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Abstract

Given are n square-shaped robots with start and target positions for each robot in
an unbounded grid that may contain stationary obstacles. At each time step, a robot
can move to an adjacent grid position or remain at its position. The task is to find
a schedule, meaning a sequence of moves for each robot, so that every robot starts
at its start position and reaches its target position without colliding with any other
robot or obstacle. We show that, under mild restrictions, we always find a feasible
schedule.

There are two objectives that we consider separately. The first objective aims at
minimizing the overall time needed to move every robot to its target position. We
prove that it is NP-complete to compute a schedule with a length that is lower than
k, for a k ∈ N. The second objective aims at minimizing the total distance traveled
by all robots. We use different heuristics to obtain a schedule with good results
concerning both objectives. Our solution is evaluated on many diverse instances.
Especially for the second objective, we achieve decent results.

Deutsche Zusammenfassung

Gegeben seien n quadratische Roboter mit Start- und Zielpositionen für jeden
Roboter. Die Roboter befinden sich in einem unbegrenzten Gitter, welches stationäre
Hindernisse enthalten kann. In jedem Zeitschritt kann sich ein Roboter in eine
benachbarte Gitterposition bewegen oder auf seiner Position bleiben. Die Aufgabe
ist es, einen Plan für die Bewegungsabläufe zu finden, in dem jeder Roboter an
seiner Startposition beginnt und seine Zielposition erreicht, ohne dabei mit anderen
Robotern oder Hindernissen zu kollidieren. Wir zeigen, dass wir mit einer kleinen
Einschränkung immer einen solchen Plan finden.

Es gibt zwei weitere Ziele, welche wir unabhängig voneinander betrachten. Das
erste Ziel ist es, die Gesamtzeit zu minimieren, die benötigt wird, um alle Roboter
an ihre Zielposition zu bringen. Wir beweisen, dass es NP-vollständig ist, einen
Plan zu berechnen, welcher eine Gesamtzeit besitzt, die kleiner als k ist (für ein
k ∈ N). Das zweite Ziel ist es, die Strecke, die alle Roboter zusammen zurücklegen,
zu minimieren. Wir benutzen verschiedene Heuristiken, um einen Plan zu erhalten,
welcher beide Ziele möglichst gut berücksichtigt. Wir evaluieren unsere Lösung auf
vielen verschiedenen Instanzen. Insbesondere für das zweite Ziel erzielen wir gute
Ergebnisse.
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1. Introduction

Since the second half of the 20th century, the domain of robotics has gained more and
more relevance. Today, robots are used in many different areas. As robots tend to be more
accurate and reliable than humans, they, for example, simplify processes in the industry.
One of the key research topics in robotics is to plan a path for a robot from a given start
position to a desired target position while avoiding obstacles in the environment. This is
called motion planning. Planning the path of a single robot has been well studied over
the last decades, whereas coordinated motion planning asks to coordinate many individual
robots at the same time. In this scenario, the goal often is overall efficiency rather than
individual navigation. There is still a vast demand for algorithms that solve the coordinated
motion planning problem with provable performance guarantees. We participated in a
challenge that stated the task to coordinate many square-shaped robots located in an
unbounded grid.

1.1. „CG:SHOP 2021“-Challenge
This thesis is dedicated to the “CG:SHOP 2021”-Challenge1 (Computational Geometry:
Solving Hard Optimization Problems). Since 2019, this challenge has been hosted every year
encouraging scientists to deal with solving hard computational geometry problems. This
year’s challenge, called “Coordinated Motion Planning”, invites scholars to compute good
solutions to a specific coordinated motion planning problem while minimizing different
objective functions. The hosts of the challenge, Sándor P. Fekete, Phillip Keldenich,
Dominik Krupke and Joseph S. B. Mitchell [FKKM21], published a paper providing further
information on the 2021-challenge as well as the most notable results. In this context, 203
instances of the problem were provided and the quality of the submitted solutions to these
instances determined the placement in this competition.

1.2. Related Work
Relocating many robots from a given start configuration into a desired goal configuration
has been a topic of high interest for the past 20 years. More generally, this problem is also
known as the multi-agent pathfinding problem (MAPF) and has many applications, for
example in automated warehouses, as shown by Wurman et al. [WDM08]. However, Ma
et al. [MKA+17] discuss issues that arise when generalizing MAPF methods to real-world

1Official website: https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021
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1. Introduction

scenarios. Furthermore, Stern et al. [SSF+19] provide a survey with variations on MAPF,
for instance, they describe several types of conflicts between agents.

In coordinated motion planning, different variations can be applied as well. Objects are
shaped in various ways and scenarios classify in discrete or continuous settings. On the one
hand, in the discrete scenario, the input is a graph in which objects can transition from
one vertex to another vertex if an edge exists between the two vertices. Objects are not
allowed to use a vertex or edge at the same time. On the other hand, in the continuous
case, the objects represent some shape and must move to their target positions, so that
their bodies do not overlap at any time. All objects may be bounded to a certain region
and there may be obstacles in the environment. In both settings, objects can further be
labeled, colored or unlabeled. First, if all objects are labeled, they are distinguishable and
each object has a unique target position that can only be covered by the object with the
appropriate label. Second, in the colored case, the objects are partitioned into several
groups by assigning a color to them. Objects of the same color belong to the same group
and each target position can only be covered by an object with the corresponding color.
Solovey and Halperin [SH14] present a sampling-based algorithm for this case. Third, in
the unlabeled scenario, a target position can be covered by any object, because the objects
are indistinguishable.

In the 1980s, Schwartz and Sharir [SS83] investigated the motion of multiple disk-shaped
objects among obstacles in a bounded region. Their algorithms are polynomial in the
number of obstacles, but exponential in the number of disks. Hopcroft et al. [HSS84]
and Hopcroft and Wilfong [HW86] showed PSPACE-completeness for multi-object motion
planning for rectangles in a rectangular boundary. The children’s game “Rush Hour” is a
sliding block game played on a grid board with the goal is to find a sequence of moves that
allows a special target block to exit the grid. This problem was generalized to an n× n
grid and proven PSPACE-complete by Flake and Braum [FB02]. In another famous game,
called “15-puzzle”, the goal is to slide 15 labeled unit squares into a target configuration
within a 4 × 4 board. The 4 × 4 board was extended to an n × n board by Ratner and
Warmuth [RW90], who showed that finding a shortest solution for the extended puzzle is
NP-hard. All of these findings encourage the study of polynomial approximation algorithms
for related robotics problems.

A common technique for solving motion planning problems is to depict the environment
as a graph, where the cost of edges represents the cost to transition from one position
to another. A related problem is the k-disjoint shortest path problem, which asks for the
existence of k vertex-disjoint paths in a graph with k pairs of terminals that connect each
pair of terminals. All paths are required to be shortest paths. Lochet [Loc21] shows that
for any fixed k, the disjoint shortest paths problem admits a polynomial time algorithm.

Wagner and Choset [WC15] introduce a framework that initially plans paths for each robot
individually and then coordinates motion among the robots as needed. This approach is a
mix of so-called decoupled and coupled path planning. Decoupled path planning algorithms
for multiple robots first compute paths individually for each robot and then adjust the
paths to avoid collision with other robots. Coupled path planning methods search the
joint configuration space guaranteeing to find an optimal path. An example of the latter
approach is the famous A∗ algorithm by Hart et al. [HNR68]. However, with a growing
number of robots, the A∗ algorithm becomes computationally infeasible. Making use of
SAT solvers by recasting the coordinated motion planning problem as a SAT instance
represents another coupled approach, see the article by Ruoyun et al. [HCZ10].

The „CG:SHOP 2021“-Challenge is based on an article by Demaine et al. [DFK+19]. The
authors prove that finding a schedule with minimal execution time is NP-hard, even for a

2



1.3. Contribution

grid arrangement without any stationary obstacles. Furthermore, they achieve constant-
factor approximation for minimizing the overall execution time in the absence of obstacles,
provided that some amount of separability is given.

In this thesis, we consider a grid setting with labeled sqaure-shaped robots. Within this
specific context, robot motion behaves differently compared to the setting by Demaine et
al. As with other teams who participated in the challenge, the solution we propose relies
on the idea of a two-step process. Crombez et al. (Team Shadoks) [CdFG+21] describe
their method of solving the challenge’s problem. They obtain a moderate solution and
then optimize it by using different techniques and heuristics. Liu et al. (Team Gitastrophe)
[LSJZZ21] follow a similar approach by first finding a good initial solution and then
performing a k-opt local search phase which optimizes the solution. Yang and Vigneron
(Team Unist) [YV21] take a simulated annealing approach in their optimization phase.

1.3. Contribution
This work provides a solution that can be used to compute schedules for the instances
provided in the challenge. We propose different heuristics and show that, under mild
restrictions, we always find a schedule. However, this schedule is not optimized. We
introduce an algorithm that can potentially improve any given schedule.

Our work is structured as follows. In Chapter 2, we formally define Coordinated Motion
Planning in a Grid. We explain key aspects of graph theory as they play an important role
in our solution. In Chapter 3, we adapt a proof by Demaine et al. [DFK+19] to show that
it is NP-complete to compute a schedule with a length that is lower than k (for a k ∈ N)
by reducing from Monotone-3SAT. After that, Chapter 4 covers the methods we use to
calculate solutions to the instances. Our solution and the heuristics are then evaluated
on the instances that were provided in the challenge in Chapter 5. We further discuss the
approaches by other teams and how they differ from ours.

3





2. Preliminaries

This chapter introduces the main problem Coordinated Motion Planning for Multiple Square-
Shaped Robots in a Grid that we aim to investigate within our work. As a prerequisite, it
is necessary to define the basic terms we use to describe the problem throughout the thesis.
Furthermore, we refer to parts of graph theory, since we consider graph-related algorithms
to solve our problem.

2.1. Coordinated Motion Planning in a Grid
The following definitions are inspired by the rules that were given in the context of the
“CG:SHOP 2021”-Challenge as well as the article by Demaine et al. [DFK+19] who dealt
with a similar problem. We slightly adapt the setting of the authors to fit our needs. In
the following, we go into detail for every component of our problem.

Grid. We consider an infinite rectangular grid. A cell in this grid is an area bordered by
the lines of the grid. By labeling an arbitrary cell with (0, 0), we can index each cell by a
unique index (x, y) ∈ Z× Z.

(0, 0)

Figure 2.1.: Unbounded grid with three different robots at (0, 3), (2, 0) and (2, 1)

Robots. We have a set of n distinguishable robots that are located in the grid. Each robot
is assigned a unique label i, which is an element of the set L = {1, . . . , n} ⊆ N. The robots
are unit-square-shaped, as a consequence robots completely fill the cell they are currently
located in (see Figure 2.1 for a visualization). A position of a specific robot with label
i ∈ L in a cell of the grid is denoted by a tuple (xi, yi) ∈ Z× Z.

5



2. Preliminaries

Start and Target Positions. Each robot has a unique start position and a unique target
position. The start positions are described by a set S = {s1, . . . , sn} ⊆ Z × Z, where si

is the start position of robot i. The set T = {t1, . . . , tn} ⊆ Z × Z corresponds to the
distinct target positions for each robot, where ti depicts the target position of robot i. The
sets S and T are not required to be disjoint. Therefore, the start position of robot i can
potentially be the target position of any robot j and even i = j.

Obstacles. The set O = {o1, . . . , ol} ⊆ Z× Z represents l stationary obstacles located in
the grid. Similar to robots, an obstacle completely fills out a cell in the grid. However,
obstacles exist from the beginning and never change their positions during robot motion.
The set of obstacles may be empty.

Robot Motion. Robots move in discrete time steps and all robots move at unit speed. At
each unit of time, each robot can either stay at its position or move to an adjacent cell.
There are four possible directions that a robot can move towards to: west, north, east and
south. We do not allow diagonal movement. If a robot is at position (x, y) and decides to
move west, its new position after completing the movement is (x− 1, y). Analogously, this
applies to the other three remaining directions as well. We denote such a movement at one
step of time by (x, y)→ (x− 1, y). A robot is only allowed to perform its motion as long
as it does not collide with any other robot or obstacle.

Collisions. To define collisions, we allow time to be non-discrete only in this paragraph. A
robot has to remain disjoint from all other robots and all obstacles at all times t ∈ R. If a
robot overlaps with a different robot or an obstacle, we call this a collision. We need to
closely observe a special collision between robots that might occur because of their square
shape. If there is a robot at position (x, y) and a different robot at position (x + 1, y),
then the robot at position (x, y) can only move east into position (x+ 1, y) if the robot at
position (x+ 1, y) moves east as well. Visually speaking, the two robots remain in contact
during their movement, but they never overlap (see Figure 2.2). If the robot at position
(x+ 1, y) moves south or north in this scenario, the robot at position (x, y) would have to
wait one time step before going east, otherwise we call this a follow collision.

(a) (b) (c)

Figure 2.2.: (a) This motion is not legal as two robots end up at the same position. (b) This
motion is not legal as a follow collision occurs. (c) This motion is collision-free.

We will subsequently define a decision problem, while related optimization problems are
introduced at a later time. The decision problem itself will be investigated in Chapter 4 to
show that it is decidable given a small restriction.

Definition 2.1. Coordinated Motion Planning in a Grid

Input: Given are n labeled robots, a set of start positions S = {s1, . . . , sn}, a set of target
positions T = {t1, . . . , tn} and a set of obstacles O = {o1, . . . , ol}.

Question: Is there a sequence of collision-free moves for all n robots so that robot i moves
from si to ti?

6



2.1. Coordinated Motion Planning in a Grid

We further introduce the following terms and definitions to describe our problem. A
configuration keeps track of the locations of all robots and obstacles at a time t ∈ N0.
We define this as a mapping C : Z × Z → {1, . . . , n,�,�}. The restricted function C|R
is injective, where R ⊆ Z × Z describes the positions of the robots. The empty square
represents an empty cell and the black square denotes a cell blocked by an obstacle. The
inverse image of a robot’s label i is defined by C−1 : {1, . . . , n} → Z×Z. C−1(i) represents
the position (xi, yi) of robot i in the grid. A configuration C1 is transformed at one time
step into another configuration C2, if the motion of each robot during this time step is
collision-free. This is particularly the case if each robot stays at its position or moves
towards one of the four directions while respecting the rules set in the previous paragraphs.
We denote this by C1 → C2.

We refer to a start configuration as Cs and a target configuration as Ct. For i ∈ L,
C−1

s (i) = si is the start position and C−1
t (i) = ti is the target position of robot i. In the

start configuration Cs, all robots are at their start positions and in the target configuration
Ct, all robots are at their target positions. A schedule is a sequence of configurations
C1 → · · · → CM , for M ∈ N, where C1 is the start configuration Cs and CM is the target
configuration Ct. Refer to Appendix B for an exemplary schedule. We call the number M
of steps in a schedule the makespan. The optimal makespan is the minimum number of
steps in any schedule. The number of steps a single robot performs in a given schedule
is called the distance. The sum of all distances is defined as the total distance and the
optimal total distance is the lowest possible total distance in any schedule. We also define
the optimal distance of a single robot as the length of a shortest path between its start
and target position. It should be noted that without obstacles, this distance is equal to
the manhattan distance between the start and target position. Given two coordinates
p = (p1, p2) and q = (q1, q2), the manhattan distance d is defined as d = |p1− q1|+ |p2− q2|.
If the set of obstacles is not empty, it is possible to use a breadth-first search to determine
the optimal distance, which will be explained in Subsection 2.2.1.

Given the start and target positions of all robots, we call the integer axis-aligned rectangle
that includes all start and target positions and all obstacles the initial bounding box.
Furthermore, we define the border as the outer cells of this rectangle that are not part of
the bounding box (see Figure 2.3 for an example). Robot motion is not limited by the
initial bounding box. Robots can move further away in any direction if desired. Similar to
the initial bounding box, the bounding box at a time t is the rectangle that includes all
cells with robots currently located in, all target positions, and all obstacles.

Initial
Bounding
Box

Figure 2.3.: Brown cells mark the border, the initial bounding box is highlighted red. The
box includes all entities, namely four robots (blue) and five obstacles (gray).
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2. Preliminaries

We define another decision problem that asks to find a schedule with makespan at most
k, for a k ∈ N, and two optimization problems that ask to find optimal solutions for the
makespan and total distance.

Definition 2.2. Makespan

Input: Given are n labeled robots, a set of start positions S = {s1, . . . , sn}, a set of target
positions T = {t1, . . . , tn} and a set of obstacles O = {o1, . . . , ol}.

Question: Is there a schedule with makespan M ≤ k, for a k ∈ N?

Definition 2.3. Optimal Makespan

Input: Given are n labeled robots, a set of start positions S = {s1, . . . , sn}, a set of target
positions T = {t1, . . . , tn} and a set of obstacles O = {o1, . . . , ol}.

Question: Find a schedule with optimal makespan.

Definition 2.4. Optimal Total Distance

Input: Given are n labeled robots, a set of start positions S = {s1, . . . , sn}, a set of target
positions T = {t1, . . . , tn} and a set of obstacles O = {o1, . . . , ol}.

Question: Find a schedule with optimal total distance.

These problems seem difficult to solve. We prove NP-completeness for Makespan. The
two objectives in this thesis are as follows:

1. Minimize the total distance

2. Minimize the makespan

In the context of the challenge, these two objectives are considered separately. However, in
this thesis we propose one solution with the aim to minimize both objectives at the same
time. Our solution consists of multiple steps, where each step contributes differently to the
objectives. Sometimes, a step of our solution only considers one objective at a time. We
can easily find lower bounds for the two objectives. For the makespan, a valid lower bound
is the maximum distance between any robot’s start and target position. If the makespan
was lower than this distance, the robot with the maximum distance would not reach its
target position. For the total distance, a lower bound is given by the sum of all distances
between every robot’s start and target position. In that case, every robot can move directly
to its target position without having to make a detour.

2.2. Graph Theory
We will apply known algorithms that are related to graphs to solve our problem. Therefore,
we preliminary define a few associated terms and introduce some graph problems and the
corresponding algorithms.

A graph is a pair G = (V,E) described by a finite set of vertices V and edges E between
vertices. In a directed graph, the edges have a direction, meaning that edges are described
by a set E ⊆ {(x, y) | x ∈ V ∧y ∈ V }. On the contrary, the edges in an undirected graph do
not have a direction. Hence, the set of edges is defined as as E ⊆ {{x, y} | x ∈ V ∧ y ∈ V }.
We may assign a weight to each edge by defining a weight function w : E → Z and call
the resulting graph a weighted graph. A graph is called bipartite, if the vertices can be
partioned into two disjoint sets so that every edge connects two vertices from different
sets. A complete bipartite graph is a bipartite graph, where every vertex of the first set is
connected to every vertex of the second set.

8



2.2. Graph Theory

2.2.1. Breadth-First Search
As the breadth-first search (BFS) plays an important role within this thesis, we briefly
describe the underlying mechanism. A detailed explanation can be found in the book
by Cormen et al. [CLRS09]. Given a graph G, a source node s and a target node t, the
breadth-first search traverses the graph starting at the source node, which is initially
put into a queue. In a loop, the front element of the queue is popped and all of the
neighbor nodes are explored. If they have not been visited yet, they are added to the
queue. This process repeats until the queue is empty or the target node has been explored.
The pseudocode is depicted in Algorithm 2.1. The time complexity of this algorithm is
O(n+m), where n is the number of vertices and m is the number of edges.

We also use the BFS to determine the distance between the nodes of a graph in relation to
a source node s. We do not have an explicit target node as we aim to explore all nodes
reachable from the source node. The source node is assigned a distance of 0 and the
algorithm visits all the source node’s neighbors and sets their distance to 1. Afterwards,
the BFS explores all the unvisited neighbors of nodes that have distance 1 and assign those
new nodes a distance of 2. The described process is repeated until all reachable nodes have
been visited resulting in a distance for all reachable nodes in relation to a source node. In
our case, the edges that were explored to reach a certain node describe a shortest path
between two positions in the grid.

Algorithm 2.1: Breadth-first search
Input: Graph G = (V,E), source node s, target node t
Data: Queue Q
// Initialization

1 Q.enqueue(s)
2 mark s as visited and all other nodes as not visited

// Main loop
3 while Q is not empty do
4 v ← Q.dequeue()
5 if v = t then
6 return
7 forall (v, w) ∈ E do
8 if w is not visited then
9 mark w as visited

10 Q.enqueue(w)

2.2.2. Minimum-Cost Maximum-Matching
An important term in relation to graphs is a matching. A matching in a graph is a set of
pairwise non-adjacent edges, that means no two edges share a common vertex. We call
the number of edges in the matching its cardinality. A maximum matching is a matching
whose cardinality is maximum among all possible matchings in a given graph. We consider
a directed, complete bipartite graph with the partitioned sets X and Y , where all edges go
from X to Y . Furthermore, this graph has a weight function w : E → Z. We describe the
calculation of a maximum matching, where the sum of the weights of all edges involved
is minimal (minimum-cost maximum-matching), as we will refer to this calculation in
Subsection 4.1.2.

We reduce this problem to a minimum-cost maximum-flow problem. Therefore, we add
two nodes to the existing graph: a source s that has a directed edge to all vertices in X,

9



2. Preliminaries

and a sink t that has incoming edges from all vertices in Y . These newly added edges are
assigned a cost of 0 and a capacity of 1. All other edges, meaning the ones that already
existed, are assigned a capacity of 1 and the cost is equal to the weight.

In the following, we provide a quick overview about an algorithm that solves this problem,
referring to [MCF] for a detailed implementation of the algorithm. Given our modified
graph, for every edge, we add the reverse edge with capacity 0 and negative costs. Iteratively,
we look for a shortest path from s to t considering the cost of the edges. The flow along the
shortest path is augmented by 1 and the reverse edges on this path increase the residual
capacity by 1. This iteration is repeated until no path exists from s to t, at that point
the algorithm terminates and a solution is found. To obtain our desired minimum-cost
maximum-matching, we simply take the edges that are part of the resulting flow. As
we deal with edges with negative costs, we use the Bellmann-Ford algorithm to compute
shortest paths. An elaborated explanation on the Bellman-Ford algorithm can be found
in the book by Cormen et al. [CLRS09]. Its time complexity is O(nm), where n is the
number of vertices and m is the number of edges. Overall, this leads to a time complexity
of O(n2m2) for the minimum-cost maximum-flow.

It should be noted that this is not the fastest algorithm to compute a minimum-cost
maximum-matching. More refined algorithms such as the Hungarian algorithm exist to
deal with this problem in a shorter time, see the original publication by Kuhn [Kuh55]. Its
time complexity is O(n3).

10



3. NP-Completeness

In this chapter, we show NP-completeness for Makespan (Definition 2.2). We mainly
follow the proof that was given by Demaine et al. [DFK+19], but slightly adapt their proof
to fit our setting. In the setting of the authors, robots are not unit-square-shaped and as a
consequence, different robot motions are possible. For their proof, Demaine et al. reduce
from the problem Monotone 3-Sat:

Definition 3.1. Monotone 3-Sat

Input: Given is a formula φ of clauses where each clause consists of only positive or only
negative literals and each clause contains three literals.

Question: Is there an assignment for the variables that satisfies the formula φ?

Monotone 3-Sat is known to be NP-complete, refer to problem L02 in the book of Garey
and Johnson [GJ79] as well as the article by Gold [Gol78]. The reduction from Monotone
3-Sat works as follows. Given a formula φ, we construct an instance of the coordinated
motion planning problem in a grid. This constructed instance has makespan M if and only
if φ is satisfiable and M + 1 otherwise. The exact value of M will be determined at the
end.

The high-level idea is to represent every variable as a variable robot, which is forced to
move on exactly one of two paths. Forcing a variable robot to take one of two paths is
accomplished by introducing two auxiliary robots for each variable robot. The two possible
paths represent a truth assignment for the variable. Each clause has three checker robots,
one for each literal in the clause. The checker robots cross paths with the corresponding
variable robots and have to wait one time step if the truth assignment does not match.
The checker robots for negative clauses start below all variable robots and move north,
while the checker robots for positive clauses start above all variable robots and move south.
Each clause further has a clause robot that crosses paths with the corresponding checker
robots. The clause robot checks if its clause is satisfied by making sure that at least one
variable in its clause is satisfied. In the end, a makespan M is feasible iff φ is satisfiable. A
high-level sketch can be found in Figure 3.1.

For the remainder of this chapter, let the formula φ have n variables {x0, . . . , xn−1} and m
clauses {C1, . . . , Cm}. Moreover, let the clauses be ordered in a way that negative clauses
come before positive clauses. Formally, there is a c, so that Ci is a negative clause for all
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3. NP-Completeness

Variable Robots

Auxiliary Robots

Auxiliary Robots

Checker Robots

Checker Robots

Clause Robot

Figure 3.1.: High-level sketch of the proof, similar to the idea by Demaine et al. [DFK+19].
The variable robots move east. There are left and right auxiliary robots
for each variable robot. Negative checker robots move north, while positive
checker robots move south. Clause robots move west and cross paths with the
corresponding checker robots.

1 ≤ i ≤ c and Ci is a positive clause for all c < i ≤ m. In the following, we go into detail
for every component that is needed for the proof.

Variable Robots. For each variable xj , we construct a variable gadget consisting of a variable
robot and two auxiliary robots. The left auxiliary robot of a variable xj has start position
(1, 6j) and target position (1, 6j −M). The right auxiliary robot of a variable xj has start
position (M − 3, 6j −M) and target position (M − 3, 6j). The variable robot for variable
xj starts at position (0, 6j) and moves to its target position (M − 2, 6j).

Lemma 3.2. Each variable robot moves on one of exactly two paths towards its target
position.

Proof. We consider the variable gadget for a variable xj . The left auxiliary robot moves M
steps south and the right auxiliary robot moves M steps north. As the distance they need
to move is equal to the makespan, both auxiliary robots have to move at every time step
without waiting. The variable robot’s target position is located M − 2 cells east of its start
position. Thus, the variable robot is allowed to wait two time steps.

The variable robot cannot move east at the first time step, as this would lead to a
follow collision with the left auxiliary robot. The variable robot cannot move south or
west either, because it would collide with the right auxiliary robot at the last time step.
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Therefore, the variable robot is forced to wait or move north at the very first time step.
Afterwards, the variable robot has to move east towards its target position. It cannot wait
or move south, because this would result in a collision with the right auxiliary robot. As a
consequence, in any schedule, each variable robot has x-coordinate k− 1 after the kth time
step (1 ≤ k ≤M − 3) and either y-coordinate 6j or 6j + 1.

Figure 3.2 depicts the placement of the auxiliary robots and the variable robots. The latter
are forced to move on one of two paths (top and bottom) that represent a truth assignment.
The top path represents false, whereas the bottom path represents true.

x0 : (0, 0)

x1 : (0, 6)

xn−1 : (0, 6(n− 1))

(1,−M) (M − 3,−M)

x0 : (M − 2, 0)

x1 : (M − 2, 6)

xn−1 : (M − 2, 6(n− 1))

Variable Robot

Auxiliary Robot

False

True

Figure 3.2.: A sketch of the start configuration for variable gadgets. Variable robots are
forced to move on exactly one of two paths.

Checker Robots. We introduce negative checker robots for negative clauses and positive
checker robots for positive clauses. First, we consider negative checkers. The general
procedure for positive checkers remains the same, but we slightly adapt the start and target
positions. For each negative clause Ci = {xj1 , xj2 , xj3} with j1 < j2 < j3, there are three
negative checker robots c1

i , c
2
i , c

3
i . Their task is to check whether their corresponding literal

satisfies the clause. The aim is to force a checker to wait one time step if the assignment is
not satisfied. The start positions of negative checker robots are:

α1
i := (6(ni+ j1),−6ni− 2)
α2

i := (6(ni+ j2),−6ni− 2)
α3

i := (6(ni+ j3),−6ni− 2)

The y-coordinates of the start positions for checkers of the same clause are identical. The
x-coordinates differ depending on the variable the checkers are designated to check.

Checker c3
i moves M − 1 steps north. Therefore, its target position is t3i := α3

i + (0,M − 1).
The pathing of the other two checkers, c1

i and c2
i , requires a more refined routing. They also

move M − 1 steps, but it is necessary to introduce a vertical offset between the checkers
by performing side steps. This is crucial for the clause gadget, which is introduced later,
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3. NP-Completeness

to function as intended. Let d1 := 6(j3 − j1) and d2 := 6(j3 − j2). Visually speaking, d1
is the horizontal distance between the initial positions of c1

i and c3
i . Analogously, d2 is

the horizontal distance between the initial positions of c2
i and c3

i . Since d1 and d2 are
always even and at least twelve and six respectively as per construction, we define the
sidesteps as s1 := d1/2 + 4 < d1 and s2 := d2/2 + 2 < d2. It should be noted that s1
is greater than 9, s2 is greater than 4 and both always have integer values. We force c1

i

to make s1 steps east and the remaining steps north. Therefore, the target position of
checker c1

i is t1i := α1
i + (s1,M − 1 − s1). Analogously, the target position of checker c2

i

is t2i := α2
i + (s2,M − 1− s2). We force checkers to perform their sidesteps towards east

before moving north by introducing auxiliary robots (see Figure 3.3). Moving east does
not change the positions of checker robots relative to the variable robots, as they move
east as well.

Checker Robot

Auxiliary Robot

Figure 3.3.: Checker robots for a negative clause. The first two negative checker robots are
forced to move east before going north because of the auxiliary robots.

Lemma 3.3. Each negative checker robot has to wait one time step if the assignment of
its corresponding literal is not satisfied.

Proof. Let Ci be a negative clause. As the distance negative checkers need to move is equal
to M − 1, they are allowed to wait one time step. All negative checkers start below the
variable robots and move north after performing their sidesteps. At time t = (6ni+ j) + 1,
the checker for variable xj and the corresponding variable robot are on the same x-coordinate
(6ni + j). The checker has y-coordinate 6j − 1, whereas the variable robot has either
y-coordinate 6j or 6j + 1. The situation is depicted in Figure 3.4. Since we deal with a
negative clause, the negative checker shall wait if the variable robot chose the bottom path
(true). This is the case, because if the checker robot does not wait, a follow collision occurs.
It cannot not go in any other direction, as it is only allowed to wait once. If the variable
robot chose the top path (false), both robots can continue on their route without having
to wait. Therefore, a negative checker robot has to wait one time step if its corresponding
literal is not satisfied.

We apply the same idea to specify the movements of positive checkers for a positive clause
Ci = {xj1 , xj2 , xj3} with j1 > j2 > j3. Positive checkers start above all variable robots and
move south. The start positions of the positive checker robots are:

β1
i := (6(ni+ j1), 6(n− 1) + 6ni+ 3)
β2

i := (6(ni+ j2), 6(n− 1) + 6ni+ 3)
β3

i := (6(ni+ j3), 6(n− 1) + 6ni+ 3)
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(6ni+ j)

︸︷︷︸ (6ni+ j)

︸
︷︷

︸

︸
︷︷

︸

(6ni + j) + 1

(6ni + j) + 1

xj

xj

(a) (b)

Figure 3.4.: (a) The situation of a negative checker robot and the corresponding variable
robot at time t = (6ni+ j) + 1. It needs to be remembered that the variable
robot does not move east at the first time step. If the variable robot was on
the true path, the checker would have to wait one time step to avoid a collision.
If the variable robot was on the false path, the assignment would be satisfied
and the checker robot would be able to pass without waiting. (b) The same
situation for a positive checker and the corresponding variable robot. The
procedure remains the same.

All positive checkers of the same clause start at the same y-coordinate. In contrast to
negative checkers, the variable with the highest index is checked by checker c1

i . The
target positions of positive checkers are determined analogously to negative checkers and
can be described by u3

i = β3
i + (0,−M + 1)) for c3

i , u2
i := β2

i + (s2,−M + 1 + s2) and
u1

i := β1
i + (s1,−M + 1 + s1) for c2

i and c1
i respectively. Positive checkers are also forced to

move east before going south by introducing further auxiliary robots.

Lemma 3.4. Each positive checker robot has to wait one time step if the assignment of
its corresponding literal is not satisfied.

Proof. Let Ci be a positive clause. The proof works analogously to Lemma 3.3. The term
(6(n− 1)) in the y-coordinate of a checker’s start position represents the y-coordinate of
the topmost variable robot. Therefore, at time t = (6ni+ j) + 1, the checker for variable xj

and the corresponding variable robot are on the same x-coordinate. The checker robot has
y-coordinate 6j + 2, while the variable robot has either y-coordinate 6j or 6j + 1. Refer to
Figure 3.4 for a visualization. If the variable robot chose the top path (false), the positive
checker would have to wait one time step to avoid a follow collision. If the variable robot
was on the bottom path (true), both robots can continue moving. Therefore, a positive
checker robot has to wait one time step if its corresponding literal is not satisfied.

Clause Robots. For each clause Ci, we construct a clause gadget consisting of a clause robot
that crosses paths with its corresponding checker robots. The clause robot makes sure that
the clause is satisfied by ensuring that at least one variable in the clause is satisfied. This
is the case if at least one of the three checkers for the clause did not have to wait when
crossing paths with the variable robot. We introduce negative clause robots for negative
clauses and positive clause robots for positive clauses. The start position of a negative
clause robot is t1i + (M − 7, 0) and the target position is t1i − (3, 4). The start position of a
positive clause robot is u1

i + (M − 7, 0) and the target position is u1
i − (3,−4).

Lemma 3.5. Every clause robot moves M steps without waiting towards its target position
if at least one checker robot of its clause did not wait when crossing paths with a variable
robot.
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3. NP-Completeness

Proof. A negative clause robot is located to the right of the checkers and above the variable
robots. It has to move M − 4 steps west and four steps south (it does not have to move
west first). Therefore, the clause robot has to move at each time step. Checker robots
have to wait one time step if the assignment for their variable is not satisfied. The vertical
offsets of the checkers c1

i and c2
i introduced earlier ensure that the clause robot may only

pass through the checkers without waiting, if at least one of the checker robots did not wait.
All three checkers are placed in a way to force the clause robot to move on one of three
paths (see Figure 3.5 for a visualization). It should be noted that the clause robot cannot
move in between these paths, as this causes one checker to wait, however, the checkers
also have to move without waiting if their assignment is not satisfied. The positive clause
robots follow the exact same procedure.

t1i

t2i

︸︷︷︸

d2
2
− 2

︸︷︷︸ d1
2
− 4

︸
︷︷

︸

d1
2
+ 4 ︸

︷︷
︸

d2
2
+ 2

Figure 3.5.: A clause gadget for a negative clause. The clause robot (blue) crosses path
with its corresponding checkers. The green squares represent the position of
a checker that did not wait and the red squares are checkers that did wait
one time step when crossing paths with the variable robot. The clause robot
is allowed to pass a checker without waiting if the respective checker did not
wait. After passing the checker, the clause robot can safely move to its target
position. If checker c3

i did wait, the clause robot has to move south, as it is
not allowed to wait. It cannot move west as this would cause a follow collision.
If all three checkers did wait, the clause robot cannot reach its target position
without waiting.
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Theorem 3.6. Makespan is NP-hard.

Proof. We need to specify the critical makespan M . In the following, we introduce some
conditions that M needs to meet and then set the makespan accordingly. On the one hand,
the makespan must be large enough, so that the checkers of the last clause Cm can pass
through the variable robots and their clause robots. On the other hand, the makespan
must also allow the variable robots to cross paths with all checkers. Since the checkers of
the last variable travel left of the line x = 6n(m+ 1)− 6, a makespan M ≥ 6n(m+ 1) is
sufficient for the variable robots.

If the last clause is negative, the starting positions of its checkers are located on the
line y = −6nm − 2. The variable robot of the last variable xn−1 travels below the line
y = 6(n− 1) + 1. We make sure that the negative clause gadgets are located strictly above
all variables. Taking into account the positioning of the clauses, it is necessary for the
checker that checks the first literal of the last clause Cm to have its target position above
the line y = 6(n− 1) + 7. Without taking the side steps performed by the checkers into
consideration, the makespan has to be set asM ≥ (6nm+2)+(6(n−1)+7) = 6n(m+1)+7.
The number of side steps of each checker is less than 6n. Hence, setting the makespan to
M ≥ 6n(m+ 2) + 7 is sufficient in this case.

To avoid any collisions between clause robots and checkers of a different clause, we ensure
that the path of the clause robot of the last negative clause stays above the starting positions
of all positive checkers. The critical clause is the last clause Cm. If it is a negative clause, the
argumentation of the last paragraph holds. If it is a positive clause, the starting positions
of its checkers are located on the line y = 6(n− 1) + 6nm+ 3. In the worst case, the clause
Cm−1 is a negative clause. The checkers of the clause Cm−1 all start at y = −6n(m−1)−2.
Therefore, the clause robot of clause Cm−1 has to move above the line y = 6(n−1)+6nm+3.
In fact, the checkers of clause Cm−1 need to have their target positions above the line
y = 6(n−1)+ 6nm+9 due to the positioning of the clause gadget. All of these criteria lead
to a makespanM ≥ (6(n−1)+6nm+9)+(6n(m−1)+2) = 6n(2m)+5. Since the number
of side steps of each checker is less than 6n, the makespan has to be M ≥ 6n(2m+ 1) + 5.
Therefore, in any case, we set the critical makespan as M = 6n(2nm+ 2) + 7.

To show NP-hardness, we recap the construction of the coordinated motion planning
instance. A makespan of M is feasible if and only if for every clause the clause robot
reaches its target position without having to wait. Lemma 3.5 shows that this is only
possible if at least one of the checkers for every clause does not wait when crossing paths
with the variable robot. Lemma 3.4 and Lemma 3.3 then imply that the clause has a
satisfied literal which results in the clause being satisfied. A makespan of M is feasible iff
φ is satisfiable.

Further remarks. All coordinates and the makespanM in the above proof are polynomial in
the input size, implying strong NP-hardness. As we can easily check in polynomial time if
a given schedule is legal (see Appendix A) and if its makespan is lower than k, Makespan
is in NP. As a consequence of Theorem 3.6, Makespan is NP-complete. Furthermore, we
do not make use of obstacles in this proof. The problem is NP-complete even when there
are no obstacles.
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4. Solving Coordinated Motion Planning
in a Grid

In this chapter, we present an algorithm that solves the coordinated motion problem
described in Section 2.1. The basic idea of our approach is based on a two-step process.
First, we generate a feasible schedule, which is not of high quality with respect to minimizing
the makespan and the total distance. To find such a schedule, we move all robots out of
the initial bounding box. Once every robot is outside of the initial bounding box, we move
the robots to their respective target position. We show that, if every robot has a path to
the border without obstacles, we always find a schedule by routing robots sequentially. We
slightly improve this initial solution by coordinating a subset of robots at a time rather
than performing sequential motions. While creating the initial schedule we use different
heuristics, which we will evaluate in Chapter 5. Second, we further improve the initial
solution to obtain a schedule that yields optimized results concerning the makespan and
the total distance. In the second phase, we keep the paths of all robots fixed except for
one and improve the path of this specific robot. The procedure is repeated for all robots.

4.1. Moving Robots out of the Initial Bounding Box

We describe a method that provably moves all robots out of the initial bounding box. While
robots are on their way out, they have to avoid collisions. This enables us to establish a
certain order for the robots to move and we only move a subset of robots at a time. By
routing robots according to the order, we are guaranteed to find a feasible schedule.

4.1.1. Calculating Different Parking Positions

We introduce two different ways of calculating parking positions. Parking positions are
cells located outside of the initial bounding box. They can be considered as intermediate
positions for robots: a robot starts at its start position and moves to its target position,
but has to pass its parking position on its route. In the following, we focus on determining
the parking positions to further elaborate on the decision regarding which parking position
belongs to which robot in Subsection 4.1.2.

As our purpose is to keep the total distance as small as possible, the robots are not supposed
to perform too many moves. Thus, we keep parking positions relatively close to the border.
Parking positions shall be apart from each other to ensure that there are always paths on
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4. Solving Coordinated Motion Planning in a Grid

which the robots can move on. Another crucial factor for our computation is to keep the
new bounding box, including all parking positions, at a small level.

For n robots, we need n parking positions. Let the bottom left cell inside the initial
bounding box be the cell (0, 0) and let the length of the box be odd. We call a cell empty
if it does not become a parking position. All cells of the border stay empty.

Option A. We surround the border with parking positions in every direction while leaving
certain cells empty at the same time. Cells positioned south or north of the bounding
box with an odd x-coordinate do not become parking positions. The same rule applies to
cells located west and east of the bounding box with an odd y-coordinate. The corners
(southwest, etc.) are treated as if they were south or north of the box.

Option B. This method requires all robots to not have adjacent neighbors at all. The
procedure is similar to Option A. To provide parking positions with even more space, we
additionally leave cells positioned north and south with an odd y-coordinate empty. This
applies to cells located west and east with an odd x-coordinate as well.

A visual example for the described arrangements of parking positions can be found in
Figure 4.1.

(a) (b)

Figure 4.1.: The blue cells are parking positions and the brown cells mark the border. (a)
Some parking positions are adjacent to each other. (b) No parking positions
are adjacent to each other.

4.1.2. Assigning Robots to Different Parking Positions

Given n parking positions for n robots, we need to assign each robot to a different parking
position. Although we could randomly assign robots to parking positions, we deliberately
choose to keep the total distance as low as possible. Therefore, we introduce a more suitable
approach building on the fundamentals of graph theory as explained in Subsection 2.2.2.

We define the start positions as a set X and the parking positions as a set Y . We further
define a directed graph G = (V,E) with vertices V = X ∪ Y . Each vertex x ∈ X has a
directed edge to each vertex y ∈ Y , the set of edges is E = {(x, y) | x ∈ X ∧ y ∈ Y }. This
graph is complete bipartite as per construction and represents our assignment problem.
Each parking position is a possible parking position for every robot, but we can only assign
at most one robot to a parking position. After defining a weight function w : E → Z, the
edges in a minimum-cost maximum-matching in this graph represent our assignment.
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4.1. Moving Robots out of the Initial Bounding Box

We further deal with the question of how to set the weight function w. Let d(x, y) be the
obstacle-free distance between two positions x and y obtained by a breadth-first search.
C−1

t (Cs(u)) is the target position of the robot with start position u. A parking position is
denoted by v. We propose three different heuristics for the weight function:

1. (u, v) 7→ d(u, v)

2. (u, v) 7→ d(C−1
t (Cs(u)), v)

3. (u, v) 7→ d(u, v) + d(C−1
t (Cs(u))

The first possibility sets w as the distance between the start and parking position. Therefore,
robots tend to have a short distance from their start position to their parking position,
however, when they move from their parking position to their target position, they might
have to perform considerably more moves. The second possibility functions the other
way around and sets w as the distance between the target and parking position. The
third possibility takes into account both distances described in the previous options. As a
consequence, this might lead to less movement overall. All of these weight functions seem
superior to assigning parking positions randomly.

4.1.3. Generating an Order

The next step is to move the robots to their parking positions. Instead of moving the
complete number of robots simultaneously, we rather move several subsets at a time to
avoid any collisions. We refer to subsets as waves of robots. The general procedure is
to assign each robot to a wave based on an order. Once all robots of a wave reach their
parking positions, the next wave is allowed to move.

To achieve our purpose of proving that we are able to move all robots out of the initial
bounding box, we create an order for the robots to move. To this end, we determine a
cell of the border as the reference cell. In particular, we choose the cell below the top
right cell of the border as our reference cell. Since the border consists only of cells without
robots and obstacles, a robot that has a path to the border automatically has a path to
the reference cell as well.

As described in Subsection 2.2.1, a breadth-first search can be used to calculate the distance
between each start position in the initial bounding box and the reference cell. The source
node is the reference cell and the target node is a start position. It is vital for this BFS
to not explore positions blocked by an obstacle. Therefore, we find a shortest path that
goes around the obstacles. It should be noted that without obstacles, the distances can be
obtained by calculating the manhattan distances between the reference cell and the start
positions. The distance determines the wave that a robot belongs to, robots with the same
distance belong to the same wave. The idea behind this approach is simple. Sometimes a
robot is surrounded by obstacles, and there is a cell that the robot inevitably has to pass
to reach the reference cell. To avoid that this specific cell is blocked by another robot, the
robot covering the cell needs to move first. In this way, it creates new space for the robot
that is “behind” it. Figure 4.2 exemplary illustrates this situation.

4.1.4. Moving Robots to their Parking Position

We move the robots to their parking positions according to their distances to the reference
cell. The following Lemma 4.1 shows that we can route every robot sequentially to the
parking positions via the reference cell.

Lemma 4.1. Let every robot have path to the border that is not blocked by obstacles. We
find a schedule to move every robot out of the initial bounding box.
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Figure 4.2.: The orange cell is the reference cell and the gray cells are obstacles. The
numbers on the robots are equal to their distance obtained by a BFS. In (a),
the dark blue robot cannot move out, because a light blue robot blocks its
path. In (b), robots with a distance lower than 7 are already outside of the box.
The order ensures that the light blue robots moves out of the initial bounding
box first.

Proof. Let a breadth-first search calculate the obstacle-free distances between each robot’s
start position and the reference cell. Robots move sequentially, in ascending order according
to the distance values. Hence, the robot with the lowest distance starts to move first. If
there are multiple robots with equal distances, we choose one random robot (with that
distance) to move. Once a robot is at the reference cell, it moves to its parking position.
To keep it simple, the next robot starts moving once the previous robot has reached its
parking position. In this way, not only is every robot guaranteed to move on a path without
obstacles, but also on a path without other robots in its way. As a robot with distance k
moves earlier than robots with distance k + 1 and later than all robots with distance lower
than k, a robot with distance k can always safely move to the reference cell by using the
exact cells that have been explored in the BFS.

Lemma 4.1 proves that we always find a schedule to move all robots to their parking
positions. Still, this approach does not represent coordinated motion, since it does not
involve parallel movements. For this reason, we send robots in waves. Every robot of a
wave independently calculates a shortest path by performing a breadth-first search from
its start position to its parking position. It should be noted that robots can move on the
path via the reference cell that was originally determined by the other BFS. However, this
simply ensures the existence of at least one path. This path is probably not ideal because
it requires routing through the reference cell.

All robots of a wave start moving simultaneously according to their new path. If they reach
their designated parking position, they wait and remain at their location. As multiple robots
move at the same time, we need to prevent collisions. The robots’ paths are calculated the
moment they start moving, but if they strictly follow this path, two robots can possibly
end up at the same position at the same time. We solve this problem as follows. If two
robots move to the same cell at some point in time, we make one robot wait while the
other robot continues on its path. By considering the remaining distance of those two
robots, we determine that the robot with the longer remaining path is allowed to move
first. In rare cases, a completely new path has to be calculated, for example, if a robot is
at position (x, y) and another robot is at the adjacent position (x, y + 1) and the robot at
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position (x, y) aims to move north while the other robot aims to go south (see Figure 4.3
for an illustration). The robot with the longer remaining moves calculates a new path and
treats the other robot as an obstacle. Therefore, it moves on a different path than initially
calculated and bypasses the other robot.

Figure 4.3.: The light blue robot calculates a new path while the dark blue robot waits.

4.1.5. Pushing Waves
While moving robots in waves rather than manipulating all robots simultaneously generates
a feasible solution, it is not yet optimal. As described in the previous subsection, we need
to wait until all robots of a wave have reached their desired parking position before we
move the next wave of robots. In particular, this approach seems to be suboptimal for
waves consisting of only one single robot. Hence, as a next step, we allow for “overlapping”
waves.
We refer to the following procedure as pushing waves. We leave the first wave as it is while
considering changes to the following waves. Let the second wave start at time t and end at
time t+ l. For every time step k between t− 1 and t+ l− 1, we replace all robot movement
of robots involved in the second wave of time step k with the robot motion of time step
k + 1. We can safely apply this change to all following waves at time k ≥ t+ l as well. If
the new resulting schedule is valid, we lower the makespan by 1. We repeat the procedure
until the schedule is not valid or we reach t = 0. As we overlap two waves, there is a
chance for the schedule to be invalid. If this is the case, we revert the respective step, so
that the schedule becomes valid again. We then repeat the whole procedure for the second
and third wave and so on, until all waves are pushed. We do not change the movement of
robots, only the time of when a robot moves. Thus, pushing waves lowers the makespan,
but it is no improvement for the total distance objective. A method available to validate a
given schedule can be found in Appendix A.
Further remarks. We improve the runtime by performing a binary search rather than
simply pushing waves one by one. We determine the gap ` between two waves and then
push a wave ` time steps to the front. If the resulting schedule is not valid, we revert the
respective step and push the wave `/2 time steps to the front. This process is repeated
until ` = 1.

4.2. Moving Robots back into the Initial Bounding Box
All robots are located at their assigned parking positions and as a next step, we aim to
move them back into the initial bounding box. This procedure resembles the procedure of
moving robots out of the initial bounding box. In contrary to the setting in Section 4.1,
every robot already has a designated target position.
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4. Solving Coordinated Motion Planning in a Grid

4.2.1. Generating an Order

We aim to ensure that each robot can move to its target position without any complications.
To accomplish this, we choose the cell below the top right corner of the border as the
reference cell. It should be noted that the reference is reachable from all parking positions
as per construction. The reference cell is the source node of a breadth-first search to
calculate distances. While the fundamental idea remains the same, the target nodes of the
BFS are the robots’ target positions. When a cell needs to be passed although a target
position is surrounded by many obstacles, this cell must stay empty to let the destined
robots pass. A visualization of this scenario can be found in Figure 4.4.

11

(a)

119

(b)

Figure 4.4.: The orange cell is the reference cell and the gray cells are obstacles. The
numbers on the robots are equal to their distance obtained by a BFS. In (a),
the dark blue has to be at its target position before in (b), the light blue robot
reaches its target position.

4.2.2. Moving Robots to their Target Position

The argumentation of Lemma 4.1 can be applied in a similar manner to ensure that we
obtain a schedule with all robots at their parking position in the start configuration and
at their target position in the target configuration. Therefore, we may combine these two
sequential schedules to obtain a schedule that moves all robots from their start position
to their target position. By pushing waves, we further lower the makespan. We call the
resulting schedule our initial solution.

4.3. Improving the Schedule
Given any schedule that solves Coordinated Motion Planning in a Grid, we aim to improve
the schedule to further minimize the makespan and the total distance. The initial solution
we obtained in the previous sections can still be optimized. We reduce the impact of
unnecessary robot movements by performing a more complex breadth-first search in the
three-dimensional space while maintaining feasibility.

4.3.1. Three-Dimensional Breadth-First Search

Given a schedule, we are able to extract each configuration Cs, . . . , Ct. A single configuration
C can be considered as a two-dimensional array, in which each entry (x, y) holds information
about the entity currently located at position (x, y) in C. There may be free space, an
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4.3. Improving the Schedule

obstacle, or a robot with label i. We add a new dimension to the array. Let the start
configuration be the bottom configuration. We “place” the following configuration, which
results by performing all moves of the first time step, onto the next layer. This procedure
continues until the target configuration is the top configuration. The result is a three-
dimensional array with a new dimension, which we call the time dimension.

Particularly in our solution, robots perform moves that do not seem to be necessary. We
plan to “straighten” the existing paths of the robots. In the three-dimensional array, we
perform a breadth-first search for a robot from its start position to its target position while
respecting the paths of other robots. However, during the BFS, all paths of other robots
are fixed (see 4.5 for a visualization). When the target position is reached, we trace back
the nodes explored by the BFS and extract a new path for the robot. This path contains
the same or fewer moves than before. Therefore, we potentially lower the total distance. As
a robot may reach its position at an earlier time step than in the initial path, this method
possibly lowers the makespan as well.

(a) (b)

Figure 4.5.: A sketch of the general idea. Seven configurations are on top of each other.
(a) Original routes of three robots. (b) The possible result of a BFS on the
blue robot’s path in (a). The other paths are fixed during the BFS. The blue
path is “straightened” and contains fewer individual moves.

We shed light on the underlying mechanism of the three-dimensional breadth-first search
and describe how to implement it. We define a graph G = (V,E). A vertex is of the form
(x, y, t), where x is the x-coordinate, y is the y-coordinate and t is the time step. The
vertex contains information on whether there is a specific robot, an obstacle, or an empty
cell at position (x, y) at time t. If a robot is located at (x, y, t), there are at most five
possibilities for legal robot motions. The robot may stay at the position or move towards
one of the four adjacent cells. In any case, its next position is located at the next time step
t+ 1, whereas x and y remain the same or either one of the coordinates is incremented or
decremented. By ensuring that (x, y, t+ 1) (the same position at the next time step) is
put first into the queue of the BFS, we urge the robot performs as few moves as possible.
The resulting graph G is directed, acyclic and each node has out-degree 5. Edges represent
possible motions towards the next time dimension. An edge is explored in the BFS, only
if it does reflect a legal move, as we need to avoid any sort of collision. Specifically, the
follow collision is not allowed to occur.

The procedure to check for collision works as follows. Let i be the label of the robot that
performs a BFS and let (x, y, t) be the node that is currently popped from the queue. The
five neighbors of this node are (x, y, t+ 1), (x+ 1, y, t+ 1), (x− 1, y, t+ 1), (x, y + 1, t+ 1)
and (x, y − 1, t + 1). To check for obstacles and different robots, we simply check if the
explored node contains an obstacle or a robot with label j 6= i. If the neighbor is not
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4. Solving Coordinated Motion Planning in a Grid

blocked, we further check for follow collisions by inspecting two cases (see Figure 4.6 for a
visualization).

Case 1. The node (x, y, t+ 1) is covered by a robot with label j 6= i. The robot with label
i at (x, y, t) may only explore a node in the next time step if the directions of i and j are
equal. Therefore, only one move is possible.

Case 2. We explore (x+ 1, y, t+ 1) and (x+ 1, y, t) is covered by a robot with label j 6= i.
The robot with label i at (x, y, t) may only explore (x+ 1, y, t+ 1) if the directions of i and
j are equal. Analogously, this applies to all other neighbors too, except for (x, y, t+ 1), as
the robot i is covering (x, y, t).

(x− 1, y, t) (x, y, t)

(x, y, t+ 1)

(x, y + 1, t+ 1)

(a)

(x, y, t) (x+ 1, y, t)

(x+ 1, y, t+ 1)

(x+ 1, y + 1, t+ 1)

(b)

Figure 4.6.: Possible situation in a BFS. The node (x, y, t) currently explores the node
denoted by the green edge. The blue edge represents the fixed path of a
different robot. Only the relevant nodes and edges are depicted. (a) Case 1:
The node (x, y + 1, t+ 1) (north) is not added to the queue as the other robot
moves east. (b) Case 2: The node (x+ 1, y, t+ 1) (east)is not added to the
queue as the other robot moves north.

We perform the three-dimensional search for one robot at a time. The source node is the
robot’s start position (x1, y1, 0) before the first time step. The target node is the robot’s
target position (x2, y2, t) at some time t ≤M . If the target position is explored in the BFS
at any time k < t, we check if the robot is allowed to remain at the position. This is the
case, if for all l (k < l ≤ t) no robot covers the position (x2, y2, l). We then abort the BFS
early and the robot reaches its target position at an earlier point in time. Once the search
is finished, we update our schedule and the graph according to the improved path. We
continue to straighten the path of a different robot. The path generated by the previous
breadth-first search is fixed. This process continues until a BFS is performed for all robots.

The goal is to run a three-dimensional search for each robot. We call this an iteration. We
aim to do as many iterations as possible until there are no further improvements to the
schedule. It should be noted that, after every iteration, optimized paths may be generated,
as robots that perform the BFS at a later time during an iteration might have changed
their pathing. The makespan and the total distance cannot increase as, in the worst case,
our search would return the initial path. However, we do not have a fixed limit on the
number of iterations. Therefore, we do not know in advance how many iterations will be
performed.

We need to specify an order for the robots during one iteration. Instead of selecting the
order randomly, we propose the following heuristics.
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4.3. Improving the Schedule

Option A. We sort robots in ascending or descending order according to their labels.

Option B. We sort robots by the time they reach their target position. AS the makespan is
capped by robots that reach their target position at the last time step, we perform the
BFS for these robots first.

Option C.We sort robots in descending order according to the obstacle-free distance between
the reference cell and the target position obtained by a BFS. This option particularly takes
into account how we create initial solutions. As described in previous sections, certain cells
must stay empty to let robots pass. Therefore, if such a cell is the target position of a
robot, this specific robot cannot reach its target position until the corresponding robots
have passed the cell.
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5. Evaluation and Discussion

In this chapter, we evaluate and discuss the proposed solution by examining the quality of
the different heuristics for an initial solution and investigating how different initial solutions
impact our three-dimensional search. The challenge provides 203 diverse instances with
the number of robots ranging from 10 to 9000. The initial bounding box of the instances is
a square in most cases and about half of the instances have no obstacles. Furthermore,
the instances differ in different parameters like density, clusters of robots, and unblocked
areas. Fekete et al. [FKKM21] give more insight into how they created the instances for
the “CG:Shop 2021”-Challenge.

5.1. Different Arrangements of Parking Positions
We have proposed two possibilities for arrangements of parking position (see Figure 4.1).
In both options, we surround the initial bounding box equally with parking positions, but
Option A leaves less spacing between the parking positions compared to Option B, where
no two parking positions are adjacent. The resulting makespans and total distances for
some exemplary instances are depicted in Table 5.1. In this table, the makespan is the
overall time all robots need to reach their parking position (not their target position). The
same weight function for the assignment is used.

Table 5.1.: Impact of different arrangements of parking positions on the initial solution.
Option A: Less spacing, Option B: No adjacent parking positions

Option A Option B

Instance n Makepsan Total Distance Makespan Total Distance

small_free_001 40 109 244 126 308
small_015 207 601 2 261 710 2 794
medium_016 1180 4 300 31 994 4 937 39 506
large_free_001 1688 6 652 55 484 7 731 67 290
medium_free_019 2250 5 805 77 702 6 777 101 290
sun_00006 3796 14 435 161 303 16 842 205 173
london_night_00009 6000 18 670 349 744 22 321 454 714
clouds_00009 7229 21 812 455 332 25 144 592 362
large_free_009 9000 23 153 594 887 27 489 791 755

29



5. Evaluation and Discussion

We find that Option A has lower makespans and lower total distances overall. This is
expected since the parking positions are located closer to the initial bounding box. Pursuing
a three-dimensional BFS on the initial solution, we also consider Option B, where robots
have more empty cells they can use. However, when performing the BFS, the arrangements
of parking positions do not impact the final schedule in a significant way. The values for
the objectives are mostly the same and no arrangement is always the superior one. Thus,
we use both options and choose the arrangement that leads to a better result in the end.

Other teams in this competition move robots into intermediate positions as well. In
their solutions, they introduce even more fine-grained arrangements of parking positions.
Rather than uniformly surrounding the initial bounding box, they choose their parking
positions differently. For example, team Shadoks [CdFG+21] introduces four different
storage networks (arrangement of parking positions) and depending on the instance, one
solution outperforms the other one. However, no storage network seems to be the best for
all instances.

5.2. Different Assignments of Robots to Parking Positions
We have constructed a weighted, complete bipartite graph that describes our assignment
problem. In this graph, we compute a minimum-cost maximum-matching. We have
proposed three different weight functions which assign weights to the edges of this graph:
the distance between a robot’s start and parking position (start), the distance between
a robot’s target and parking position (target), or the sum of these two distances (start
and target). Table 5.2 and Table 5.3 show eight selected instances and how different
weight functions affect the quality of an initial solution. We choose these instances to
be as representative as possible. They vary in density, number of robots, and number of
obstacles.

Table 5.2.: Makespan with different weight functions
Instance n Start Target Start and Target

small_free_001 40 400 393 372
small_015 207 2 399 2 484 2484
medium_016 1 180 14 769 14 754 13 827
large_free_001 1 688 26 437 29 285 27 639
medium_free_019 2 250 18 761 18 638 17 481
london_night_00009 6 000 65 394 66 062 63 844
clouds_00009 7 229 71 620 70 117 68 721
large_free_009 9 000 77 264 77 820 73 946

Table 5.3.: Total distance with different weight functions
Instance n Start Target Start and Target

small_free_001 40 908 950 858
small_015 207 9 134 9 252 8 560
medium_016 1 180 116 429 116 937 104 799
large_free_001 1 688 227 719 233 981 207 853
medium_free_019 2 250 262 361 260 537 240 497
london_night_00009 6 000 1 243 908 1 248 464 1 137 034
clouds_00009 7 229 1 588 466 1 563 164 1 431 344
large_free_009 9 000 2 066 953 2 070 097 1 890 321
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5.3. Pushing Waves

We observe that the third option, which takes into account both the start and the target
position, results in a shorter makespan and total distance for the initial solution in most
cases. Therefore, it appears to be the best choice to stick to this weight function.

5.3. Pushing Waves
In Table 5.4, we depict the effect of pushing waves on our initial solution. We compare
the makespan between not pushing waves at all and pushing both sets of waves, meaning
the waves of robots moving out of the initial bounding box as well as the waves of robots
moving back to their target position.

Table 5.4.: The effect of pushing waves
Instance No Pushing All Waves Pushed Improvement (%)

small_free_001 585 389 33.5
small_015 2 474 1 161 53.1
medium_016 14 573 7 247 50.3
medium_free_019 19 337 10 039 48.1
large_free_001 26 086 10 221 60.8
london_night_00009 64 623 36 782 43.1
clouds_00009 72 411 42 109 41.8
large_free_009 79 336 45 367 42.8

We find that the makespan is considerably reduced. Even for large instances, we obtain a
makespan about half the size of a solution without pushing waves. This is a big improvement
to our initial schedule. The total distance traveled by all robots is not reduced, as pushing
waves does not change the paths of robots.

5.4. Three-Dimensional Breadth-First Search
Given our initial solution, we evaluate the impact of improving the schedule with our
three-dimensional BFS. The makespan of our initial solution for the largest instances in
the competition amounted to about 45 000. Without pushing waves, the makespan would
be twice as large. Thus, pushing waves is crucial to reduce the search space. It needs to
be remembered that the makespan is equal to the size of the time dimension. For a grid
of size 200× 200, this already leads to a search space on the order of 109, which is very
expensive. A BFS for a single robot would take several minutes. As a consequence, for
instances with thousands of robots, an iteration would take several weeks. Therefore, we
rely on smaller instances and generalize our results if possible. We further provide numbers
for the first few iterations of an instance with 3000 robots. It should be noted that there
are techniques in route planning that might speed up our search.

First, we continue evaluating the impact of different weight functions on the three-
dimensional search. Table 5.5 and Table 5.6 show the resulting makespans and total
distances for eight exemplary instances. Surprisingly, we do not find any significant differ-
ences. Even though the initial solution is best when the weight function considers the start
and target position of a robot, the quality of the resulting schedules after the BFS is very
similar. While start is best for small_free_001, it is outperformed by start and target for
microbes_00000. Therefore, we try all three options and for each instance, we choose the
one performing best.

Second, we examine how the three-dimensional search improves the initial solutions. In
Figure 5.1a, we observe how the makespan improves in every iteration of our BFS. The
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Table 5.5.: Makespan after BFS with different weight functions
Instance n Start Target Start and Target

small_001 30 23 26 22
small_free_001 40 26 42 44
galaxy_cluster2_00000 80 37 33 34
socg2021_108 108 54 54 53
microbes_00000 110 189 180 121
redblue_00000 113 247 181 219
universe_bgradiation_00000 139 195 289 201
clouds_00000 160 239 254 200

Table 5.6.: Total distance after BFS with different weight functions
Instance n Start Target Start and Target

small_001 30 328 338 302
small_free_001 40 414 420 434
galaxy_cluster2 80 1 350 1 334 1 310
socg2021_108 108 2 442 2 414 2 412
microbes_00000 110 3 005 3 253 3 011
redblue_00000 113 2 262 2 400 2 296
universe_bgradiation_00000 139 2 394 2 456 2 360
clouds_00000 160 3 589 3 541 3 471

first iteration is usually a very large improvement. In most cases, we achieve a makespan
of only half the size compared to the makespan of the initial solution. The next iterations
still improve the makespan, but at some point, the makespan converges until there are no
further improvements. It takes about 10-20 iterations until the three-dimensional search is
finished. For small instances, the resulting makespan is about 10% − 20% of the initial
solution.

The improvements of the total distance are depicted in Figure 5.1b. The progress is very
similar to our observations for the makespan. The very first iteration is respectively a large
improvement which approximately halves the total distance. The following iterations also
lower the total distance, however, they do so at a slower pace. At some point, the distance
stays on a constant level until the search comes to an end.

Third, we consider a larger instance, universe_bgradiation_00006, with 3000 robots. For
reasons of time, we are only able to provide the first three iterations of the three-dimensional
search. Table 5.7 shows the resulting values for makespan and total distance. Considering
the makespan, the first iteration is not as impactful as we would expect. However, the
improvements of the second and third iteration are larger than of the first iteration.
Following this trend, the makespan will probably reach a lower level with more iterations.
Considering the total distance, the first iteration represents a substantial improvement for
the schedule and the following iterations still considerably lower the total distance.

The quality of our final solution depends on the order of the robots during an iteration of
the BFS. Table 5.8 shows four different heuristics: ascending (asc) and descending (desc)
order according to the labels, sort robots by the time they perform their last move (last
robots), or sort robots by descending distance in relation to a robot’s target position to
the reference cell (highest distance). We find out that for instances like small_001, which
are small and not densely packed, the order does not significantly change the makespan.
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Figure 5.1.: (a) Improvements of Makespan (b) Improvements of Total Distance

Table 5.7.: Three iterations for universe_bgradiation_00006

Category Initial Iteration 1 Iteration 2 Iteration 3

Makespan 20 833 20 373 19 315 18 188
Total Distance 524 506 389 854 361 412 347 860

However, for most instances, the last heuristic seems to achieve the best results. These
findings encourage the search for more good heuristics.

Table 5.8.: Makespan with different orders during a BFS
Instance Asc. Desc. Last Robots Highest Distance

small_001 23 22 21 22
small_free_001 85 76 68 26
galaxy_cluster2 35 34 34 34
socg2021_108 53 53 253 53
microbes_00000 364 368 384 121
redblue_00000 368 338 325 219
universe_bgradiation_00000 333 326 343 201
clouds_00000 521 450 450 200

We present some of the results we achieved, refer to Appendix C for an overview of all results.
Table 5.9 compares the achieved values for makespan and total distance to the respective
lower bound for eight instances. With regard to smaller instances, our solution performs
well for minimizing the makespan. For galaxy_cluster_00000 and two other instances,
we even meet the trivial lower bound, meaning that we find an optimal solution concerning
the makespan objective. However, for other small instances such as small_free_011, we
obtain a makespan that is rather distant to the lower bound. In general, we find that if the
instance is very dense, our approach seems not to work as intended. A possible explanation
is the difficulty to find paths using the BFS while many of the positions are blocked. It
should also be noted that the lower bound becomes a worse comparison as the density
grows. Furthermore, our method does not scale well with the number of robots when
considering the makespan. For example, microbes_00004 achieves a makespan of 3 502,
while team Gitastrophe [LSJZZ21] finds a schedule with makespan 126 for this instance.
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Concerning the total distance traveled by all robots, our solution performs better, even
for larger instances. Although we do not meet the trivial lower bound on any instance
in this category, we are very close to an optimal total distance for small instances. Our
three-dimensional search ensures that a robot tries to stay at its position if possible. Hence,
most unnecessary moves in the initial solution are eradicated. For microbes_00004, we
achieve a total distance that is about twice as large as the trivial lower bound.

Table 5.9.: Results in comparison to the lower bounds in both categories
Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

small_free_000 30 13 14 187 211
small_002 33 15 22 229 329
small_004 61 35 40 1116 1304
buffalo_000 63 54 59 1547 1801
galaxy_cluster_00000 80 27 27 845 965
the_king_94 94 31 36 1827 2017
small_free_009 160 34 213 2142 3218
small_free_011 200 31 365 2486 4214
microbes_00004 1250 91 3502 39 125 77 919

We briefly discuss how other teams approach the coordinated motion planning problem
and why their results might have been superior to our results. The strategy of other teams
is similar to ours: they find parking positions and compute a minimum-cost maximum-
matching for the assignment. Afterwards, they perform a search in the three-dimensional
space, but the details of this search differ.

Team Gitastrophe [LSJZZ21] wins the total distance category. To create an initial solution,
they provide similar heuristics to ours, but introduce even more variations. Considering
the search, they approach this problem with a k-opt technique. They choose k robots to
improve their paths while the paths of other robots are fixed. The k robots are improved
one-by-one. Therefore, it is crucial to choose a good set of k robots and determine an order
for the robots within the set.

Team Shadoks [CdFG+21] wins the makespan category. They pursue two different ap-
proaches. The first idea is very similar to ours, as they perform an A∗ search in the
three-dimensional space. They are able to tune this search, for example by using the sum
of random weights for each cell the robot passes through to break ties. The second idea
is a Conflict Optimizer. This strategy does not guarantee finding a solution, but it does
result in a very good schedule in most cases. They modify their search so that it is allowed
for a robot to go over another robot’s path, see their paper for more details.
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6. Conclusion

This thesis considered a coordinated motion planning problem as part of the “CG:SHOP
2021”-Challenge. Within this specific setting, robots are square-shaped and located in an
unbounded grid. The goal was to compute a feasible schedule while separately following
two objectives: minimize the makespan and minimize the total distance.

We adapted a proof by Demaine et al. [DFK+19] to show that the related decision problem
for the makespan is NP-complete in our setting, even if there are no obstacles in the
environment. This encouraged us to search for a heuristic that minimizes the objectives
as much as possible. Our solution consisted of two steps: finding an initial solution and
improving the solution afterwards.

We showed that, if every robot can be routed to the border on a path that is not blocked
by obstacles, we are guaranteed to find a feasible solution. We proved this by explaining
how to obtain a sequential schedule based on calculating distances for each robot and
establishing an order according to these distances. Therefore, all robots can be routed out
of the initial bounding box, and with the same argumentation, we can move all robots
back to their target position without collisions. By proposing different heuristics and
pushing waves, we improved our initial solution, however, there still remains potential for
improvement.

The three-dimensional breadth-first search had the most impact on improving our schedule.
As we obtained a feasible initial solution, we simply removed one path of a robot while
all other paths remained fixed. We found a new path for this robot, which was possibly
shorter or involved fewer moves. Our evaluation showed that the final BFS worked well for
smaller instances and for the objective that aims at minimizing the total distance, while it
encountered difficulties with the makespan objective. Finding a good order for the robots
during an iteration is relevant to achieve the best results. We provided a heuristic that
operated well for our specific initial solution. It remains open to see if there are even
further heuristics that considerably improve the three-dimensional search.

In the competition, we ranked 8th out of 17 in the total distance category and 11th out
of 17 in the makespan category. While the strategy of other teams resembles ours, the
three-dimensional search is executed differently. For example, Team Unist [YV21] added
the idea of simulated annealing. Team Shadoks [CdFG+21] provided a method that did
not provably find a feasible solution, however, if the method found a legal schedule, it often
beat the results of other teams in the makespan category. Whereas we focused on finding a
decent feasible solution, an open question is to explore other methods that achieve good
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results without provably finding a schedule for all instances. We kept the paths of robots
fixed while improving the path of a single robot. It is an interesting approach to investigate
if this robot can negotiate with other robots to improve its path. Furthermore, recalculating
paths for a set of k robots could also be an option. Team Gitastrophe [LSJZZ21] provided
some sampling strategies for choosing k robots.

Even though the schedules of other teams may be overall superior, we still provide feasible
solutions for all instances in addition to decent results for the total distance objective.
Thus, this thesis contributes to the ongoing debate of possible solutions to the coordinated
motion planning problem.
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Appendix

A. Validating a Schedule
In Algorithm 6.1, we show how to validate a given schedule. The input is a schedule S
consisting of steps S1, . . . , SM , where Si encodes the steps of robots that move at time
t = i.

Algorithm 6.1: SolutionValidator
Input: Schedule S = (S1, . . . , SM )
Data: Configurations Ccurr, Cprev

Output: True, if schedule S is valid. False, otherwise.
1 Ccurr ← Cs // Set Ccurr as start configuration
2 Cprev ← Cs

3 for i← 1 to M do
4 Ccurr.update(Si) // Perform all moves of step Si

5 if robot and obstacle at the same position in Ccurr then
6 return false
7 if two robots at the same position in Ccurr then
8 return false
9 forall j ∈ Si do

// Check for follow collision
10 p = (x, y)← Ccurr.getCoordinatesOfRobot(j)
11 k ← Cprev.getRobotAt(p)
12 if k is robot and directions of robots j and k not equal then
13 return false // Follow collision occurs

14 Cprev ← Ccurr

15 if at least one robot is not at its target position in Ccurr then
16 return false
17 return true

The algorithm works as follows. We set the current configuration Ccurr and the previous
configuration Cprev as the start configuration. In a loop, we update Ccurr according to
robot motion in step Si. We check for collisions in Ccurr. If a robot and an obstacle share
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6. Appendix

the same position, the schedule is not valid. If two robots are located at the same position,
the schedule is not valid. To check for follow collisions, we need the auxiliary configuration
Cprev holding the configuration of the previous time step. If a robot j ∈ Si moves to a
position p, we check if this position p has been occupied by a different robot k in the
previous configuration. If that is the case, we check if both robots move towards the same
direction. Otherwise, a follow collision occurs. We repeat this procedure for all steps in
the solution. The last check ensures that all robots are positioned at their target positions.

B. Complete Schedule
We show a full schedule we obtained by applying our solution in Figure B.1. The depicted
instance (“Sprinkle”) is taken from the problem description of the challenge1. There are
six robots and the resulting schedule is optimal concerning both the makespan (7) and
total distance (29).

C. Results for all Instances
The following Table C.1 contains the results for all 203 instances that we achieved. The
instances are sorted according to the number of robots. Let n be the number of robots.
It needs to be remembered that for large instances (approximately n > 1250), we did not
perform a three-dimensional search. Medium instances (250 ≤ n ≤ 1250) performed a
few iterations iterations, but we aborted the BFS early. Small instances (n < 250) are
optimized.

1https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021
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C. Results for all Instances
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Figure B.1.: A full schedule from start to target configuration. Robots are green and target
positions are blue.
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6. Appendix

Table C.1.: Results for all 203 instances
Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

small_000 10 13 21 68 106
small_001 30 17 20 246 310
small_free_000 30 13 14 187 211
small_002 33 15 22 229 329
small_free_001 40 13 21 266 368
small_003 46 19 40 379 621
small_free_002 50 15 22 356 508
small_004 61 35 40 1 116 1 266
buffalo_000 63 54 59 1 547 1 759
small_005 63 18 40 577 1 037
small_free_003 70 14 50 469 937
small_006 71 34 34 1 013 1 103
galaxy2_cluster_00000 80 31 33 1 186 1 284
galaxy_cluster_00000 80 27 27 845 957
small_free_004 80 30 30 1 088 1 144
small_free_005 80 20 25 774 944
small_007 82 36 49 1 519 1 961
small_008 83 25 100 923 1 493
medium_000 90 57 62 2 682 2 962
small_free_006 90 15 117 618 1 528
small_free_007 90 14 82 559 1 361
the_king_94 94 31 36 1 827 2 017
socg2021_108 108 46 52 2 086 2 374
election_109 109 33 39 1 816 2 216
microbes_00000 110 38 146 1 927 2 985
redblue_00000 113 28 146 1 524 2 242
buffalo_free_000 125 34 36 1 871 2 095
universe_bg_00000 139 33 128 1 480 2 182
london_night_00000 140 30 171 2 126 3 610
sun_00000 143 27 120 1 484 2 716
medium_001 145 51 61 3 553 4 065
algae_00000 160 29 161 2 291 3 439
clouds_00000 160 27 177 2 151 3 481
small_free_008 160 31 232 2 286 3 540
small_free_009 160 34 213 2 142 3 212
medium_002 162 57 280 4 850 6 094
galaxy_cluster_00001 172 37 234 2 959 5 231
small_009 173 31 302 2 614 4 530
buffalo_001 174 41 416 3 322 6 038
small_010 175 31 177 2 213 4 073
medium_free_000 180 46 50 3 776 4 034
medium_free_001 180 33 136 2 755 3 347
medium_free_002 180 49 77 3 228 3 628
small_011 183 37 435 3 403 6 343
small_012 186 35 181 2 884 5 740
small_013 186 33 380 2 578 5 070
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Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

galaxy_cluster2_00001 200 28 475 2 141 4 415
galaxy_cluster_00002 200 31 384 2 139 4 857
microbes_00001 200 28 421 2 227 4 569
small_014 200 39 324 3 236 6 702
small_free_010 200 32 275 2 529 4 591
small_free_011 200 31 333 2 486 4 214
small_015 207 40 314 4 606 7 644
london_night_00001 240 35 518 3 277 7 533
small_free_012 240 31 405 2 672 5 798
small_free_013 240 35 461 3 401 6 747
buffalo_free_001 250 31 652 3 419 6 401
galaxy_cluster2_00002 251 30 527 3 160 7 934
medium_003 256 100 377 17 624 20 822
small_016 276 36 532 3 905 9 261
algae_00001 278 32 503 3 943 8 735
small_free_014 280 30 593 3 830 9 194
small_free_015 280 32 631 3 893 8 555
medium_004 306 85 981 12 133 15 451
medium_free_003 320 64 291 7 873 8 903
small_free_016 320 36 605 4 789 11 073
small_free_017 320 32 624 4 537 10 689
small_017 322 34 610 4 685 11 943
small_018 324 34 585 4 985 11 973
small_019 329 34 753 4 573 11 381
small_free_018 360 32 700 4 709 13 155
small_free_019 360 32 678 4 714 12 480
medium_005 407 58 1 073 11 818 22 160
medium_free_004 480 59 925 10 506 17 126
medium_free_005 500 85 502 16 562 18 172
medium_006 502 72 1 887 15 651 29 205
redblue_00001 531 91 1 248 20 036 30 612
medium_free_006 540 52 1 354 11 134 21 404
sun_00001 571 91 1 788 25 030 36 758
medium_007 584 54 1 887 14 866 31 926
galaxy_cluster2_00003 625 82 2 470 18 487 36 859
medium_free_007 630 52 2 146 12 718 34 050
galaxy_cluster_00003 669 93 2 923 25 741 43 465
redblue_00002 669 78 2 319 24 097 40 661
galaxy_cluster2_00004 679 83 2 714 21 087 39 947
medium_008 693 52 1 900 13 769 40 245
buffalo_002 702 95 3 103 27 426 50 086
medium_009 706 93 1 998 31 459 52 525
algae_00002 720 88 3 908 27 840 52 540
buffalo_free_002 720 106 3 705 27 718 48 620
medium_010 726 75 3 711 26 699 52 783
medium_011 727 59 2 718 17 320 41 968
universe_bg_00001 740 86 4 374 26 443 53 435
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Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

galaxy_cluster_00004 750 89 3 354 25 078 53 038
galaxy_cluster_00005 750 86 3 490 26 581 53 637
medium_free_008 750 79 3 401 28 792 50 382
redblue_00003 750 92 3 239 24 546 49 600
buffalo_003 776 68 3 191 20 056 48 338
medium_free_009 800 71 3 817 21 443 53 287
medium_free_010 810 53 2 608 15 914 47 182
medium_free_011 810 53 2 604 16 086 46 620
london_night_00002 825 84 5 104 30 494 6 6714
galaxy_cluster2_00005 860 84 3 418 33 807 69 541
large_000 911 178 2 089 67 853 95 813
clouds_00001 912 83 5 736 29 770 82 494
universe_bg_00002 914 83 4 382 31 528 62 972
medium_012 923 86 4 181 31 775 68 041
microbes_00002 958 89 6 523 32 944 88 920
london_night_00003 961 83 4 888 30 800 72 652
clouds_00002 963 87 4 778 30 538 68 108
algae_00003 969 82 6 304 33 754 88 054
clouds_00003 1 000 85 4 603 31 950 70 790
medium_free_012 1 000 94 6 030 34 703 96 327
sun_00002 1 000 82 4 537 34 412 74 676
sun_00003 1 000 84 4 173 32 599 74 699
universe_bg_00003 1 000 88 4 922 33 283 77 957
algae_00004 1 113 79 5 055 37 311 81 203
redblue_00004 1 125 82 5 990 37,007 86 755
redblue_00005 1 125 88 5 075 35 197 81 827
medium_013 1 141 99 5 819 50 814 98 088
medium_014 1 165 73 3 698 35 154 85 170
medium_015 1 167 85 5 926 38 909 99 551
medium_016 1 180 94 5 644 40 253 93 435
microbes_00003 1 186 92 6 718 40 923 99 157
medium_017 1 202 114 5 722 44 693 98 981
london_night_00004 1 250 88 5 931 41 539 107 741
medium_free_013 1 250 86 6 644 40 459 105 943
microbes_00004 1 250 91 3 502 39 125 77 919
buffalo_004 1 404 104 7 501 54 687 123 827
buffalo_free_003 1 440 78 6 416 44 607 114 811
medium_free_014 1 440 69 4 803 32 748 111 708
medium_free_015 1 440 69 5 679 37 364 111 718
large_001 1 563 137 12 501 78 545 194 635
large_free_000 1 688 140 13 056 83 806 209 574
large_free_001 1 688 112 10 583 83 021 227 827
large_002 1 692 189 22 746 151 430 278 828
sun_00004 1 707 92 9 453 58 661 183 537
universe_bg_00004 1 721 87 10 032 66 277 197 621
clouds_00004 1 745 84 8 048 50 543 193 723
medium_free_016 1 750 82 9 519 63 704 200 048
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Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

microbes_00005 1 818 89 9 911 61 868 203 056
algae_00005 1 875 88 9 599 63 545 206 705
clouds_00005 1 875 86 9 216 60 370 209 902
london_night_00005 1 875 92 9 437 62 677 207 923
sun_00005 1 875 86 9 056 59 459 202 767
large_003 1 906 154 15 846 118 357 277 189
medium_018 1 993 91 10 149 68 126 230 302
galaxy_cluster2_00006 2 000 186 17 847 123 805 314 979
large_free_002 2 000 179 19 778 156 375 329 811
universe_bg_00005 2 000 82 9 802 66 145 226 937
large_004 2 034 185 21 344 156 549 465 463
medium_019 2 068 85 10 222 71 212 240 024
buffalo_free_004 2 160 114 11 897 83 747 277 269
medium_free_017 2 250 87 10 448 78 890 273 050
medium_free_018 2 250 89 10 329 75 836 266 440
medium_free_019 2 250 89 10 039 71 203 262 489
clouds_00006 2 374 169 20 980 153 148 405 426
london_night_00006 2 394 177 19 612 146 138 381 816
microbes_00006 2 500 175 23 419 168 266 407 044
redblue_00006 2 778 181 25 645 191 344 470 172
galaxy_cluster_00006 2 850 180 21 582 183 060 465 248
galaxy_cluster_00007 2 871 182 23 490 194 828 495 096
galaxy_cluster2_00007 2 878 167 24 813 184 239 485 227
redblue_00007 2 894 182 25 006 190 448 484 544
galaxy_cluster2_00008 3 000 163 23 819 196 812 516 158
redblue_00008 3 000 173 21 410 197 389 497 111
universe_bg_00006 3 000 177 20 833 212 076 540 948
large_005 3 223 141 22 925 189 702 565 074
large_free_003 3 375 124 18 833 157 310 515 120
sun_00006 3 796 178 28 379 256 667 677 381
universe_bg_00007 3 820 184 53 970 256 524 663 762
large_free_004 3 938 127 21 908 196 318 631 702
algae_00006 4 000 176 27 231 268 289 725 397
algae_00007 4 000 182 30 490 266 775 715 707
clouds_00007 4 000 165 55 258 278 973 738 157
london_night_00007 4 000 183 29 738 258 035 712 759
microbes_00007 4 000 192 29 373 270 084 731 772
sun_00007 4 000 174 23 724 222 919 709 049
universe_bg_00008 4 000 184 29 280 270 421 726 457
redblue_00009 4 500 189 56 331 303 078 818 004
large_006 4 599 138 24 473 233 159 799 731
large_007 4 706 215 70 572 371 285 979 159
sun_00008 4 805 171 58 232 324 115 898 523
algae_00008 5 000 182 60 489 331 244 957 270
clouds_00008 5 000 182 59 533 331 641 958 305
galaxy_cluster_00008 5 000 175 59 120 312 047 973 955
large_free_005 5 000 184 59 018 334 479 945 261
large_free_006 5 063 136 24 510 250 853 879 317
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Makespan Total Distance

Instance n Lower Bound Result Lower Bound Result

microbes_00008 5 643 188 65 269 378 352 1 125 676
london_night_00008 5 648 179 63 301 361 184 1 135 742
large_008 5 682 182 63 369 402 994 1 143 500
large_free_007 6 000 189 65 842 401 362 1 224 374
london_night_00009 6 000 185 36 782 377 360 1 243 964
microbes_00009 6 000 183 65 525 402 329 1 218 991
clouds_00009 7 229 178 42 109 485 724 1 588 384
algae_00009 7 311 176 41 634 492 856 1 585 282
sun_00009 7 500 187 41 845 498 637 1 652 955
galaxy_cluster2_00009 7 555 186 42 362 497 764 1 651 382
galaxy_cluster_00009 7 838 189 42 879 516 728 1 745 800
large_free_008 8 000 184 40 935 524 085 1 773 341
universe_bg_00009 8 000 185 42 104 534 956 1 796 412
large_009 8 595 176 44 042 574 544 1 980 538
large_free_009 9 000 182 45 367 576 459 2 067 695
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