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Abstract

A geometric graph is a set of points in the plane with connecting straight-line segments.
This thesis examines the problem of partitioning geometric graphs into subgraphs
without intersecting segments as presented in the CG:SHOP 2022 competition. This
problem is equivalent to solving the coloring problem on the intersection graph of
these geometric graphs.

We show that this problem is NP-complete, even with a limited number of slopes and
maximum partitions. Further, we analyze the competition instances for properties
that aid in coloring the intersection graphs, and evaluate the run-time and colors
required for known coloring algorithms. Additionally, we introduce a new sequential
coloring algorithm, which orders the vertices of the intersection graph by the slopes
of their corresponding segment in the geometric graph. This algorithm requires fewer
colors than the well-known DSATUR algorithm on a majority of the competition
instances.

Deutsche Zusammenfassung

Ein geometrischer Graph ist eine Menge von Punkten in der Ebene und eine Menge
von gradlinigen Segmenten, welche diese Punkte verbinden. Diese Bachelorarbeit
beschäftigt sich mit dem Problem geometrische Graphen in Subgraphen zu unterteilen,
in denen sich keine zwei Segmente schneiden. Dieses Problem wurde im CH:SHOP
2022 Wettbewerb vorgestellt. Ein äquivalentes Problem ist das Färbungsproblem auf
den Schnittgraphen dieser geometrischen Graphen.

Wir zeigen, dass dieses Problem NP-vollständig ist, auch wenn man die Anzahl der
Steigungen der Segmente und die maximale Anzahl an Partitionen begrenzt. Wir un-
tersuchen die Wettbewerbsinstanzen auf Eigenschaften, welche das Färbungsproblem
auf den Schnittgraphen erleichtern, und bewerten die Laufzeit und Anzahl benötigter
Farben von bekannten Färbungsalgorithmen. Zudem stellen wir einen neuen sequen-
tiellen Färbungsalgorithmus vor, welcher die Knoten des Schnittgraphens nach den
Steigungen der zugehörigen Segmente im geometrischen Graphen sortiert. Dieser
Algorithmus benötigt weniger Farben für die meisten Wettbewerbsinstanzen als der
bekannte DSATUR-Algorithmus.
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1. Introduction

This thesis examines the problem of partitioning geometric graphs into plane subgraphs. A
geometric graph is a set of points in the two-dimensional plane, connected by straight line
segments. An example of geometric graph is shown in Figure 1.1. The colors of the lines
represent a partition, where each color represents one partition. Two lines of the same
color do not intersect, making these partitions plane.

Figure 1.1.: An example partition of geometric graph into three subgraphs.

This partitioning problem is equivalent to the coloring problem on the intersection graph
of the geometric graph. This leads us to solving a coloring problem in this thesis.

Motivation
The main motivation for this thesis is that the problem of partitioning geometric graphs
into plane subgraphs was posed in the ”CG:SHOP 2022” (Computational Geometry:
Solving Hard Optimization Problems) competition. This annual competition by the TU
Braunschweig focuses on one optimization problem in computational geometry and provides
a set of problem instances for the participants to solve as optimally as possible. The problem
statement, competition instances, and further information can be found on the official
CG:SHOP 2022 website https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/.

This problem is closely related to other theoretical problems of interest. Interval graphs, a
special case of geometric graphs where all segments endpoints lie on a line, are a natural
representation for scheduling, gene sequencing, and combinatorial problems. A short survey
on interval graphs, related graphs classes, and their applications is Charles’ paper [Gol85].
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1. Introduction

The edge coloring problem for planar graphs can be transformed into our problem by
extending each edge of plane drawing with straight lines slightly, making this another
special case of our problem.

Related work
A special case of the problem of partitioning geometric graphs into plane subgraphs is a
version where all segment endpoints are on a circle. This problem is known to be solvable
in polynomial time [GJMP80]. Another special case, the edge coloring of planar graphs
named in the motivation section, is discussed in [CN90].

Other NP-hard problems on segment intersection graphs are already studied, like the
clique problem [CCL13, KN90], the independent set problem [KN90] and the problem of
recognizing segment intersection graphs [Kra91].

Contribution
This thesis features three key contributions.

The problem of partitioning geometric graphs into plane subgraphs is known to be NP-
complete. We add another proof of NP-completeness, which also contributes a new proof
which shows that this problem is already NP-complete when limiting the number of slopes
to four, limiting the number of partitions to three, and prohibiting parallel segments in the
geometric graph to intersect.

We provide an analysis of the 225 competition instances. This section mainly features
noteworthy properties of the intersection graphs that help us to color them. Additionally,
we note properties of the geometric graphs representing these intersection graphs that help
solve the coloring problem on the intersection graphs.

Last, we introduce new coloring algorithms for intersection graphs with known geometric
graph representations and compare them to well-known coloring algorithms.

Outline
The content of this thesis is structured in four chapters.

Chapter 2 introduces the preliminaries. First, we introduce basic notations and the graph
classes we examine in this thesis. Then, we formally state the problem of partitioning
geometric graphs into plane subgraphs we investigate in this thesis, as well as an important
Lemma about the invariance of their intersection graphs under certain transformations.

Chapter 3 shows the NP-completeness of the problem we solve, as well as with a limited
number of slopes, fixed choices of slopes, and a limited number of maximum partitions.

Chapter 4 provides the instance analysis, introducing the notable differences between our
graphs and general graphs. This motivates the investigation of this problem further due
to it not simply being a repetition of the research on general graphs. The properties
found in this chapter are also used in the following chapter to motivate and assist the
coloring algorithms, and may be used as a starting point for further research with different
approaches.

In Chapter 5, we introduce the algorithms we use to solve the problem of partitioning
geometric graphs into plane subgraphs, and evaluate them.
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2. Preliminaries

In this chapter, we introduce the main problem we examine, partitioning geometric graphs
into plane subgraphs, as well as the definitions and notations used in this thesis.

A graph is a tuple of a set V called vertices and a set E called edges, with E ⊆ {{u, v} |
u, v ∈ V }. Graphs are commonly denoted by G = (V,E) and the edge {u, v} is denoted by
uv. A random graph Gn,p is graph with n vertices where each edge exists independently
with probability p.

For a subset of edges V ′ ⊂ V , we call the graph (V ′, E′) with {uv ∈ E | u ∈ V ′ ∧ v ∈ V }
the induced subgraph of V ′. The notation G− v for some vertex v ∈ V refers to the induced
subgraph with V ′ = V \ {v}.

The notation Zn = {1, . . . , n} refers to the first n natural numbers, from 1 to n. An order
σ of a finite set S is a bijective map from the first |S| natural numbers to the elements of
the set σ : Z|S| → S.

2.1. Intersection graphs
A graph R = (P, S) where all vertices are points in a two-dimensional space, P ⊆ R2, is
called a geometric graph. The edges of a geometric graph are also called segments and are
represented by straight lines between their endpoints.

Two segments p1p2 and p3p4 intersect when they have a common points except a common
endpoint. Let pq = {p+ t · (q− p) | t ∈ [0, 1]} be the closed straight line between the points
p and q. The two segments p1p2 and p3p4 intersect if the following is true:

(p1p2 ∩ p3p4) \ ({p1, p2} ∩ {p3, p4}) 6= ∅

The class of all intersection graphs of geometric graphs is called Seg as defined in section
1.2 of [KM94]. Let R be the intersection graph of the segments generated by G. Then R is
called the representation of G.

The slope of a segment is the minimal angle of clockwise rotation about its center required
to make that segment horizontal. For two segments with slopes d1, d2, we define their
intersection angle as min(|d2 − d1|, π − |d2 − d1|). A horizontal segment has a slope of 0.
Every segment has a slope in [0, π), and every intersection angle is in [0, π/2). [KM94]
defines the following subclasses of Seg which limit the allowed slopes of the segments in

3



2. Preliminaries

the representation. The graph class k-Dir(d1, . . . , dk) is defined as all graphs that have a
representation where only the slopes d1, . . . , dk are used. The graph class k-Dir is defined
as

k-Dir =
⋃

(d1,...,dk)∈[0,π)k

k-Dir(d1, . . . , dk)

The class Pure-k-Dir(d1, . . . , dk) is the set of all graphs that have an intersection graph
with only the slopes d1, . . . , dk, where segments with the same slope do not intersect. The
graph class Pure-k-Dir is defined as

Pure-k-Dir =
⋃

(d1,...,dk)∈[0,π)k

Pure-k-Dir(d1, . . . , dk)

Further, for any k ∈ N:

k-Dir ⊆ (k + 1)-Dir
Pure-k-Dir ⊆ Pure-(k + 1)-Dir
Pure-k-Dir ⊆ k-Dir

k-Dir ⊆ SEG

2.2. Partitions and plane graphs

Now that we have established the graph classes relevant for this thesis, we define the
prerequisites and the problem itself of partitioning geometric graphs into plane subgraphs
in this section.

A representation is called plane if no two segments intersect. An equivalent definition is
that the intersection graph contains no edges. A geometric graph is called plane if the
representation constructed from it is plane.

The sets M1,M2, . . . ,Mk are called a partition of M if their union is M and the sets are
pairwise disjoint:

k⋃
i=1

Mi = M

∀i, j ∈ {1, . . . , k}, i 6= j : Mi ∩Mj = ∅

Definition 2.1 (Partitioning geometric graphs into plane subgraphs). Let G = (V,E), V ⊆
R2 be a geometric graph. The goal is to partition the set E into E1, . . . , En for some k ∈ N,
such that all the graphs Gi = (V,Ei), k ∈ {1, . . . , n} are plane.

The target to minimize is n, the number of partitions required.

A coloring of a graph G = (V,E) with n colors is a map c : V → N where adjacent vertices
do not have the same color, formally vw ∈ E =⇒ c(v) 6= c(w).

If c : V ′ → Zn is a coloring of the intersection graph G = (V ′, E′), then defining the
partitioning of the geometric graph G = (V,E) as Ei = {v ∈ V ′ | c(v) = i} defines a plane
partitioning. Throughout this thesis, we do not attempt to partition geometric graphs
directly, but focus on the equivalent problem of coloring their respective intersection graphs.
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2.3. Invariance of intersection graphs

2.3. Invariance of intersection graphs
A translation by a vector v ∈ R2 is the function

tv : R2 → R2 : p 7→ p+ v

The inverse of tv is t−v.

Lemma 2.2. Let f : R2 → R2 be an invertible function that keeps straight lines. The
intersection graphs of the representations (P, S) and (f(P ), S) are the same.

Proof. Let (V,E) be the intersection graph of (P, S), and (V ′, E′) the one of (f(P ), S).
Because of V = S and V ′ = S, it follows that V = V ′.

Let vw ∈ E be an edge. Then there is a point p ∈ R2 such that p lies on both segments,
v and w. It follows that f(p) is both on f(v) and f(w), Therefore, vw ∈ E′ and E ⊆ E′.
The proof for vw ∈ E and E′ ⊆ E is analogous using the inverse function f−1.

All translation tv and invertible linear transformations fulfill the conditions of Lemma 2.2.
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3. NP-completeness of Seg-k-Color

In this chapter, we show that the problem Seg-3-Color is NP-complete. Additionally, we
proof that the problem is already NP-complete on smaller subclasses of graphs. For an
introduction to NP-completeness, see Karp’s paper [Kar72].

Let G be a graph class and k ∈ N a natural number. We define the k-coloring problem on
this graph class as follows:

Definition 3.1 (G-k-Color). Given a graph G ∈ G, is it possible to properly color G with
at most k colors?

The final goal of this chapter is to proof the following Theorem 3.2:

Theorem 3.2. Seg-k-Color is NP-complete.

To simplify the proofs of NP-completeness, both for Theorem 3.2 and subclasses of Seg, we
introduce the following two Lemmas.

Lemma 3.3. For all graph classes G and natural numbers k ∈ N, the problem G-k-Color
is in NP.

Proof. Let c : V → Zk ∪ {⊥} be a non-deterministically generated coloring of the graph
G = (V,E). Checking that the coloring is complete, which requires checking c(v) 6= ⊥ for
every vertex v ∈ V , requires O(|V |) time. Checking that the coloring uses at most k colors,
which requires checking c(v) ≤ k for every vertex v ∈ V , requires O(|V |) time. Checking
that the coloring uses at most k colors, which requires checking c(u) 6= c(v) for every edge
uv ∈ E, requires O(|E|) time. The total time required is in O(|V |+ |E|).

Lemma 3.4. Let G,G′ be two graph classes with G′ ⊆ G, and k ∈ N. If G′-k-Color is
NP-complete, then G-k-Color is NP-complete as well.

Proof. G-k-Color is in NP following lemma 3.3.

Let f be the polynomial transformation from some known NP-complete problem NP-
problem to G′-k-Color. An instance of G′-k-Color only consists out of a graph G ∈ G′,
which is also a graph in G. This means that f is also a polynomial transformation from
NP-problem to G-k-Color. Therefore, G-k-Color is NP-hard.

7



3. NP-completeness of Seg-k-Color

Following Lemma 3.4, there are multiple other proofs of Theorem 3.2 Planar graphs, the
class of all graphs that have a plane drawing, are a subset of all segment intersection graphs
[CG09]. The NP-completeness of 3-Color is already proven on multiple subclasses of
planar graphs, like hamiltonian planar [Cav19], 4-regular planar [Dai80], and planar with
maximum degree 4 [GJS74] graphs.

3.1. NP-completeness of Pure-4-Dir-3-Color
In the section, we show that the problem Pure-4-Dir(d1, d2, d3, d4)-3-Color is NP-
complete for every set of four slopes (d1, d2, d3, d4) ∈ [0, π)4. We first proof this for a fixed
set of four slopes and then generalize this proof to every set of four slopes

NP-hardness of Pure-4-Dir(0, π/4, π/2, 3π/4)-3-Color

In this section, we show the NP-hardness of Pure-4-Dir(0, π/4, π/2, 3π/4)-3-Color with
the polynomial transformation from the known NP-complete problem 3-SAT [Kar72] to
Pure-4-Dir(0, π/4, π/2, 3π/4)-3-Color. This is the proof we later generalize to the proof
that the problem is NP-complete for any set of four slopes.

The goal is to construct a graph in Pure-4-Dir that is 3-colorable if and only if the variables
U of the 3-SAT instance (U,C) have an assignment of boolean values, fulfilling all clauses
C.

To prove that the graph is in Pure-4-Dir, we construct the representation instead of the inter-
section graph. The slopes used in the representation are {0, π/4, π/2, 3π/4}, and no two par-
allel segments intersect. Therefore, the intersection graph is in Pure-4-Dir(0, π/4, π/2, 3π/4).

For the construction of this geometric graph, we use multiple small collections of segments
called gadget. For each gadget, we define a bounding box. This is a rectangle with its
sides parallel to the x-axis, a horizontal axis pointing right, and the y-axis, a vertical axis
pointing up. The bottom left corner of the bounding box is always at the point (0, 0) and
its top right corner at (w, h), which we state for each gadget.

A gadget contains a segment if the segment and the gadget’s bounding box intersect. For
each gadget, we note its endpoints, slope, and its intersections with other segments.

The construction of the representation requires the following gadgets:

• A base gadget. This gadget is required once in the construction of the final graph for
other gadgets to function. The goal of this gadget is to create three segments with
pairwise differing colors, the color of one representing true, one color representing
false, and one not representing a truth value. Additionally, the gadget has a vertical
segment with the neutral color that extend downward as far as needed and two
horizontal segments with the colors neutral and false that can extend as far right as
needed. These three extra segments assist in the function of other gadgets later on.

The bounding box of the base gadget spans from (0, 0) to (5, 10). It has the following
five segments:

– The variable neutral segment with endpoints (1.5, 0.5) and (1.5, ye2), yend > 10.
It has slope 0.

– The clause false segment with endpoints (0.5, 1.5) and (xe2, 1.5), xend > 5. It has
slope π/2. It intersects the variable neutral segment in the point p1 = (1.5, 1.5).

– The base true segment with endpoints (1, 1) and (3, 3). It has slope 3π/4. It
intersects the clause false segment and the variable neutral segment in the point
p1.

8



3.1. NP-completeness of Pure-4-Dir-3-Color

– The base false segment with endpoints (1, 4) and (3, 2). It has slope π/4. It
intersects with the variable neutral segments in the point p2 = (1.5, 1.5) and
with the base true segment in point p3 = (2.5, 2.5).

– The clause neutral segment with endpoints (2, 2.5) and (xe3, 2.5), xe3 > 5. It
has slope 0. Its right endpoint is not fixed by the gadget. It intersects the base
false segment and the base true segment in p3.

The base gadget is shown in Figure 3.1. The segments in this figure are already
colored. In this and the following figures of gadgets, the colors green, red and blue
represent true, false and neutral, respectively.

Lemma 3.5. Let c be a valid 3-coloring of the base gadget. We call the color of the
base true segment the true color, the color of the base false segment the false color,
and the color of the variable neutral segment the neutral color.

These three colors are pairwise different.

Proof. The three segments defining the colors intersect pairwise. The base true and
the variable neutral segment intersect in p1, therefore, the true and neutral color are
different. The base false and the variable neutral segment intersect in p2, therefore,
the false and neutral color are different. The base true and the base false segment
intersect in p3, therefore, the true and false color are different.

We use the names given to the colors in Lemma 3.5 from now on for all gadgets.

Lemma 3.6. Following the coloring c of Lemma 3.5, the base clause neutral segment
has the neutral color and the clause false segment has the false color.

Proof. The clause neutral segment intersects both the base true and base false segment
in p3, leaving the neutral color as the only possible one. The clause false segment
intersects both the base true and variable neutral segment in p1, leaving the false
color as the only possible one.

9



3. NP-completeness of Seg-k-Color

base true
segment
base false
segment

p1

p2

p3

clause false segment

variable neutral segment

clause neutral segment

Figure 3.1.: The base gadget. All fixed endpoints are marked with dots. A dashed line at
the end of a segment indicates that there is no fixed end to it, and it may be
extended.

• A variable gadget. This gadget is placed once for every variable x ∈ U in the 3-SAT
instance. It provides two segments, one of which has the color true and one has the
color false, assuming the base gadget is colored as described above. The color of
these two segments represent the values of the literals x and x̄. Which one has the
color true and which the color false is not predetermined by the way the variable
gadget is constructed. This gadget may use the variable neutral segment from the
base gadget, but it must be able to extend through the gadget to be available for
other variable gadgets below this one.

The bounding box of the variable gadget spans from (0, 0) to (5, 10). It contains the
following five segments:

– The variable neutral segment, which was already defined in the base gadget. It
passes through every instance of this gadget, from (1.5, 10) to (1.5, 0). Neither
of its endpoints are in this gadget.

– The x̄ exclusive segment with endpoints (1, 4.5) and (4.5, 8). It has slope 3π/4,
and intersects the variable neutral segment in p4 = (1.5, 5).

– The x exclusive segment with endpoints (1, 5.5) and (4.5, 2). It has slope π/4.
It intersects the x̄ exclusive segment and the variable neutral segment in the
point p4.

– The variable literal x segment with endpoints (1, 7.5) and (10, 7.5). It has slope
0. It intersects the variable neutral segment in p5 = (1.5, 7.5) and the x̄ exclusive
segment in p6 = (4, 7.5).

10



3.1. NP-completeness of Pure-4-Dir-3-Color

– The variable literal x̄ segment with endpoints (1, 2.5) and (10, 2.5). It has slope
0. It intersects the variable neutral segment in p5 = (1.5, 2.5) and the x exclusive
segment in p6 = (4, 2.5).

The variable gadget is shown in Figure 3.2.

Lemma 3.7. Exactly one of the variable literal x segment and the variable literal x̄
segment has the color true, and the other one has the color false.

Proof. All segments in this gadget except the variable neutral segment intersect with
the variable neutral segment. Due to this, none of these four segments may have the
neutral color, and limits their choice to the two colors true and false. Let a be the
color of the x exclusive segment. This segment intersects with both the x̄ exclusive
segment and the x̄ variable literal segment, so they both have the same color b with
b 6= a. The x variable literal segment intersects with the x̄ exclusive segment, so it
has the color a.

This only shows limitations for the coloring of these two segments, but a gadget that
only allows for the x variable literal segment to have the color true would also fulfill
Lemma 3.7. This motivates the upcoming Lemma 3.8, which proves that when only
considering the restrictions of the gadet, there exists a coloring that assigns the x
variable literal segment the color true and one that assigns this segment the color
false.

Lemma 3.8. There exist at least two colorings of this gadget, one where the variable
literal x segment has the color true, and one where the variable literal x segment has
the color false.

Proof. The proof of Lemma 3.7 makes two restrictions on the colors a, b: They may
not be the neutral color, and they may not be equal. The proof makes use of all
intersections in the gadget, which means that there are no further restrictions. This
means that b, the color of the variable literal x segment, may be the color true or
false and both result in a proper coloring of this gadget.

11



3. NP-completeness of Seg-k-Color

x̄ exclusive segment

x exclusive segment
p4

p5 p6

p7 p8

variable neutral segment

variable literal x segment

variable literal x̄ segment

Figure 3.2.: The variable gadget. All fixed endpoints are marked with dots. A dashed line
at the end of a segment indicates that there is no fixed end to it, and it may
be extended.

• A clause gadget. This gadget is placed once for every clause c ∈ C in the 3-SAT
instance. Let x, y, z be the literals of the clause c. Then, the gadget representing c in
the final construction contains three segments, each of them with the same color as
the variable literal x, y, z segment, respectively. The entire gadget is constructed in
such a way that is only colorable if at least one of these segments has the color true.
This gadget may use the clause segments from the base gadget, but they must be
able to be extended through the gadget to be available for other clause gadgets to
the right of the current one.
The bounding box of the clause gadget spans from (0, 0) to (10, 15). It contains the
following eleven segments:
– The clause false segment, which is already defined in the base gadget, and the

clause neutral segment, which is already defined in the base gadget. They pass
through every instance of this gadget, from (0, 1.5) to (15, 1.5) and (0, 2.5) to
(15, 2.5), respectively.

– The clause c result segment with endpoints (10, 1) and (10, 4.5). It has slope
π/2. This segment intersects the clause false segment in the point p9 = (10, 1.5)
and the clause neutral segment in the point p10 = (10, 2.5).

– The clause c intermediate result segment with endpoints (5, 2) and (5, 5.5). It
has slope π/2. This segments intersect the clause neutral segment in the point
p11 = (5, 2.5).

12
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– The intermediate result bridge segment with endpoints (4.5, 4) and (10.5, 4).
It has slope 0. This segment intersects the clause c result segment and the
clause c intermediate result segment in the points p12 = (10, 4) and p13 = (5, 4),
respectively. The intermediate result bridge segment is below the clause neutral
segment.

– The clause c literal x bridge segment with endpoints (5.5, 4.5) and (2, 8), and
clause c literal y bridge segment with endpoints (4.5, 4.5) and (8, 8), These
segments have the slope 3π/4 and π/4, respectively. These segments intersect
each other and the intermediate result segment in the point p14 = (5, 5), which
is below the intermediate result bridge segment.

– The clause c literal x segment with endpoints (2.5, 7) and (2.5, yendc,x), yendc,x >
10, and clause c literal y segment, with endpoints (7.5, 7) and (7.5, yendc,y), yendc,y >
10. Both of these segments have slope π/2. These two segments intersect clause
c literal x bridge segment in p15 = (2.5, 7.5) and clause c literal y bridge segment
in p16 = (7.5, 7.5), respectively.

– The clause c literal z bridge segment with endpoints (9.5, 3.5) and (13, 7). It
has slope π/4. This segment intersects the clause c result and the intermediate
result bridge segment in the point p12.

– The clause c literal z segment with endpoints (12.5, 6) and (2.5, yendc,z), yendc,z >
10 It has slope π/2. It intersects the lause c literal z bridge segment in the point
p17 = (12.5, 6.5).

The clause gadget is shown in Figure 3.3.

Lemma 3.9. The clause gadget for the clause c is not colorable if all three clause c
literal segments have the color false.

Proof. If the clause c literal x and literal y segments have the color false, the clause
c literal x and literal y bridge segments both may not have the color false. Because
they may not have the same color, one of them has the color true and the other
one neutral. The intermediate result segment, which intersects both of these, must
therefore have the color false.

If the intermediate result segment and the literal z segments have the color false,
the clause c literal z and intermediate result bridge segment both may not have the
color false. Because they may not have the same color, one of them has the color
true and the other one neutral. The result segment, which intersects both of these,
must therefore have the color false. This is a contradiction to the fact that the result
segment may not have the color false due to its intersection with the clause false
segment.

Therefore, a proper coloring of this gadget does not exist if all three clause c literal
segments have the color false.

Lemma 3.10. If of the clause c variable x, y, z segments, none has the neutral color
and at least one has the true color, then the gadget is colorable.

Proof. The Table 3.1 shows one possbile coloring for each of the seven colorings of
the clause literal segments that fulfill the condition of Lemma 3.10. The colors true,
false and neutral are shortened to t, f and n, respectively.
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Segment name c1 c2 c3 c4 c5 c6 c7

clause c literal x segment t f t f t f t
clause c literal y segment f t t f f t t
clause c literal z segment f f f t t t t
clause c literal x bridge segment f n f n f n f
clause c literal y bridge segment n f n t n f n
clause c literal z bridge segment n n n f n n n
intermediate result segment t t t f t t t
intermediate result bridge segment f f f n f f f
result segment t t t t t t t

Table 3.1.: Possible colorings for the clause gadget under the conditions outlined in Lemma
3.10.

clause c literal
x bridge segment

clause c literal
y bridge segment

intermediate result
segment

clause c literal
z bridge segment

intermediate result
bridge segment

result segment

clause c
literal x segment

clause c
literal y segment

clause c
literal z segment

p9

p10p11

p12p13

p14

p15 p16

p17

Figure 3.3.: The clause gadget. All fixed endpoints are marked with dots. A dashed line at
the end of a segment indicates that there is no fixed end to it, and it may be
extended.

• A distribution gadget. After assembling the base, variable and clause gadgets, the
segments colored with the value of their literal need their need to be directed into the
clause gadgets. To do this, we create a gadget that can be attached to the variable
literal segments and provides a segment with the same color that can be used by the
clause gadgets.

The bounding box of the distribution gadget spans from (0, 0) to (5, 5). It contains
the following four segments:
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– The variable literal x segment for some literal x, which is already defined in the
variable gadget. A segment with some literal x passes through every instance of
this gadget, from (0, 2.5) to (5, 2.5).

– A distribution left segment with endpoints (1, 3) and (3, 1). It has slope π/4. It
intersects the variable literal x segment in p18 = (1.5, 2.5).

– A distribution right segment with endpoints (2, 1) and (4, 3). It has slope 3π/4,
It intersects the variable literal x segment in p19 = (3.5, 2.5) and the distribution
left segment in p20 = (2.5, 1.5).

– A clause c literal x segment for the literal x for which the variable literal x
segment is also in this gadget. The clause c literal x segment has endpoints
(2.5, 2) and (2.5, y), y < 0. This segment intersects the distribution left and right
segments in p20.

Lemma 3.11. The variable literal x segment and the clause c literal x segment have
the same color in a proper 3-coloring.

Proof. Let a be the color of the variable literal x segment in a proper 3-coloring. The
left distribution segment may not have the color a because it intersects the variable
literal x, let its color be b 6= a. The right distribution segment may not have the color
a because it intersects the variable literal x, and it may not have the color b because
it intersects the left distribution segment, let its color be c with c 6= a and c 6= b.

The clause c literal x segment intersects both the left and right distribution segments,
therefore it may not have the color b or c. The only remaining option for this segment
is color a.

The distribution gadget is shown in Figure 3.4. The two segments marked in orange
need to have the same color in a proper 3-coloring.

distribution left
segment

distribution right
segment

p18 p19

p20

variable literal
x segment

clause c literal x segment

Figure 3.4.: The distribution gadget. All fixed endpoints are marked with dots. A dashed
line at the end of a segment indicates that there is no fixed end to it, and it
may be extended.

• A crossing gadget. In most constructions, a clause literal segment needs to pass
over a variable literal segment, even though they have the same color. Because this
is not supposed to invalidate the coloring, we need a gadget that allows segment
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with the same and differing colors to cross. This means that the segments may be
split, but both parts of that split must have the same color, which is enforced by the
gadget. To simplify the upcoming construction, both parts of the split segment have
the same name.

The bounding box of the clause gadget spans from (0, 0) to (5, 5). It contains the
following 14 segments:

– The segment a, which is already defined by another gadget, with endpoints
(xa−left, 2.5), xa−left < 0 and (0.7, 2.5) for its left part, and endpoints (2.3, 2.5)
and (xa−right, 2.5), xa−right for its right part.

– The segment b, which is already defined by another gadget, with endpoints
(2.5, yb−lower), xb−lower < 0 and (2.5, 2.2) for its lower part, and endpoints
(2.5, 3.5) and (2.5, yb−upper), xa−right for its upper part.

– The horizontal cross 1 segment, with endpoints (0.3, 2.3) and (1.1, 3.1). It has
slope π/4. It intersects the segment a in p21 = (0.5, 2.5).

– The horizontal cross 2 segment, with endpoints (0.3, 2.7) and (1.1, 1.9). It has
slope 3π/4. It intersects the segment a and the horizontal cross 1 segment in
p21.

– The horizontal cross 3 segment, with endpoints (0.9, 0.7) and (0.9, 4.3). It has
slope π/2. It intersects the horizontal cross 1 segment in p22 = (0.9, 2.9) and
the horizontal cross 2 segment in p23 = (0.9, 2.1).

– The horizontal cross 4 segment, with endpoints (0.7, 4.3) and (2.7, 2.3). It has
slope 3π/4. It intersects the horizontal cross 3 segment in p24 = (0.9, 4.3).

– The horizontal cross 5 segment, with endpoints (0.7, 4.3) and (2.7, 2.3). It has
slope π/4. It intersects the horizontal cross 3 segment in p25 = (0.9, 0.7) and
the horizontal cross 4 segment and segment a in p26 = (2.5, 2.5).

– The vertical cross 1 segment, with endpoints (1.5, 3) and (2.7, 1.8). It has slope
3π/4. It intersects segment b in p27 = (2.5, 2) and the horizontal cross 5 segment
in p28 = (2.25, 2.25).

– The vertical cross 2 segment, with endpoints (1.5, 3) and (2.7, 1.8). It has slope
3π/4. It intersects segment b and the vertical cross 1 segment in p27 and segment
a in p29 = (3, 2.5).

– The vertical cross 3 segment, with endpoints (1, 2.8) and (4, 2.8). It has slope 0.
It intersects the horizontal cross 4 segment in p30 = (2.2, 2.8), the vertical cross
1 segment in p31 = (3.3, 2.8), and the vertical cross 2 segment in p32 = (1.7, 2.8).

– The vertical cross 5 segment, with endpoints (4, 2.6) and (2.2, 4.4). It has
slope 3π/4. It intersects segment b in p33 and the vertical cross 3 segment in
p36 = (3.8, 2.8).

The crossing gadget is shown in Figure 3.5. Both segments in orange and both
segments in teal need to have the same color, respectively. The dotted orange and
teal lines are not segments and only serve to visualize the alignment requirements.

Lemma 3.12. Both parts of segment a have the same color, and both parts of segment
b have the same color.

Proof. Let a be the color of the left part of segment a. Because the horizontal cross
1 and horizontal cross 2 segment intersect each other and the left part of segment a,
the have the colors b and c, where a, b, c are pairwise different.
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3.1. NP-completeness of Pure-4-Dir-3-Color

Because the horizontal cross 3 segment intersects both the horizontal cross 1 and
horizontal cross 2 segment, it must have color a. Because the horizontal cross 4 and
horizontal cross 5 segment intersect each other and the horizontal cross 3 segment,
the have the colors b and c.

The right part of segment a intersects both the horizontal cross 4 and horizontal
cross 5 segment, and must therefore have the color a.

Analogue for segment b and the vertical cross segments.

Lemma 3.13. There is at least one coloring for each combination of colors for
segment a and b.

Proof. The Table 3.2 shows two possilbe colorings, one where segment a and b
have the same color, and one where they have different colors. A coloring for every
other combination of colors for segment a and b than presented can be acquired by
permuting one of these two colorings. The colors true, false and neutral are shortened
to t, f and n, respectively.

Segment name c1 c2

segment a t t
segment b t f
horizontal cross 1 segment f f
horizontal cross 2 segment n n
horizontal cross 3 segment t t
horizontal cross 4 segment n n
horizontal cross 5 segment f f
vertical cross 1 segment n t
vertical cross 2 segment f n
vertical cross 3 segment t f
vertical cross 4 segment f t
vertical cross 5 segment n n

Table 3.2.: Possible colorings for the cross gadget.
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h. cross 1

h. cross 2

h. cross 3h. cross 4

h. cross 5

v. cross 1v. cross 2

v. cross 3

v. cross 4

v. cross 5segment a
(left part) segment a

(right part)

segment b
(lower part)

segment b
(upper part)

p21

p22

p23

p24

p25

p26

p27

p28 p29

p30 p31

p32

p33

p34

p35

p36

Figure 3.5.: The crossing gadget. All fixed endpoints are marked with dots. A dashed line
at the end of a segment indicates that there is no fixed end to it, and it may
be extended.
The labels of the horizontal/vertical cross x segments are abbreviated with
h./v. cross x.

We now construct the representation R of a graph that is 3-colorable if and only if the
original 3-SAT (U,C) instance has a boolean assignment t : U → B that satisfies all clauses
in C.

1. Place a single base gadget at (0, 0). This gadget marks the bottom left corner of the
final representation. There are two variables defined in this gadgets description. We
choose xend = 6 + |C| · 15 and yend = 11 + |U | · 10.

2. For each variable xi ∈ U in the 3-SAT instance, place a variable gadget at (0, 10 +
(i − 1) · 10). The upper border of the last of these gadgets is at h = 10 + |U | · 10.
Because h < yend, the variable neutral segment extend through all variable gadgets
placed.

3. For each clause ci ∈ C in the 3-SAT instance, place a clause gadget at (5+(i−1)·15, 0).
The right border of the last of these gadgets is at w = 5 + |C| · 15. Because w < xend,
the clause false and neutral segment extend through all clause gadgets placed.

4. Extend the variable literal segments from the variable gadgets as far right as the
clause segments from the base gadget.

5. For each clause literal v segment with x-position xv, let yv be the y-position of the
variable literal v segment. Set the upper endpoint of the clause literal v segment to
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(xv, yv − 0.5) and place a distribution gadget at (xv − 2.5, yv − 2.5), connecting the
two literal segments.

6. After placing all distribution gadget in step 5, place one crossing gadget at (xcross −
2.5, ycross− 2.5) for each intersection between a variable literal x and a clause c literal
y segment at (xcross, ycross).

An illustration of a complete construction is in Figure 3.6.

Base

Var
x1

. . .

Var
x|U |

Clause c1 . . . Clause c|C|

Figure 3.6.: The general structure of a completed 3-colorability construction.

Proof of correctness

In this section, we show that the construction R above requires polynomial time and
is 3-colorable if and only if the original 3-SAT instance (U,C) has a satisfying boolean
assignment t.

First, we show that from a valid 3-coloring of this graph, one can construct a valid boolean
assignment for the variables U .

For each variable x ∈ U , assign it the value represented by the color of the variable literal
x segment in the boolean value assignment t : U → B. Because of Lemma 3.7, which states
that the color of this segment can not be the neutral color, this is either true or false.

Let c ∈ C be a clause and x a literal in that clause. From the construction and Lemma
3.11, we know that the variable literal x segment and the clause c literal x segment have
the same color. Let x, y, z be the literals of the clause c. From Lemma 3.9, we know that
in a valid coloring, the variable literal segment of x, y or z has to be true, which means
that t(x), t(y) or t(z) is true, satisfying the clause c. Because we made no restrictions on
the clause c ∈ C, every clause is satisfied by t.
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Next, we show that from a satisfying boolean assignment t for the variables in U , one can
construct a proper coloring of this graph.
First, choose which color represents true, false and neutral, and color the base gadget
as described in Lemma 3.6. Then, color the variable literal segments with the color
representing the value of this literal in the boolean assignment. This satisfies the condition
of Lemma 3.7 that one of these segments has the color false and the other the color true,
and is possible because of Lemma 3.8.
From this initial coloring, the distribution gadgets are colorable by Lemma 3.11 and the
crossing gadgets are colorable by Lemma 3.13. Let c ∈ C be a clause with the literals
x, y, z. Because we colored the variable literal segments with the assignments of t, at least
one of the clause c literal x, y, z segments has the color true following Lemma 3.11 for the
distribution gadgets and Lemma 3.12 for the crossing gadgets. From Lemma 3.10 follows
that the gadget for clause c is colorable. Because we made no restrictions on the clause
c ∈ C, every clause gadget is colorable.
Last, we show that this can construction can be built in polynomial time. This construction
requires O(|U | · |C|) segments. Each gadget only requires a constant amount of segments.
Each segment in the final construction is accounted for at least once by a gadget. In total,
there is one base gadget, |U | variable gadgets, and |C| clause gadgets. A distribution or
crossing gadget is only placed where a clause literal segment and a variable literal segment
intersect. There are at most 2|U | · 3|C| such intersections and therefore at most this many
distribution and crossing gadgets.

NP-hardness of Pure-4-Dir(d1, d2, d3, d4)-3-Color
After establishing that the coloring problem is NP-hard for representations with four fixed
slopes, we show a generalization of the proof that allows for any set of four slopes in the
representation.

Theorem 3.14. The problem Pure-4-Dir(d1, d2, d3, d4)-3-Color is NP-hard for any set
{d1, d2, d3, d4} with d1, d2, d3, d4 ∈ [0, π/2).

To simplify this proof, we first show that we may restrict the representations without
limiting the graph classes we examine. Quapil proved in [Qua21] that for any set of
four slopes, {d1, d2, d3, d4} with d1 < d2 < d3 < d4, an invertible linear transformation
f exists which fulfills f(d1) = π/4, f(d2) = π/2, π/2 < f(d3) < 3π/4, f(d4) = 3π/4. We
outline a similar proof that shows that there is an invertible linear transformation f with
f(d1) = 0, f(d2) = π/4, π/4 < f(d3) < 3π/4, f(d4) = 3π/4.

1. Scale along the horizontal axis by a positive scalar such that d4 − d2 = π/2.
2. Rotate such that d2 = π/4. After this rotation, d4 = 3π/4 is also set.
3. Scale along the axis with slope π/4 by a positive scalar such that d1 = 0. This scaling

leaves the slopes d2 and d4 unmodified.
None of these operations change the relative order of the slopes, which implies that
d2 < d3 < d4 is still true, and therefore π/4 < d3 < 3π/4 is fulfilled. It follows that the
graph class 4-Dir

4-Dir =
⋃

d3∈(π/4,3π/4)
4-Dir(0, π4 , d3,

3π
4 ) (3.1)

All the gadgets described in section 3.1 are still representable with the slopes {0, π/4, d3, 3π/4}
with π/4 < d3 < 3π/4. The remaining proof is equivalent to the proof for four fixed slopes.
The construction of figure 3.6 is skewed such that the vertical segments have slope d3
instead. Because the resulting intersection graph is exactly the same, the correctness and
limited size of the graph still hold.
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Tightness of the result

The use of four directions is the minimum possible. Pure-3-Dir-3-Color, like any
Pure-k-Dir-k-Color, is colorable due to the possibility of mapping each direction to
a color, and giving each segment a color according to its direction. Two segments of the
same direction never intersect in Pure-k-dir graphs, so this is a valid coloring.

3.2. NP-completeness of Pure-(k + 1)-Dir-k-Color
Theorem 3.15. For each k ∈ N with k ≥ 3, the problem Pure-(k + 1)-Dir-k-Color is
NP-complete.

We already proved this for k = 3 in the last subsection. Assume that for any fixed k ∈ N
with k ≥ 3, the problem Pure-(k + 1)-Dir-k-Color is NP-complete. Let R = (P, S)
be a representation of a graph in Pure-(k + 1)-Dir. Examine the problem for k′ = k + 1.
The goal is to create a graph in Pure-(k′ + 1)-Dir which is colorable exactly if the graph
represented by R is colored. The representation we construct is denoted by R′. The
representations of graphs in Pure-(k′ + 1)-Dir may use one more slope than the graphs in
Pure-(k + 1)-Dir, denoted dk′+1. We build R′ from R:

1. As long as there is a segment s ∈ S which does not have the slope dk′+1 and is not
intersected by one with slope dk′+1, add a segment s′ with slope dk′+1 that intersects
s. Extend s′ until no more intersections can be created by extending it further.

Of these new segments, no two intersect. If s1 and s2 were intersecting, they would
also both intersect the segment s for which s2 was placed. Because s1 already
intersects s, the new segment s2 would not have been placed.

2. Create a clique of order k by adding k segments with exactly one of them with slope
d1, . . . , dk that all intersect in a single point p. The choice of p and the length of
these k segments has to be in a manner that no other intersection are created, and
the next step is still feasible.

3. Extend each segment with slope dk′+1 until it intersects all segments created in the
previous point.

The segments created in step 2 all have the same different colors, so all segment created in
step 1 have the same color. Therefore, the original graph may not use this color. It follows
that, for each k, l ∈ N with l > k ≥ 3, the problem Pure-l-Dir-k-Color is NP-hard.

Corollary 3.16. For each k ∈ N with k ≥ 3, the problem (k + 1)-Dir-k-Color is
NP-complete.

Proof. This follows from Lemma 3.4, Pure-k-Dir ⊆ k-Dir for all k, and Theorem 3.15.

3.3. NP-completeness of Seg-k-COLOR
This section concludes this chapter with the proof for Theorem 3.2, which we set out to
prove in this chapter.

Proof of Theorem 3.2. The problem Pure-(k + 1)-Dir-k-Color is NP-complete, see
Theorem 3.15. Further, Pure-(k + 1)-Dir is a subclass of Seg. From this and Lemma 3.4
follows that Seg-k-COLOR is NP-hard.

The proof that Seg-k-COLOR is in NP is Lemma 3.3.
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4. Instance analysis

This chapter covers the analysis of the 225 competition instances. We show general
statistical properties for these instances and further properties that are of interest for
specific instance types. While coloring methods are used to motivate the examination of
these properties, the coloring methods are not introduced and evaluated in detail here, but
in Chapter 5.
Because of Lemma 2.2, we are especially interested in properties that are invariant under
invertible linear transformations and translations. This includes all properties of the
intersection graphs themselves.
All competition instances belong to one of five types: reecn, sqrp, sqrpecn, visp, or vispecn.
Some competition instances have an extra r in front of their name, for example rsqrp7320,
but these are generated in the exact same way as their counterparts without an r. The
exact generation methods are detailed in their respective analysis section.

4.1. General analysis
Here, we present statistics that are relevant for all instance types. Note that some of these
statistics are biased towards instance types with larger instances. Table 4.1 provides an
overview over the number of instances and the sum of segments and intersections grouped
by instance type.

Instance type Count Total segments Total intersections
reecn 45 1 702 324 9 611 195 542
sqrp 45 1 781 370 22 586 027 646
sqrpecn 45 1 677 212 18 854 770 863
visp 45 1 657 503 4 016 500 891
vispecn 45 1 528 924 3 409 252 108
Total 225 8 357 333 58 477 747 050

Table 4.1.: Number of instances and sum of size for each instance grouped by instance
type.

4.1.1. Representations
The representations are graphs themselves. In this section, we analyze the graph structure
and geometry of the representations.
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Vertex covers of endpoints

Two segments with a common endpoints rarely intersect, mainly because this requires a
set of three collinear points. While collinear points are not impossible, they are very rare
due to their random generation on an integer grid with large bounds. This motivates the
search for vertex covers of endpoints in the representation.

We use the heuristics presented in [ACL12] to find a vertex cover. All of them start with
an empty, incomplete vertex cover C = ∅ and add vertices to it until it covers all edges.
All vertices V are visited in some order σ : Z|V | → V . After a vertex v was visited, all
incident edges {uv ∈ E | u ∈ V } are covered. Some strategies use the label L(v) := σ−1(v)
of a vertex v when deciding which vertices to add to the cover.

• LR: The strategy ListRight is defined in [DL08]. If the currently visited vertex u
is not in the cover, add all of its neighbors that are not in the cover C to it. This
means adding all vertices v with {v | uv ∈ E ∧ v /∈ C} to C.

• ED: This strategy is an approximation algorithm that requires at most twice as
many vertices as an optimal cover [ACL12]. If a vertex u /∈ C has a neighbor v /∈ C,
then both u and v are added to C.

• S-Pitt: This is a variation of the ED algorithm. If a vertex u /∈ C has a neighbor
v /∈ C, then u or v is added to C. Which one is chosen uniformly at random.

• LL: The strategy ListLeft is defined in [ACL11]. The vertex u is added to the cover C
if there is a neighbor v that has a greater label than the current vertex L(v) > L(u).

• SLL: The strategy Sorted-ListLeft is defined in [ACL11]. The vertex u is added to
the cover C if it has a neighbor v that has a lower degree d(v) < d(u). If the degrees
of these two vertices are equal d(v) = d(u), the vertex is added under the condition
of LL, which is L(v) > L(u).

• ASLL: The strategy Anti Sorted-ListLeft is defined in [ACL11]. The vertex u is
added to the cover C is there is a neighbor v that has a lower degree d(v) > d(u). If
the degrees of these two vertices are equal d(v) = d(u), the vertex is added under the
inverted condition of LL, which is L(v) < L(u).

Additionally, we introduce the following strategies:

• GD: This algorithm iterates over all edges uv ∈ E. If one endpoint is already in the
cover, formally u ∈ C ∨ v ∈ C, no new vertex is added to the cover C. Otherwise,
the vertex with the greater degree is added. The motivation for this heuristic are the
sqrp instances, where segments are more likely to have one of its endpoints close to
the border, giving these endpoints high degrees.

• inward: The center of a representation is the average over all points of the represen-
tation. Order the vertices non-increasingly by their distance from the center, then
use the ListLeft strategy. The motivation for this heuristic is the same as the one for
GD.

• upward: Order the vertices non-decreasingly by their height, then use the ListRight
strategy. This strategy is motivated by the intuition of creating ’stripes’, intervals of
y-positions, that alternate between taking the points in that interval into the cover
and not doing so.

Evaluation of vertex covers

Table 4.2 shows how often each heuristic outlined above gives the best result grouped by
instance type. Heuristics that do not give the best result on any instance are omitted. If
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two heuristics give the best result, both of them are counted. Because this happens ten
times on the competition instances, the total number of the best solutions adds up to 235.

Instance type LR S-Pitt SLL GD upward
reecn 22 0 0 0 23
sqrp 6 0 5 37 3
sqrpecn 29 0 0 0 18
visp 0 6 0 6 35
vispecn 6 0 0 0 39
Total 63 6 5 43 118

Table 4.2.: The number of times each heuristic gives the best result for an instance grouped
by instance type.

Slopes

Each segment of a geometric graph corresponds to one vertex of the intersection graph.
Because the competition instances are randomly generated, we analyse the distribution of
slopes across these instances.

Figure 4.1 shows the portion of segments up to a given slope compared to the cumulative
density function of a uniform distribution. We use cumulative instead of probability
functions because competition instances provide a discrete distribution in contrast to the
continuous distribution we compare against.

Figure 4.1.: The cumulative distribution of the slopes over all instances and the uniform
distribution U(0, π/2).

The similarity between these two shows that a random variable following a uniform
distribution S ∼ U(0, π/2) is a good model for the slopes of segments. Following this
observation, let S1, S2 ∼ U(0, π/2) be the slope of two intersecting segments. The random
variable X12 describing the intersection angle of these two segments has the distribution
min(|S1 − S2|, π − |S1 − S2|), which is equal to the uniform distribution U(0, π/4).
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4. Instance analysis

4.1.2. Intersection graph

The graph coloring problems has been studied extensively, and for some graph classes,
efficiently coloring algorithms were developed. The goal when analyzing the intersection
graphs is to find out whether they or large subgraphs of them are in these graph classes.

Clique sizes

Let ω(G) be the size of the largest clique of the graph G. This is a lower bound on the
chromatic number of the graph χ(G) ≥ ω(G).

Because calculating the size of the largest clique is NP-complete, we use Matula’s coloring
algorithm [MMI72] as a heuristic to find large cliques in the intersection graphs. In this
section, we only introduce its use in finding cliques, not how it is used to color graphs.

The idea of this algorithm for an input graph G is to remove the vertex with the lowest
degree and its incident edges until only a complete graph remains. This graph is a subgraph
of G and complete, therefore it is a clique of G.

Algorithm 4.1: Matula clique
Input: Graph G = (V,E)
Output: Size of a clique ω ∈ N

1 while min({d(v) | v ∈ V }) + 1 < |V | do
2 v ∈ V is a vertex with minimal degree d(v);
3 G← G− v;
4 return |V |

Algorithm 1 shows a formal description of this algorithm. Next, we show that this algorithm
always outputs a clique. Let V (i), E(i) be the sets of vertices and edges after i iterations of
the while loop. The input graph is (V (0), E(0)). In each iteration, elements are removed
from V and E, but no new ones are added. Let k be the number of iterations the while
loop makes. The resulting graph after the while loop (V (k), E(k)) is a subgraph of the input
graph (V (0), E(0)). This can formally be described as follows:

∀i ∈ Zk : V (i) ⊆ V (i−1)

=⇒ V (k) ⊆ V (0)

∀i ∈ Zk : E(i) ⊆ E(i−1)

=⇒ E(k) ⊆ E(0)

Therefore, (V (i), E(i)) is a subgraph of the input graph for all i. Further, we know that the
minimum degree of (V (k), E(k)) is |V (k)| − 1, as the loop terminates. The maximum degree
is also |V (k)| − 1, which means that every vertex has degree |V (k)| − 1 and the graph is a
complete graph.

This algorithm runs in O((|V | + |E|) log(|V |)) with a data structure that perform the
following operations in O(log(V )) or faster: add a vertex, reduce the degree of a vertex by
one, find the index of a vertex with lowest degree, remove a vertex, and get the minimal
degree of all vertices. A segment tree accomplishes this [BW80].

Figure 4.2 shows the clique sizes found with Matula’s algorithm compared to the number
of vertices in the intersection graph.
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4.1. General analysis

Figure 4.2.: The size of cliques plotted against the number of segments. Each marker
represents one instance.

Diameter

In our analysis of the competition instances, we calculated the diameters of some instances.
While this is not directly motivated by a coloring method, it is still of interest for the study
of this random graph model.

Figure 4.2 shows the diameters compared to the number of vertices for some intersection
graph. This diagram does not show the diameters for all intersection graphs.

Figure 4.3.: The diameters plotted against the number of segments. Each marker represents
one instance.
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Density

Graphs with relatively few edges, called sparse graphs, and many edges, called dense graphs.
In this section, we introduce a measurement of how dense a graph is and analyze the
density of the competition instances.

A graph with |V | vertices has at most |V | · (|V | − 1)/2 edges. For a graph G = (V,E), we
define its density d(G) as the number of edges relative to the maximum possible.

d(G) = |E|/ |V | · (|V | − 1)
2

= 2|E|
|V | · (|V | − 1)

The density d(G) of a graph is always in [0, 1]. We call a graph G sparse if its density is at
most 0.1, following [LM01].

The Table 4.3 gives an overview over the density of graphs grouped by instance type.

Instance type d(G) average d(G) variance
reecn 0.227 6.572 · 10−4

sqrp 0.491 2.902 · 10−3

sqrpecn 0.464 1.606 · 10−3

visp 0.100 2.970 · 10−3

vispecn 0.105 2.035 · 10−3

Table 4.3.: The average and variance of density for each instance type.

The only instances that fulfill the condition of a density 0.1 are visp instances. These
instances have dense subgraphs, however, which are only losely connected. Therefore, these
graph do not fulfill the random graph assumption of [LM01]. We do not investigate this
approach further.

Skewness

A graph is called planar if it has a plane drawing. For planar graphs, efficent coloring
algorithms which require few colors are known. The skewness of a graph is a metric that
indicates how far a graph is from being planar, with planar graphs having a skewness of 0.
In this section, we investigate the skewness of the competition instances.

The idea is to partition the intersection graph into plane subgraphs, which can trivially be
colored with six colors, and it is known that they can be colored with four colors [G+08]. If
this is possible without requiring to build too many subgraphs, a coloring with few colors
can be reconstructed from the colorings of these subgraphs.

The skewness s(G) of a graph G is the minimum number of edges that need to removed
for the graph to be planar. Let G be a planar graph and f the number of faces in a
plane drawing of G. Assuming that G is connected, the Euler formula states the following
relationship between the graph and the number of faces:

|V |+ f = |E|+ 2

Each face is bounded by at least three edges, and each edge is adjacent to at most two
faces. This gives the following relation between edges and faces:

3f ≤ 2m
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4.1. General analysis

It follows that for each planar graph, the following inequality holds:

|E| ≤ 3|V | − 6

If this inequality is not true, at least |E| − 3|V |+ 6 edges need to be removed to make it
true. This is a lower bound for the skewness of a graph:

s(G) ≥ |E| − 3|V |+ 6

The smallest minimum skewness across all instances belongs to the instance rvispecn2615
with a minimum skewness of 153644, and the average minimum skewness is 259789672.893.
Due to the high minimum skewness, we do not investigate this approach further.

Vertex cover

Let k ∈ N a natural number we call the parameter, n the size of the problem instance. A
fixed parameter tractable (FPT) problem is one that, for some function f and constant
c ∈ R, can be solved in O(f(k) · nc) time [DF99]. This means that problem is efficently
solvable for small k.

Let k by the size of a vertex cover of a graph G = (V,E). [FGK11] shows a proof that the
graph can be colored in O((kk+1 + |E|) · |V |) time.

This algorithm requires a vertex cover, however, and calculating one is also an NP-complete
problem. A vertex cover can be calculated with another FPT algorithm which is also
parameterized by the size of the vertex cover [GN07]. Because we already require the vertex
cover size to be small for the coloring algorithm, this adds no new requirement. We use
the FPT algorithm instead of heuristics in this section because we are no longer interested
in actual vertex cover sizes, we only want to show that this approach is infeasible.

The algorithm answers whether there is vertex cover of size at most k for a graph G, and if
so, calculates one. If there is a vertex v with degree d(v) > k, then it has to be part of the
vertex cover. Assuming it was not, all of its neighbors would have to be in the vertex cover
to cover all edges between v and its neighbors. The vertex v has more than k neighbors,
which is more than is still allowed to be taken into the cover. Therefore, we add v to the
cover under construction and apply the same step to the graph G′ = G− v with the limit
of k′ = k − 1 vertices for the cover of the remaining graph. If k′ = 0 but G′ still contains
edges, we know that there is no valid vertex cover for this graph with size k.

Figure 4.4 shows the lower bounds on the vertex covers for all instances.
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4. Instance analysis

Figure 4.4.: The lower bound of the vertex covers plotted against the number of segments.
Each marker represents one instance.

Using this coloring approach remains feasible up to k ≈ 10 on our computers. The minimal
lower bound of the vertex cover size over all competition instances is 499. Therefore, we do
not investigate this approach further.

4.2. Instance type statistics
In this section, we analyze each instance type in more detail. First, we take a look at the
-ecn modifier, which takes a geometric graph as its input and returns a modified version
with slightly extended segments. Then, we show the analysis of the sqrp, visp and reecn
instances, including their modified variations.

4.2.1. -ecn modifier

-ecn instances are created by modifying an existing instance. These instances are generated
by extending the segments of an existing instance, following up on the motivation that the
edge coloring problem for planar graphs [CN90] can be transformed into a plane partitioning
problem by extending each edge.

Generation

The -ecn generation takes some instance and extends every segment slightly in both
directions. This does not move the original endpoints of the segment, instead two new
endpoints are created. After that, a few new random segments are added randomly.

This modifier uses the parameters c > 1, the scaling factor, and p ∈ [0, 1], the chance for
each segment between two points to be added after extending all existing segments. Let
p1p2 be a segment. Then the new, modified segment is p′1p′2 with

p′1 = p2 + c+ 1
2 · (p1 − p2)

p′2 = p1 + c+ 1
2 · (p2 − p1)
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4.2. Instance type statistics

This moves both points away from each other. If p1 and p2 are at distance d to each other,
the points p′1 and p′2 are at distance d′ = d · c to each other. This modification splits all
endpoints with a degree greater than 0 in the representation into multiple, where each new
point is only has degree 1.

Then, for each pair of points (p1, p2) which has no connecting segment, a new segment is
added with probabilty p. This reduces the number of endpoints with degree 1.

Vertex cover of endpoints

The -ecn-modifier heavily increases the number of vertices while leaving the number of
segments unchanged, we expect the size of the vertex cover to increase. In this section, we
compare the sizes of vertex covers of -ecn and non-ecn-instances.

There are two trivial upper limits on the size of the vertex cover, the number of vertices
and the number of edges in the graph. A vertex cover is a subset of vertices, and can
therefore not be larger than the set of vertices. Because each edge requires only one of
its endpoints to be in the vertex cover, one possible way to construct a vertex cover is to
iterate over each edge uv, choose one of its endpoints u or v, and add it to the cover. This
constructs a vertex cover that has at most one vertex per edge.

Given that we expect the size of the vertex cover with the size of the representations,
which is why we do not provide absolute numbers for the vertex covers, but relative ones
comparing to the number of segments and endpoints.

Table 4.4 It shows that the vertex covers of -ecn-instances are smaller relative to the
number of points in the instance than non-ecn-instances, but larger relative to the number
of segments.

Instances rel. to #points rel. to #segments
-ecn instances 50.645% 72.977%
other instances 82.896% 1.407%

Table 4.4.: A comparison of relative vertex cover sizes between -ecn and other instances.

Let G = (V,E) be a graph where every vertex has degree 1. The sum of degrees over
all endpoints is twice the number of edges, and because all degree are 1, this graph has
twice as many vertices as edges |V | = 2|E|. An optimal vertex cover of this graph contains
exactly one endpoint of each edge, which results in a vertex cover of size |E| = |V |/2. This
explains why the size of the vertex cover relative to the number of points for -ecn instances
is roughly 50%. The ednpoints of all extended segments have degree 1 until the additional
segments are added. These additional segments

This variation also breaks the original motivation for the search of these vertex covers,
namely that endpoints are a good source of large independent sets. Because most endpoints
of -ecn-instances have a low amount of incident segments, this is not the case anymore.

4.2.2. sqrp instances

sqrp instances are generated by placing points randomly in a square and connect them
randomly with a bias towards longer connections.

An example for a sqrp instance is the rsqrp4637 instance shown in Figure 4.5 and an
example for a sqrpecn instance is the rsqrpecn8051 instance shown in Figure 4.6.
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4. Instance analysis

Figure 4.5.: The competition instance rsqrp4637.

Figure 4.6.: The competition instance rsqrpecn8051.

Generation

All sqrp instances were generated with the following scheme with the input variables
k ∈ N, c ∈ (0, 1], p ∈ (0, 1]. First, generate a set of k random points inside a square. The
side length and position of the square in the 2D-plane does not matter. Then, sort all of
the k(k − 1)/2 possible segments and only keep the longest bc · (k(k − 1)/2)c. From the
remaining segments, add each one independently with a chance of p.

The expected number of segments in a sqrp instance is p · bc · (k(k − 1)/2)c.

Instance parameters

From a competition instance, we can infer the values of k, c, and p. The parameter k is
the number of points given in the representation. For the parameter c, we find the shortest
segment s in the representation and find how many possible segments are longer than s.
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4.2. Instance type statistics

We calculate the parameter p with the number of segments |S| as p = |S|/(c · (k(k− 1)/2)).
This works well under the assumption that the number of segments |S| is close to its
expected value.

Table 4.5 shows the parameters for a few sqrp instances calculated this way. The values for
c and p are rounded to the nearest multiple of 0.05.

Instance name k c p

rsqrp7320 471 0.30 0.80
sqrp10642 471 0.50 0.20
sqrp41955 533 0.50 0.60
sqrp43759 742 0.50 0.30
sqrp73525 1031 0.25 0.55

Table 4.5.: The value of the generation parameters k, c, p for some sqrp instances.

Intersection angles

During the analysis of the slopes, we concluded that a uniform random variable X ∼
U(0, π/2) is a good model intersection angles in general. In this section, we compare the
actual distribution of intersection angles in sqrp instances to the theoretical one X.

Figure 4.7 shows a comparison between the uniform distribution X and the actual cumula-
tive distribution of three sqrp instanecs.

Figure 4.7.: The cumulative distribution of the intersection angles of the instance rsqrp4637,
rsqrp4641, and rsqrp7320, and the uniform distribution U(0, π/2).

This shows that for sqrp instances, intersection are more likely to be closer to π/2. This
observation makes intuitive sense, as segments with similar slopes need to be close together
to intersect, while segments with greatly differing slopes do not.

4.2.3. visp instances

The visp instances are random straight-line visibility graphs in polygons. This section
provides the analysis of the visp and vispecn instances.
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4. Instance analysis

An example for a visp instance is the rvisp3499 instance shown in Figure 4.8 and an
example for a vispecn instance is the vispecn7028 instance shown in Figure 4.9.

Figure 4.8.: The competition instance rvisp3499.

Figure 4.9.: The competition instance vispecn7028.

Generation

All visp instances were generated with the following scheme. Choose some polygon in the
plane. This polygon may not self-intersect, but it may contain holes. Generate a set of
random points inside the polygon. For all pairs of two points, if the segment between them
does not intersect the boundary the polygon, add it.

Exact polygon reconstruction

It is impossible to reconstruct the original polygon with certainty, because there are multiple
polygons that can result in the same representation. A simple example of this is in Figure
4.10, where the same representations arise from different polygons.
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Figure 4.10.: The same representations can arise from different polygons.

For the following reconstruction methods, we assume that the intersection graph to the
given representation has only one component. This may not be true for the given instances,
but if it has multiple components, each of them may be examined separately because each
component may be colored separately.

Because it is impossible to reconstruct the original polygon, we construct a polygon that
matches the visp instance as precisely as possible. Formally, we construct a possible polygon
for the generation that has minimal area.

To get this polygon, we first construct a plane geometric graph that has the same boundary.
For each pair of intersecting segments p1p2 and p3p4, add a new point p′ to the geometric
graph. Then, replace the intersecting segments with the four new segments p1p

′, p′p2, p3p
′,

and p′p4.

For each point, sort its incident segments clockwise. Start the construction of the polygon
by adding the point p1 furthest to the left. Then, add the point p2 which is adjacent to p1
and furthest up. For pi, i ≥ 2, add the segment that is next in the sorted segment list of pi
after the segment pi−1pi. Once the point p1 is reached again, the polygon construction is
complete.

This polygon has the minimal area. Assuming that it is not, there should be at least one
point that may be removed. Because the polygon may not contain holes, the point has
to be removed from its border. Every single point on the border belongs to a segment or
a point, which means that removing it would make this point or segment impossible to
generate from this polygon.

This construction method requires the calculation of all intersection points. Even though
the segment endpoints of the original instances are always at integer coordiantes, the
intersection points may not be. Additionally, the polygon can be used to speed up the
calculation of the intersection graph. Because this reconstruction requires this calculation
beforehand, we can not use this advantage.

Approximate polygon reconstruction

Motivated by the problems of an exact polygon reconstruction, we present an approxi-
mate polygon reconstruction that does not require any intersection calculation before the
reconstruction.

The plan is to subdivide the bounding box into a grid of rectangles and determine for each
rectangle whether it is intersecting with the instance or not. To eliminate the intersection
checks between these rectangles and the segments of the instance, place k sample points
uniformly distributed along each segment. A rectangle intersects the instance if one of
these sample points lies within this rectangle.
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For the formal construction, we consider the axis-aligned bounding box of the instance
R = (P, S) with minimal area. Let (xmin, ymin) be the lower left corner of the bounding
box, and w the width and h the height of the bounding box. Then we choose a polygon
resolution r = 2k, k ∈ N and segment approximation precision a.

First, we translate the instance by (−xmin,−ymin) so that its lower left corner (0, 0). Then,
we scale it such that both its width and height are r. Let P ′ be the set of points used to
approximate the polygon. For each segment p1p2, we add a set of evenly spaced points
on the segment, {p1 + (p2 − p1) · (t − 1)/(a − 1) | t ∈ Za}, to P ′. For each square with
sidelength 1 with its lower left corner on the integer grid, check if there is at least one point
inside of it. If so, add it to the approximate polygon.

Figure 4.11 shows an approximate polygon reconstruction of instance visp26405 with a = 32
sample points per segment and a resolution of r = 64. Figure 4.12 shows the original
instance for reference.

Figure 4.11.: An approximate polygon reconstruction of the competition instance visp26405.

Figure 4.12.: The competition instance visp26405.
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4.2.4. reecn instances

All reecn-instances have the -ecn modifier, and there are no competition instances without
this modifier. These instances are general random graphs embedded into the plane and
then modified by the -ecn modifier.

An example for a reecn instance is the reecn3382 instance shown in Figure 4.13.

Figure 4.13.: The competition instance reecn3382.

Generation

To generate a reecn instance, generate a random graph G(n, p) with n vertices and embed
it into the plane using the Kamada-Kawai-Layout [KK+89]. Then, apply the -ecn-modifier
to it.

For each pair of vertices (v1, v2) ∈ V 2, the Kamada-Kawai-Layout attempts match the
distance of the points p1, p2 representing these vertices as closely as possible to the distance
of v1, v2 in the graph G = (V,E) to embed. An example of a Kamada-Kawai-Layout for a
random graph with 50 vertices and edge probabilty 0.3 is shown in Figure 4.14.
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Figure 4.14.: A random graph with 50 vertices embedded with the Kamada-Kawai-Layout.
The implementation for generating this embedding is from the networkx
library for Python3.
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5. Partitioning geometric graphs into
plane subgraphs

This chapter presents and analyses the different coloring methods. There are two major
components to coloring these instances, representation heuristics and general coloring
algorithms, which we discuss in this chapter.

5.1. Representation heuristics

In this section, we introduce the representation heuristics used to color the competition
instances.

5.1.1. General ideas

Here, we note a list of short ideas arising from the observations made in Chapter 4.

Independent sets from endpoints

For a graph G = (V,E), we call a set of vertices V ′ ⊆ V independent if there are no edges
between any two vertices in V ′. In a proper coloring of G, the number of vertices with
same color is independent for each color used.

We already noted in Chapter 4 that segments with a common endpoint rarely intersect.
Therefore, we know that the vertices of these segments in the intersection graph are an
independent set in most cases.

Color distribution

In chapter 4, we made the observations that the slopes are approximately uniformly
distributed, and that pairs of segments with similar slopes intersect less frequently than
pairs of segments with a greater difference in slopes.

From these two observations, we come to the assumption that each color appears roughly
equally often in an optimal coloring of the intersection graph. Each color then colors a set
of segments with similar slopes.
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Intersection angles

We already noted that pairs of segments with similar slopes are not as likely to intersect as
segments with greatly differing slopes. Therefore, we use similar slopes as a heuristic to
find large sets of slopes that do not intersect each other.

5.1.2. Partitioning

Instead of solving the coloring problem for the entire graph, we want to subdivide the
graph into smaller ones that are solvable more efficiently and then combine these solutions
to a solution on the entire graph. This section covers partitioning strategies and how well
the coloring algorithms perform when combined with these partitioning strategies.

Partitioning with edge cuts

One way to partition a graph G is to partition its vertices V into two sets, color both
induced subgraphs, and then combine these colorings to coloring of the complete graph.

For a partition V into V1, V2, we call the edges Ecut between the cut. The two best cases
for a partition V1, V2 of vertices V are:

• There are no edges between the vertices of V1 and V2.

Ecut = ∅

In this case, both sets can be colored independent of each other. The same set of
colors may be used for both sets of vertices, resulting in the final coloring having
min(|c(V1)|, |c(V2)|) colors.

If there are very few edges in the cut Ecut, the coloring can be combined using a
local search method resolving any conflicts arising from these edges. Alternatively,
the graph from V1 is colored first, and V2 considers the coloring of the vertices of V1
when coloring its vertices.

• There is an edge between every vertex of V1 and V2.

|Ecut| = |V1 × V2|

This reduces the number of edges to consider by |V1| · |V2|. No color from one set may
be used in the other one, resulting in the final coloring with |c(V1)|+ |c(V2)| colors.

This strategy still works when most, but not all edges between the vertices of V1 and
V2 are present. The fewer edges there are, the less effective this approach becomes.

Partition by slope

This section covers partitioning vertices such that ones with similar slopes end up in the
same partition, as well as resulting properties of such a partition.

For this partition strategy, we first sort all vertices by their slope. Then, to form k partitions,
let the i-th partition be the vertices from index |V | · ((i− 1)/k) + 1 to |V | · (i/k) in this
order.

This approach uses edge cuts, which works well when there are a lot or very few edges
in the cut. This partitioning approach has these optimal cases with few edges between
adjacent partitions with index i and i+ 1, and many edges between partitions with index i
and i+ k/2. However, this partitioning results in the worst case inbetween. Because of
this, we do not investigate this partitioning approach further.
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Partitioning visp instances

The visp instances offer an intuitive way to partition them with vertex cuts. Figure 5.1
shows such a partitioning. The red lines mark the manual cuts, where each segment
intersecting them is part of the cut. The blue lines are the segments in the cuts, and the
green lines are the remaining segments.

Figure 5.1.: A manual partition of the competition instance visp26405.

This manual partition is used to test coloring algorithms before creating a partitioning
algorithm. We first colored all blue segments simultaneously because the vertices of different
cuts are connected in some cases. Then, we color each component of green segments.

This partitioning approach required more colors with our coloring methods. Because of
this, we do not investigate this partitioning approach further.

5.2. Coloring algorithms

In this section, we introduce the coloring algorithms we use to color the competition
instances. We provide motivations and theoretical time complexities for these algorithms.

5.2.1. Sequential coloring

Sequential coloring algorithms color each vertex once in some order. This general idea
makes them generally fast, because they only treat each vertex once. Because of this, these
algorithms are already widely studied, for example in [Bré79, MMI72, KM04, Cul92].

All sequential algorithms have the same general structure. As long as at least one vertex
has no assigned color, the algorithm chooses one uncolored vertex and assigns the vertex
some color that no vertex in its neighborhood has. Selecting a good heuristic to select the
vertex to color in each iteration is the main challenge when adapting the generic sequential
Algorithm 2.
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Algorithm 5.1: Generic sequential coloring
Input: Graph G = (V,E)
Output: Coloring c : V → N

1 init(G);
2 forall v ∈ V do
3 c(v) = ⊥; /* ⊥ is a placeholder for vertices without a color */

4 while ∃v ∈ V : c(v) = ⊥ do
5 v ← selectVertex(G, c);
6 c(v)← selectColor(v,G, c);
7 return c

These algorithms run in O(Tinit(G) + |V | · (TselectVertex(G) + TselectColor(G))), where
Talgo(G) is the worst case time complexity of the respective algorithm algo when applied
to the graph G.

Note that the vertex selection algorithm selectVertex may only choose a vertex that is
not colored, but it may make its decision based on the graph and the current, incomplete
coloring.

Greedy coloring

This section describes a simple, well-known sequential method to color a graph G = (V,E),
which we simply call greedy coloring.

This algorithm chooses any order σ : Z → V during the init subroutine. There are no
requirements for this order, and if the data structure that stores the graph implicitly
provides such an order, may only take O(1) time.

During the ith call to selectVertex, the vertex σ(i) is returned. This vertex is then
assigned the minimum color that no vertex in its neighborhood has.

DSATUR

The DSATUR algorithm is defined in [Bré79]. This algorithm is a good heuristic for
sequential coloring algorithms and is still used to motivate or as part of modern algorithms,
for example in [Cul92, FGT16, San12].

DSATUR tries to identify the vertex which has the most limited options for the color that
can be assigned to it, and color it first. To quantify how limited the options of a vertex
are, the paper [Bré79] defines the saturation s(v) of a vertex v as the number of unique
colors in its neighborhood:

s(v) = |c(N(v)) \ {⊥}| (5.1)
For this variation of the greedy algorithm, the selectVertex algorithm choose the vertex
with the highest saturation. If multiple vertices are tied for the highest saturation, return
any with the highest degree among them. An addressable priority queue, like pairing
heaps[SV87], can accomplish this efficiently. The initialization of this data structure
happens in init.

selectColor may not choose a color that is in the neighborhood of the selected vertex v,
but it may make its decision based on the graph and the current, partial coloring. The
most common choice for this, which is also presented in [Bré79], is to choose the smallest
color that is not in the neighborhood of v.

selectColor(v,G, c) = min(N \ {c(w) | vw ∈ E, c(w) 6= ⊥}) (5.2)

42



5.2. Coloring algorithms

If the graph is stored in a way that allows to iterate over all incident edges of v in O(d(v)),
for example as an adjacency list, then each edge is inspected exactly twice when calling
this algorithm once for each vertex. This gives a time complexity of O(d(v)) for a total
time complexity of O(|V |+ |E|) for all calls to this function during one coloring.

DSATUR variations

From the assumption that each color appears approximately equally often, two variations
for selectVertex arise. The first one first attempts to give the vertex v a color of an
already colored vertex w which corresponds to the segment with the most similar slope to
the segment corresponding to v. We define the similarity of two slopes as their intersection
angle

min(|sv − sw|, π − |sv − sw|)
where smaller values mean that more similar slopes. For sv = sw, this value is 0. Every
already colored vertex is tried in a non-decreasing order of this value. If none of their
colors is not in the neighborhood of v, it is assigned a new color. This adds a factor of
|V | log(|V |) to the runtime of selectColor for this algorithm.

The second one attempts to balance the number of occurrence of each color, which means
that for the coloring c, the value of e should be minimal, where e is the difference between
the number of occurrence of the most and least used color.

o(x) = |{v | c(v) = x}|
e = o(max

x∈C
(o(c)))− o(min

x∈C
(o(c)))

[?] outlines a good heuristic to achieve this. selectColor always chooses the color that is
already used, but is not in the neighborhood of vertex to color v and is used the least so
far. If no such color exists, it is assigned a new color.

Slope order, randomized

Another sequential algorithm is the slope order approach. This one colors the vertices in the
Increasing order of their respective slopes in the representation R of the graph G. Sorting
the vertices requires O(|V | log(|V |)) time for init, after which each call to selectVertex
can be handled in O(1). Together with the version of selectColor which always chooses
the minimal possible color, the total time for this algorithm is O(|V | log(|V |) + |E|).

Let σ : Z|V | → V be the slope order in which the vertices are colored. A circular shift of
this order σ by n ∈ N is a new order σn, defined as

σn : i 7→
{
σ(i+ n) i+ n ≤ |V |
σ(i+ n− |V |) otherwise.

For the slope order approach, this is equivalent to the order of the instance when rotated
by the slope of the vertex σ(n+ 1) in the direction of decreasing slope. When comparing
the two circular shifts σn and σn+1, we observe that the difference in colors used is usually
zero or one. For any circular shift, the number of colors used does not deviate a lot from its
average over all instances. Therefore, calculating a coloring for every circular shift, which
adds a factor of |V | to the time complexity, is not worth the effort. Instead, we choose k
random values for the shift n and calculate a coloring for each of them. We abbreviate this
coloring algorithm to SOR.

This approach relies on a segment representation for the intersection graph. If only the
intersection graph is given, constructing a representation is a known ∃R-complete problem
[Mat14].
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5. Partitioning geometric graphs into plane subgraphs

5.2.2. Coloring by endpoints
The coloring algorithm presented in this section does not require the intersection graph
G = (V,E) of the representation R = (P, S). This removes the O(|S|2) overhead for the
naive intersection calculation or the O((|S| + |E|) · log(|S|)) overhead for the Bentley-
Ottmann algorithm [BO79]. Because this coloring algorithm does not use the intersection
graph, we talk about coloring the segment of the geometric graph instead.
First, we assume that for each point p ∈ P in the representation R = (P, S), all incident
segments of p do not intersect each other. We assign each points p a different color. Then,
we assign each segment p1p2 the color of one of its endpoints p1 or p2.
The only remaining problem is how to choose the endpoint for each segment such that
lowest number of colors possible are used. This is equivalent to finding the smallest vertex
cover on the representation. We have already examined this problem in Chapter 4.
Last, we need to handle intersecting segments with the same endpoints p. For each point
p ∈ P , we sort all incident segment clockwise in O(d(p) log(d(p))) time. If two of the to p
incident segments intersect, they are next to each other in this sorted list. Therefore, we
can now find intersecting segments in O(n). When we find an intersection between two
segments s1 and s2, we assign one of them a new color. We already observed that segments
with common endpoints intersect rarely, which means that this method does not add many
additional colors.

5.2.3. Random coloring
A random coloring uses each color approximately equally often. Because we already assume
that the optimal color does so as well, we hope that a random coloring is close to a good
local minimum that we can then find with a local search method.

Random coloring with conflicts
The first strategy creates a coloring with k colors. k is fixed. The coloring algorithm assigns
each vertex one of the k colors with equal probability for each color.
This is most likely going to result in an improper coloring. These colorings can still be
used for local search algorithms, because some of them do not require a proper coloring,
only one that is close to a local minimum.

Random coloring without conflicts
The second strategy creates a random coloring without conflicts. When coloring a vertex v,
it assigns a random color that is already assigned to some vertex, but not assigned to any
neighbor of v. If no such color exists
The motivation for this second variant of random colorings are local search algorithms that
do require a proper coloring as a starting point.

5.2.4. SAT-solver
Because most problems can be formulated as SAT instances, methods for solving SAT
problems are extensively studied. We formulate our problem as a SAT problem and use the
kissat solver [BFFH20] due to its outstanding performance in the 2020 SAT competition
[FHI+21].
SAT solvers solve the decision problem whether an assignment a : U → B exists that
satisfies all clauses C, and if so outputs one such assignment. A SAT formulation of the
coloring problem for a graph G with at most k colors is a SAT instance (U,C) that only
has a satisfying variable assignment if the graph G is colorable with at most k colors. In
such a case, the coloring c : V → Zk is reconstructable from the variable assignment t.
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SAT formulation

The paper [Vel07] provides an overview of well-known SAT formulations of the coloring
problem. We use the muldirect formulation.

This formulation uses one variable for each pair of a vertex v and a color c.

U = {x(v,c) | v ∈ V, c ∈ {1, . . . , k}}

In order to guarantee that a complete coloring is constructed, each vertex needs to have at
least one possible color.

Ccomplete = {x(v,1) ∨ · · · ∨ x(v,k) | v ∈ V }

In order to guarantee that a proper coloring is constructed, the vertices on each edge may
not have the same color. To achieve this, we add a clause

Cproper = {x̄(u,c) ∨ x̄(v,c) | uv ∈ E, c ∈ Zk}

The set of clauses used is the union of the two sets that formulate the requirements
C = Ccomplete ∪ Cproper. For each vertex v, we choose any color c such that the variable
xv,c representing that this color may be chosen is true:

c(v) ∈ {c | a(x(v,c)) = true}

Search strategy

Binary search is a well-known algorithm for finding the first value fulfilling some condition
in a linear, monotone search space. We use it to find the lowest number of colors possible
such that the graph is colorable.

When running the kissat SAT solver, it only terminates when it either finds a satisfying
variable assignment or a set of unsatisfiable clauses. Especially when close to the chromatic
number of the graph, it just runs out of memory after a long calculation. To prevent this,
we limit the calculation time for each color to three minutes. After that time limit, we
interrupt the calculation and assume that the current instance is unsatisfiable.

With this limitation, the SAT solver almost always terminates either because it found a
satisfying variable assignment or because the limit was hit. The time limit termination
takes a considerable bit longer than most terminations by finding a satisfying variable
assignment.

Motivated by the problem of binary search, we instead search from n down.

5.3. Coloring improvement algorithms
The algorithms in this section require both a graph G = (V,E) and a valid coloring
c : V → Zn as their input and return a coloring c′ : V → Zn′ , which uses no more colors
than the input coloring c.

5.3.1. Iterative greedy coloring

This section presents the iterative greedy algorithm from [Cul92]. This includes the original
idea of repeatedly applying a sequential coloring algorithms and using the coloring of the
last iteration as a heuristic for the current one, as well as adaptations to this exact use
case where representation heuristics may be used.
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5. Partitioning geometric graphs into plane subgraphs

Proof of improvement

Consider a greedy coloring algorithm that colors the vertices in some order σ, and each
vertex is colored by giving it the smallest color that does not belong to a colored neighbor.
Then there is at least one order σ such that this algorithm uses the minimal amount of
colors necessary to color this graph.

The proof we present here is a little stronger, showing that for any coloring, there is some
order of coloring the vertices such that the resulting coloring requires an equal or lower
amount of colors than the coloring from which the order was constructed. Let c : V → C be
the initial coloring. Then, choose the order σ : {1, . . . , |V |} → V such that if two vertices
have the same color in this order, all vertices between them have this color as well.

∀i, j, k ∈ {1, . . . , |V |}, i < j < k : c(σ(i)) = c(σ(k))⇒ c(σ(i)) = c(σ(j))

This order has the vertices of each color in a continuous block. Now, apply the algorithm
to this order. Each block consists of independent vertices, which implies that the greedy
algorithm only ever finds lower colors in the neighborhood. Therefore, a vertex in the ith
block can not have a color greater than i. This especially means that no vertex has a color
greater that the number of blocks, which means that this coloring does not use more colors
than the one used to construct the order σ. Using an optimal coloring for the construction
of σ proves that such an order exists.

Algorithm description

The iterative coloring algorithm takes any order to start. It then greedily colors the graph,
creates a new order from this coloring with above construction algorithm, and then repeats
this process. This leaves two degrees of freedom when choosing the order from the coloring.

The first is the order of the vertices within some block of colors. Experimental results from
[Cul92] show that ordering vertices from non-increasingly by their degree is a good idea,
and they reasoned that this is to be expected because DSATUR has a similar idea. We
examine two variations of the algorithm. In the first one, we use the original ordering of
non-Increasing degrees. The second one is ordering the vertices non-decreasingly by the
slope of the segment representing them, motivated by the slope order algorithm.

The second is the order of color blocks themselves. Multiple approaches are presented in
[Cul92], but not all of them are used by us to generate colorings. The ones that are used
are:

• Increasing size: This strategy orders the blocks non-decreasingly by the number of
vertices with this color.

• Decreasing size: This strategy orders the blocks non-increasingly by the number of
vertices with this color.

• Reverse order: This strategy orders the blocks in decreasing order of the color they
represent.

• Random order: This strategy randomizes the order of the blocks.

These strategies are run in parallel and the one with the best result is chosen. When at
least one strategy reduces the number of colors used, the greatest decrease in the number of
colors is the best result. When one iteration of this algorithm does not reduce the number
of colors used with all strategies, another metric has to be used to measure progress. The
paper [Cul92] presents a metric that encourages large independent sets to form by taking
the sum of all assigned colors. More precisely, for each color c ∈ Zn, the number of vertices
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|Vc| with this color c is counted and the value |Vc| · c is added to the value of the metric.
Smaller values are preferable.

This algorithm terminates when no progress was made in one iteration. As this may happen
after a very large number of iterations, which in turn takes considerable time, a limit on
the number of iterations is imposed as well.

5.3.2. Tabu search

This section describes how the tabu search, a variation of the local search, performed on
these instances. An overview of tabu search approaches is in the survey [GH06]. These
algorithms are mainly variations on the algorithm tabucol, first described in [HdW87].

In [GH06], a search strategy is defined as a triple of the search space that is explored, the
neighborhood function defining to what solutions we may take a step from the current one,
and the evaluation function that has to be minimized.

The search space is the set of all possible solutions we consider. We start at one of these
solutions. Then we move to through the search space by repeatedly moving from our
current solution to one in its neighborhood. The evaluation function approximates how far
our current solution is from an optimal one.

Tabucol

The search space of the original tabucol [HdW87] is the set of all complete colorings for
the graph, including improper ones, with at most k colors. A step consists out of recoloring
one vertex v from its original color c to c′. The objective function to minimize is the number
conflicts, formally the number of edges vw with the same color on each end c(v) = c(w).
When the number of conflicts is 0, we have found a valid solution.

The first start point is a random coloring with conflicts, motivated by the fact that the
random coloring is most likely close to local minimum with few colors. This has a high
number of conflicts, requiring more progress to found a valid solution. This version is one
used in the paper on tabucol [HdW87].

The second start point is taking some proper coloring with k + 1 colors and recoloring
all vertices with color k + 1 to another random color. This starts with a low number of
conflicts, but it is likely difficult to escape a local minimum.

k-fixed partial legal

The search space of the k-fixed partial legal [Mor96] strategy is the set of all proper colorings
for the graph that use at most k colors, including incomplete ones. A step consists out
of giving an uncolored vertex v a color c, and set all neighbors of v with the color c to
uncolored. The objective function to minimize is the sum of degrees of uncolored vertices:∑

v∈V
c(v)=⊥

d(v)

When the sum of degrees of uncolored vertices is 0, we have found a valid solution, assuming
that all vertices with degree 0 are colored.

The first start point is a random coloring without conflicts using k+ 1 colors, motivated by
the fact that the random coloring is most likely close to local minimum with few colors.
Then, we set all vertices with color k + 1 to uncolored. This leaves us with an incomplete,
but proper coloring with k colors.
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The second start point is taking some proper coloring with k + 1 colors and setting all
vertices with color k + 1 to uncolored. This starts with a low sum of degrees of uncolored
vertices, because rarer colors do not have many vertices to take sum of degrees of, and
more frequent colors usually color vertices with low degrees. As with tabucol, it is likely
difficult to escape a local minimum.

5.4. Evaluation

In this section, we evaluate the coloring algorithms we introduced in this chapter. The
evaluation only uses a representative subset of the competition instances. For a full list of
colorings, see Table A.2 through A.6 in the appendix.

Coloring by endpoints

The main motivation for the coloring by endpoints algorithm is that it does not require
the intersection graph. Before the competition started, a set of test instances with up to
1000000 segments were released. The creation of this algorithm is mainly motivated by
instances of this size where calculating the intersection graph would be difficult. Because
the competition instances only have up to 75000 segments, coloring by endpoints loses its
use case.

Table 5.1 compares the sizes of vertex covers on the representation, which are a good lower
bound on the number of colors required by the coloring by endpoints algorithm, compared
to the number of colors required by the greedy algorithm on the intersection graph.

Instance name rep. vertex cover greedy
reecn7847 5551 165
reecn73116 51917 727
sqrp7730 231 197
sqrp73525 649 787
sqrpecn33659 25444 751
rvisp7648 277 88
visp73369 521 455
vispecn33280 23652 418

Table 5.1.: Representation vertex covers compared to greedy colorings of this intersection
graph for select instances.

While this method manages to beat the greedy algorithm in some cases, sequential coloring
algorithms with better heuristics, like DSATUR, are better on all instances. The main
point of this coloring algorithm is that it can efficiently produce proper and complete
colorings, but producing such colorings is not a problem on the competition instances.

DSATUR and variations

Next, we evaluate the performance of the DSATUR algorithm and its variations. Table
5.2 shows two things. First, like on general graphs [Bré79], the DSATUR algorithm beats
the greedy algorithm by a wide margin. Second, the original DSATUR algorithm and
the DSATUR slope variation usually return similar results, while the DSATUR balanced
variation does consistently require more colors.
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Instance name DSATUR DSATUR balanced DSATUR slope greedy
reecn7847 99 115 98 165
reecn73116 435 554 437 727
sqrp7730 120 137 120 197
sqrp73525 432 540 448 787
sqrpecn33659 492 572 480 751
rvisp7648 52 61 53 88
visp73369 311 364 – 455
vispecn33280 278 330 – 418

Table 5.2.: The colors required by DSATUR and its variations in comparison.

In our further evaluation, we only consider the original DSATUR algorithm. The balanced
variation requires more colors, and the slope variation adds a massive |V | log(|V |) time
factor.

Slope order, randomized

In this chapter, we introduced the SOR algorithm. This sequential algorithm manages to
color the intersection graphs with fewer colors in most instances, as Table 5.3 shows.

Instance name DSATUR SOR
reecn7847 99 88
reecn73116 435 392
sqrp7730 120 102
sqrp73525 432 337
sqrpecn33659 492 424
rvisp7648 52 60
visp73369 311 260
vispecn33280 278 302

Table 5.3.: Representation vertex covers compared to greedy colorings of this intersection
graph for select instances.

Local search

Both local search algorithms examined, the original tabucol and the k-fixed partial legal
strategy, fail to reduce the number of colors required. This is true when starting with a
random coloring which uses as many colors as a DSATUR or SOR coloring, as well as
when starting with a valid DSATUR or SOR coloring.

The experimental results in [HdW87, Mor96] investigating these two algorithms used
smaller instances for their tests. Both methods use a metric that has to be zero for a new
coloring to be found. In the survey [GH06], the importance of the aspiration criterion is
stressed. The aspiration criterion allows a tabu step to be taken if it reduces the metric of
the tabu search algorithm to zero.

These three facts combined explain why the tabu searches work so poorly on the contest
instances. These methods do not make continuous progress, but have a binary outcome,
either finding a solution with fewer colors or not. This algorithm does not scale well to
large instances because the search space gets larger and ’flatter’, making it more difficult
to step to a solution from a local minimum. This is supported by the importance of the
aspiration criterion, which assists in making this step. The fact that it is so important
shows that the tabu search already has trouble making this step on smaller graphs.
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Iterative greedy

We use the iterative greedy algorithm to improve coloring acquired with the DSATUR and
SOR algorithm.

The experimental results from [Cul92], show that this algorithm typically drastically reduces
the number of colors needed in the first few iterations, followed by a lot of iterations with
no progress. Our use of this algorithm exhibits the same behavior.

We evaluate two variants of this algorithm. The first one improves DSATUR colorings and
uses non-increasing degree order for its blocks, the other one improves SOR colorings and
uses slope order for its blocks. We evaluate both variants motivated by the fact that the
DSATUR algorithm performs better on some instances, while the SOR algorithm performs
better on others. The comparison between these two iterative greedy variations, as well as
the results of the initial solutions, are in Table 5.4.

Instance name DSATUR DSATUR iter SOR SOR iter
reecn7847 99 99 88 87
reecn73116 435 424 392 376
sqrp7730 120 120 102 100
sqrp73525 432 426 337 335
sqrpecn33659 492 471 424 418
rvisp7648 52 52 60 57
visp73369 311 – 260 255
vispecn33280 278 – 302 272

Table 5.4.: A comparison between the iterative greedy strategy with DSATUR and SOR
as start points.

kissat SAT solver

Here, we discuss the results acquired by the kissat SAT solver [BFFH20]. As Table 5.5
with the example of some reecn instances, kissat was able to tie the result of the iterative
greedy approach on small competition instances, but it does not manage to achieve the
same result on bigger instances.

Instance name DSATUR iter SOR iter kissat
reecn3382 95 88 88
reecn21194 207 207 216
reecn56737 273 273 280
reecn63079 318 317 328

Table 5.5.: Results of kissat SAT solver for coloring these graphs compared to the best
results acquired.
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6. Conclusion

In this thesis, we introduced and examined the problem of partitioning geometric graphs
into plane subgraphs. We showed that this problem and some subproblems limiting the
geometric graph are NP-complete, and evaluated the feasibility and performance of different
approaches using the CH:SHOP 2022 competition instances as benchmarks.

We motivated and introduced a new coloring method for intersection graphs of geometric
graphs, SOR, and compared it to well-known coloring methods, like DSATUR [Bré79].
Additionally, we adapted this new coloring algorithm to improve the existing iterative
greedy method [Cul92]. The most successful coloring algorithms in our evaluation are the
DSATUR algorithm followed by the iterative greedy algorithm, and the SOR algorithm
followed by the adapted version of the greedy algorithm.

The results acquired with our methods require in sum over all instances ∼13% more colors
than the results of top team of the competition ”Shadoks”. With this result, we placed
11th out of 40 teams. The top four teams of the competition are invited by the organizers
of the CH:SHOP 2022 competition to present their result as part of the CG Week 2022,
which is set to happen on June 07. - 10. 2022.

Open problems

From the results of this thesis, multiple new ideas for further analysis of intersection graphs
arising from geometric graphs.

Random graph models

Aside from the random graphs Gn,p first introduced in [ER+60, ER61], other random graph
models have been proposed to model problems. An example are power-law random graphs
[ACL01], where the distribution of degrees follows a power law. Each generation for one of
the five instance types is a random graph model that can be studied further.

This can also be extended to other random generation models for geometric graphs. A
paper which already provides an outlook what a very general analysis of random geometric
graphs looks like is [YY84], which provides a formula for the probability of two segments
intersecting if their bounding boxes intersect.
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SAT formulation

The paper [Vel07] provides a survey of SAT formulations on general graphs. This thesis has
shown that representation heuristics can be better than well-studied coloring algorithms
on general graphs, like SOR compared to DSATUR [Bré79]. This motivates the search for
a SAT formulation of the intersection graph coloring problem that uses the representation.

One idea is to build on the idea of [AHK+17], which considers the maximum number of
plane spanning trees there are in a complete geometric graph. To find these trees, the
paper [AHK+17] proposes to find a set pairwise intersecting segments. For each of these
segments, one of its endpoints then connects to all points to the left and the other to
all points to right of this segment. Removing the condition that these trees need to be
spanning trees and formulating the choice of tree generating segments as a SAT or ILP
problem might result in a better coloring method.

Local search

Similar to the motivation for SAT formulations using the geometry of the representation,
we motivate local searches making use of the representations. One idea is to create a metric
for progress that favors moving towards solutions where segments with similar slopes have
the same color, following up on the observation that an optimal solution most likely has
this feature.

FPT coloring algorithms

The graph class Seg provides a new possible parameter for fixed-parameter tractable
algorithms, namely the number of slopes used in the representation. [KN90] shows that
for a representation with at most k different slopes, the clique problem on the intersection
graph G = (V,E) can be solved in O(|V |k) time. This raises the question if there is an
FPT algorithm for coloring intersection graphs of geometric graphs.
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7. Appendix

A. Coloring tables
This section contains tables with ten coloring strategies. To fit these table on the pages,
the names of coloring strategies are abbreviated, see Table A.1.

Algorithm name Abbreviation
DSATUR balanced db
DSATUR slope ds
DSATUR dsat
greedy gr
Iterative greedy, SOR i_sorb
Iterative greedy, SOR start i_sor
Iterative greedy, DSATUR iter
kissat k_sor
slope order so
slope order, randomized start sor

Table A.1.: Algorithm name abbreviations.

Table A.2 contains the reecn colorings, Table A.3 contains the sqrp colorings, Table A.4
contains the sqrpecn colorings, Table A.5 contains the visp colorings, and Table A.6 contains
the vispecn colorings. The numbers marked in bold in these tables are the best coloring we
achieved for the instance. If a cell is marked with a ”–”, we do not have coloring for that
instance with that strategy.
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7. Appendix

Instance name db ds dsat gr i_sorb i_sor iter k_sor so sor
reecn3382 103 92 94 146 88 89 95 88 94 93
reecn3988 94 82 77 132 73 74 81 74 77 76
reecn6910 163 148 150 242 137 137 145 143 147 145
reecn7847 115 98 99 165 87 87 99 88 88 88
reecn9674 188 162 164 266 151 152 163 157 160 159
reecn11799 219 205 200 321 187 187 197 193 196 194
reecn12588 188 159 160 255 143 143 159 145 150 147
reecn15355 242 207 207 342 191 192 204 198 201 199
reecn16388 225 184 192 306 165 164 189 171 174 170
reecn17244 239 200 199 326 176 177 193 184 183 182
reecn18615 215 176 176 296 155 155 173 156 158 155
reecn21194 273 233 225 374 207 207 223 216 215 213
reecn21946 281 224 231 361 201 200 222 207 207 205
reecn23484 268 221 218 358 191 191 211 194 193 193
reecn23945 296 243 252 407 219 219 248 228 230 227
reecn25913 348 308 302 490 275 277 298 296 297 293
reecn27494 290 232 236 382 203 203 230 208 211 208
reecn29395 324 258 267 426 227 226 259 236 237 234
reecn31126 358 297 293 494 267 266 293 280 281 278
reecn32569 390 325 331 547 300 300 324 320 320 317
reecn34307 426 371 367 601 339 335 362 360 361 359
reecn36204 442 391 386 635 354 357 383 376 379 376
reecn37593 360 282 285 468 249 247 276 256 256 253
reecn39476 384 304 313 507 270 268 302 280 283 278
reecn41237 484 429 419 690 385 388 416 416 415 412
reecn42891 503 448 447 737 415 412 439 436 438 435
reecn44299 477 414 410 668 375 374 404 396 400 395
reecn45823 509 439 441 729 403 403 430 432 435 431
reecn47287 459 386 384 626 340 341 377 356 361 356
reecn48602 478 402 398 662 361 364 394 384 383 380
reecn50133 463 366 363 609 316 316 355 328 330 328
reecn51526 471 396 400 642 350 349 391 364 364 361
reecn53304 441 340 342 579 291 292 334 300 303 299
reecn54867 438 345 339 575 295 295 336 300 302 300
reecn56737 419 326 329 540 273 273 319 280 278 278
reecn58325 535 445 449 744 402 406 436 424 428 424
reecn59950 494 389 391 634 333 333 384 344 344 342
reecn61436 424 315 316 539 265 265 306 272 274 271
reecn63079 477 373 368 621 318 317 365 328 332 329
reecn64798 603 503 501 838 457 457 494 – 488 484
reecn66642 554 450 451 735 398 398 437 – 416 414
reecn68262 560 455 448 743 394 393 438 – 413 410
reecn69952 583 471 472 784 419 420 460 – 440 438
reecn71622 542 433 429 706 367 367 414 – 379 377
reecn73116 554 437 435 727 376 375 424 – 392 392

Table A.2.: The colorings of the reecn instances.
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A. Coloring tables

Instance name db ds dsat gr i_sorb i_sor iter k_sor so sor
sqrp7730 137 120 120 197 100 100 120 – 102 102
sqrp9831 170 143 144 250 118 118 141 – 121 118
sqrp10642 183 152 158 266 128 128 156 – 130 129
sqrp12451 185 161 161 276 130 130 156 – 133 131
sqrp15532 205 184 183 317 145 145 180 – 150 145
sqrp18603 231 196 200 339 157 157 195 – 160 158
sqrp20166 236 204 200 338 158 158 198 – 159 158
sqrp20602 238 193 198 339 161 160 193 – 163 161
sqrp23758 257 227 225 379 175 175 223 – 177 175
sqrp26930 291 246 243 426 194 194 241 – 195 195
sqrp28863 294 252 255 434 199 199 249 – 202 200
sqrp30973 314 261 258 449 200 201 255 – 201 201
sqrp32894 302 250 247 404 192 192 242 – 196 192
sqrp34718 336 280 283 486 219 219 279 – 225 219
sqrp36053 320 268 271 435 203 203 264 – 206 203
sqrp37978 329 277 278 446 209 209 270 – 210 209
sqrp39917 331 280 276 451 213 213 272 – 214 213
sqrp41955 333 284 272 453 210 208 269 – 211 210
sqrp43759 357 293 293 499 228 229 287 – 234 231
sqrp45933 354 285 293 471 222 223 286 – 228 223
sqrp47890 345 283 291 441 214 212 285 – 216 213
sqrp49981 444 358 356 633 275 274 344 – 277 275
sqrp51004 390 319 318 521 243 242 312 – 249 244
sqrp53087 406 334 325 560 256 255 321 – 261 258
sqrp53628 438 362 347 628 272 273 345 – 276 275
sqrp55426 406 332 325 550 256 254 320 – 257 255
sqrp56833 413 351 331 570 259 260 328 – 265 263
sqrp57865 450 381 369 630 278 279 362 – 282 278
sqrp60119 480 403 393 732 299 299 382 – 301 299
sqrp62212 423 359 352 556 259 260 348 – 263 259
sqrp63419 536 430 427 757 324 324 422 – 334 326
sqrp63650 445 364 357 578 267 267 352 – 275 268
sqrp65541 425 354 348 540 258 258 344 – 267 259
sqrp67451 487 395 398 668 293 293 392 – 299 294
sqrp69121 464 387 375 620 281 282 370 – 283 283
sqrp69435 471 384 377 626 281 282 375 – 287 284
sqrp70811 471 380 376 609 278 277 371 – 286 281
sqrp72075 466 381 380 609 279 278 374 – 285 280
sqrp73525 540 448 432 787 335 335 426 – 341 337
rsqrp4637 101 90 89 151 78 78 89 79 82 78
rsqrp4641 103 90 91 139 74 74 89 74 79 74
rsqrp7320 134 119 116 185 94 94 112 96 94 94
rsqrp14364 204 170 173 294 139 138 171 – 142 139
rsqrp23406 246 207 208 338 164 164 201 – 166 164
rsqrp24641 275 229 222 391 181 181 220 – 185 183

Table A.3.: The colorings of the sqrp instances.
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Instance name db ds dsat gr i_sorb i_sor iter k_sor so sor
sqrpecn3020 152 131 138 202 126 125 135 – 132 130
sqrpecn3218 156 136 140 206 130 130 137 – 136 133
sqrpecn5276 190 168 173 262 162 161 172 – 168 165
sqrpecn8508 289 263 264 415 242 243 – – 252 247
sqrpecn10560 329 295 291 446 270 270 290 – 278 275
sqrpecn10755 274 236 234 360 215 215 232 – 225 221
sqrpecn14854 407 364 364 545 332 331 356 – 342 339
sqrpecn15605 436 402 397 613 367 367 389 – 383 376
sqrpecn17186 393 340 340 519 316 317 331 – 332 325
sqrpecn17395 448 400 406 610 370 366 394 – 382 377
sqrpecn18520 445 397 401 603 372 370 388 – 384 383
sqrpecn19349 512 469 471 705 430 431 462 – 451 437
sqrpecn23715 575 511 504 762 461 464 497 – 475 469
sqrpecn23873 509 454 460 701 416 416 449 – 431 425
sqrpecn27255 518 443 453 705 390 391 440 – 409 397
sqrpecn29223 546 481 478 753 435 435 472 – 453 447
sqrpecn30017 501 445 443 683 389 389 428 – 406 402
sqrpecn30957 546 477 477 757 420 420 461 – 443 432
sqrpecn31026 557 493 484 767 443 443 477 – 482 460
sqrpecn32073 608 546 537 840 497 498 529 – 529 510
sqrpecn33659 572 480 492 751 418 417 471 – 428 424
sqrpecn35230 625 537 531 848 474 474 528 – 491 487
sqrpecn37744 644 580 586 915 517 516 563 – 536 531
sqrpecn39689 657 580 579 905 501 499 563 – 514 509
sqrpecn41897 665 589 576 923 499 498 559 – 520 509
sqrpecn44118 699 638 635 1005 549 548 612 – 562 559
sqrpecn45700 677 588 570 952 495 495 560 – 514 504
sqrpecn45811 692 577 569 923 491 491 558 – 513 502
sqrpecn48383 690 583 588 937 505 503 572 – 515 510
sqrpecn49763 683 606 613 1000 518 518 591 – 547 529
sqrpecn51856 735 626 619 982 537 535 600 – 558 545
sqrpecn52587 739 636 623 1032 547 545 612 – 567 560
sqrpecn54576 737 648 647 1036 555 557 625 – 595 574
sqrpecn56236 782 701 692 1129 608 607 681 – 629 625
sqrpecn57317 750 644 645 1023 567 567 624 – 608 584
sqrpecn58790 835 717 721 1144 623 624 704 – 638 636
sqrpecn61354 774 657 652 1034 572 572 628 – 597 590
sqrpecn62891 765 675 663 1068 577 579 646 – 610 596
sqrpecn65041 845 722 712 1204 605 605 698 – 619 616
sqrpecn67473 826 719 707 1145 590 589 680 – 613 605
sqrpecn69904 938 823 804 1351 700 703 791 – 718 711
sqrpecn71261 857 729 740 1160 618 621 – – 652 633
sqrpecn71571 923 785 760 1241 672 671 – – 692 682
sqrpecn73925 948 836 825 1327 729 726 – – 770 753
rsqrpecn8051 240 220 216 342 198 196 213 208 211 206

Table A.4.: The colorings of the sqrpecn instances.
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A. Coloring tables

Instance name db ds dsat gr i_sorb i_sor iter k_sor so sor
visp26405 123 112 107 154 99 98 – – 103 101
visp27975 83 68 64 89 59 60 – – 63 61
visp29489 156 134 134 227 131 132 – – 146 137
visp31334 123 104 105 152 90 90 – – 91 90
visp32354 142 135 127 174 98 100 – – 106 101
visp34162 181 169 167 271 150 152 – – 160 158
visp35881 185 156 160 241 140 139 – – 158 141
visp37336 188 177 168 281 164 163 – – 175 170
visp38574 196 180 177 287 149 149 – – 160 149
visp40191 151 133 126 217 126 126 – – 139 131
visp41039 211 – 177 270 150 150 – – 154 151
visp43093 176 – 152 228 126 126 – – 137 128
visp44362 185 – 165 260 157 158 – – 164 158
visp45466 158 – 137 229 130 132 – – 145 139
visp46936 147 – 114 214 118 119 – – 144 131
visp48558 198 – 171 309 170 170 – – 177 177
visp50129 244 – 208 329 174 173 – – 191 178
visp51133 159 – 129 194 108 104 – – 123 112
visp53088 180 – 147 254 139 137 – – 147 142
visp55158 187 – 167 255 134 135 – – 142 139
visp57201 193 – 171 283 166 167 – – 174 169
visp59449 186 – 154 252 150 149 – – 178 157
visp60660 184 – 137 230 121 122 – – 124 122
visp62685 178 – 150 259 151 152 – – 168 156
visp64932 288 – 250 406 225 225 – – 229 228
visp66498 195 – 144 227 144 142 – – 162 152
visp68333 261 – 201 336 178 178 – – 201 180
visp70702 219 – 184 306 179 179 – – 183 182
visp71536 299 – 246 392 209 208 – – 241 216
visp73369 364 – 311 455 255 255 – – 279 260
rvisp3499 44 39 41 58 38 38 41 38 39 38
rvisp5013 67 58 57 95 60 61 57 65 69 66
rvisp7648 61 53 52 88 57 56 52 59 69 60
rvisp8404 69 66 60 93 55 56 59 – 60 57
rvisp8432 63 52 54 79 47 48 54 – 56 48
rvisp9770 77 72 69 111 67 67 69 – 74 69
rvisp10374 72 67 73 108 65 64 63 – 70 69
rvisp11339 112 93 94 141 84 84 93 – 90 84
rvisp12844 75 69 69 98 56 55 68 – 61 57
rvisp14562 89 80 79 127 75 75 79 – 87 81
rvisp15254 110 99 96 157 98 96 95 – 102 99
rvisp15474 130 117 116 174 98 97 115 – 104 98
rvisp20601 115 111 107 169 101 103 107 – 116 106
rvisp22145 166 149 150 213 124 124 149 – 131 125
rvisp24116 161 147 139 220 131 131 137 – 137 136

Table A.5.: The colorings of the visp instances.
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Instance name db ds dsat gr i_sorb i_sor iter k_sor so sor
vispecn2518 83 – 76 98 71 71 – – 85 76
vispecn5478 154 – 139 205 141 138 – – 165 152
vispecn7028 165 – 153 218 156 151 – – 183 168
vispecn10178 164 – 144 213 141 141 – – 171 161
vispecn11917 208 – 189 261 180 181 – – 226 201
vispecn13806 333 – 306 427 279 280 – – 326 307
vispecn15912 266 – 242 380 252 251 – – 283 281
vispecn16227 318 – 312 468 316 312 – – 366 354
vispecn17665 369 – 342 526 342 341 – – 392 376
vispecn19370 312 – 279 370 259 262 – – 333 296
vispecn20413 402 – 377 605 380 380 – – 439 422
vispecn25263 269 – 220 321 209 210 – – 250 228
vispecn26025 338 – 284 404 280 271 – – 323 301
vispecn26166 403 – 391 562 378 377 – – 436 427
vispecn26914 296 – 259 366 236 243 – – 272 264
vispecn27222 304 – 254 381 250 245 – – 320 280
vispecn27480 262 – 217 320 214 208 – – 242 235
vispecn27572 426 – 391 634 413 408 – – 485 469
vispecn28567 408 – 360 519 339 335 – – 373 370
vispecn31031 397 – 313 440 295 295 – – 350 327
vispecn33280 330 – 278 418 272 272 – – 363 302
vispecn35198 414 – 367 491 332 334 – – 438 373
vispecn37349 503 – 451 662 434 433 – – 499 497
vispecn39381 432 – 327 509 319 321 – – 371 358
vispecn41599 484 – 446 675 432 431 – – 485 472
vispecn43993 502 – 467 690 443 446 – – 541 519
vispecn45672 407 – 335 476 321 319 – – 399 372
vispecn46968 441 – 376 544 338 335 – – 391 381
vispecn47378 423 – 363 544 373 368 – – 425 415
vispecn48944 429 – 390 565 363 366 – – 413 411
vispecn50715 424 – 359 522 344 343 – – 444 384
vispecn53314 485 – 415 578 352 355 – – 415 400
vispecn55775 454 – 379 563 363 363 – – 414 406
vispecn58391 615 – 509 789 521 517 – – 607 606
vispecn61049 478 – 435 703 449 452 – – 525 521
vispecn63113 543 – 444 635 404 399 – – 460 440
vispecn65831 698 – 595 916 592 591 – – 671 647
vispecn67795 535 – 492 672 452 453 – – 572 510
vispecn70501 693 – 622 935 594 599 – – 704 683
vispecn71708 666 – 615 908 582 584 – – 667 656
vispecn74166 547 – 477 708 453 451 – – 512 498
rvispecn2615 50 46 46 67 47 47 46 – 52 51
rvispecn6048 98 90 91 126 89 92 90 – 108 96
rvispecn13421 267 231 241 302 207 204 215 – 257 226
rvispecn17968 271 233 246 347 239 235 232 – 286 260

Table A.6.: The colorings of the vispecn instances.
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