defined in Section 5.3, each binary variable ω(e1, e2) that is 1 denotes that overlapping
is being used for a pair of edges. We simply use the sum of these binary variables.

cost(S1) =
∑
e1,e2∈E ω(e1, e2) (5.11)

5.8 Total Hydrogen Edge Length
We define a new real-valued, non-negative variable γ(u, v) for each hydrogen edge (u, v)
with the same characteristic as λ(u, v). This time however the L∞-metric would be too
rough to measure the length of a hydrogen edge. But since we cannot use the L2-metric in
linear programs, we will use a projection of x(u) and y(u) onto the axis zi. Fortunately,
the very definition of zi is a projection, which allows us to directly use that trait.

cost(S3) =
∑

(u,v)∈E γ(u, v) (5.12)

zi(u)− zi(v) ≤ γ(u, v)
−zi(u) + zi(v) ≤ γ(u, v) (5.13)

∀i ∈ {0, . . . , k − 1}

5.9 Loop Line Bends
Nöllenburg and Wolff also describe how to incorporate line bends in the target function.
Thus, we want to reduce the line bends of all loop structure edges in our layout using the
same method. First, each two incident edges (u, v) and (v, w) are given a line bend value
bd(u, v, w). The sum of these values act as the cost in the target function.

cost(S4) =
∑

(u,v),(v,w)∈E′ bd(u, v, w) (5.14)
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For two adjacent edges (u, v) and (v, w) in a loop structure we define ∆diru,v,w := dir(u, v)−
dir(v, w). Then bd(u, v, w) is defined as

bd(u, v, w) = min{|∆diru,v,w| , 2k − |∆diru,v,w|} (5.15)

In term of linear constraints, this is

−bd(u, v, w) ≤ ∆diru,v,w − 2kδ1(u, v, w) + 2kδ2(u, v, w)
bd(u, v, w) ≥ ∆diru,v,w − 2kδ1(u, v, w) + 2kδ2(u, v, w) (5.16)

where δ1 and δ2 are binary variables.

5.10 Complexity
With the constraints formalised, we investigate the impact of these constraints on the
mixed-integer program. A summary of these are given in the following table. By m we
denote the amount of covalent edges and m′ is the amount of hydrogen bond edges. |S∗| is
the number of structures in the graph.

Constraint # MIP variables # MIP constraints
(H1) + (H5) 2km+ 2m 3m+ 6km
(H2) ≤ 2k(m2 −m) ≤ (4k + 1)(m2 −m)
(H3) 0 ≤ 3m
(H4) m ≤ |S∗|
(S1) 0 0
(S2) 0 4m
(S3) m′ 2m′
(S4) ≤ 3m ≤ 2m
total ≤ 2km2 + 6m+m′ ≤ 4km2 + 2km+m2 + 13m+ |S∗|

We see that (H2) causes the mixed-integer program to grow quadratically. This disturbs
the otherwise linear constraints and needs to be addressed. We therefore use a feature
of Gurobi called lazy constraints. Instead of adding constraints right at the beginning,
Gurobi polls for constraints after finding a solution. For each pair of non-incident edges we
calculate whether these edges overlap and then add a constraint to resolve the crossing.
However, this can make a previously found solution infeasible.
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6. Case Studies

In this chapter we first study the effects of the constraints on two small example graphs.
We then take a look at the protein 8TLI and discuss how well the resulting layout matches
our desired layout. From the observation of these results, we deduce more constraints that
speed up the computation time. At last, we discuss why the mixed-integer program fails to
generate layouts for certain proteins.

The system the computations run on is composed of an Intel Xeon E3-1230V3 with four
cores which are running at 3.3 GHz each. Hyperthreading is enabled, simulating a total
of eight cores on the machine. Additionally, there is 16 GB of RAM available. Our
implementation of the mixed-integer programs is written in Python and solved using
Gurobi 5.6. The solution contains the coordinates for each vertex and the layout is created
from these. Additionally, each graph layout is computed multiple times with varying
parameters. These parameters include the k-linearity and the coefficients for the soft
constraints (S1) through (S4). We refer to the coefficients as c1 for constraint (S1), c2
for (S2), and so on. We also specify a time limit tmax in seconds for the computation. If
the time limit is reached, we state the percentaged gap between the optimal solution and
the feasible solution that is found. Each figure is annotated with the parameters that are
used to get that layout. Note that in the previous chapter, we mention that the minimum
covalent edge length and the minimum loop structure length are user-defined. For all of
our computed layouts, both are set to 1.

All screenshots of the layouts are taken from our own programs. In the first program, the
example graphs are shown in a minimalistic environment, where vertices are represented
as numbered circles and directed edges as lines with arrow tips. The colour of the circle
determines the structure the vertex belongs to. A black circle denotes a loop structure, a
green circle a sheet and a blue circle a helix. Edges are also colour coded, whereas black
full lines denote covalent bonds and red dashed lines hydrogen bonds. See Figure 6.1 for
the keys used in the example graphs.

The second program shows the layouts in a more visually pleasing way by calculating
minimum rectangle bounding boxes for helices and sheets. Loop vertices are not shown,
which results in loop structures to look like a set of connected lines. Figure 6.2 shows a
small section of such a representation. Ultimately, we want our helices to look like cylinders,
sheets like arrows and our loops less rectangular, as seen in the manually drawn layout for
the protein 1KN0 by Kagawa et al. in Figure 6.3. [KKI+02]
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Loop Sheet

Helix

Covalent Bond

Hydrogen Bond

Figure 6.1: The keys used for the example graphs.

Figure 6.2: A small section of our automatically generated representation of the protein
8TLI. Blue boxes represent sheets, pink boxes represent helices and lines are
loops. This is done using our second program.
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6.1. Example Graph 1

Figure 6.3: A manually drawn graph representation of the protein 1KN0 by Kagawa et al.
[KKI+02]

6.1 Example Graph 1
Our first small example graph contains ten vertices in a directed path. The vertices are
numbered from 0 to 9, whereas the first vertex in the path is assigned the number 0, and
each following vertex the next natural number respectively. The graph consists of three
secondary structures: two sheets, connected by a loop. There are three hydrogen bonds
between the sheet structure vertices, with the objective to align both sheets in parallel.
The features of the graph are:

# Vertices: 10 # Edges: 12
Vertices Secondary Structure Edge Bond Type
0-2 Sheet (0, 1), (1, 2), . . . , (8, 9) Covalent
3-6 Loop (7, 2) Hydrogen Bond
7-9 Sheet (8, 1) Hydrogen Bond

(9, 0) Hydrogen Bond

6.1.1 Four Directions
The following layouts are computed using k = 2, meaning that we use only two axises
on which the edges are aligned on. This results in faster computations, as the amount of
constraints linearly depends on k, as calculated in Section 5.10. For the first layout, all
coefficients are set to 1. Since none of them receives a greater weight than the other ones,
we expect that all soft constraints have an equal impact on the layout. We refer to this
layout as the standard one.

This indeed is the positioning of the vertices we have in mind. Both sheets are parallel,
not overlapping, and all edge lengths are as short as possible. Moreover, it only takes 0.11
seconds to compute. For the following layouts, we individually set each coefficient to 10
and analyze the results. By increasing the total covalent edge length cost, we do not expect
any changes compared to the standard layout of Figure 6.4.

However, the layout of Figure 6.5 deviates from Figure 6.4. The layout is rotated and
mirrored. We cannot explain this behaviour from our constraints and therefore think that
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6. Case Studies

Figure 6.4: The first example graph using k = 2, (c1, c2, c3, c4) = (1, 1, 1, 1). The optimal
solution is found in 0.11 seconds.

Figure 6.5: The first example graph using k = 2, (c1, c2, c3, c4) = (10, 1, 1, 1). The optimal
solution is found in 0.16 seconds.

Gurobi reaches the given optimal solution in other ways than the previous one. While this
is not satisfying, both layouts are completely acceptable. Increasing the cost of overlaps
does not result in changes from Figure 6.4, as there are no overlaps in the first place.
Further penalising the length of hydrogen bonds results in the same layout as increasing
the total covalent edge length cost. The final deviation occurs when setting the cost of
loop line bends to 10, as seen in Figure 6.6. The layout of the graph is a straight path
with no bends whatsoever.

Figure 6.6: The first example graph using k = 2, (c1, c2, c3, c4) = (1, 1, 1, 10). The optimal
solution is found in 0.11 seconds.

All in all, the constraints deliver the desired effects. In the first example graph with 10
vertices and 12 edges, all computation times to find the optimal solution are in the range
between 0.1 seconds and 0.4 seconds.

6.1.2 Eight Directions

In this subsection, we increase the number of possible directions by increasing the parameter
k to 4. We expect an increase in the time needed to find an optimal solution, but no serious
changes regarding the same tests with four directions when modifying the coefficients c1
through c4.
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As above, we present the layout in which all constraints are equally weighted. See Figure 6.7
for the result. The noteable difference between said figure and Figure 6.4 is the alignment
of all edges on other axises, causing a rotation of the layout. Also, the bend (3, 4, 5) is a
left turn, whereas the bend in Figure 6.4 is a right turn. This layout is more similiar to the
one given in Figure 6.5. However, since both bends are equal in costs, this is not regarded
any further. The computation time increased to 2.03 seconds, whereas the four-directional
layout only needed 0.11 seconds. This is eighteen times longer. We discuss methods to
decrease the time in a later section.

Figure 6.7: The first example graph using k = 4, (c1, c2, c3, c4) = (1, 1, 1, 1). The optimal
solution is found in 2.03 seconds.

Increasing the coefficient for total covalent edge lengths or total hydrogen bond edge lengths
results in the same layout as the standard one of Figure 6.7. Unfortunately, the same is not
true when increasing the cost of overlaps, as seen in Figure 6.8. We can observe the same
phenomenon as in the subsection above, seeing the layout being rotated and mirrored.

Figure 6.8: The first example graph using k = 4, (c1, c2, c3, c4) = (1, 10, 1, 1). The optimal
solution is found in 1.81 seconds.

The layout that results from increasing the line bend costs is a straight path, as seen in
Figure 6.9. The time needed by Gurobi to find the optimal solution with these parameters
is 0.53 seconds, which is the lowest of all other times needed by the other layouts using
eight directions. We therefore assume that the increase of the cost of loop line bends is
stronger than the increased costs of the other coeffecients, which allows Gurobi to discard
worse solutions faster.

To conclude this section, we see that the soft constraints work as intended. There are
slight deviations regarding the orientation of the layout, which however do not decrease the
overall quality of the layout. The computation time increases when using more directions,
but it is also affected by the coefficients. The results are summarized in Table 6.1.
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Figure 6.9: The first example graph using k = 4, (c1, c2, c3, c4) = (1, 1, 1, 10). The optimal
solution is found in 0.53 seconds.

k-linearity Coefficients Time needed (in seconds) Gap to Optimal Solution
2 (1,1,1,1) 0.11 0%

(10,1,1,1) 0.16 0%
(1,10,1,1) 0.36 0%
(1,1,10,1) 0.25 0%
(1,1,1,10) 0.11 0%

4 (1,1,1,1) 2.03 0%
(10,1,1,1) 4.35 0%
(1,10,1,1) 1.81 0%
(1,1,10,1) 3.24 0%
(1,1,1,10) 0.53 0%

Table 6.1: The table shows the computation time needed for each parameter setting for
the first example graph.

24



6.2. Example Graph 2

6.2 Example Graph 2

Our second example graph contains 30 vertices in a directed path. The vertices are
numbered from 0 to 29, whereas the first vertex in the path is assigned the number 0, and
each following vertex the next natural number respectively. In contrast to the first example
graph, this one contains seven secondary structures. It also starts and ends with loops,
with two sheets and one helix inbetween. There are also more hydrogen bonds to make the
latter two structures parallel. The features are:

# Vertices: 30 # Edges: 37
Vertices Secondary Structure Edge Bond Type
0-1 Loop (0, 1), (1, 2), . . . , (28, 29) Covalent
2-6 Sheet (2, 17) Hydrogen Bond
7-12 Loop (3, 16) Hydrogen Bond
13-17 Sheet (4, 15) Hydrogen Bond
18-19 Loop (5, 14) Hydrogen Bond
20-25 Helix (14, 25) Hydrogen Bond
26-29 Loop (15, 24) Hydrogen Bond

(16, 23) Hydrogen Bond
(17, 22) Hydrogen Bond

Using this graph, we study the computation times in more detail. With the increased
number of vertices and edges and thus the increased number of constraints, we expect
Gurobi to take much longer to find the optimal solution.

The standard layout using k = 2 is shown in 6.10a. We use a time limit of tmax = 60 and
let Gurobi compute the optimal solution. The first feasible solution is found within the
first two seconds. We reach the time limit with a gap of 38.94% to the optimal solution.
In another computation with tmax changed to 1800, the optimality is proven after 1045
seconds, but with no new solution being found. Therefore, we assume that Gurobi quickly
finds feasible solutions and spends most of the computation time proving the optimality.
The aforementioned data can be found in Table 6.2.

k-linearity Coefficients Time needed / Maximum Time Gap to Optimal Solution
2 (1,1,1,1) 60s / 60s 38.94%

(1,1,1,1) 1045s / 1800s 0%
(10,1,1,1) 60s / 60s 36.80%
(1,10,1,1) 60s / 60s 31.20%
(1,1,10,1) 60s / 60s 12.10%
(1,1,10,1) 1200s / 1200s 10.98%
(1,1,1,10) 60s / 60s 47.63%
(10,10,10,1) 60s / 60s 10.80%

4 (1,1,1,1) 60s / 60s 32.97%
(1,1,1,1) 1800s / 1800s 24.07%
(10,1,1,1) 60s / 60s 20.07%
(1,10,1,1) 60s / 60s 36.16%
(1,1,10,1) 60s / 60s 45.76%
(1,1,1,10) 60s / 60s 71.16%
(10,10,10,1) 60s / 60s 70.60%

Table 6.2: The table shows the computation time needed for each parameter setting for
the second example graph.
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(a) (1, 1, 1, 1) (b) (10, 1, 1, 1) (c) (1, 1, 10, 1) (d) (1, 1, 1, 10)

Figure 6.10: The second example graph using k = 2. The values for the coefficients
(c1, c2, c3, c4) are stated below their respective layouts. Note that the parameter
set (1, 10, 1, 1) is missing because the resulting layout is identical to the
standard one.

When we increase the coefficients one by one again, we notice that for all but the loop
line bend constraint the gap to the optimal solution is lower at the 60 seconds time limit
than the one for the standard layout. However, this is not consistent when also taking the
same settings for k = 4 in mind. In that case, only the total edge length coefficient causes
the gap to be smaller, whereas all other ones increase it. This is related to the fact that
with higher values for k, the varying of the coefficients has higher impacts on the resulting
layout. For k = 2, all layouts have loop line bends at the same set of vertices, namely
(8, 9, 10), (9, 10, 11), (17, 18, 19) and (18, 19, 20), with the same bend value, which is defined
in Section 5.9. For k = 4 however, there are either additional bends like in Figure 6.11c or
less ones like in Figure 6.11d. Note that the bend in Figure 6.11c at (26, 27, 28) persists
even when the optimality of the solution is proven.

Therefore, with more directions the layout of the graph becomes more sensitive to changes
in the weights of our soft constraints. We also conclude that the time needed to find and
prove the optimal solution drastically increases together with the size of the graph, which
makes our method not scalable in its current state.
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(a) (1, 1, 1, 1) (b) (10, 1, 1, 1)

(c) (1, 1, 10, 1) (d) (1, 1, 1, 10)

Figure 6.11: The second example graph using k = 4. The values for the coefficients
(c1, c2, c3, c4) are stated below their respective layouts. Note that the parameter
set (1, 10, 1, 1) is missing because the resulting layout is identical to the
standard one.
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6.3 The Protein 8TLI
8TLI is a medium-sized protein with 316 residues. Figure 6.12 shows the three-dimensional
representation of the secondary structure of the protein. We can see that the protein is
composed of many sheets and helices, interconnected by loops that have up to 20 residues.
Judging from our previous tests, we can tell that the computation to find the optimal
solution will take a long time. We will use our second program as described in the starting
section of Chapter 6 to visualise the layout. The optimal layout we have in mind is shown
in Figure 6.13.

Figure 6.12: The secondary structure of the protein 8TLI. This screenshot is taken with
BallView. [MHLK05]

As parameter settings, we use k = 4 and (c1, c2, c3, c4) = (1, 1, 1, 1) for the coefficients.
We also apply the parallelism method that is described in Section 6.4 to speed up the
computation, since Gurobi crashes during the root relaxation without it. The root relaxation
is one step for Gurobi to find a first, but not necessarily feasible minimum bound. We do
not know why the crashes occur, since no crash logs are created. Figure 6.14 shows the first
feasible solution found with these parameter settings. We can see that most structures are
aligned in parallel. However there are many overlaps, like in the top right at the N-terminal,
which makes it hard to follow the covalent edge path. There are also many unnecessary
loop line bends, i.e. between sheet 9 (S9) and sheet 10 (S10), which makes the layout less
visually pleasing. The layout is found after 1114 seconds with an optimality gap of 97.5%.
We continue computing to find a better feasible solution for 36 hours, but none is found.
We do not even reach the time limit since Gurobi crashes after 23 hours. Therefore, we try
to find constraints that help reducing the time needed to find feasible solutions.
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N

C

Figure 6.13: The schematic representation of 8TLI as we have it in mind. This layout is
manually created and does not include small sheets.
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Figure 6.14: The automatically generated schematic representation of 8TLI. The parameter
set k = 4, (c1, c2, c3, c4) = (1, 1, 1, 1) is used. This is the first feasible solution
which is found after 1114 seconds with an optimality gap of 97.5%. Note that
the layout has been rotated by 90◦ counter-clockwise to better fit on this page.

30



6.4. Improving the Model

6.4 Improving the Model

In this section we describe two constraints and one modification in the input data that
speed up the computation time needed to find the optimal solution.

6.4.1 Parallelism

The first one bases on the observation that we want sheet structures to be parallel in
the final layout. That is, if each pair of structures is connected by a sufficient amount of
hydrogen bonds. We therefore apply this constraint to sheets of which at least f = 67%
of vertices in that structure possess a hydrogen bond to another specific structure. Then,
depending on order of the hydrogen bonds, we set these two structures to be parallel or
anti-parallel by fixing the directions of their first covalent edges. It is sufficient to only
fix the first edge, since we set all other structure edges accordingly using the constraints
described in Section 5.4.

For anti-parallel structures S1 and S2, we use

dir(u, v) = dir(s, t) + k − 2k · µ(s, t) (6.1)

(u, v) = first(S1)
(s, t) = first(S2)

where µ(s, t) is a binary variable to describe the modulo operation

dir(u, v) = (dir(s, t) + k) mod 2k

within a linear constraint. For parallel structures S1 and S2, the constraint simply is

dir(u, v) = dir(s, t) (6.2)

(u, v) = first(S1)
(s, t) = first(S2)

Note that the parameter f is determined experimentally. A higher percentage reduces
the number of structures that are aligned in parallel, whereas a lower percentage includes
structures with almost no hydrogen bonds at all.

6.4.2 First Edge Direction

The second observation is that Gurobi usually aligns the whole graph in a certain direction
during the computation. By fixing the direction of the first covalent edge in the directed
path of the graph, Gurobi tries to align all other edges according to this one. In terms of
linear constraints, this simply is

dir(u, v) = c (6.3)

where (u, v) is the first edge in the graph and c is constant, 0 ≤ c ≤ 2k.
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6.4.3 Loop Structure Size

The last observation bases on the fact that we do not need more than k loop vertices to
form a smooth 180◦ bend, as seen in the first example graph 6.4. Therefore, before adding
constraints to the model, we remove vertices and their incident edges from a loop structure
until only k vertices are left. We add new edges between the remaining vertices so they
form a path again. After a layout is calculated for the reduced model, we then linearly
place the removed vertices between the existing loop vertices to reintegrate them into the
model. To make this process easier, we do not remove the first and last vertex of loop
structures.

This modification reduces the size of models with many loop vertices and speeds up the
computation, since there are less edges to regard for the quadratic overlapping constraint
in Section 5.3.

To summarise, there are additional constraints that can speed up the computation time
needed to find the optimal solution for a graph layout. It remains to be tested how well
these work.

6.5 Crashes and Infeasibility
We mention in Section 6.3 that Gurobi crashes when certain constraints are omitted.
However, even though the computation of 8TLI works with these, other proteins like 1J7X,
1N6E and 4GHN, which are similiar to 8TLI in size, still crash during the root relaxation.
Gurobi is a blackbox in these cases and we can not find out what is causing the crashes. We
also attempt to generate layouts for big proteins like 1KN0, but the optimiser is not able
to find a feasible starting solution within an hour, even after choosing different approaches
Gurobi uses to find solutions.
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We have described a general two-dimensional graph model of secondary protein structure,
using residues as vertices and covalent bonds between these as edges. Based on this model
and according to prior agreement with domain experts from Universität Düsseldorf, we
formulated the desired characteristics for our schematic representation of the protein’s
secondary structure. We translated the characteristics into hard and soft constraints and
used a mixed-integer program to automatically calculate such a representation. In our
effort to make it as visually pleasing as possible by enforcing planarity and minimising the
length of bonds between structures, we used constraints that have quadratic impact on the
size of the program. We have not been able to completly eliminate these constraints, but
by adding them in a lazy way during the computation of the representation we achieved a
reduction in the size of the mixed-integer program.

Nevertheless, our method is only feasible for small to medium sized graphs which are
sparsely connected, as seen in our provided example graphs. We showed that the formulated
constraints work in the intended way and that the program produces a good layout in less
than one minute for our example graphs. Unforunately, for our proteins in our case study,
we learned that we either find an initial layout in less than one hour or none at all. The
one we get is still far from visually pleasing, however. Therefore, further investigation is
required to produce feasible solutions and to reduce the time needed to find one. A possible
way for the latter two is to divide the protein into segments, then calculating the layout
for each of these segments and finally bringing them back together to form the layout of
the whole protein.

It also remains to be clarified how other non-covalent bond types like salt bridges can
be integrated into the program and what effects they should have on the schematic
representation.
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