
Simultaneous Integer Flows

Bachelor Thesis of

Emil Dohse

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Guido Brückner, M. Sc.

Time Period: 1th June 2019 – 30th September 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, September 30, 2019

iii

Abstract

Flow algorithms have important practical and theoretical applications. A recent
trend in algorithmics is to look at simultaneous variants of well-known problems. In
this thesis, simultaneous integer flows are examined. For a given family of graphs,
some edges in common, and some individual ones, a simultaneous flow consists of a
feasible flow for each graph of the family so that the flow is the same on all common
edges.

We start by comparing simultaneous flows to standard flows, to see that most
structural properties, like augmenting paths or min-cut max-flow duality, do not seem
to translate to simultaneous flows. We then consider the decisions problem SimFlow,
that asks whether a simultaneous integer flow with a certain value exists. We show
that SimFlow is NP-complete even with heavy restrictions to the flow networks,
like the common network only consisting of a path. In addition to that, we show
that there is no polynomial 2n(1−ε)-approximation algorithm for simultaneous flows.
On the positive side, we prove that SimFlow is FPT in the number of common or
individual edges.

Deutsche Zusammenfassung

Fluss-Algorithmen sind ein wichtiger Teil theoretischer, wie praktischer Anwendun-
gen. Ein aktueller Trend in der Algorithmik ist es, simultane Varianten bekannter
Probleme zu betrachten. In dieser Arbeit betrachten wir simultane ganzzahlige
Flüsse. Gegeben eine Familie von Graphen, die die gleichen Knoten, einige gleiche
und manche eigene Kanten besitzen, ist ein simultaner Fluss nun ein Fluss in jedem
der Graphen, so dass der Fluss auf den gleichen Kanten der selbe ist. Dazu definieren
wir das Entscheidungsproblem SimFlow, welches entscheidet, ob es einen simultanen
ganzzahligen Fluss gibt, der einen bestimmten Flusswert hat.

Zu Beginn vergleichen wir simultane Flüsse mit den bekannten Flüssen. Dabei sehen
wir, dass die meisten strukturellen Eigenschaften von Flüssen, wie die Dualität von
Min-Cuts zu Max-Flows oder die Existenz von augmentierenden Pfaden, nicht auf
den simultanen Fall übertragen können. Danach zeigen wir, dass SimFlow stark
NP-vollständig ist, selbst wenn man die einzelnen Flussnetzwerke von der Struktur her
stark einschränkt. Es gibt also keinen effizienten Algorithmus für SimFlow. Zusät-
zlich zeigen wir, dass es keinen polynomiellen 2n(1−ε)-Approximationsalgorithmus für
simultane Flüsse gibt. Abschließend wird gezeigt, dass SimFlow FPT in der Anzahl
der gemeinsamen Kanten oder der eigenen Kanten ist.

v

Contents

1. Introduction 1

2. Preliminaries 5
2.1. Decision and Optimization Problems Using Simultaneous Flows 6

3. From Flows to Simultaneous Flows 7
3.1. Min-Cuts and Simultaneous Flows . 7
3.2. Augmenting Flow in the Simultaneous Case 13
3.3. Integrality Property and Integrality Gap . 14

4. SimFlow is Strongly NP-Complete 17
4.1. Basic 3Sat Reduction . 17
4.2. Same Flow on Two Edges – HomArcFlow Reduction 19

4.2.1. HomArcFlow is Strongly NP-complete 19
4.2.2. NP-Completeness for Restricted Non-Shared Network 20

4.3. Planar monotone 3Sat Reduction . 22
4.4. SubSetSum Reduction . 26

5. Inapproximability of MaxSimFlow 31

6. FPT 35
6.1. FPT in Shared Edges . 35
6.2. FPT in Intersections . 36

7. Conclusion 39

Bibliography 41

Appendix 43
A. Planar monotone 3Sat Gadget Variants 43

vii

1. Introduction

Flow algorithms have important practical and theoretical applications. Be it distributed
computer networks, planing or physical networks of any sort, flow algorithms are utilized.
From bipartite matchings ([AMO88]) to solving scheduling tasks for airlines ([CLRS01]),
flows are used. Historically maximum flows were developed for application in railway
systems, or to be precise, the U.S. military wanted to know how much the Soviet railway
system could transport and where to cut the network for it to stop working([Sch02]). Where
to cut the network, can be solved with maximum flows because there is a duality between
maximum flow and minimum cuts. [AMO88] is an in-depth work on flows. It covers almost
everything we’ll use about flows in this thesis. Many efficient algorithms have been found
to compute maximum flows. And it is still a research topic with i.e. a near-linear algorithm
for multiple-source multiple-sink maximum flow in planar graphs in 2017 ([BKM+17]), a
linear time algorithm for maximum flows in st-planar graphs ([HKRS97]) and a O(nm) for
maximum flows in general graphs in 2013 ([Orl13]).

The maximum flow problem has the neat property that for a maximum solution, there
always exists an integer solution with the same flow value as well, if all capacities were
integers (again [AMO88]).

In this thesis, we are going to look at simultaneous integer flows. That means, given a
family of graphs with the same vertices, some edges in common, called the shared network
and some individual ones, called non-shared networks. We want to decide if there is an
integer flow with a certain flow value in each graph so that the flow on the shared edges is
the same? The problem will be called SimFlow and formally defined in the Preliminaries,
Definition 2.4. We’ll only look at the integer case, real simultaneous flows can be computed
efficiently, for example with an LP.

It is a recent trend in algorithmics to look at simultaneous problems. We give a couple of
examples to motivate this trend. Often we don’t only have one instance of a graph, but
multiple ones, e.g., for different states or time periods. Often, they share some, if not all
vertices and only differ in a few edges. If we want to layout and display these graphs over
time, having the same vertices in the same places helps a lot for a better understanding
of what has changed. [BKR12] gives some more criteria you might be looking for in
simultaneous drawing and gives a good overview of different classes of simultaneous planar
embeddings and what that means for their lay-outing. The difficulty of deciding whether
graphs have a simultaneous planar embedding varies highly for different classes, e.g., it is
NP-complete to decide, if 3 planar graphs have a simultaneous embedding with fixed edges,

1

1. Introduction

for two graphs the complexity is unknown and if they are biconnected it can be decided in
linear time.

Similarly, everywhere, were multiple instances of a problem appear that have some part in
common the inspection of the simultaneous problem can be interesting. The problem of
ordering a set of elements is part of a lot of problems in computer science. Often we don’t
need a total order for all elements though, but there is some degree of freedom. For example,
some subsets might not have to be ordered at all, leading to multiple feasible orderings.
Here as well, ordering multiple sets with certain subsets having the same ordering is of
interest. PQ-trees are trees with nodes of type P and Q, that allow specific orderings for
their child nodes, in the embedding of the tree. Looking at the leaves, PQ-trees yield such
an ordering called PQ-ordering. [BR16] examines the problem of finding simultaneous
PQ-orderings. They show that is NP-complete and solve it efficiently for certain instance
classes.

Keeping in mind the duality of maximum flows and min-cuts, [Kri09] which looks at
simultaneous min-cuts is not only another example of a simultaneous problem but also goes
in the direction of flows. He looks at two different kinds of simultaneous min-cuts, ones
that are the same in all graphs and ones that may differ slightly but might thereby have
a lower cut value. All algorithms discussed and found in the thesis for optimal solutions
run in exponential time, therefor some heuristics are presented as well. Though duality of
min-cuts and max-flow, simultaneous min-cuts don’t directly solve SimFlow, as we’ll see
later on in this thesis.

When looking at simultaneous solution problems, it is often helpful to first look at the
partial solution problem. That means, we have got an instance of a problem where a partial
solution is already given. We now want to solve the instance without changing the partial
solution. Let’s have a look at simultaneous lay-outing of a graph again. We could, instead of
trying to choose locations for the vertices and curves for the edges, all at the same time, take
one graph, find a layout for it, and then solve the lay-outing problem on all other graphs,
restricted for the shared vertices and edges to have the same locations or curves respectively.
This partial problem can be solved efficiently, as shown in [ABF+10]. For PQ-orderings the
partial problem, can be solved efficiently as well, as shown in ([KKV11]. Partial min-cuts
can be extended efficiently by removing the edges of the partial solution and looking for
a min-cut then. Coming back to flows, partial maximum flow is, that we set the flow on
certain edges to be a certain value and want to get a maximum flow then. This can be
solved by (integer) min-cost-max-flow with demands for each vertex and lower bounds
for the flow on edges, allowing us to ensure the flow on a certain edge to have a specific
value. This problem has multiple strongly polynomial solutions to be seen for example in
[CC01]. This looks quite promising already, but the simultaneous problem turns out to be
significantly harder. Quite similar to simultaneous flows, there is IntegerEqualFlow.
IntegerEqualFlow is a generalization of maximum flows, where there are disjoint sets
of edges, that must have the same flow. [MS09] gives an overview of what has been shown
for IntegerEqualFlow and shows, that there is no polynomial 2n(1−ε)-approximation
algorithms for the optimization variant MaxIntegerEqualFlow. In this thesis, we’ll
see that this is the case for MaxSimFlow, the optimization variant of SimFlow as well.
At least, from [MS09] follows that IntegerEqualFlow is fixed-parameter tractable. In
[Sah74] it is shown that equal flow is NP-complete. It is even shown, that this holds, if
the edge sets with equal capacity only consist of two edges. In this thesis, we’ll refer to
this as HomArcFlow. Concerning heuristics for solving HomArcFlow, an overview is
given in [LL98]. There and in [AKS88], heuristics are given. According to [LL98], their
heuristic can be extended to handle MaxIntegerEqualFlow involving more than two
equal edges per set as well.

2

We are going to see, that instances of MaxSimFlow and MaxIntegerEqualFlow
can be linearly transformed to one an other, preserving approximation properties. Thus,
the 2n(1−ε)-inapproximability is passed on to MaxSimFlow. But so are the heuristics
for HomArcFlow that is quite similar to SimFlow with a graph family of two graphs.
Looking at efficiently solvable instances of simultaneous flows, to my knowledge only [EH06]
looked at simultaneous flows so far, resulting in an algorithm to find a simultaneous flow if
the incidence matrix is a consecutive-ones-matrix.

Contribution and outline

In this thesis, we are going to start in Chapter 2 by defining SimFlow and its variants,
then in Chapter 3 comparing simultaneous flows to normal flows, to see what properties
and dualities still exist when going into the simultaneous case. After looking at some
general properties of simultaneous flows, in Chapter 4 we then show that it is NP-complete
to find a simultaneous flow, even with heavy restrictions to the graphs like the shared
network only being a path and the non-shared connecting vertices along this path. Chapter
5 then looks at approximability of the optimization variant MaxSimFlow and see that it
is 2n(1−ε)-inapproximable. In Chapter 6, we look at fixed-parameter tractability (FPT).
As already mentioned, SimFlow is quite similar to IntegerEqualFlow which is FPT.
We’ll end by proving SimFlow is FPT in the number of intersections of the common edges
with the individual edges of the family of graphs. In the conclusion, Chapter 7, we look
back at what was shown in this thesis.

3

2. Preliminaries

This chapter provides the formal background for the proofs in this thesis. First, we define the
basics about flows and what a simultaneous flow is. Then, the decision problems SimFlow,
MinCostSimFlow and the optimization problem MaxSimFlow are introduced.

Definition 2.1. flow: Given a directed graph G := (V,E) with specific vertices s and t,
(source and sink) and a capacity function c : E → N∪∞. A flow is a function f : E → N0
with 0 ≤ f(e) ≤ c(e) (e ∈ E) and each vertex, except for source and sink, having the same
amount of flow entering and leaving. That is, if we denote v− and v+ as the sets of edges
leaving or entering a vertex v ∈ V , respectively,

∑
e∈v− f(e) =

∑
e∈v+ f(e) for all vertices

v ∈ V \ {s, t}. This is called flow conservation.

Definition 2.2. simultaneous flow: Given m directed graphs Gi := (V,Ei ∪ Eshared), with
specific vertices si and ti, (source and sink) and a capacity function ci : E ∪ Eshared →
N ∪∞ while ci(e) = cj(e) (e ∈ Eshared and 1 ≤ i, j ≤ m), a simultaneous flow is a flow
fi : E ∪ Eshared → N0 where fi(e) = fj(e) for all e ∈ Eshared and for 1 ≤ i ≤ m.

The sum of flow leaving si is also called the flow value or si-ti flow value of the graph Gi
(1 ≤ i ≤ m).

Definition 2.3. simultaneous property: fi(e) = fj(e) ∀e ∈ Eshared. That is, the flow on
the shared edges is the same in all Gi.

Since this is the property, that separates simultaneous flows form multiple standard flows,
we’ll often refer to the simultaneous property.

We denote the graphs (Vshared, Eshared) as the shared network with Vshared := {u, v ∈
V |(u, v) or (v, u) in Eshared} and the graphs (Vi, Ei) as the non-shared networks of the
graphs Gi with Vi := {u, v ∈ V |(u, v) or (v, u) in Ei}. If we say a vertex is part of in the
shared or of the non-shared network it means that it is start or end of an edge in the shared
or in all non-shared networks. This leads to the intersection of both networks being the set
Vshared ∩

⋂
1≤i≤m Vi.

Talking about the residual graph of a graph, we denote a graph that has an additional
reverse edge ê for each edge e that has capacity c(ê) = c(e)− f(e). If the original edge was
a shared edge, the reverse edge is a shared edge as well, e ∈ Eshared ⇒ ê ∈ Eshared.

As shown in the definition, we are looking at integer flows. Unless stated otherwise, all
flows from now on are integer flows. Real simultaneous flows can be solved in polynomial

5

2. Preliminaries

time via an LP ([EH06] for the LP) which is well known to be solvable in polynomial time
([KHA79]).

Often in this thesis we’ll only have two graphs G1 and G2. Figures will use the colors red
for non-shared edges of G1, blue for non-shared edges of G2 and black for shared edges.

2.1. Decision and Optimization Problems Using Simultane-
ous Flows

The definition of simultaneous flows leads to the following decision problem:

Decision Problem 2.4. SimFlow: Given the m graphs Gi from Definition 2.2 and m
values hi ∈ N0. SimFlow asks: Is there a simultaneous flow so that the si-ti flow values
in the graphs Gi are equal to hi?

In later sections we are going to have a look at a generalization of SimFlow called
MinCostSimFlow.

Decision Problem 2.5. MinCostSimFlow: Given a SimFlow instance and a value
b ∈ Z. Additionally we have a demand di ∈ Z for each node, weakening the flow conservation
of node i to

∑
j:eij∈E f(eij)−

∑
j:eji∈E f(eji) = di. We also add a cost b(eij) ∈ Z for each

unit of flow on an edge. We want to decide if there exists a simultaneous flow satisfying the
new flow conservation constraint in each node with a total cost

∑
eij∈E f(eij) · b(eij) equal

to b.

This is a generalization of the original SimFlow, since for cost 0 on each edge we get a
total cost of 0 and we can set dj for j being a source or sink to hi and −hi, respectively,
and dj = 0 otherwise. Like this, we can decide the original SimFlow.

The optimization variant of SimFlow is defined as follows:

Optimization Problem 2.6. MaxSimFlow: Given the m graphs Gi from 2.2. hi
denoting the si-ti flow values in the graphs Gi. What is the maximum of h :=

∑m
i=1 hi so

that the simultaneous property holds.

6

3. From Flows to Simultaneous Flows

First of, we want to have a look at some general properties we get, when interacting with
shared and non-shared edges. To do that, we’ll look at properties of maximum flows and
try to find equivalent ones for simultaneous flows. In the process, we’ll get an insight into
the difficulties of solving SimFlow. We start by looking the min-cut max-flow duality,
continue with augmenting paths, then look at the integrality property.

Throughout this chapter, we’ll be referring to the m graphs Gi = (V,Eshared ∪ Ei), if
needed with flow values hi from sources si to sinks ti, with 1 ≤ i ≤ m, from Definitions 2.2,
2.4 or 2.6, respectively. If we just have vertices s and t in the context of simultaneous flows,
this means that all si equal s and all ti equal t. Min-cut denotes a min-cut separating
source and sink of the graphs we are looking at. The value of a min-cut is its capacity.

3.1. Min-Cuts and Simultaneous Flows
A lot of the structural properties of flows don’t translate directly to simultaneous flows. In
this section we’ll see, that there is no strong connection between min-cuts and maximum
simultaneous flow. For the sake of simplicity and without loss of generality, all sources si
and all sinks ti equal a common source s or a common sink t, respectively.

Even though a min-cut in all Gi trivially yields an upper bound to the maximum simul-
taneous flow, because a simultaneous flow consists of feasible standard flows, this upper
bound isn’t always reached.

Lemma 3.1. A min-cut in all Gi does not yield a feasible simultaneous flow in general.

Proof. Looking at Figure 3.1: All edges have capacity 1. The min-cut value for each
individual graph is 1. If there is any flow in the graphs, in G1 (left) flow has to use the
red edge, in G2 (right) the blue one. But since flow in the simultaneous case has to be the
same on all shared edges, in particular on the ones leading to the red or blue edge, none of
the paths is taken and the simultaneous flow is 0.

Here we used that the shared network didn’t connect source and sink and we had to rely on
the non-shared networks to make flow possible. If, on the other hand, the shared network
connects source and sink, we get a lower bound for the simultaneous flow. This can be
seen in Lemma 3.2.

7

3. From Flows to Simultaneous Flows

s1 t1

G1 G2

s2 t2

Figure 3.1.: Counter example min-cuts:All edges have capacity 1. The maximum simulta-
neous flow is 0 in both networks, all min-cuts have value 1. The shared edges
are black, the non-shared edges red in G1, blue in G2.

Lemma 3.2. If the shared network contains source s and sink t, the maximum simultaneous
flow in each network is at least the value of a min-cut of the shared network. If it even
connects the two vertices, the maximum simultaneous flow is not 0.

Proof. A min-cut of the shared network yields a maximum flow in the shared network, due
to duality of max-flow and min-cut. Since source and sink are part of the shared network,
we can take this flow as feasible simultaneous flow in all graphs. If the shared network
does not connect s and t, the min-cut value and lower bound are 0, which always holds. If
they are connected, the min-cut value is non-zero, thus the lower bound for the maximum
simultaneous flow in each network is greater than 0 as well.

In Figure 3.1, we only had non-shared edges of one network on the upper or lower path.
We’ll see in Lemma 3.3 and then in Definition 3.5 how the non-shared networks have to
look like, for flow to be transferred from one node in the shared network to another. Given
a simultaneous flow, we look at the shared and the non-shared networks separately. In
the shared network, there can be more flow than the network itself can handle, if the
non-shared network of all Gi can cope with this additional flow.

Lemma 3.3. There can only be a violation of the flow conservation in the shared network,
that means different influx than outflux of a node, if all non-shared networks can provide
this influx or take up the outflux, respectively.

Proof. Given a simultaneous flow. The flow on the shared part of all Gi is the same. But
a simultaneous flow is a feasible flow in all Gi, that means in each graph, the non-shared
network has to provide the necessary influx or take up the outflux to fix flow conservation
in every node.

This especially means, a non-shared edge (u, v), u, v ∈ V can’t be used if there is one
non-shared network, that doesn’t have an edge leaving u or arriving in v. This is a very
strong property, as we’ll see throughout this thesis.

Coming back to min-cuts. We saw, that a min-cut in every Gi doesn’t yield a simultaneous
flow. What about the other way around, does a non-zero maximum simultaneous flow
correlate with min-cuts? Maybe at least in some of the graphs? Let ci be the capacity of a
min-cut of Gi.

Lemma 3.4. It is possible that hi < ci for all Gi.

Proof. We look at Figure 3.2 a): The value ci of any min-cut in each network is 5, but the
maximum simultaneous flow value hi in each network is 4. This example proofs, that there
doesn’t have to be any min-cut, if we have a maximum simultaneous flow.

8

3.1. Min-Cuts and Simultaneous Flows

1/1

1/3

2/3

2/3
1/1

1/1
2/3

2/3

1/1

1/3

s t

v1

v2

s t

v1

v2a) b)

u1

u2

u1

u2

Figure 3.2.: In a) Example for maximum simultaneous flow not leading to a min-cut in any
of the networks. The red edges are the ones of network G1, the blue ones are
of G2. In b) the edges of the non-shared network of G2 are reversed, to show
the cycle-like structure, if non-shared edges are used to transfer flow from one
shared node to another.

This means, there is no duality of simultaneous flows and min-cuts in the graphs Gi.

Figure 3.2 a) brings up what we saw in Lemma 3.3 already. For the vertex v1 the capacity
of non-shared edges arriving at it is 1 in G2, for the vertex v2, the capacity it is 1 in G1.
Thus, all non-shared flow is limited by 1 on each edge arriving at one of the two vertices.
Since all non-shared edges arrive in one of the two vertices, the flow on all of them is limited
by 1, even if they have higher capacities. Looking at this more generally, we’ll see that
there has to be some cycle-like structure for the relation of non-shared edges, if flow can be
transferred from a shared node to another using the non-shared network. An influx at a
shared node is only possible if an outflux happened somewhere else. This outflux has to be
compensated by another influx and so on. Thus, it leads to a cycle-like relation structure,
showing which influxes and outfluxes are matched. We’ll call this structure transferring
cycle. For better understanding, we look back at Figure 3.2 b). There the edges of the
second non-shared network are reversed. Like this, we get a cycle, which indicates that we
can transfer flow on it. The minimum capacity of an edge in the cycle is 1, which is the
limit of flow, that can be transferred on these edges, as we saw above.

Formally, we can define transferring cycles like we’ll do now. Given the set of vertices V and
the non-shared edge sets Ei of all Gi, we reverse all edges of E1 to get E′1 := {(v, u)|(u, v) ∈
E1}. We further define G′i := (V,Ei ∪ E′1), (2 ≤ i ≤ m).

Definition 3.5. transferring cycle: If there is a non-empty union of cycles Ci in each
G′i (2 ≤ i ≤ m), with at least one edge from E′1 and at least one edge from Ei per cycle
Ci ∈ Ci. If there is a set of cycles {C2, ..., Cm}, Ci ∈ Ci consisting of the same set A ⊆ V
of vertices in all cycles Ci, a transferring cycle consists of the edges ei ∈ Ei and the edges
e ∈ E1 for which there exists Ci ∈ Ci for any 2 ≤ i ≤ m with ei ∈ Ci or reverse(e) ∈ Ci.
A transferring cycle E is called prime, if there is no transferring cycle E′ ⊂ E.

Roughly spoken this means: For all flow, leaving or entering the shared network through
the non-shared network, there have to be edges in all networks that can restore flow
conservation. Thus, a structure that fulfills Lemma 3.3.

But why this cyclic relation? If we look at Figure 3.2 b) once more, we can see, that if
one of the non-shared edges of the transferring cycle is used, all others have to be used
with the same flow as well, to guarantee flow conservation. Like this, we have a powerful
new tool. We can enforce multiple edges in one graph to have the same flow. Lemma 3.6
explains this in more detail.

9

3. From Flows to Simultaneous Flows

Lemma 3.6. Given a flow network, we can enforce two edges to have the same flow, using
simultaneous flows.

Proof. Let (u1, v1) and (u2, v2) be the two edges of the flow network that are supposed
to have the same flow. We now take the whole network without the two edges as shared
network and put transferring cycles (see Figure 3.3) in the place where they were. If
u1 6= u2 and v1 6= v2 we can use a) from the figure, if u1 = u2 or v1 = v2 we use b) or
c) respectively. The different cases are necessary because if the start or the end are the
same, this construction would not lead to anything but the dotted edge itself. The whole
transferring cycle will be used with the same flow, thus the red edges now ensure that there
is the same flow from u1 to v1 and from u2 to v2.

a) b) c)

Figure 3.3.: Transferring cycles that lead to two edges having the same flow: The edges
that are supposed to have the same flow are denoted by the dotted edges. a)
shows the transferring cycle, if the dotted edges have different starting points.
b) and c) show the case if either start or end of the dotted edges is the same.
The shared edges are black, the non-shared edges red in G1, blue in G2.

This construction can not yet be used arbitrarily often, to enforce multiple pairs of edges
in the same graph to have the same flow, like we’ll see in the proof of Lemma 3.7. In the
next chapter we’ll look at this in more detail, Lemma 4.7 will show us that, with minor
adjustments we can even enforce multiple arbitrary large sets of edges to have the same
flow using transferring cycles.

Lemma 3.7. If two transferring cycles intersect in one vertex i and a non-shared edge
is added to connect two other vertices, a new transferring cycle is build. One intersection
doesn’t lead to a new transferring cycle.

Proof. We have a look at Figure 3.4: The figure illustrates two transferring cycles with one
intersection and what happens if another intersection is added. In a) the two transferring
cycles only intersect in node i. If e1 is used, the whole lower transferring cycle has to be
used to guarantee flow conservation in u (like in Lemma 3.3). Thus, e3 has to have the
same flow as e1. The same holds for e2 and e4. If one or both of the cycles were reversed,
the same argumentation would hold. That means, if two transferring cycles only have an
intersection in one node, they don’t build a new transferring cycle that can only be used
all at once. Now we move to part b) of the figure. There we can see two possible cases
of where a non-shared edge can be inserted. Edges e5 and e6. In c) we can see the blue
edges of G2 reversed in the new transferring cycles of e5 and e6. But why does one more
connection of the cycles always lead to a new cycle? We’ll now look more closely at what
happens at node u0. We only need to look at 4 cases which are shown in Figure 3.5. There,
for each case the new dashed edge either enters (in a) and b)) or leaves (in c) and d)) the
transferring cycle u0, u1 and u2 lay on. In case a) the new edge enters at u0. u0 also has
a red edge of G1 entering, which can be used now to guarantee flow conservation at u0.

10

3.1. Min-Cuts and Simultaneous Flows

Because the red edge is used now, we need to guarantee flow conservation at u1 as well.
This is done by using the edges of the transferring cycle all the way to the intersection
with the second cycle. In Figure 3.4 this was i. In general, we have the same 4 cases at
the intersection again: we arrive with an edge either incoming or outgoing of the second
cycle and the second cycle has two incoming or two outgoing edges of this intersection.
In the Figure 3.4, i has incoming edges in any case. Thus, we can move onto the second
cycle with our flow conservation argument which can then be passed on, along the cycle,
until we reach v. Like this, we have a new transferring cycle. Case d) works the same way.
In cases b) and c) flow is transferred in the network of G2 from v to u2 or the other way
around. Then, we start using the transferring cycle at u2. For a better understanding, it is
recommended to look at Figure 3.4 b) and c) again. There this construction is visible.

a) b) c)

i i i

e4

e3

e2

e1u

e5

e6

u1 u0

Figure 3.4.: Transferring cycles building new transferring cycles, depending on the amount
of intersections: a) shows two transferring cycles with one intersection in
the middle. b) shows the same cycles but with two new edges, that connect
vertices of the two cycles. c) shows, that the inserted edges in b) lead to new
transferring cycles. The new cycles are shown by reversing the non-shared
edges of G2 that are part of the cycles and coloring one of them brown, the
other green. The shared edges are black, the non-shared edges red in G1, blue
in G2.

a) b) c) d)

u0v

u1

u2

Figure 3.5.: Possibilities of how an edge can connect to a cycle. The dashed edge is the
new edge, the other edges are part of a transferring cycle. In the lower part of
each case, the edges of the non-shared network of G2 that are used in the new
tranfering cycle are reversed and the edges that are part of the new cycle are
highlighted in green.

This lemma means, that if we want to ensure large sets of edges to have the same flow,
similar to what we did in Lemma 3.6, we have to be careful that the transferring cycles

11

3. From Flows to Simultaneous Flows

only have one intersection at maximum. If they had more than one intersection, it would
lead to new transferring cycles and it would not be ensured anymore that all edges along
our original transferring cycles have the same flow.

To conclude this section on min-cuts, we want to look at classes of simultaneous min-
cuts like in [Kri09]. Our previous examples work for these already. One class are small
simultaneous cuts, that means we cut between the same vertices and want the sum of all
these cuts to be as small as possible. Figure 3.1 already showed that this doesn’t work in
general. If we look at minimum simultaneous cuts, that means cuts that are as similar as
possible and have a minimum value the same example can be used. We can conclude that
if simultaneous min-cuts look at edges in the shared and non-shared network, it doesn’t
lead to feasible flows in general.

The shared network in all graphs is the same, so what if we only look for cuts there, which
then will be a cut in all shared networks? Like we already saw in Lemma 3.2, min-cuts in
the shared network yields a lower bound for the simultaneous flow. Can we take a min-cut
in the shared network with its dual flow and progressively increase simultaneous flow from
there on?

Lemma 3.8. In a maximum simultaneous flow, min-cuts in the shared network don’t have
to be used to their full capacity.

Proof. We take a look at Figure 3.6: The maximum simultaneous flow of 3 in both graphs
is displayed. The min-cut value in the shared network is 2. If we wanted to use this
min-cut to its full capacity, which separates the shared network between u and v, the two
shared edges before it would need to transport at least a flow of 2 to u. This happens, but
leaves u through the non-shared network. But we can’t just use the shared instead of the
non-shared network from u on because we wouldn’t be able to use any of the non-shared
edges anymore, since they all build a transferring cycle together which can only be used if
all edges along it are used with the same flow. Then, we’d be left with the shared network
only and a submaximal simultaneous flow of 2.

This means we can’t directly build up simultaneous flow from maximum flows in the shared
network.

3/3

1/1

1/1

1/1

1/1

2/3 1/2 2/3s tu v

Figure 3.6.: Min-cuts in the shared network don’t have to be used to their full capacity:
Here the shared edge between u and v with capacity 2. The shared edges are
black, the non-shared edges red in G1, blue in G2.

Also, there is no obvious connection to simultaneous min-cuts.

12

3.2. Augmenting Flow in the Simultaneous Case

3.2. Augmenting Flow in the Simultaneous Case
Since we are dealing with general properties of simultaneous flows, a lot of what we’ll need
in this section was already motivated or shown in the section on min-cuts. This section
goes into more detail what can happen when we want to augment simultaneous flow step by
step. Looking at augmenting paths from standard flows, the question arises if transferring
cycles (see Definition 3.5) have similar properties or if there are easier structures that can
be used.

Even though we already defined transferring cycles, we want to see if a simultaneous variant
of augmenting paths may work as well. A simultaneous augmenting path can be defined as
a path with non-zero residual capacity in each Gi, so that the set of shared residual edges
is the same. Thus, if we augment flow along it, it will be the same on all shared edges.

Lemma 3.9. If there is no more simultaneous augmenting paths, the simultaneous flow
value is not maximal in general.

Proof. Looking at Figure 3.7: All edges have capacity 1. Assuming there is already a flow
on the red non-shared edges in G1. Then there are no more augmenting paths left in this
graph. And the sum of flow in both graphs is 1.

In G2 a flow of 1 is possible if the flow in G1 had taken the shared edge instead of the
non-shared ones, leading to the sum of flow being 2. Since there are no augmenting paths in
one graph, there neither is a simultaneous augmenting path anymore, but the simultaneous
flow is not maximal yet.

s1 t1 s2 t2

G1 G2

1/1
1/1 1/1

1/1

0/1 0/10/0

Figure 3.7.: Counter example simultaneous augmenting paths: There is no augmenting
path in G1, thus no simultaneous augmenting path anymore, but the sum of
flow is not maximal yet. Flow in G1 needs to take the shared edge, so flow in
G2 is possible. The shared edges are black, the non-shared edges red in G1,
blue in G2.

In the following we are going to see another reason why there are no augmenting paths.
Looking at another transferring cycles example (see Figure 3.8), we can’t only increase the
flow by 1 but have to make sure that the whole cycle is augmented, otherwise we violate
flow conservation. In the example we have to increase the flow by 2 in the left instance
and by 3 in the right one. After increasing, we have got maximum simultaneous flows for
both graphs in both instances. There is not one path along which we can augment flow
by 2 or 3, but there is two or three different paths in each graph. By making the cycle
bigger, like in the example, we can enforce arbitrary large all-or-nothing flows. Here, the
flow on all non-shared edges of both graphs must have the same value (see Lemma 3.3 on
flow conservation). This still holds if the capacity of the edges is not 1. In Lemma 4.7 we’ll
see how to use this to enforce the same flow between certain vertices.

The problem with transferring cycles is that they don’t necessarily augment flow through
the whole graph but transport it from some shared nodes to some others. This makes
it hard to choose which cycles to use. As we just saw, some of the cycles might need
a lot of flow at once to be established. If some shared or non-shared edges don’t have
enough capacity left, because they were used together with smaller transferring cycles, it

13

3. From Flows to Simultaneous Flows

1

1 1

1

s t s t

1 1 1

1 1 1
a) b)

Figure 3.8.: All or nothing flow: The maximum simultaneous flow in a) is 2, in b) 3 in
both graphs. These flows can only be established at once, otherwise flow
conservation is violated. The shared edges are black, the non-shared edges red
in G1, blue in G2.

can block these big cycles from being used and potentially a maximum simultaneous flow
from being reached. Theorem 3.10 shows how using the wrong non-shared edge can lead to
submaximal simultaneous flow with no more augmenting paths or cycles.

Theorem 3.10. Simultaneous flow doesn’t have to be maximal if no simultaneous aug-
menting paths and no transferring cycles are left.

Proof. See Figure 3.9: In a) a flow of 1 is transferred over the non-shared network of G2
leaving us with no transferring cycles and no simultaneous augmenting paths. In b) it is
shown how a different choice of edges to put flow on would have led to a higher simultaneous
flow value.

s t
0/2 0/1 0/1

0/1 0/1

0/1
1/1

1/1

s t
2/2 1/1 1/1

1/1 1/1

1/1
0/1

1/1a) b)

Figure 3.9.: In a): Example for submaximal simultaneous flow although there are no trans-
ferring cycles that have any capacity left . In b) the maximum simultaneous
flow is displayed. The shared edges are black, the non-shared edges red in G1,
blue in G2.

3.3. Integrality Property and Integrality Gap
The maximum flow problem has the property that for a maximum solution, there always
exists an integer solution with the same flow value as well, if all capacities were integers.
This is called integrality property. In this short section we’ll see that this isn’t the case for
simultaneous flows and look at how much integer and real solutions can differ.

Lemma 3.11. The maximum real simultaneous flow can be higher than the maximum
integer simultaneous flow.

Proof. See Figure 3.10: All unlabeled edges have capacity 1. In a) we can see the integer
case, there in G1 only one shared edge gets flow. Thus, the flow on both diagonal edges in

14

3.3. Integrality Property and Integrality Gap

G2 is 0, leaving us with a flow of (1,1) in the two graphs. In b) we can see the real case.
There both shared edges get flow in G1. The diagonal edges in G2 are not bottlenecked
anymore and have flow of 0.5 as well. This leaves us with a flow of (1,2) which is higher
than in the integer case.

s1 t11/1 1/1

1/1

0/1

1/2 1/2

0/1

1/1

s1 t11/1 1/1

0.5/1

0.5/1

2/2 2/2

0.5/1

0.5/1

0.5/1

0/1
s2

s2

t2

t2

a)

b)

G1 G2

G1 G2

Figure 3.10.: Integrality gap: All unlabeled edges have capacity 1. a) shows the maximum
integer simultaneous flow of 1 in each graph, b) the maximum real simultaneous
flow of 1 in G1 and 2 in G2.

By putting multiple of the gadgets from Figure 3.10 in parallel we can get to quite high
integrality gaps.

This means there is no integrality property for simultaneous flows.

15

4. SimFlow is Strongly NP-Complete

In this chapter we show that SimFlow is strongly NP-complete. We’ll see, that it stays
NP-complete even if we strongly restrict the shared or non-shared networks. In Section
4.1 we show strong NP-completeness for planar two-network instances, by reducing 3Sat
to SimFlow. We’ll then, in Section 4.2, look at HomArcFlow, show that it is strongly
NP-complete and reduce it to SimFlow afterwards to get the same for instances where
the non-shared network only connects nodes in the shared network. This result will be
improved in the next section, Section 4.3 where we show strong NP-completeness in the
two-network case with the union of all shared and non-shared networks being planar and
all non-shared networks only connecting vertices in the shared network. This will be done
by reducing Planar monotone 3Sat to SimFlow. The final Section 4.4 will not use
any SAT variant, but reduce SubSetSum to SimFlow to show NP-completeness if the
shared network only consists of a path and the non-shared network connects vertices in the
shared network.

Throughout this chapter, we’ll be referring to the m graphs Gi = (V,Eshared ∪ Ei), if
needed with flow values hi from sources si to sinks ti, with 1 ≤ i ≤ m, from Definitions
2.2, 2.4 or 2.6, respectively.

4.1. Basic 3Sat Reduction
Decision Problem 4.1. 3Sat: Given (V,C) where V is a set of variables and C a set of
sets of literals. A literal is a positive or negative occurrence of a variable. Each set C ∈ C
is called clause with 1 ≤ |c| ≤ 3. We now want to decide if there is an assignment function
f : V → {−1, 1} so that each clause contains at least one positive literal that is assigned
1 or one negative literal that is assigned -1. An assignment like this is called satisfying
assignment. The clauses can be seen as a formula in conjunctive normal form.

Lemma 4.2. 3Sat is NP-complete.

Proof. See [Kar72].

We’ll start of by reducing 3Sat to SimFlow to provide a basis for what’s to come. Multiple
of the upcoming reductions will use gadgets similar to the ones used in this 3Sat reduction.

At first, we’ll see that we can assume that each clause contains exactly 3 literals.

17

4. SimFlow is Strongly NP-Complete

Lemma 4.3. 3Sat stays NP-complete if all clauses have exactly 3 literals.

Proof. For all clauses of a 3Sat instance that contain 3 literals, there is nothing to do. For
clauses with 2 literals we proceed as follows:

(xi ∨ xj) will be turned to (xi ∨ xj ∨ xd1) ∧ (xi ∨ xj ∨ x̄d1)

Clauses with 1 literal (xi) will be replaced by:

(xi ∨ xd1 ∨ xd2) ∧ (xi ∨ xd1 ∨ x̄d2) ∧ (xi ∨ x̄d1 ∨ xd2) ∧ (xi ∨ x̄d1 ∨ x̄d2)

Like this, we only add two dummy variables xd1, xd2, a constant amount of clauses per
clauses with less than 3 literals and we don’t change the satisfiability of our 3Sat instance,
since the dummy variables are irrelevant.

3

2

1

1

1

x1

x2

x3

Figure 4.1.: Clause gadget for 3Sat. All these gadgets are connected at the dotted edges
to ensure that a flow of exactly 3 goes through all clauses to the sink if and
only if (iff) the 3Sat instance is solvable. Because of Lemma 4.3, each clause
has exactly 3 literals.

1

1

1

x1 x′
1

x̄1

u

Figure 4.2.: Variable gadget for 3Sat. All these gadgets are connected at the dotted edges
to ensure that a flow of exactly 1 goes through all clauses to the sink iff the
3Sat instance is solvable.

Theorem 4.4. SimFlow, even when restricted to two-network instances with planar
networks, is strongly NP-complete

Proof. We want to show that if we solve SimFlow then we can also solve 3Sat. Given
an instance of 3Sat, we build two graphs. For each 3Sat clause we use a clause gadget
(Figure 4.1). It assures, that in each clause, there is at least one literal edge, that has flow
1. This literal edge is part of the shared network and will appear in the variable gadget (see
bellow) as well. Due to flow conservation, concatenating these clause gadgets works like a
conjunction. Therefore graph G1 consists of these concatenated clause gadgets. If the flow
through the whole graph is 3, there has to be a variable edge with flow 1 in each clause,
since the non-shared network only has capacity 2. For each variable we use a variable

18

4.2. Same Flow on Two Edges – HomArcFlow Reduction

gadget (Figure 4.2). In case there are multiple occurrences of a variable xi as a literal in a
clause, we just add them as shared edges behind the literal edge of xi as indicated by x′i in
the figure. If a flow of 1 enters the gadget, at the vertex u it can either take the the upper
way, leading to the variable being positive in all occurrences or the lower way, leading to
it being negative. Graph G2 is the concatenation of all variable gadgets for all variables.
Again using flow conservation, we are assured, that all variables will either be positive or
negative.

If we define the literal edges to be shared, we force a feasible flow to satisfy all clauses
while still respecting all variables and their negation to have opposite values. Therefore, if
we find a simultaneous flow through G1 with value 3 and through G2 with value 1 we, due
to flow conservation, have a satisfying values for all variables.

Since the capacity of all edges is less than or equal to 3 SimFlow is strongly NP-complete.
Because the gadgets are planar and concatenating them doesn’t affect planarity, this holds
for planar networks.

For better understanding of the construction, Figure 4.3 shows an example clause graph
for (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3), Figure 4.4 shows the corresponding variable graph.

x3 x̄3

3

2

1

1

1

x1

x2

2

1

1

1

3 x′
1

x̄2

s1 t1

Figure 4.3.: Clause gadget graph for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3).

1

1

1

x1 x′
1

1

1

1
1

1

1

x2 x3

x̄2 x̄3

s2 t2

Figure 4.4.: Variable gadget graph, corresponding to clause graph in Figure 4.3.

4.2. Same Flow on Two Edges – HomArcFlow Reduction
In this section we’ll look at HomArcFlow and its connection to SimFlow. In Subsection
4.2.1 we’ll define HomArcFlow and prove that it is strongly NP-complete, then in
Subsection 4.2.2 we’ll reduce HomArcFlow to SimFlow to show NP-completeness for
instances where the non-shared network only connects vertices in the shared network.

4.2.1. HomArcFlow is Strongly NP-complete

Like in [Sah74] we define the decision problem HomArcFlow (in the paper called Integer
flows with homologous arcs).

Decision Problem 4.5. HomArcFlow: Given a directed graphs G := (V,E) with
specific vertices s and t, (source and sink) and a capacity function c : E → N. Additionally

19

4. SimFlow is Strongly NP-Complete

we have a set H of tuples of edges, so called homologous arcs. We want to decide if there is
a flow f : E → N0 with 0 ≤ f(e) ≤ c(e) (e ∈ E) where f(e1) = f(e2) for all (e1, e2) ∈ H.

HomArcFlow is a quite similar problem to SimFlow. A solution for HomArcFlow
decides whether there is an integer flow with the constraint, that on pairs of edges called
homologous arcs, the flow is the same.

Lemma 4.6. HomArcFlow is NP-complete.

Proof. See [Sah74].

In the paper it is only shown that HomArcFlow is NP-complete. Using our gadgets from
Theorem 4.4 we can easily improve on the findings of the paper to show that HomArcFlow
is strongly NP-complete in the planar case already.

Theorem 4.7. HomArcFlow is strongly NP-complete, even for planar instances.

Proof. We can reduce 3Sat to HomArcFlow with almost the same construction we used
in Theorem 4.4. We use the gadget graphs G1 and G2 but we take a new starting and
ending node s and t and connect them to the sources s1 and s2 or to the sinks t1 and t2,
respectively. Now instead of having shared edges, we just define the previously shared
edges to be homologous arcs. Since planarity is not lost in this construction, it yields a
solution for 3Sat if we can solve HomArcFlow for a planar graph with unit capacity.
For better understanding, Figure 4.5 shows an example of this construction.

Theorem 4.7 will help us in the next section to get results for SimFlow as well.

x3 x̄3

3

2

1

1

1

x1

x2

2

1

1

1

3 x′
1

x̄2

1

1

1

x1 x′
1

1

1

1
1

1

1

x2 x3

x̄2 x̄3

s t

Figure 4.5.: Example for the construction in the 3Sat reduction Theorem 4.7. Similar to
Figure 4.3 and Figure 4.4 for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3).

4.2.2. NP-Completeness for Restricted Non-Shared Network

Theorem 4.8. HomArcFlow can be reduced to SimFlow in polynomial time.

Proof. Given an instance of HomArcFlow G := (V,E) and sets of homologous arcs H,
we can transform the graph to an instance of SimFlow as follows. First, we remove all the
homologous edges from the graph. Now we use two copies of this graph as shared network
for SimFlow. We put a homologous arcs gadget (see Figure 4.6) in the places where
homologous arcs were. In the figure, the previous homologous edges are the dotted edges.

20

4.2. Same Flow on Two Edges – HomArcFlow Reduction

The gadget mainly consists of non-shared edges in each graph Gi. Like that, a transferring
cycle is created, that enforces all edges along it to have the same flow. The additional
shared edges are just there so the different transferring cycles for different homologous
arcs don’t have any intersections, possibly leading to a new, unintended transferring cycle,
similar to Lemma 3.7. In the Figure, there are three cases displayed because this way of
creating a cycle only works if starting node and ending node differ for both edges. If the
start or the end of one of the supposed-to-be homologous arcs is the same, a new node is
added and connected to the previous start/end in the shared network. In later gadgets
we are going to see that this way of using transferring cycles to enforce flow to be the
same doesn’t only work for two edges but for an arbitrary large set of edges. Red edges
in the figure stand for edges in G1, blue edges for ones in G2. Black edges are additional
shared edges in both. If the homologous edges have different starting end ending nodes,
we use construction a) on the left, if starting node or ending node are the same we use
construction b) or c), restrictively. Due to flow conservation in each network (see Lemma
3.3), it is enforced, that the red and blue edges have the same flow. Taking this flow as the
solution for HomArcFlow solves this problem.

Corollary 4.9. SimFlow stays NP-complete on two-network instances, even if the non-
shared network only connects vertices in the shared network.

Proof. In Theorem 4.7 we have shown that HomArcFlow is strongly NP-complete on
planar instances. The construction used in Theorem 4.8 proofs the claim.

a) b) c)

Figure 4.6.: Homologous arcs gadget: This gadget illustrates how to enforce, that two edges
have the same flow. The dotted edges are the edges that are supposed to have
the same flow, but are removed before the gadget is inserted.

The homologous arcs gadget in Figure 4.6 is very important for the next couple of sections.
We’ll use it to enforce multiple edges to have the same flow and like that get further
NP-completeness results.

Lemma 4.10. We can enforce arbitrary large sets of edges to have the same flow.

Proof. We can use transferring cycles like displayed in Figure 4.8 for 3 edges. There, the
dotted edges are the edges which are supposed to have the same flow. Red edges in the
figure stand for edges in G1, blue edges for ones in G2. Black edges are additional shared
edges in both. If the edges with the same flow have different starting and ending nodes, we
can use the construction on the left. If starting node or ending node are the same for some
of the edges, we use the middle or the right construction or mixtures of them, respectively.
In each case, a transferring cycle is build which can only be used with the same flow on all
edges. If there is no intersections, this construction works just fine. The problem here is
the same we already saw in Lemma 3.7 for Figure 3.3. If the cycles for multiple equal flow
edge sets intersect in more than one point, there is a new transferring cycle and we can’t

21

4. SimFlow is Strongly NP-Complete

a) b) c)

Figure 4.7.: Transferring cycles for equal flow on multiple edges: This figure shows how
the transferring cycles have to look like to enforce equal flow on where the
dotted edges were. This construction only works if the transferring cycles have
at maximum one intersection and no additional non-shared connection. a)
shows dotted edges starting at different nodes. b) and c) show the case that
the dotted edges start or end at the node.

ensure there to be the same flow an all equal flow edge sets. If we don’t want to restrict the
equal flow edge sets to only use the same vertices once, we can look at Figure 4.7. There,
additional shared edges ensure that all transferring cycles have no intersection at all. Both
Figures only show the case of 3 equal flow edges. For k edges the pattern stays the same.
Since the additional shared edges ensure that all starting and ending node of equal flow
edges are different, we can assign each starting node and each ending node a number from
1 to k. The red edges go from starting node i to ending node i, the blue edges go from
starting node i to ending node (i+ 1) mod (k + 1). Like this, the cyclic dependency of a
transferring cycle is created.

a) b) c)

Figure 4.8.: Equal flow on multiple edges: This figure illustrates how to enforce, that three
edges have the same flow. The dotted edges are the edges that are supposed
to have the same flow, but are removed before the non-shared red and blue
edges are inserted. a) shows dotted edges starting at different nodes. b) and c)
show the case that the dotted edges start or end at the node.

4.3. Planar monotone 3Sat Reduction
This section now contains the final result of how much we can restrict an instance of
SimFlow for it to stay strongly NP-complete. We’ll show that if the shared network is
connected, the non-shared network only connects vertices in the shared network and we
have planarity of the union of the Gi, SimFlow stays strongly NP-complete for two-network
instances. Union of the Gi means, that the edge set is the union of the non-shared networks
and the shared network, since all Gi have the same vertices and same shared network

22

4.3. Planar monotone 3Sat Reduction

already. In this section, we start by introducing Planar monotone 3Sat a version of
3Sat, then we reduce it to SimFlow.

Definition 4.11. monotonous: A boolean formula in CNF is called monotonous, if all
clauses consist of only positive or only negative variables.

Decision Problem 4.12. Planar monotone 3Sat: Given a monotonous instance of
3Sat I := (V,C) with variables V , clauses C and an additional restriction. Namely, the
variable-clause graph of I, that consists of the nodes V ∪C connected by an edge if one of the
nodes is a variable and the other node is a clause that uses this variable. The variable-clause
graph can be drawn such that all variables lie on a horizontal straight line, positive and
negative clauses are drawn as horizontal line segments with integer y-coordinates below
and above that line, respectively, and arcs connecting clauses and variables are drawn as
non-intersecting vertical line segments. A solution now decides if this special 3Sat instance
is satisfiable. An example can be seen in Figure 4.9.

x1 x2 x3 x4 x5

positive clauses

negative clauses

2

1

-1

-2

-3

Figure 4.9.: An variable clause graph of an instance of Planar monotone 3Sat with the
formula(x̄1∨ x̄4∨ x̄5)∧(x̄1∨ x̄3∨ x̄4)∧(x̄1∨ x̄2∨ x̄3)∧(x1∨x2∨x5)∧(x2∨x3∨x4).
The clauses are all on different integer y-coordinates, the variables all at y = 0.
All clauses with y-values greater 0 only contain positive literals, all clauses
with y smaller than 0 only contain negative literals. If there is an edge between
a variable and a clause, the variable appears as a literal.

Lemma 4.13. Planar monotone 3Sat is NP-complete.

Proof. See [dBK10].

Roughly spoken, the next lemma allows us, that shared and non-shared edges have a
polynomial amount of crossings for our next reduction to still yield a planar instance of
SimFlow.

Lemma 4.14. If an embedding of the union of all Gi exists, in which the shared network
is planar and the non-shared edges of the different Gi don’t cross, but they may cross shared
edges. Then there exist graphs G′i that have the same decision of SimFlow as the Gi for
any values hi but there exists an embedding in which the union of the G′i is planar.

Proof. Taking the embedding with crossings of shared and non-shared edges: If there is an
intersection between a shared and a non-shared edge of a Gi, we create G′i by adding a
node in the intersection. Since this node is only part of one non-shared network, no flow
goes from the shared to the non-shared network or the other way around, through this
node. Doing this for every crossing yields a planar embedding.

23

4. SimFlow is Strongly NP-Complete

1

1

1

1

1 1 1
1

1

1 1

1 1

x1

x′
1

x′′
1

x̄1

x̄1
′

0

1

2

3

-1

-2

u

x̄1 x̄1

x1 x′
1 x′′

1

Figure 4.10.: Construction of planar variables: In this case for x1 and x̄1 with 3 and 2
occurrences as literals in clauses, respectively. There are two transferring
cycles, one for the positive occurrences one for the negative. They ensure
that if x1 is positive in one clause, it is positive in all clauses. In node u flow
can either go up towards the positive literals or down, towards the negative
literals. On the right the y-coordinates of the embedding of the variable
clause graph are indicated.

Theorem 4.15. If the shared network is connected and the same in all Gi = (V,Eshared ∪
Ei), the non-shared edges connect vertices in the shared network, all Gi are planar, and
especially the graph G = (V,Eshared ∪

⋃
1≤i≤mEi) with the edge set being the union of the

edge sets of all Gi is planar, SimFlow is strongly NP-complete.

Proof. We reduce Planar monotone 3Sat to our restricted problem in a similar fashion
we did in the previous proofs.

Our idea is to build an instance of Planar monotone 3Sat similar to the one for 3Sat
using the clause and variable gadgets in Figure 4.1 and 4.2, but this time ensuring flow on
true 3Sat variables by homologous arcs constructed with two non-shared edges similar
to Figure 3.3. Since Planar monotone 3Sat ensures, that the connection of variables
to clauses is planar, we just have to proof that our two-non-shared-edge homologous arc
construction doesn’t affect planarity.

Let I := (V,C) be an instance of Planar monotone 3Sat with a given variable-clause
graph like in definition 4.12. From this instance we want to build graphs G1 and G2 as an
instance of SimFlow. They will both consist of the same shared network, a concatenation
of gadgets as described bellow. Basically we’ll take the variable-clause graph and put the
variable and clause gadgets in there for the variables and clauses. In the figures of these
gadgets, only the red and blue non-shared edges will make the difference of G1 and G2.

For variables x ∈ V we look at Figure 4.10. In case there are multiple occurrences of x
as a literal in a clause c ∈ C, we just add them as edges behind the literal edge of x as

24

4.3. Planar monotone 3Sat Reduction

indicated by x1 and x′1 in the figure. In the node u, flow of 1 can either go the upper way,
leading to the variable being positive in all occurrences or the lower way, leading to it being
negative. The middle part of G1 and G2 is the concatenation of all variable gadgets for
all variables, like in the variable clause graph. Flow conservation guarantees, that if the
concatenation of variable gadgets has a flow of 1 going through it, it has passed all variable
gadgets. Now looking at planarity: The non-shared blue edges can go along the planar
embedding of edges of the variable-clause graph of I (see Figure 4.9), therefore it is planar
as well. According to Lemma 4.14 the blue, non-shared edges crossing the black, shared
ones does not contradict planarity. The number of crossings is polynomial in the input
because we only have to cross one shared edges per y-coordinate towards the y-level we
want to get to and then a constant amount of crossings in the variable and clause gadget
itself. Similar to Lemma 4.10, this non-shared construction enforces all occurrences of a
variable to have the same flow by creating one transferring cycle that does not intersect
any other transferring cycles. To enforce that either x1 xor x̄1 have flow, we limit the flow
going through the gadget by 1. Like this only one of the transferring cycles representing
a variable or its negotiation can be used. Theoretically, none of them could be used as
well if the flow is transferred via the shared edges only. If each clause is satisfied anyways,
this would just mean, that this variable is irrelevant for solving this instance of Planar
monotone 3Sat. A SAT example where this could happen is (x1 ∨ x2) ∧ (x̄1 ∨ x2), here,
the outcome of the formula doesn’t depend on x1. If not all clauses are satisfied and this
variable would make a difference solving it, the transferring cycle would be used, since only
then, we solved SimFlow correctly.

For the clauses we look at Figure 4.11. Each clause c ∈ C gets one of these gadgets. If a
clause contains less than three literals it is changed to look like in Figure A.1 or A.2 for
one or two literals, respectively. The positive clauses are then concatenated and so are
the negative ones, like that they build up the upper and lower part of both G1 and G2,
similar to the embedding of the variable-clause graph. Similar to the 3Sat clause gadgets
in Figure 4.1, the concatenation together with flow conservation guarantees, that if these
concatenated gadget subgraphs of G1 and G2 have flow 6, there is flow 6 through each
of the gadgets. To guarantee that at least one of the variable edges has to be taken in
each gadget, the flow on the shared network is limited by 5 in each gadget, right where the
non-shared edges connect. The dashed edges are the ones from Figure 4.10. They ensure,
that if for example x3 is true and relevant for the solution, the whole transferring cycle
and the x3 edge of our gadget have flow 1. Looking at planarity, already for the variable
gadgets we showed that all gadgets can be reached in a planar fashion. Again with Lemma
4.14 planarity is kept for the intersections of shared and non-shared network. The number
of crossings is polynomial in the input with the same argumentation as above.

The start of the variable gadget graph is connected via a shared edge to the source, with
capacity 1. The two concatenated clause graphs are connected to the source via a shared
edge above and below the concatenated variable graph, both with capacity 6. The ends of
all the graphs are connected to the sink in similar fashion.

If we now decide SimFlow on G1 and G2 with a flow of 6 + 6 + 1 = 13 for the positive and
negative clauses and the variables, we have a decision for Planar monotone 3Sat as
well. All edges have capacity ≤ 6, thus we have strong NP-completeness. The construction
holds what is required in the theorem. Especially, the red and blue non-shared edges never
cross in a gadget and in between graphs, there are only blue edges. This means, the union
of G1 and G2 is planar as well. Therefore SimFlow stays strongly NP-complete with these
restrictions.

25

4. SimFlow is Strongly NP-Complete

6

2

2

2

2

2

1

1

1

2

2

2

x1 x2 x3

2

0

1

3

x1

x2

x3

Figure 4.11.: Construction of planar clauses: The dashed edges left and right are where
other clause gadgets connect. The dashed edges from bellow are ones of
variable gadgets as seen in Figure 4.10, ensuring flow on the literal edges
x1, x2, x3 if the variables are positive. The capacity of the shared network is
limited by 5, so one of the red literal edges has to be taken for the gadget
to transfer 6 flow to the next gadget. On the right the y-coordinates of the
embedding of the variable clause graph are indicated.

4.4. SubSetSum Reduction
Now we come to our final proof of a special case of SimFlow being NP-complete. This is
the most restrictive one for the shared network, it will only consist of a path, but we don’t
have planarity of the non-shared networks anymore and the NP-completeness is not strong,
like in the other sections in this chapter.

Decision Problem 4.16. SubSetSum: Given a set A of integer numbers and an integer
number s, does there exist a subset A′ ⊆ A such that the sum of its elements is equal to∑

a∈A′ a = s.

Lemma 4.17. SubSetSum is NP-complete.

Proof. See [GJ79].

We’ll reduce SubSetSum to SimFlow. For our reduction, we’ll have a two-network
instance of SimFlow again. The shared network will consist of a simple path, the non-
shared network will only consist of edges connecting two nodes on the path, thus two
nodes of the shared network. To proof that even in this very limited case, no solution can
be found efficiently unless P = NP , we’ll show that SubSetSum can be reduced to this
special case, polynomially. For this we’ll use all-or-nothing flows (as seen in Figure 3.8) in
a combination with enforcing certain edges to have the same flow. Like that, we can build
an element i ∈ A with a graph of size O(log(i)), which will either be chosen fully or not at
all. The shared path will have capacity 1 in between all gadgets. It is an invariant, that at
the end of each gadget, we have flow 1 on the path again. In the end of the proof, there is
an explanation, how this is enforced, even if a gadget is not used. In the beginning of the

26

4.4. SubSetSum Reduction

path there will be some edges with higher capacities making sure all gadgets can get the
necessary flow. We first introduce 2 gadgets, the full reduction will then just use these to
build an instance of SimFlow from an instance of SubSetSum.

We’ll look at a gadget that can double the flow it gets as input. First, we look at a version
of it that gets an input of 2, then we’ll look at the general version. All gadgets only work
if the input is used to its full capacity. In the reduction we’ll then start with an input of 1
in each network, thus it can only be used to full capacity or not at all.

s

22

2

2

1

4

4

13 53

2

2

u v w x

Figure 4.12.: Doubling gadget example: This gadget ensures that either the flow exiting the
dashed non-shared edges is 0 or it is 4 depending on the dashed non-shared
incoming edges having a flow of 0 or of 2. The purple edge has flow 1 in every
case.

We have a look at Figure 4.12. In the middle of the gadget at node u, the 2 or 0 units of
flow enter from before. The output is not relevant for an input of 1, since this would mean
the all-or-nothing property was violated before the gadget. This flow is then transferred to
v. Like this, v either has an excess of 3 or of 1. If the excess is 3, the transferring cycle
containing v has to be used. The cycle contains edges, that come all the way from the start.
These have to carry a flow of 2, so flow conservation holds in the transferring cycle. Like
that we end up with 4 flow in node w. This is then transferred to x, where the non-shared
edges with capacity 4 have to be used and 1 unit of flow goes onto the shared path and the
invariant holds. If the excess in v is 1 on the other hand, the purple edge comes to play,
forcing the flow to take the shared path. Here, and in all other gadgets, the purple edges
always have a flow of 1, therefore if there is only one unit of flow in the whole gadget, it
needs to take the shared path so it can use the purple edge. In the reduction we’ll see how
all purple edges are forced to have a flow of 1. Thus, to transfer flow away from v, only the
shared path and the purple edge are used until reaching node x. There, again due to the
second purple edge, flow has to take the shared path and not the dashed non-shared edges
and the invariant holds. To summarize: If 2 units of flow enter through the dashed edges,
4 units of flow leave the gadget on the dashed edges on the right. If no flow enters through
the dashed edges, no flow leaves through the dashed edges on the right either.

In the figure we only doubled a flow of 2. In the same way, any flow entering on the dashed
edges can be doubled. Since we don’t need additional vertices or edges if we double higher
amounts of flow, this doubling can be used, to reach a value of 2i with a graph of size
O(log(i)). Figure 4.13 shows how the general doubling gadget looks like.

The next gadget we look at is the multi-output gadget that outputs 2k on two outgoing
edges in each non-shared network, if it gets an input of 2k on its input edges or it outputs
0 on the output edges if there is no input. Again we look at an example first, then at the

27

4. SimFlow is Strongly NP-Complete

s

2k2k

2k

2k

1

2k+1

2k+1

12k + 1 2k+1 + 12k + 1

2k

2k

u v w x

Figure 4.13.: Doubling gadget: This gadget ensures that either the flow exiting the dashed
non-shared edges is 0 or it is 2k+1 depending on the dashed non-shared
incoming edges having a flow of 0 or of 2k. The purple edge has flow 1 in
every case.

general case. In Figure 4.14 a multi output gadget for a flow of 4 is shown. If there is no
flow entering at node u, through the dashed non-shared edges, there is only one unit of
flow, that entered the gadget on the shared path. In this case, the purple edges ensure that
flow stays on the the shared path for the whole gadget. Everywhere, where the one unit of
flow could enter a transferring cycle or an output edge, the purple edges are positioned
right after, to force the unit of flow to take the shared path. Thus, the invariant holds here.
If the dashed non-shared edges have a flow of 4 entering u it will be transferred to v. At
v, the excess of 5 has to use all non-shared edges to their full capacity and still use the
shared path with one unit of flow. The non-shared edges v build two transferring cycles
like we saw them in the doubling gadget in Figure 4.12. Like this, we get an excess of 5 at
nodes w0 and x0. This is transferred to w1 and x1. The shared path leaving these nodes
only has capacity 1 and the purple edges enforce this flow, the leftover excess of 4 needs
to take the dashed non-shared output edges resulting in the output being the input of 4,
twice on different sets of output edges. Since there is still a flow of 1 on the shared path,
the invariant holds.

Figure 4.15 shows the general case of the multi-output gadget. Only the capacities have
changed in comparison to Figure 4.14 and the argumentation why we get an output of
2k on two outgoing edges in each non-shared network, if the gadget gets an input of 2k
is the same as above. k has to be greater or equal to 1 for this gadget to work, since we
would have negative exponents for the capacities otherwise, which would make these edges
unusable for integer flows.

Now we come to the reduction of SubSetSum to SimFlow.

Theorem 4.18. If the shared network only consists of a simple path and the non-shared
edges connect vertices in the shared network, SimFlow is NP-complete.

Proof. We build an instance of SubSetSum with the gadgets we just introduced. All
gadgets will be connected by the shared path in them To sum it up what the gadgets did:
The doubling gadget used in Figure 4.13 produces an output of 2k+1 in each non-shared
network if the input edges from the previous gadget carry a flow of 2k. Otherwise it has
flow 0 on the output edges. The invariant, of there being 1 unit of flow on the shared path
after the gadget holds. The multi-output gadget used in Figure 4.14 outputs 2k on two
outgoing edges in each non-shared network if the input edges from the previous gadget

28

4.4. SubSetSum Reduction

s

2

2

2
2

2

2

2

2

4

4

4

4

31 1 35

4

4
5

u v w0 x1x0w1

Figure 4.14.: Multi-output gadget example: This gadget ensures that either the flow exiting
the two sets of dashed non-shared edges is 0 or it is 4 depending on the dashed
non-shared incoming edges having a flow of 0 or of 4. The purple edge has
flow 1 in every case.

carry a flow of 2k. Otherwise it has flow 0 on the output edges. The invariant, of there
being 1 unit of flow on the shared path after the gadget holds.

Given an instance of SubSetSum I = (A, s). For each integer i ∈ A from the set we model
the binary representation and connect it to a final edge that has checks if the sum of flow of
the gadgets is s.We’ll connect outputs of gadgets to inputs of other ones. Thus, if one gadget
is used, all others will be used as well. To choose which of these gadget concatenations to
use, we insert a non-shared edge with capacity 1 in each non-shared network. Both edges
start at a vertex on the shared path, that doesn’t have any other shared edges leaving it
and that lays before any of the gadgets on the path. The edges end as input to a doubling
gadget. For the highest power of 2 in i ∈ A we double the output of this doubling gadget
with doubling gadgets connected output to input, until we reach the desired highest power.
For all submaximal powers 2k, we proceed as follows. We know, that we already have a
gadget in our gadget concatenation somewhere, that outputs 2k. So far, this output goes
into a doubling gadget. Instead of this output we’ll insert a multiple-output gadget on
the path between the doubling gadgets. This multi-output gadget outputs 2k twice. Like
that, we can use one output and connect in to the doubling gadget, the output of 2k was
connected to before and the other to model the binary representation of i by connecting
this output to the last node on the path before the sink. The last shared edge has capacity
s+ 1. If there is a simultaneous flow that uses it to its full capacity, there are fully used
gadget concatenations that produce a sum of s flow. Since these gadgets represent elements
in A we would have a subset, that solves SubSetSum.

We now look at how exactly the purple edges work, that assure the invariant holds even
if a gadget is not used. Theoretically it would be possible for the one unit of flow on the
shared path, to use the two non-shared output edges of an unused gadget with a flow of 1.
Like that, the all-or-nothing property of our gadget combination would be compromised.
Like we shaw when introducing the gadgets, we want the purple edges to all have a flow of
1 so this can’t happen. To ensure that, we insert a transferring cycle with capacity 1, so
they all have the same flow. How this transferring cycle looks like can be seen in Lemma
4.10. To ensure that the transferring cycle is used, we add one more purple edge from
before the first gadget to the sink. Now, we only accept SubSetSum if the simultaneous
flow in our graph is value of SubSetSum s + 2 . The +2 come from the 1 unit of flow

29

4. SimFlow is Strongly NP-Complete

s

2k−1

2k−1

2k−1

2k−1

2k−1

2k−1

2k−1

2k−1

2k
2k

2k

2k

2k−1 + 11 1 2k−1 + 12k + 1

2k

2k + 1

u v w0 x1x0w1

2k

Figure 4.15.: Multi-output gadget: This gadget ensures that either the flow exiting the
two sets of dashed non-shared edges is 0 or it is 2k depending on the dashed
non-shared incoming edges having a flow of 0 or of 2k. The purple edge has
flow 1 in every case.

on the path and from the one unit of flow through the purple edges. Like this, if there
is a solution of SimFlow that has a flow of s+ 2 in G1 and in G2, the last edge on the
path is used to its fully capacity. This means, there are fully used gadgets representing
a ∈ A′ ⊆ A with

∑
a∈A′ a = s connected to the start of this last edge. Thus, it is a solution

for SubSetSum. If there is no such solution for SimFlow, there is no gadget combination
that yields a flow of s, thus there is no subset for SubSetSum either. Figure 4.16 shows
an example of this construction for a set that only consists of the integer 4.

s t
1

1

2

2

2

1 1

1

2

2
1

2
4

4

523 2 1 3 1 3 1 5 11

Figure 4.16.: Example for the construction used in the reduction of SubSetSum to Sim-
Flow. In this example, the set only consists of the integer 4 and we want to
decide if there is a subset with value 4. Thus, we decide SimFlow with a
flow of 7 on both graphs.

30

5. Inapproximability of MaxSimFlow

In this chapter we are going to look at the optimization variant of SimFlow called
MaxSimFlow. In the previous section on NP-completeness we saw that still quite restricted
instances are strongly NP-complete. As we’ll see, this already shows that there doesn’t exist
a fully polynomial approximation scheme (FPTAS). Continuing with inapproximability of
MaxSimFlow, we’ll use that MaxIntegerEqualFlow is polynomially equivalent to
MaxSimFlow, that means, MaxSimFlow can be reduced to MaxIntegerEqualFlow
and vice versa while preserving approximation properties of a solution. This will lead to
2n(1−ε)-inapproximability. Due to this polynomial equivalence, we’ll use results of [MS09],
a paper on MaxIntegerEqualFlow, several times this chapter.

Theorem 5.1. There doesn’t exist a FPTAS for SimFlow, even if the shared network is
connected and the same in all Gi = (V,Eshared ∪Ei), the non-shared edges connect vertices
in the shared network, all Gi are planar, and especially the graph G = (V,Eshared ∪

⋃
Ei)

with the edge set being the union of the edge sets of all Gi is planar.

Proof. In Theorem 4.15 we have shown that SimFlow with this restrictions is strongly NP-
complete. In [Vaz03] it is shown, that there doesn’t exist a FPTAS for strongly NP-complete
problems.

Optimization Problem 5.2. MaxIntegerEqualFlow: Given a directed graph G :=
(V,E) with specific vertices s and t, (source and sink) and a capacity function c : E → N.
Additionally we have a set R of disjoint sets of edges, so called equal flow edges. We want
to maximize the s-t flow value h of f : E → N0 with 0 ≤ f(e) ≤ c(e) (e ∈ E) where for
each Rk ∈ R, ∀e, e′ ∈ Rk f(e) = f(e′).

MaxIntegerEqualFlow is an integer flow problem as well. In contrast to MaxSimFlow
which looks at m graphs with each having shared edges that has the same flow in all graphs,
MaxIntegerEqualFlow looks at one graph that has multiple edge-sets Rk ∈ R that all
must have the same flow. If the capacity of the equal flow edge sets is two, |Rk| = 2 for all
Rk ∈ R we call the optimization problem MaxHomArcFlow as well.

MaxHomArcFlow is the optimization variant of HomArcFlow. We have already re-
duced HomArcFlow to SimFlow (see Theorem 4.8). Similar to the reduction of HomAr-
cFlow to SimFlow in Theorem 4.8 we’ll now proceed with MaxIntegerEqualFlow.
We’ll use the generalization of our previous gadget to arbitrary large sets of edges with the
same flow that is described in Lemma 4.10 and Figure 4.7 for 3 edges.

31

5. Inapproximability of MaxSimFlow

Lemma 5.3. MaxIntegerEqualFlow can be reduced to MaxSimFlow in polynomial
time while preserving approximation properties.

Proof. Given an instance I = (V,E,R) of MaxIntegerEqualFlow, we want to con-
struct an instance I ′ of MaxSimFlow. We proceed similar to the construction used for
HomArcFlow. The shared network of I ′ is the network (V,E \

⋃
RRk) that means the

network of I without the equal flow edges. Applying Lemma 4.7 to all R ∈ R we now add
non-shared edges as replacement for previous edges from each R. This ensures, that the
flow is the same on all non-shared edges replacing previous edges from an R. I ′ now is this
combination of shared and non-shared edges. Since an optimal flow for MaxSimFlow on
I ′ would guarantee all equal edges to have the same flow and be on the same network, it
would be optimal for MaxIntegerEqualFlow on I as well. Figure 5.1 shows an example
construction of I ′.

a) b) c)

Figure 5.1.: a) is an instance of MaxIntegerEqualFlow with the colored edges being
the two sets of equal flow edges. b) and c) are the instance of MaxSimFlow
with the red edges being the non-shared edges of G1, the blue of G2. b)
highlights the non-shared edges added for the purple equal flow edges in a), c)
highlights the orange equal flow edges.

Lemma 5.4. MaxSimFlow can be reduced to MaxIntegerEqualFlow in polynomial
time while preserving approximation properties.

Proof. Given an instance I = {G1, G2, ..., Gm}, each Gi := (Vi, Ei ∪ Eishared), with sources
and sinks s1, s2, ..., sm and t1, t2, ..., tm of MaxSimFlow, we want to construct an instance
I ′ of MaxIntegerEqualFlow. All Vi and Eishared all have the same vertices or edges
respectively for all i ∈M := {1 ≤ i ≤ m} but for copying them later in this proof, the index
i is added to each vertex and edge. We add a new source s and a new sink t then we take
all Gi from MaxSimFlow and put them together in one graph, as seen in Figure 5.2. All
previous sources si from the Gi are connected to the new source s with unlimited capacity
and all previous sinks ti are connected to the new sink t. All previously shared edges are
put in sets Re :=

⋃
i∈M ei, one set for each shared edge e ∈ E1

shared. All together we get an
instance I ′ = (

⋃
i∈M Vi,

⋃
i∈M (Eishared ∪Ei),

⋃
e∈E1

shared
Re) of MaxIntegerEqualFlow.

If we find an optimal solution for this, it is a feasible flow, that has the same flow on all
shared edges. The s-t flow value is the sum of si-ti flow values of the Gi, which is exactly
definition 2.6, therefore we preserve approximation properties.

If we only have two Gi this obviously leads to an instance of MaxHomArcFlow, thus
this reduction can be used as well.

Theorem 5.5. There is no polynomial 2n(1−ε)-approximation algorithm for any fixed ε > 0
for MaxSimFlow even when restricted to two-network instances, unless P = NP .

32

Proof. Lemma 5.3 together with [MS09] proves the theorem.

s1

s2

s3

t1

t2

t3

s t

a) b)

G1

G2

G3

s1

s2

s3

G1

G2

G3

t1

t2

t3

Figure 5.2.: Reduction of MaxSimFlow to MaxIntegerEqualFlow as described in
Lemma 5.4 a) is the instance of MaxSimFlow, b) the one of MaxInte-
gerEqualFlow.

Like already mentioned in the introduction, the heuristics for MaxHomArcFlow from
[LL98] and [AKS88] can be used to solve MaxSimFlow on two-network instances as well.
To do so, we take the instance I of MaxSimFlow and use the construction from Lemma
5.1. The resulting instance of I ′ of of MaxHomArcFlow can be solved with one of the
heuristics then. [LL98] claims, that his heuristic can be extended to solve the general
case of MaxIntegerEqualFlow which would lead to a heuristic for the general case of
MaxSimFlow as well.

33

6. FPT

In this chapter, we show that MinCostSimFlow is fixed-parameter tractable (FPT),
in Section 6.1 for the number of shared edges as the parameter, in Section 6.2 for the
intersections between the shared and non-shared network or the number of non-shared
edges as the parameter.

6.1. FPT in Shared Edges
Decision Problem 6.1. MinCostIntegerEqualFlow: Given a MaxIntegerEqualFlow
instance, see Definition 5.2. Given a demand di for each node, weakening the flow con-
servation of node i to

∑
j:eij∈E f(eij)−

∑
j:eji∈E f(eji) = di. We also add a cost b(eij) for

each unit of flow on an edge. We want to decide if there exists a flow satisfying the new
flow conservation constraint and is equal on all equal flow edges in each node with a total
cost

∑
eij∈E f(eij) · b(eij) equal to a value b.

Lemma 6.2. The MinCostIntegerEqualFlow is FPT with the number of shared
edges being the fixed parameter.

Proof. In [MS09] it is shown, that MinCostIntegerEqualFlow is solvable in polynomial
time for any fixed number of equal flow sets. There it is solved with a mixed ILP, minimizing∑
eij∈E f(eij) · b(eij). If we instead minimize |

∑
eij∈E f(eij) · b(eij)− b| we decide yes, if the

minimum is 0, no otherwise. This change doesn’t affect polynomial runtime and decides
MinCostIntegerEqualFlow. Therefore, MinCostIntegerEqualFlow is FPT.

We’ll now see that this shows that the generalized version of SimFlow, MinCostSimFlow
(see Definition 2.5) is FPT, with the number of shared edges being the fixed parameter.
Theorem 6.3. MinCostSimFlow is FPT for the number of shared edges being the fixed
parameter.

Proof. Lemma 6.2 shows, that MinCostSimFlow is FPT. We proved in Lemma 5.4,
SimFlow can be reduced to MaxIntegerEqualFlow while having the same flow. This
exact construction can be reused here to reduce MinCostSimFlow to MinCostInte-
gerEqualFlow. If we now have an instance of MinCostSimFlow, we just construct
an instance of MinCostIntegerEqualFlow and solve it with the corresponding FPT
algorithm. Since the reduction does not add any shared edges and just uses the shared
edges to construct the sets of equal-flow-edges, the number of shared edges is the fixed
parameter for SimFlow in FPT.

35

6. FPT

6.2. FPT in Intersections
After seeing, for example in Lemma 3.6 or Figure 3.3, that we can enforce two or multiple
edges to have the same flow using non-shared edges in transferring cycles, one might assume
that we can use this construction to just use non-shared edges instead of shared edges and
get somewhere close to polynomial runtime. The problem about this is, that the gadget
only works if all these non-shared edges start and end at nodes in the shared network and
the transferring cycles only intersect once, as we saw in 3.7. This is also why in Lemma
4.10 and Figure 4.7 use additional shared edges. To be certain that none of the transferring
cycles intersect and thus all edges have the same flow for sure, each transferring cycle needs
at least 4 shared edges.

To continue looking at FPT, we can not only solve SimFlow polynomially with a fixed
number of shared edges, but also for a fixed number of non-shared edges. Therefore, we are
going to build a mixed ILP that has an amount of integer variables limited by the number
of non-shared edges. As shown in [Len83] this mixed ILP can be solved with exponential
time in the number of integer variables and polynomial in the rest. Like that we have an
FPT algorithm if the ILP solves our problem down to polynomial pre- and post calculations.
The integer variables are going to be the value of flow going from one network to the other,
from the shared to the non-shared, to be precise. The number of nodes that are in both,
shared and non-shared network, is limited by two times the number of non-shared edges,
since every edge only has a starting and an ending point. Thereby, the number of integer
variables is limited by two times the amount of non-shared edges as well.

It of course is limited by two times the number of shared edges as well, so it yields a FPT
algorithm in the number of shared edges too, but the one above might have better runtime
depending on the structure of the graphs.

Theorem 6.4. SimFlow is FPT for the number of non-shared edges or the number of
intersections between shared and non-shared network being the fixed parameter.

Proof. In the following, bij is the cost of flow on an edge, di is the demand of a node and yi
represents the amount of flow going from non-shared to shared network in an intersection
node. Therefore, yi is 0 if a node is not in the intersecting set of the shared and non-shared
network and an integer otherwise. The yi respect the demand of the nodes, that means, for
a node i they are yi = sum of shared outflux− sum of shared influx− di. But they also are
−yi = sum of non-shared outflux − sum of non-shared influx, assuring that all flow that
doesn’t leave through the shared network goes to the non-shared. We can use one yi per
node because it is the same in all graphs, since the shared network is the same in all graphs,
thus the influx to the shared network (= yi) has to be the same everywhere. We now give
the formal mixed ILP. Only the yi are integer variables, thus we only have exponential
running time in the number of intersections of the two networks.

min
∑

(i,j)∈E
bijfij

s.t.
∑

j:(i,j)∈Eshared

fij−
∑

j:(j,i)∈Eshared

fji − di = yi

∑
j:(i,j)∈Enon−shared

fij−
∑

j:(j,i)∈Enon−shared

fji = −yi for all graphs

yi ∈ Z
0 ≤ fij ≤ cij

36

6.2. FPT in Intersections

To prove that this yields a correct solution we add the first two equations. This leaves us
with

∑
j:(i,j)∈E fij −

∑
j:(j,i)∈E fji − di = 0 which is just the constraint of flow conservation.

This means, a solution will be a feasible real flow, with yi, the amounts of flow going from
non-shared to shared in the node i. Given the existence of a feasible simultaneous min-cost
flow, such yi always exists, because taking this simultaneous flow, we can simply insert the
flow and demand values in the equations above and solve for yi. But so far, the fij are not
necessarily integers. We’ll now use the integrality property for standard min-cost-max-flow
for the shared and each of the non-shared networks. Since the yi are integers, we can solve
a min-cost-max-flow problem for the shared network, and one for each non-shared network,
that contains the demands as follows. If the node i is not in the intersecting set of shared
and non-shared network, the demand is simply di, which works just fine, because the node
is not in the intersection and each network has to take care of this demand itself. If the
node i is in the intersecting set, the demand is yi + di in the shared network and −yi in the
non-shared networks. This just models, what we wanted: the yi were supposed to be the
outflux of the non-shared and the influx in the shared network with respect to the original
demands. Since all capacities and costs are integers there exists an integer optimal solution
with the same cost, which can be found in polynomial time with min-cost-max-flow. Since
this is only done once for the shared network, all shared edges have the same flow. Like this,
we have found an integer solution that still satisfies the ILP, thus flow conservation and has
the same flow on all shared edges. That means the existence of a solution for the mixed
ILP is the decision for MinCostSimFlow. The later min-cost-max-flow calculations yield
the corresponding simultaneous min-cost-max-flow. The polynomial running time of the
min-cost-max-flow calculation together with the potentially exponential runtime in the
number of non-zero yi for the mixed ILP show that MinCostSimFlow is FPT in the
number of intersections.

37

7. Conclusion

In this thesis we have looked at simultaneous integer flows from several perspectives.
We started by comparing them to standard flows, to see that the min-cut max-flow
duality, the existence of augmenting paths and the integrality property of maximum
flows are all lost when transitioning to the simultaneous case. We then reduced 3Sat,
HomArcFlow, Planar monotone 3Sat and SubSetSum to SimFlow to see that
deciding if a simultaneous flow with a certain value exists is hard to decide in various
restricted settings. In Chapter 5 on inapproximaility we saw that there is no polynomial
2n(1−ε)-approximation algorithm for any fixed ε > 0 for MaxSimFlow. We finished off
by showing that MinCostSimFlow is FPT in the number of intersections between the
shared and non-shared network.

39

Bibliography

[ABF+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kra-
tochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially
embedded graphs. In Proceedings of the twenty-first annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 202–221. SIAM, 2010.

[AKS88] Agha Iqbal Ali, Jeff Kennington, and Bala Shetty. The equal flow problem.
European Journal of Operational Research, 36(1):107–115, 1988.

[AMO88] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows.
1988.

[BKM+17] Glencora Borradaile, Philip N Klein, Shay Mozes, Yahav Nussbaum, and
Christian Wulff-Nilsen. Multiple-source multiple-sink maximum flow in directed
planar graphs in near-linear time. SIAM Journal on Computing, 46(4):1280–
1303, 2017.

[BKR12] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous Em-
bedding of Planar Graphs. ArXiv, abs/1204.5853, 2012.

[BR16] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications
to constrained embedding problems. ACM Transactions on Algorithms (TALG),
12(2):16, 2016.

[CC01] Eleonor Ciurea and Laura Ciupal. Algorithms for minimum flows. The Computer
Science Journal of Moldova, 9(3):275–290, 2001.

[CLRS01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms second edition. The Knuth-Morris-Pratt Algorithm,
year, 2001.

[dBK10] Mark de Berg and Amirali Khosravi. Optimal Binary Space Partitions in the
Plane. In My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics,
pages 216–225, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[EH06] Alexander Engau and Horst W Hamacher. Semi-Simultaneous Flows and Binary
Constrained (Integer) Linear Programs. 2006.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[HKRS97] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. journal of computer and
system sciences, 55(1):3–23, 1997.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

41

Bibliography

[KHA79] L. G. KHACHIYAN. A polynomial algorithm in linear programming. Doklady
Academii Nauk SSSR, 244:1093–1096, 1979.

[KKV11] Pavel Klavík, Jan Kratochvíl, and Tomáš Vyskočil. Extending partial rep-
resentations of interval graphs. In International Conference on Theory and
Applications of Models of Computation, pages 276–285. Springer, 2011.

[Kri09] Manuel Krings. Simultane Schnitte in Graphen, 2009.

[Len83] H. W. Lenstra. Integer Programming with a Fixed Number of Variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

[LL98] TorjÖrn Larson and Zhuangwei Liu. An efficient Lagrangean relaxation scheme
for linear and integer equal flow problems. Optimization, 44(1):49–67, 1998.

[MS09] Carol A. Meyers and Andreas S. Schulz. Integer equal flows. Operations
Research Letters, 37(4):245 – 249, 2009.

[Orl13] James B Orlin. Max flows in O (nm) time, or better. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 765–774.
ACM, 2013.

[Sah74] S. Sahni. Computationally Related Problems. SIAM Journal on Computing,
3(4):262–279, 1974.

[Sch02] Alexander Schrijver. On the history of the transportation and maximum flow
problems. Mathematical Programming, 91(3):437–445, 2002.

[Vaz03] Vijay V. Vazirani. Approximation algorithms. Springer, Berlin, corr. 2. print.
edition, 2003.

42

Appendix

A. Planar monotone 3Sat Gadget Variants

6

4

2

4

1
2

x1

2

1

0

3

Figure A.1.: Construction of planar clause for clauses with only 1 literal.

6

3

2

2

3
1

1

2

2

x1 x2

2

0

3

1

Figure A.2.: Construction of planar clause for clauses with only 2 literals.

43

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Decision and Optimization Problems Using Simultaneous Flows

	3 From Flows to Simultaneous Flows
	3.1 Min-Cuts and Simultaneous Flows
	3.2 Augmenting Flow in the Simultaneous Case
	3.3 Integrality Property and Integrality Gap

	4 SimFlow is Strongly NP-Complete
	4.1 Basic 3Sat Reduction
	4.2 Same Flow on Two Edges – HomArcFlow Reduction
	4.2.1 HomArcFlow is Strongly NP-complete
	4.2.2 NP-Completeness for Restricted Non-Shared Network

	4.3 Planar monotone 3Sat Reduction
	4.4 SubSetSum Reduction

	5 Inapproximability of MaxSimFlow
	6 FPT
	6.1 FPT in Shared Edges
	6.2 FPT in Intersections

	7 Conclusion
	Bibliography
	Appendix
	A Planar monotone 3Sat Gadget Variants

