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Abstract

Freeze Tag Cops and Robbers is a new variant of the well-studied pursuit and evasion game Cops
and Robbers. In our variant, multiple cops play against multiple robbers, and for a graph𝐺 we
are interested in the freeze tag cop number 𝑐FT𝑟 (𝐺). It denotes the number of cops necessary to
win against 𝑟 robbers.
We determine lower and upper bounds on the freeze tag cop number for different families of
graphs. We show that one cop always wins on paths, cycles, complete graphs, and interval
graphs. For graphs with a universal vertex, two cops can always win, and there are graphs
with a universal vertex for which two cops are necessary.
There is a constant 𝑐 such that 𝑐FT𝑟 (𝑇 ) < 𝑐 log 𝑟 for all trees 𝑇 , and this upper bound is tight.
Furthermore, we prove that there is no function 𝑓 (𝑟 ) ∈ 𝑜 (𝑟 ) such that 𝑐FT𝑟 (𝐺) < 𝑓 (𝑟 ) + 𝑐 (𝐺)
for all graphs 𝐺 .

Zusammenfassung

Freeze Tag Cops and Robbers ist eine neue Variante des viel untersuchten Verfolgungsspiels
Cops and Robbers. In unserer Variante spielen mehrere Cops gegen mehrere Robber und für
einen Graphen𝐺 sind wir an der sogenannten freeze tag cop number 𝑐FT𝑟 (𝐺) interessiert. Sie
bezeichnet die Anzahl an benötigten Cops, um gegen 𝑟 Robbers zu gewinnen.
Wir bestimmen untere und obere Schranken für die freeze tag cop number für unterschied-
liche Familien von Graphen. Wir zeigen, dass ein Cop immer gewinnt auf Pfaden, Kreisen,
vollständigen Graphen und Intervallgraphen. Auf Graphen mit einem universellen Knoten
können zwei Cops immer gewinnen und es gibt Graphen mit universellem Knoten, für welche
auch zwei Cops benötigt werden.
Es gibt eine Konstante 𝑐 , sodass 𝑐FT𝑟 (𝑇 ) < 𝑐 log 𝑟 für alle Bäume 𝑇 gilt. Diese Schranke ist fest.
Außerdem beweisen wir, dass es keine Funktion 𝑓 (𝑟 ) ∈ 𝑜 (𝑟 ) gibt, sodass 𝑐FT𝑟 (𝐺) < 𝑓 (𝑟 ) +𝑐 (𝐺)
für alle Graphen 𝐺 gilt.
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1 Introduction

Cops and Robbers is a pursuit-evasion game that was first introduced in the early 1980s
[AF84]. The game is played on connected, undirected graphs. In the game, one player controls
a set of cops, and his goal is to catch a robber, who is controlled by the opposing player. At
the beginning of the game, the first player places every cop on possibly distinct vertices. Then
the other player places the robber on a vertex. From there on, the players take alternating
turns. A turn consists of a player moving all the pieces he controls (all cops or the robber) to
a vertex with a distance of at most one. This means every piece stays at its vertex or moves
along an edge. The player controlling the cops wins if, at some point, one cop is on the same
vertex as the robber. The other player wins if, the robber is able to evade the cops indefinitely.
The minimum number of cops that are required to catch the robber, assuming perfect play
from both parties, is the cop number of the graph, which is denoted by 𝑐 (𝐺) for a graph 𝐺 .
The cop number has been well studied. It has been proven for example that for planar graphs
𝑐 (𝐺) ≤ 3([AF84]). One of the most prominent open questions is whether Meynil’s conjecture
holds. The conjecture, that has not been proven yet, says that for a graph 𝐺 with 𝑛 vertices
𝑐 (𝐺) ≤

√
𝑛.

Over time, many different variants of the game have been studied. In one of them, the robber
can move at a speed of 𝑅 > 1 for example ([FKL12]). Another variant of the game is called
Tipsy Cop and Drunken Robber ([HIL24]). In this variant, the robber’s moves are random,
and the cop’s moves are sometimes random and sometimes intentional. Here, the expected
number of moves until the cop catches the robber is an interesting parameter.
In this thesis, we study a variant of the game, which we call Freeze Tag Cops and Robbers. In
most variants, there is only a single robber, and adding more robbers would not make much
sense because the cops could just catch the robbers one by one. We present a new variant
of the game in which several cops play against several robbers, and a caught robber has a
chance to become free again so that the cops have to catch the robber again.
In our variant, every robber can be either free or frozen. Initially, all robbers are free. A free
robber becomes frozen if, at any point, he is on the same vertex as a cop. We say the cop
freezes the robber. A frozen robber can become free again if, at any point, there is a free
robber but no cop on the same vertex. We say that the robber frees the frozen one. The cops
win if, at any point, all robbers are frozen. Otherwise, the robbers win. Analogously to the
cop number, we define the freeze tag cop number 𝑐FT𝑟 (𝐺) as the minimum number of cops that
are needed to win against 𝑟 robbers on 𝐺 . For 𝑟 = 1, the cop number and the freeze tag cop
number are equal, i.e. 𝑐FT1 (𝐺) = 𝑐 (𝐺).
There are many different variants of the game, but for as far as we know, this variant of the
game has not been studied yet. Our goal of this thesis is to determine lower and upper bounds
of the freeze tag cop number for different families of graphs.

1





2 Simple Bounds

In this chapter, we will first show some general bounds on the freeze tag cop number that
hold for all graphs. Then we will determine the freeze tag cop numbers on some graphs for
which the problem is trivial in the original version of the game.

2.1 General bounds

To be able to freeze multiple robbers, there must be enough cops to freeze a single robber.
Therefore, 𝑐 (𝐺) provides a lower bound for 𝑐FT𝑟 (𝐺) for every graph 𝐺 . We will see that there
are graphs for which both numbers are equal for every 𝑟 .
A quite simple cop-winning strategy is to catch the robbers one by one, and after a robber
is frozen, a cop stays on that vertex and guards the robber until the game is over. To freeze
the 𝑟 -th robber, 𝑐 (𝐺) cops are needed to catch him, while 𝑟 − 1 cops are guarding the other
𝑟 − 1 frozen robbers. It follows that 𝑐FT𝑟 (𝐺) ≤ 𝑐 (𝐺) + 𝑟 − 1 for any graph 𝐺 . We do not know
whether there exists a graph𝐺 for which equality holds. Yet, in Chapter 4 we show that there
are graphs for which 𝑐FT𝑟 (𝐺) is linear in 𝑟 .

Lemma 2.1: For any graph 𝐺 , 𝑐 (𝐺) ≤ 𝑐FT𝑟 (𝐺) ≤ 𝑐 (𝐺) + 𝑟 − 1.

2.2 Paths

In the classical version of the game, on a path, one cop can move towards the robber until he
catches him. Therefore, 𝑐 (𝑃) = 1 for any path 𝑃 . It is quite easy to see, that one cop can also
freeze an arbitrary number of robbers.

Lemma 2.2: For any path 𝑃 , 𝑐FT𝑟 (𝑃) = 1.

Proof. The cop can start on one end of the path and move towards the other end. The cop splits
the graph into two components and in one of them all robbers are frozen. This component
becomes larger and larger as the cop reaches the other end. When he reaches the other end,
all the robbers on the path are frozen.

2.3 Cycles

For a cycle of length greater than 3, one cop is not enough to catch a single robber. The robber
can play in such a way that after each of his moves, the distance to the cop is 2. Thus, he is
never caught and wins. With two cops, we can place one cop at a vertex and pretend that this
vertex does not exist. Then we can catch the robber with the above-mentioned strategy for
paths, see Lemma 2.2. Consider a cycle 𝐶𝑛 on 𝑛 vertices. Then 𝑐 (𝐶𝑛) = 2, for 𝑛 > 3. Using the
same strategy, two cops can win against an arbitrary number of robbers.

Theorem 2.3: Two cops always win on cycles of length greater than 3, i.e. 𝑐FT𝑟 (𝐶𝑛) = 2 for 𝑛 > 3.
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2 Simple Bounds

We have now seen two classes of graphs where the same strategy from the original game
can be applied to our version. These graphs provide examples where the cop number and the
freeze tag cop number coincide, i.e. the lower bound in Lemma 2.1 is tight.

2.4 Complete Graphs

Complete graphs are another class of graphs for which determining the cop number is quite
easy. A single cop can simply catch the robber on his first move, and therefore 𝑐 (𝐾𝑛) = 1.
With more robbers, it is not that simple, but we can still show that one cop can win against
an arbitrary number of robbers by using a different technique.

Theorem 2.4: On a complete graph, one cop can win against any number of robbers, i.e.
𝑐FT𝑟 (𝐾𝑛) = 1.

Proof. Let 𝜈1, 𝜈2, . . . , 𝜈𝑛 be an arbitrary ordering of the vertices. We describe a winning strategy
for the cop. The cop starts at vertex 𝜈𝑛 . As long as there are free robbers remaining, the cop
moves to 𝜈𝑖 , where 𝑖 is the largest integer, such that there is a free robber on 𝜈𝑖 . Now we prove
that all robbers are frozen after a finite number of turns. Let 𝜈𝑝𝑘 be the vertex the cop lands
on after his 𝑘-th turn. Let 𝑓𝑘 (𝜈𝑖) be the number of frozen robbers on 𝜈𝑖 after the cop finished
his 𝑘-th turn. We define the potential 𝐴𝑘 as

𝐴𝑘 =

𝑛∑︁
𝑖=1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖 (2.1)

Note, that is suffices to show that 𝐴𝑘+1 > 𝐴𝑘 as the potential cannot grow indefinitely.
Thus after finitely many turns, all robbers must be frozen. Assume there is still a free robber
after the 𝑘-th turn of the cop. Consider now the state after the cop performed his (𝑘 + 1)-th
move. We know that in the last move, no robber ended his move on a vertex with index
greater than 𝑝𝑘+1. Otherwise, the cop would have moved to that vertex. So all the robbers on
vertices 𝜈𝑝𝑘+1 + 1, . . . , 𝜈𝑛 are still frozen. This implies 𝑓𝑘 (𝜈𝑖) = 𝑓𝑘+1(𝜈𝑖) for 𝑖 ∈ {𝑝𝑘+1 + 1, . . . , 𝑛}.
Additionally, at least one robber was frozen on vertex 𝜈𝑝𝑘+1 and the robbers that were frozen
on that vertex before are frozen again. Therefore, 𝑓𝑘+1(𝜈𝑝𝑘+1) ≥ 1 + 𝑓𝑘 (𝜈𝑝𝑘+1). It follows that:
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2.5 Interval Graphs

𝐴𝑘 =

𝑛∑︁
𝑖=1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖

=

( 𝑝𝑘+1−1∑︁
𝑖=1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖
)
+ 𝑓𝑘 (𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +

𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖

≤
( 𝑝𝑘+1−1∑︁

𝑖=1
𝑓𝑘 (𝜈𝑖) · 𝑟𝑝𝑘+1−1

)
+ 𝑓𝑘 (𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +

𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖

=

( 𝑝𝑘+1−1∑︁
𝑖=1

𝑓𝑘 (𝜈𝑖)
)
· 𝑟𝑝𝑘+1−1 + 𝑓𝑘 (𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +

𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

< 𝑟 · 𝑟𝑝𝑘+1−1 + 𝑓𝑘 (𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +
𝑛∑︁

𝑖=𝑝𝑘+1+1
𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

= (1 + 𝑓𝑘 (𝜈𝑝𝑘+1)) · 𝑟𝑝𝑘+1 +
𝑛∑︁

𝑖=𝑝𝑘+1+1
𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

≤ 𝑓𝑘+1(𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +
𝑛∑︁

𝑖=𝑝𝑘+1+1
𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

=

𝑛∑︁
𝑖=𝑝𝑘+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

≤
𝑛∑︁
𝑖=1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

= 𝐴𝑘+1

(2.2)

We have hereby shown, that the potential increases in every step and all robbers are frozen
after a finite number of turns. The cop wins.

2.5 Interval Graphs

Chordal graphs are graphs that do not contain an induced cycle of length larger than 3. For
these graphs, it has been proven that one cop always wins against a robber([Hah07]). This
is not the case in the freeze tag variant. Trees are chordal graphs and in Chapter 3 we will
see that there are trees for which more cops are required to win against multiple robbers.
Whether there is a better upper bound on the freeze tag cop number than the one mentioned
in Lemma 2.1 for chordal graphs remains an open problem. Nevertheless, we can determine
the freeze tag cop number for interval graphs, which are a subset of the chordal graphs. We
will show, that one cop beats arbitrary many robbers, using a strategy similar to the one for
complete graphs in Theorem 2.4.

Definition 2.5: A graph is an interval graph if and only if we can assign to every vertex 𝜈𝑖
an interval [𝑙𝑖 , 𝑟𝑖] such that any two vertices are adjacent if and only if their intervals share a
common point.

Every set of intervals describes a graph and we call the set an interval representation of the
graph.
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2 Simple Bounds

As in the proof of Theorem 2.4, we will order the vertices and the cop plays in such a way,
that the robbers who are on vertices with a higher index are frozen. We first observe that we
can sort the vertices in such a way that if a robber from a smaller index frees a robber on a
larger index, then the cop can move to that same vertex too.

Figure 2.1: Forbidden pattern in interval graphs

Lemma 2.6: If𝐺 is an interval graph, then there exists an ordering of the vertices 𝜈1, . . . , 𝜈𝑛 that
does not contain the pattern represented in Figure 2.1. This means for any vertices 𝜈𝑖 , 𝜈 𝑗 , 𝜈𝑘 with
𝑖 < 𝑗 < 𝑘 , where 𝜈𝑖 and 𝜈𝑘 are adjacent, it follows that 𝜈 𝑗 and 𝜈𝑘 are adjacent.

Proof. Consider an interval representation of 𝐺 and let [𝑙𝑎, 𝑟𝑎] denote the interval associated
with vertex 𝜈𝑎 for every 𝑎. We sort the intervals in ascending order of the right border. Now
we need to show that if 𝜈𝑖 and 𝜈𝑘 are adjacent, then 𝜈 𝑗 and 𝜈𝑘 are adjacent for 𝑖 < 𝑗 < 𝑘 . If
the edge 𝜈𝑖𝜈𝑘 exists, the corresponding intervals intersect. Because of the way we ordered
the intervals, we know 𝑟𝑖 ≤ 𝑟𝑘 . So for the intervals to intersect, it must hold that 𝑙𝑘 ≤ 𝑟𝑖 .
Therefore, 𝑙𝑘 ≤ 𝑟𝑖 ≤ 𝑟 𝑗 ≤ 𝑟𝑘 and 𝜈 𝑗 and 𝜈𝑘 are adjacent because the intervals share 𝑟 𝑗 as a
common point.

Now we come to the main part of the proof.

Theorem 2.7: On a connected interval graph, one cop wins against any number of robbers, i.e.
for an interval graph 𝐺 , 𝑐FT𝑟 (𝐺) = 1.

Proof. Let 𝐺 be a connected interval graph. By Lemma 2.6, there exists an ordering 𝜈1, . . . 𝜈𝑛
of the vertices such that for any indices 𝑖 < 𝑗 < 𝑘 , if 𝜈𝑖 and 𝜈𝑘 are adjacent, then 𝜈 𝑗 and
𝜈𝑘 are adjacent too. Next we describe a cop-winning strategy. We place the cop at 𝜈𝑛 . On
every turn, the cop wants to move from vertex 𝜈𝑖 to 𝜈𝑖−1, if there is no free robber on a
vertex 𝜈𝑘 with 𝑘 ∈ {𝑖, . . . , 𝑛}. Otherwise, among all vertices with free robbers on them, the
cop catches the robber on the vertex with the highest index in one move. We show that the
cop can always reach that vertex in one move, and that the game ends after finitely many turns.
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2.5 Interval Graphs

Let 𝑝𝑘 be the index of the vertex the cop lands on after the 𝑘-th move. Let 𝑓𝑘 (𝜈𝑖) be the
number of frozen robbers on 𝜈𝑖 after the cop finished his 𝑘-th turn. We define the potential
𝐴𝑘 as

𝐴𝑘 = − 𝑝𝑘

𝑛 + 1
+

𝑛∑︁
𝑖=𝑝𝑘

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖 (2.3)

We claim that there is no free robber on the vertices 𝜈𝑝𝑘 , . . . , 𝜈𝑛 after the cop finishes his
𝑘-th move. We show, that by following our strategy, 𝐴𝑘 < 𝐴𝑘+1, and because 𝐴𝑘 can only take
a finite number of different values, the potential cannot increase infinitely. Therefore, the cop
wins.
We now look at the state of the game after the cop’s (𝑘 + 1)-th move.
First, let us assume that during the previous robber turn, one or more robbers moved to

a vertex with an index greater than 𝑝𝑘 . Let 𝜈 𝑗 be the vertex with the largest index where a
robber moved to during the last robber turn. This will be the vertex where the cop moves
next, i.e. 𝑗 = 𝑝𝑘+1. Let 𝜈𝑙 be the vertex the robber came from. We have 𝑙 < 𝑝𝑘 < 𝑗 . Then
𝜈𝑝𝑘 and 𝜈 𝑗 are adjacent according to Lemma 2.6. All the robbers on vertices 𝜈𝑝𝑘+1+1, . . . , 𝜈𝑛
remain frozen. After the cop moves to 𝜈𝑝𝑘+1 , there is then at least one more frozen robber at
that vertex (𝑓𝑘 (𝜈𝑝𝑘+1) ≤ 𝑓𝑘+1(𝜈𝑝𝑘+1) − 1). It remains to show that the potential increases, i.e.
𝐴𝑘+1 > 𝐴𝑘 . We have

𝐴𝑘 = − 𝑝𝑘

𝑛 + 1
+

𝑛∑︁
𝑖=𝑝𝑘

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖

= − 𝑝𝑘

𝑛 + 1
+
( 𝑝𝑘+1−1∑︁

𝑖=𝑝𝑘

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖
)
+ 𝑓𝑘 (𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +

( 𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖
)

≤ − 𝑝𝑘

𝑛 + 1
+
( 𝑝𝑘+1−1∑︁

𝑖=𝑝𝑘

𝑓𝑘 (𝜈𝑖)
)
· 𝑟𝑝𝑘+1−1 + (𝑓𝑘+1(𝜈𝑝𝑘+1) − 1) · 𝑟𝑝𝑘+1 +

( 𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖
)
(2.4)

As at least one robber is frozen on 𝜈𝑝𝑘+1 , at most 𝑟 − 1 robbers are on vertices with indices
smaller than 𝑝𝑘+1, we obtain:

𝐴𝑘 ≤ − 𝑝𝑘

𝑛 + 1
+ (𝑟 − 1) · 𝑟𝑝𝑘+1−1 + 𝑓𝑘+1(𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 − 𝑟𝑝𝑘+1 +

( 𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖
)

= − 𝑝𝑘

𝑛 + 1
− 𝑟𝑝𝑘+1−1 + 𝑓𝑘+1(𝜈𝑝𝑘+1) · 𝑟𝑝𝑘+1 +

𝑛∑︁
𝑖=𝑝𝑘+1+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

< −1 +
𝑛∑︁

𝑖=𝑝𝑘+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

< −𝑝𝑘+1
𝑛

+
𝑛∑︁

𝑖=𝑝𝑘+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

= 𝐴𝑘+1

(2.5)

7



2 Simple Bounds

Otherwise, before the (𝑘 + 1)-th cop move, there was no free robber on vertices 𝜈𝑝𝑘 , . . . 𝜈𝑛 .
If the edge 𝜈𝑝𝑘𝜈𝑝𝑘−1 exists, then 𝑝𝑘+1 = 𝑝𝑘 − 1 and all the robbers on vertices 𝜈𝑝𝑘 , . . . 𝜈𝑛 are
still frozen. Thus, 𝑓𝑘 (𝜈𝑖) = 𝑓𝑘+1(𝜈𝑖) for 𝑖 ∈ 𝑝𝑘 , . . . , 𝑛. In this case:

𝐴𝑘 = − 𝑝𝑘

𝑛 + 1
+

𝑛∑︁
𝑖=𝑝𝑘

𝑓𝑘 (𝜈𝑖) · 𝑟 𝑖

= −𝑝𝑘+1 + 1
𝑛 + 1

+
𝑛∑︁

𝑖=𝑝𝑘

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

≤ − 𝑝𝑘+1
𝑛 + 1

− 1
𝑛 + 1

+
𝑛∑︁

𝑖=𝑝𝑘+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

< − 𝑝𝑘+1
𝑛 + 1

+
𝑛∑︁

𝑖=𝑝𝑘+1

𝑓𝑘+1(𝜈𝑖) · 𝑟 𝑖

= 𝐴𝑘+1

(2.6)

If the edge 𝜈𝑝𝑘𝜈𝑝𝑘−1 does not exist, then there must be an index 𝑥 > 𝑝𝑘 such that 𝜈𝑥 is
adjacent to a vertex 𝜈𝑦 with 𝑦 < 𝑝𝑘 as𝐺 is connected. It follows that 𝜈𝑥 and 𝜈𝑝𝑘−1 are adjacent,
see Lemma 2.6. For this specific case, we show that the potential increases after two moves.
The cop moved from 𝜈𝑝𝑘 to 𝜈𝑥 = 𝜈𝑝𝑘+1 . If, after the (𝑘 + 1)-th move, one robber moves to a
vertex with index 𝑗 and 𝑗 > 𝑝𝑘 , then 𝑝𝑘+2 = 𝑗 . The corresponding edge exists according to
Lemma 2.6. The potential increases in the same way as described in the other case above. If
no robber moved to a vertex with a greater index than 𝑝𝑘 , then 𝑝𝑘+2 = 𝑝𝑘 − 1 and the potential
increases too. It follows that the game ends, and the cop wins after finitely many moves.

2.6 Graphs with Universal Vertex

The last class of graphs we will look at in this chapter are graphs with a universal vertex, i.e.
graphs that contain a vertex which is adjacent to all other vertices. The cop number for such
graphs is 1 because the cop can start at the universal vertex and catch the robber in one move.
We will show that the freeze tag cop number for such graphs is either 1 or 2. First, we show
that a single cop always wins against up to three robbers.

Theorem 2.8: On a graph 𝐺 with a universal vertex, one cop always wins against three robbers,
i.e. 𝑐FT3 (𝐺) = 1.

Proof. Let 𝑢 be the universal vertex in𝐺 and let the robbers be called 𝑟1, 𝑟2 and 𝑟3. We describe
a winning strategy for the cop. The cop starts at 𝑢. On his first turn, he freezes 𝑟1 at a vertex
𝜈 . On the next move, he goes back to 𝑢 and on the move after that, he freezes the robber that
is closest to 𝜈 . Now at least two robbers are frozen because if one robber has freed 𝑟1 then
that robber is at 𝜈 and the cop freezes both of them. The cop is at least as close to 𝜈 as the last
robber. If the last robber frees 𝑟1, then the cop is at distance 1 to 𝜈 and can move to 𝜈 and win
the game. Otherwise, he moves to 𝑢 and then catches the last robber in the next move to win
the game.
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2.6 Graphs with Universal Vertex

It follows that 𝑐FT1 (𝐺) = 1 and 𝑐FT2 (𝐺) = 1 for a graph 𝐺 with a universal vertex. Next, we
will show that the bound proven is tight and that there is a graph with a universal vertex,
where four robbers win against one cop. This is our first proof in which the robbers win.
Those proofs are easier if we can make assumptions about the initial positions of all cops. We
show that we can choose an arbitrary vertex and assume that all cops start at that vertex.

Lemma 2.9: Let 𝐺 be a graph and 𝜈 be a vertex of 𝐺 . Then 𝑐 cops win against 𝑟 robbers on 𝐺 if
and only if there is a winning strategy for the cops, where all cops are initially placed on 𝜈 .

Proof. Assuming that 𝑐 cops win against 𝑟 robbers, there is a winning strategy 𝑆 for the cops
that places the cops on the not necessarily different vertices 𝜈1, . . . , 𝜈𝑐 . We now describe a
winning strategy that places all cops on 𝜈 . After the cops are placed, every cop 𝑐𝑖 moves
towards 𝜈𝑖 . When every cop has reached his destination, the cops start moving according to
the winning strategy 𝑆 . The cops win because from then on, the game is the same as if the
cops had started on vertices 𝜈1, . . . , 𝜈𝑐 . The other direction holds trivially.

Note that we could even choose the initial position for every cop and assume that they
start there.

Theorem 2.10: There exists a graph𝐺 with a universal vertex on which four robbers win against
one cop, i.e. 𝑐FT4 (𝐺) > 1.

Proof. We prove that four robbers win on a𝐶4 with one additional vertex 𝜈 that is adjacent to
all other vertices. Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 be the vertices of 𝐶4 in the order they appear on the cycle.
We show that there are four states of the game (see Figure 2.2), and after one move of the cop
and one move of the robbers, the game is in one of the four states again. We assume that the
cop starts at 𝜈 (see Lemma 2.9), the robbers start on the vertices 𝑢1, 𝑢2, 𝑢3, 𝑢4 and two of the
robbers are already frozen, as shown in state 1. Now we look at each state separately and
consider all possible moves the cop has.

State 1: If the cop moves to a frozen robber, the robbers stand still, and we are in a state
that is equivalent to state 2 (transition a in Figure 2.2).
If the cop moves to a free robber,(we may assume that the cop moves to the vertex 𝑢4),
the free robber at𝑢3 frees the robber at𝑢2, andwe are in state 3 (transition b in Figure 2.2).

State 2: If the cop moves to 𝑢2, the robbers stand still, and we are in a state that is
equivalent to state 2 (transition c in Figure 2.2).
If the cop moves to 𝜈 , the robbers stand still, and we are in a state that is equivalent to
state 1 (transition d in Figure 2.2).
If the cop moves to 𝑢4, the robber at 𝑢3 moves to 𝑢2, and we are in state 3 (transition e
in Figure 2.2).

State 3: If the cop moves to 𝜈 , one robber moves from 𝑢2 to 𝑢3, and we are in a state
that is equivalent to state 1 (transition f in Figure 2.2).
If the cop moves to 𝑢1, one robber moves from 𝑢2 to 𝑢3, and we are in a state that is
equivalent to state 2 (transition g in Figure 2.2).
If the cop moves to 𝑢3, one robber moves from 𝑢2 to 𝑢1, and we are in state 4 (transition
h in Figure 2.2).
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2 Simple Bounds

Figure 2.2: Sketch of all four states of the game.

State 4: If the cop moves to 𝑢2, one robber moves from 𝑢1 to 𝑢4, and we pretend that
the other robber at 𝑢1 is frozen. Then we are in a state that is equivalent to state 3
(transition i in Figure 2.2).
If the cop moves to 𝑢4, one robber moves from 𝑢1 to 𝑢2, and we pretend that the other
robber at 𝑢1 is frozen. Then we are in a state that is equivalent to state 3 (transition i in
Figure 2.2).
If the cop moves to 𝜈 , the robber from 𝑢2 moves to 𝑢3 and one robber from 𝑢1 moves to
𝑢2. We pretend that the robber at 𝑢3 is frozen, and we are in a state that is equivalent to
state 1 (transition j in Figure 2.2).

We have hereby shown that no matter how the cop plays, we always end up in one of the
four states, and the game goes on forever.
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2.6 Graphs with Universal Vertex

Last but not least, we show two cops win against any number of robbers on a graph with a
universal vertex using a similar strategy as in Theorem 2.4 again.

Theorem 2.11: If 𝐺 is a graph with a universal vertex, then two cops always win, i.e. for every
𝑟 , 𝑐FT𝑟 (𝐺) ≤ 2.

Proof. Let 𝜈 be the universal vertex in 𝐺 . Let 𝐺 ′ be a complete graph on the set of vertices in
𝐺 − 𝜈 . For 𝑢 ∈ 𝑉 (𝐺), we denote the corresponding vertex in 𝐺 ′ with 𝑢′. We know there is a
winning strategy 𝑆 on 𝐺 ′ with a single cop, see Theorem 2.4. We now simulate 𝑆 on 𝐺 and
will always keep one cop at 𝜈 . If 𝑆 places the cop on vertex 𝑢′ in 𝐺 ′, we place the two cops at
𝜈 and 𝑢 in𝐺 . For every robber in𝐺 we place the corresponding robber in𝐺 ′. If a robber lands
on 𝜈 at any point, we can just remove the corresponding robber from 𝐺 ′ because there is a
cop at 𝜈 at all times and the robber will be frozen forever. On every turn, 𝑆 moves the cop
from a vertex 𝜈 ′𝑖 to a vertex 𝜈 ′𝑗 and we move one cop from 𝜈 to 𝜈 𝑗 and the other one from 𝜈𝑖 to
𝜈 . If a robber moves from 𝜈𝑖 to 𝜈 𝑗 in𝐺 we let the robber in𝐺 ′ on 𝜈 ′𝑖 move to 𝜈 ′𝑗 . Following the
same reasoning as the other proof, after a finite amount of turns, all robbers are frozen, and
the cops win.
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3 Trees

In this chapter we investigate the probably most important family of graphs, trees. The game
on trees is quite simple in the standard variant of the game. For all trees 𝑐 (𝐺) = 1 because
the cop can just move towards the robber until he catches him. After every cop move the
subtree containing the robber gets smaller, and the robber can only move within the subtree.
So after a finite number of moves the cop catcher the robber. As we will see, the game is more
complicated using our set of rules.
Let us first look at how many robbers a single cop can catch. A single cop can catch one robber
as mentioned before, but it is not hard to see that one cop can also catch two robbers. After
the cop froze the first robber, he can just move towards the second robber until he catches
him. As before the subtree containing the second robber gets smaller every step and cop is
always between the two robbers. Therefore, the second robber can never free the first robber
and the cop always wins. We are also able to show that one cop wins against three robbers
with a more complicated proof. In the proof we will often compare distances of vertices so let
𝑑 (𝑎, 𝑏) denote the distance between the vertices 𝑎 and 𝑏.

Theorem 3.1: On a tree, one cop always wins against three robbers, i.e. for a tree 𝑇 , 𝑐FT3 (𝑇 ) = 1.

Figure 3.1: Sketch of the state of the game when the cop is at 𝑔𝑘

13



3 Trees

Proof. In the following, when talking about components, we refer to the components of
𝐺 − {𝑢𝜈 | 𝑢 ∈ 𝑉 (𝐺)}, where 𝜈 is the vertex the cop is on.
The winning cop-strategy, for which we prove its correctness, places the cop at an arbitrary
vertex. Then, while there is still at least one free robber left, the cop chooses one of the free
robbers (if none is left, he wins) and during the following turns, he moves to the component
containing this robber until he freezes him.
If it happens at any point that there is only one free robber and the component containing
that robber contains no frozen robber, then the cop wins after catching that robber.
Let 𝑓𝑘 be the vertex on which the 𝑘-th freezing takes place. From there the cop moves towards
the next targeted robber. We are now interested in the states of the game when for the first
time, the two free robbers are in different components, and it is the cop’s turn. Let 𝑔𝑘 denote
the vertex the cop is on. We know that 𝑔𝑘 must be a vertex on the path between 𝑓𝑘 and 𝑓𝑘+1.
The first robber is still frozen because the cop always moved into the component containing
both other robbers, and they had no way of getting around the cop. The two other robbers
must be free, otherwise the cop can catch the last robber and wins as mentioned above.
We define a potential 𝐴𝑘 as 𝐴𝑘 = 𝑑 (𝑓𝑘 , 𝑔𝑘 ) and prove that after a finite number of turns all
robbers are frozen by showing that 𝐴𝑘+1 > 𝐴𝑘 .
For 𝑘 > 1 let ℎ𝑘 be the vertex on the path from 𝑓𝑘−1 to 𝑓𝑘 that minimizes 𝑑 (ℎ𝑘 , 𝑔𝑘 ), see
Figure 3.1 for reference. In his next turns the cop moves along the paths from 𝑔𝑘 to 𝑓𝑘+1 and
from 𝑓𝑘+1 to 𝑔𝑘+1. That takes a total of 𝑑 (𝑔𝑘 , 𝑓𝑘+1) + 𝑑 (𝑓𝑘+1, 𝑔𝑘+1) moves.
In the meantime, the free robber that is not chased needs at least one move to get to 𝑔𝑘 and
then 𝑑 (𝑔𝑘 , 𝑓𝑘 ) moves to free the frozen robber on 𝑓𝑘 . Then one of the robbers has to reach
𝑔𝑘+1 before the cop does, so that the two robbers can be in different components when the
cop reaches 𝑔𝑘+1. So it must hold that:

1 + 𝑑 (𝑔𝑘 , 𝑓𝑘 ) + 𝑑 (𝑓𝑘 , 𝑔𝑘+1) < 𝑑 (𝑔𝑘 , 𝑓𝑘+1) + 𝑑 (𝑓𝑘+1, 𝑔𝑘+1)
⇐⇒ 1 + 𝑑 (𝑔𝑘 , 𝑓𝑘 ) + 𝑑 (𝑓𝑘 , ℎ𝑘+1) + 𝑑 (ℎ𝑘+1, 𝑔𝑘+1) < 𝑑 (𝑔𝑘 , 𝑓𝑘+1) + 𝑑 (𝑓𝑘+1, ℎ𝑘+1) + 𝑑 (ℎ𝑘+1, 𝑔𝑘+1)
⇐⇒ 1 + 𝑑 (𝑔𝑘 , 𝑓𝑘 ) + 𝑑 (𝑓𝑘 , ℎ𝑘+1) < 𝑑 (𝑔𝑘 , 𝑓𝑘+1) + 𝑑 (𝑓𝑘+1, ℎ𝑘+1)
⇐⇒ 1 + 𝑑 (𝑔𝑘 , 𝑓𝑘 ) + 𝑑 (𝑓𝑘 , 𝑓𝑘+1) − 𝑑 (𝑓𝑘+1, ℎ𝑘+1) < 𝑑 (𝑓𝑘 , 𝑓𝑘+1) − 𝑑 (𝑔𝑘 , 𝑓𝑘 ) + 𝑑 (𝑓𝑘+1, ℎ𝑘+1)
⇐⇒ 1 + 2𝑑 (𝑔𝑘 , 𝑓𝑘 ) < 2𝑑 (𝑓𝑘+1, ℎ𝑘+1)
=⇒ 𝐴𝑘 = 𝑑 (𝑔𝑘 , 𝑓𝑘 ) < 𝑑 (𝑓𝑘+1, ℎ𝑘+1) ≤ 𝑑 (𝑓𝑘+1, ℎ𝑘+1) + 𝑑 (ℎ𝑘+1, 𝑔𝑘+1) = 𝑑 (𝑓𝑘+1, 𝑔𝑘+1) = 𝐴𝑘+1

(3.1)
Because the potential cannot increase indefinitely the game must end after a finite number

of turns and the cop wins.

After this, the obvious follow-up question is: how about four robbers? Can a single cop
always win against four robbers or are there trees on which four robbers win against one
cop? We will show now that the latter is true and that there are trees on which a single cop is
not enough to win against four robbers.

Theorem 3.2: There exists a tree𝑇 on which four robbers win against a single cop, i.e. 𝑐FT4 (𝑇 ) > 1.

Proof. The tree 𝑇 is shown in Figure 3.2. Our set of vertices is 𝑎, . . . , 𝑠 . We can assume that
the single cop starts at 𝑎, see Lemma 2.9. Our robber-winning strategy places the robbers
𝑟1, 𝑟2, 𝑟3 and 𝑟4 on the vertices 𝑐, 𝑖, 𝑖 and 𝑠 respectively. We assume that 𝑟4 is already frozen.
Let 𝑆 be a cop-winning strategy that wins in as few moves as possible 1. This implies that
1From this follows, that the game never reaches the same state twice.
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Figure 3.2: Tree 𝑇 on which four robbers can win against a single cop.

the cop never moves back to the vertex he just came from except when he freezes a robber
with that move, or he froze one the move before. Otherwise, all robbers can move back to the
vertex they were on the move before. Then the game is in the same state as before, which is a
contradiction to 𝑆 winning as fast as possible.
We prove that 𝑆 cannot exist because after a finite number of moves the game returns to
a state that is equivalent to the initial state. The cop has to move towards one of the free
robbers. He either moves towards 𝑟1 or towards 𝑟2 and 𝑟3.

Case 1: the cop catches 𝑟1
The robber 𝑟1 moves along the path 𝑐𝑑𝑒 and lets himself get frozen at 𝑒 . The cop will not turn
around and has to move along the path 𝑎𝑏𝑐𝑑𝑒 to catch the robber. Then the cop will move
back along the path 𝑒𝑑𝑐𝑏𝑎 because that is the direction where all the free robbers will be. In
total this will take the cop eight moves. In the meantime 𝑟2 stays at 𝑖 and 𝑟3 moves along the
path 𝑖ℎ𝑎𝑛𝑜𝑟𝑠 in six moves and frees 𝑟4. Then 𝑟3 and 𝑟4 move together along the path 𝑠𝑟𝑜 in
two moves. Now the cop is at 𝑎, 𝑟1 is frozen at 𝑒 , 𝑟2 is still at 𝑖 and 𝑟3 and 𝑟4 are at 𝑜 . That state
is equivalent to the initial state.

15



3 Trees

actor move sequence
cop 𝑎𝑏𝑐𝑑𝑒𝑑𝑐𝑏𝑎

𝑟1 𝑐𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑟2 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑟3 𝑖ℎ𝑎𝑛𝑜𝑟𝑠𝑟𝑜

𝑟4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑜

Figure 3.3: All 8 moves from every actor in Case 1.

Case 2: the cop catches 𝑟2 or 𝑟3
The robber 𝑟2 moves along the path 𝑖 𝑗𝑘 and 𝑟3 moves along the path 𝑖𝑙𝑚. The cop makes
two moves towards both robbers along the path 𝑎ℎ𝑖 . We can assume that the cop decides to
catch 𝑟2. His next two moves are then 𝑖 𝑗𝑘 . After that the cop moves back along the path 𝑘 𝑗𝑖ℎ𝑎
because that is the direction where all the free robbers will be. In the meantime 𝑟3 moves
along the path𝑚𝑙𝑖ℎ𝑎𝑏𝑐 and does not get frozen because he passes 𝑖 when the cop freezes 𝑟2 at
𝑘 . During the eight moves it takes the cop to get back to 𝑎, 𝑟1 moves from 𝑐 to 𝑠 and frees 𝑟4
and both robbers then move together along the path 𝑠𝑟𝑜 .
Now the cop is at 𝑎, 𝑟2 is frozen at 𝑘 , 𝑟3 moved to 𝑐 and 𝑟3 and 𝑟4 are at 𝑜 . That state is

equivalent to the initial state.

actor move sequence
cop 𝑎ℎ𝑖 𝑗𝑘 𝑗𝑖ℎ𝑎

𝑟1 𝑐𝑏𝑎𝑛𝑜𝑟𝑠𝑟𝑜

𝑟2 𝑖 𝑗𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑟3 𝑖𝑙𝑚𝑙𝑖ℎ𝑎𝑏𝑐

𝑟4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑜

Figure 3.4: All 8 moves from every actor in Case 2.

In both cases we end up in an equivalent state after eight moves. This means the game
does not end and the robbers win.

Now that we have solved the problem for one cop, we investigate what happens if we add
more cops to the game. We are interested in what the maximum number of robbers are that a
fixed number of cops can beat on all trees. We will show that by adding just one cup, the cops
can win against more than three times the number of robbers as before.

Theorem 3.3: If for all trees 𝑇 and a fixed 𝑟 , 𝑐FT𝑟 (𝑇 ) ≤ 𝑐 , then for all trees 𝑇 ′ it holds that
𝑐FT3𝑟+2(𝑇 ′) ≤ 𝑐 + 1.

Proof. Let 𝑇 be a tree. We prove that 𝑐 + 1 cops have a winning strategy on 𝑇 against 3𝑟 + 2
robbers. In the following, when talking about components, we refer to the components of
𝐺 − {𝑢𝜈 | 𝑢 ∈ 𝑉 (𝐺)}, where 𝜈 is the vertex the cop 𝑐1 is on.
Our cop-winning strategy starts with placing all cops on some vertex. Then we choose one
component that contains at least 𝑟 + 1 robbers and all cops move one step towards it. We
repeat this process for as long as possible, but ignoring the component 𝑠 we just came from.
After the last step there are at most 𝑟 robbers in every component excluding 𝑠 . The total sum
of robbers in all these components excluding 𝑠 is at least 𝑟 + 1. For the next moves 𝑐1 stays
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Figure 3.5: Sketch of the states of the game before and after one iteration
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at the current vertex, while the other 𝑐 cops freeze all robbers in all components except for
s. This is possible because when a robber tries to reach a different component, he is frozen
by 𝑐1, and we know that 𝑐FT𝑟 (𝑇 ) ≤ 𝑐 . So the 𝑐 cops can go from component to component
and freeze all robbers in each component. Now all robbers in all components except for 𝑠 are
frozen. This component contains at most 2𝑟 + 1 robbers.
Now 𝑐1 moves one step into 𝑠 . All the robbers in the component 𝑐1 just came from are still
frozen and the other components contain at most 2𝑟 + 1 robbers in total. This implies that at
most one component contains more than 𝑟 robbers. Here we do the same strategy as above
and let 𝑐1 stay at the current vertex, while the other 𝑐 cops freeze all robbers in the components
containing at most 𝑟 robbers.
These steps are then repeated until all cops are frozen. This happens after finitely many
iterations because in every iteration, 𝑐1 moves into a component that contains free robbers
and the component 𝑐1 came from contains only frozen robbers. One iteration can be seen in
Figure 3.5.

We have thereby shown that for trees, the freeze tag cop number is at most logarithmic in
the number of robbers. More specifically we can show:

Corollary 3.4: Let 𝑇 be a tree and 𝑟 ∈ ℕ+, then 𝑐FT𝑟 (𝑇 ) ≤ ⌈log3( 𝑟+14 )⌉ + 1.

Proof. We prove the corollary using induction over the number of robbers 𝑟 . For 𝑟 ≤ 3, the
claim holds as 𝑐FT𝑟 (𝑇 ) = 1 by Theorem 3.1. Assume the claim holds for all values smaller than
𝑟 .
We now need to show that 𝑐FT𝑟 (𝑇 ) ≤ ⌈log3( 𝑟+14 )⌉ + 1. Let 𝑟 ′ = ⌈𝑟−23 ⌉. Since 𝑟 ≤ 3𝑟 ′ + 2, it is also
true that 𝑐FT𝑟 (𝑇 ) ≤ 𝑐FT3𝑟 ′+2(𝑇 ). By induction hypothesis we know that 𝑐FT

𝑟 ′ (𝑇 ) ≤ ⌈log3( 𝑟
′+1
4 )⌉ + 1.

Theorem 3.3 yields 𝑐FT3𝑟 ′+2(𝑇 ) ≤ 𝑐FT𝑟 ′ (𝑇 ) + 1. It follows that:

𝑐FT𝑟 (𝑇 ) ≤ 𝑐FT3𝑟 ′+2(𝑇 ) ≤ 𝑐FT𝑟 ′ (𝑇 ) + 1

≤ ⌈log3(
𝑟 ′ + 1
4

)⌉ + 1 + 1

= ⌈log3(
( 𝑟−23 ) + 1

4
)⌉ + log3(3) + 1

= ⌈log3(
𝑟+1
3
4
)⌉ + log3(3) + 1

= ⌈log3(
3 · 𝑟+13

4
)⌉ + 1

= ⌈log3(
𝑟 + 1
4

)⌉ + 1

(3.2)

Similarly, let us assume that a tree exists on which 𝑐 cops lose against 𝑟 robbers. Then
by tripling the number of robbers and adding a small constant number of robbers, we can
construct a tree on which the robbers win with one more cop.

Theorem 3.5: If for a some integer 𝑟 there exists a tree𝑇 such that, 𝑐FT𝑟 (𝑇 ) > 𝑐 , then there exists
a tree 𝑇 ′ such that 𝑐FT3𝑟+6(𝑇 ′) > 𝑐 + 1.
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Figure 3.6: Sketch of state 1

Proof. Let 𝑇 be a tree for which 𝑐FT𝑟 (𝑇 ) > 𝑐 holds and 𝑛 be the number of vertices in 𝑇 . We
now construct a tree 𝑇 ′ and prove that 3𝑟 + 6 robbers win against 𝑐 + 1 cops. We start with
a vertex 𝜈 and add three paths 𝑃𝑥 , 𝑃𝑦, 𝑃𝑧 , each consisting of 100𝑛 edges, which share 𝜈 as an
endpoint. For each of the paths, we introduce a copy of 𝑇 which we denote by 𝑇𝑥 ,𝑇𝑦 and 𝑇𝑧
respectively.
Identifying the endpoint of the paths different from 𝜈 with a vertex in the corresponding copy
of 𝑇 yields the tree 𝑇 ′. We can assume that all cops are initially placed at 𝜈 , see Lemma 2.9.
We place two robbers on 𝑃𝑥 , one at a distance of 10𝑛 to 𝜈 and the other one with a distance

of 50𝑛. We call the first robber 𝑥1 and the other one 𝑥2. Analogously we place two robbers
on 𝑃𝑦 and call them 𝑦1, 𝑦2. On 𝑃𝑧 we place the robber 𝑧1 with distance 100𝑛 to 𝜈 and 𝑧2 with
distance 50𝑛. We split the remaining 3𝑟 robbers in three groups 𝑋,𝑌, 𝑍 of size 𝑟 . The robbers
in 𝑋,𝑌, 𝑍 are placed in the trees 𝑇𝑥 ,𝑇𝑦,𝑇𝑧 respectively.

In our strategy, we assume that the robbers in 𝑍 are frozen and that to win, the cops try to
freeze all the robbers in 𝑌 before they try freezing 𝑋 . The idea is, that when all the cops are
moving towards 𝑌 , 𝑥1 can free 𝑧2 and move back. Then 𝑧2 can free 𝑍 and go back to his vertex
before the cops come back from freezing 𝑌 . This way all the robbers are where they need to
be in time, and the cops are never able to freeze the three groups 𝑋 , 𝑌 and 𝑍 at the same time.
We define three different states of the game and show that the game will always be in one

of these three states. As at least one of the robbers is free in each of the three states, the
game never ends, i.e. the robbers win. Sketches of the three states can be seen in Figure 3.6,
Figure 3.7 and Figure 3.8.
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3 Trees

Figure 3.7: Sketch of state 2

Figure 3.8: Sketch of state 3
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State 1: This is the initial state. To win the game, the cops have to move all cops into
𝑇𝑥 or 𝑇𝑦 to freeze all robbers in 𝑋 and 𝑌 . State 1 describes the state, where the cops
are split up and have not started to move towards 𝑇𝑥 or 𝑇𝑦 together. The following
invariants hold in this state:

1 Neither are all cops in 𝑃𝑥 ∪𝑇𝑥 and the closest cop has a distance to 𝜈 greater than
10𝑛, nor are all cops in 𝑃𝑦 ∪𝑇𝑦 the closest cop has a distance of 10𝑛 to 𝜈 .

2 The robbers 𝑥2, 𝑦2, 𝑧1 and 𝑧2 are frozen on the vertices they were placed on initially.
3 All robbers in 𝑍 are frozen.
4 The robbers 𝑥1 and 𝑦1 are on the paths 𝑃𝑥 and 𝑃𝑦 respectively and are at a distance

of at most 10𝑛 to the closest cop, or at 𝜈 .
5 𝑥1 and 𝑦1 are either free, or frozen at the vertex with distance 100𝑛 to 𝜈 on 𝑃𝑥 or
𝑃𝑦 respectively.

For the invariant 2 and 3 , we can just assume that the robbers are frozen no matter
what the cops do. At least one robber in 𝑋 , as well as in 𝑌 is free, because the robbers
in 𝑋 and 𝑌 play in such a way, that 𝑐 cops are not enough to freeze all of them (possible
because 𝑐FT𝑟 (𝑇𝑥 ) > 𝑐) and not all 𝑐 + 1 robbers can be in𝑇𝑥 or𝑇𝑦 because of invariant 1 .
Invariants 4 and 5 hold because 𝑥1 moves along 𝑃𝑥 and keeps the distance always at
10𝑛 to the closest cop. The only exception is if 𝑥1 reaches 𝜈 or 𝑥1 is at the vertex with
distance 100𝑛 to 𝜈 and potentially frozen. While frozen, 𝑥1 is still at a distance of at
most 10𝑛 to the closest cop. If the closest cop is at distance exactly 5𝑛 to the frozen
𝑥1(the cop has to be in 𝑃𝑥 ), one free robber in 𝑋 frees 𝑥1 in at most 𝑛 moves and 𝑥1 plays
as before. The robbers in 𝑌 and 𝑦1 play the same way. If the cops violate invariant 1 ,
we say that we are in state 2.

State 2: We can assume, that all cops are in 𝑃𝑦 ∪𝑇𝑦 . Here we are in the state, where the
cops are on their way towards 𝑌 and 𝑥1 can start moving towards 𝑧2 to free him. The
following invariants hold:

1 All cops are in 𝑃𝑦 ∪𝑇𝑦 and the cop closest to 𝜈 has a distance between 10𝑛 and
60𝑛 to 𝜈 .

2 The robbers 𝑥2, 𝑦2, 𝑧1, 𝑧2 and all robbers in 𝑍 are frozen on the vertices they were
placed on initially.

3 𝑦1 is at distance 10𝑛 to the closest cop, or frozen at the vertex with distance 100𝑛
to 𝜈 .

4 𝑥1 is in 𝑃𝑧 and his distance to 𝜈 is by 10𝑛 shorter than the distance from 𝜈 to the
closest cop in 𝑃𝑦 .

Invariants 2 and 3 are true for the same reasons as explained for state 1. The robber
𝑥1 moves in such a way that invariant 4 is true. There is still at least one free robber
in 𝑋 and one free robber in 𝑌 as before. If invariant 1 is violated, we are in state 1, if
the closest cop has a distance to 𝜈 smaller than 10𝑛. Otherwise, if the distance is larger
than 60𝑛, we are in state 3. In that case 𝑥1 is at the same vertex as 𝑧2 and frees 𝑧2.

State 3: In this state, the cops have committed so far to freeze 𝑌 , that 𝑧2 can free 𝑍 and
return back to his vertex without being disturbed by a cop. The following invariants
hold:

1 All cops are in 𝑃𝑦 ∪𝑇𝑦 and the cop closest to 𝜈 has a distance larger than 10𝑛 to 𝜈 .
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2 Not all cops are in 𝑇𝑦 .
3 𝑥1 is in 𝑃𝑧 and his distance to 𝜈 is by 10𝑛 shorter than the distance from 𝜈 to the

closest cop in 𝑃𝑦 .
4 If the cop closest to 𝜈 is at a distance smaller than 60𝑛, then 𝑧2 stays at distance

50𝑛 to 𝜈 . Otherwise, 𝑧2 is 10𝑛 closer to 𝜈 than the closest cop.
5 The robbers 𝑥2, 𝑦2, 𝑧1 and all robbers in 𝑍 are frozen on the vertices they were

placed on initially.
6 𝑦1 is at distance 10𝑛 to the closest cop, or frozen at the vertex with distance 100𝑛

to 𝜈 .

The robbers 𝑥1, 𝑧2 and 𝑦1 move in such a way, that the invariants 3 , 4 and 6 are
maintained. This is possible because the robbers are in 𝑃𝑧 , while the cops are all in 𝑃𝑦 .
If the 1 invariant is violated we are back in state 1. Invariant 5 is true for the same
reasons as before. From invariant 2 follows that there is at least one free robber in 𝑌
and additionally there is a free robber in 𝑋 as before. If invariant 2 is violated, we can
assume that all robbers in 𝑌 are frozen. It takes the first cop at least 100𝑛 moves to get
back to 𝜈 and by that time we can assume that we are in a state that is equivalent to
state 1. When the last cop enters 𝑇𝑦 , 𝑧2 is at a distance of 90𝑛 to 𝜈 . The robber can free
𝑧1 and 𝑍 , and can get back to the vertex with distance 50𝑛 in less than 70𝑛 moves (10𝑛
to get to 𝑇𝑧 , 2𝑛 to unfreeze 𝑍 and 50𝑛 to get back). After 10𝑛 moves 𝑧1 is freed by 𝑧2
and after another 90𝑛 moves, he is at distance 10𝑛 to 𝜈 . This means that 𝑧1 can stay at
a distance of at most 10𝑛 to the closest cop, after that cop reached 𝜈 after the at least
100𝑛 moves. That state is now equivalent with 𝑌 being frozen instead of 𝑍 .

The game will always be in one of the three states and therefore never end. The robbers
win.

Let us assume that for all trees 𝑐FT𝑟 (𝑇 ) ≤ 𝑐 + 1 and that this bound is tight, i.e. there is a tree
for which the freeze tag cop number is equal to 𝑐 + 1. Then we know that 𝑐FT3𝑟+2(𝑇 ) ≤ 𝑐 + 2 for
all trees according to Theorem 3.3. Using Theorem 3.5 we can construct a tree 𝑇 ′ such that
𝑐FT3𝑟+6(𝑇 ′) > 𝑐 + 1. If for the values of 𝑟 between 3𝑟 + 2 and 3𝑟 + 5, there exists a tree on which
𝑐 + 1 cops win remains to be solved.
Next we will look at graphs with a bounded treewidth. To define the treewidth, we first
need to introduce the concept of a tree decomposition. Let 𝐺 = (𝑉 , 𝐸) be a graph. Then a
tree decomposition is a tree with vertices 𝑋1, . . . , 𝑋𝑛 where each 𝑋𝑖 is a subset of 𝑉 and the
following conditions are met:

Every vertex in 𝑉 is contained in at least one tree vertex.

For every vertex 𝜈 in 𝑉 , the tree vertices containing 𝜈 form a component.

For every edge in 𝑉 , there exists a tree vertex that contains these two vertices.

For a tree decomposition we define the width as the size of the largest 𝑋𝑖 minus one. The
treewidth of a graph is then the minimal width of a tree decomposition of that graph.
Our goal is to show that for graphs with a fixed treewidth, the freeze tag cop number is still
logarithmic in the number of robbers.

Theorem 3.6: For a graph 𝐺 of treewidth 𝑘 , we have 𝑐FT𝑟 (𝐺) ∈ O(𝑘 log 𝑟 ).
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Proof. We prove the theorem by showing that 𝑐FT𝑟 (𝐺) ≤ 𝑐FT𝑟
2
(𝐺) + 2𝑘 + 2. Consider a tree

decomposition 𝑇 of width 𝑘 with vertices 𝑉1 . . .𝑉𝑛 where 𝑉𝑖 ⊆ 𝑉 (𝐺), |𝑉𝑖 | = 𝑘 + 1 and 𝑉𝑖 ≠ 𝑉𝑗

for every 𝑖, 𝑗 .
We describe a winning strategy for the cops. Let 𝑉𝑥 be some vertex of the tree 𝑇 . We place
a cop on each of the vertices in 𝑉𝑥 . We placed 𝑘 + 1 cops and the remaining 𝑘 + 1 + 𝑐FT𝑟

2
(𝐺)

cops are placed arbitrarily. Now we look at the components of 𝐺 −𝑉𝑥 . If each component
contains at most 𝑟

2 robbers, then the 𝑐FT𝑟
2
(𝐺) cops can go from component to component and

freeze every robber. In this case the cops win.
Otherwise, there can be at most one component with more than 𝑟

2 robbers. Let 𝜈 be a vertex
in this component. Consider the component 𝐶 of 𝑇 −𝑉𝑥 with a vertex who contains 𝜈(note
that there is only one such component). Let 𝑉𝑦 be the neighbor of 𝑉𝑥 in 𝐶 . Now 𝑘 + 1 of the
remaining 𝑘 + 1 + 𝑐FT𝑟

2
(𝐺) cops move each to a different vertex in 𝑉𝑦 . Then we repeat the

process with 𝑉𝑦 instead of 𝑉𝑥 until all components contain at most 𝑟
2 robbers.

Next we show that this happens after finitely many steps. We look at the components of
𝐺−𝑉𝑦 . If all components contain at most 𝑟

2 robbers we are finished. Otherwise, the component
containing more than 𝑟

2 is a proper subset of the previous component. That is because the
vertices in 𝑉𝑥 where guarded, and no robber could leave the component. There is at least
one vertex in 𝑉𝑦 that is not in 𝑉𝑥 and is thereby not part of the component anymore. In each
iteration the size of the component containing more than 𝑟

2 robbers decreases and therefore
after finitely many iterations all components contain at most 𝑟

2 robbers.
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4 Graphs with Large Freeze Tag Cop
Numbers

In Chapter 2 we looked at several very simple families of graphs and showed that their freeze
tag cop number is constant. For trees, we were able to show in Chapter 3, that the freeze
tag cop number is logarithmic in the number of robbers. In this chapter we will investigate
graphs with a larger freeze tag cop number and will try to come as close to the upper bound
from Lemma 2.1 as possible.
First we will look at grid graphs and show that the number of cops necessary is asymptotically
equivalent to the square root of the number of robbers.

Theorem 4.1: On a grid 𝑟 2 robbers can win against 𝑟
20 cops, i.e. 𝑐

FT
𝑟 2

> 𝑟
20 .

Proof. Let G be a grid of size 𝑟 × 𝑟 . We describe a winning strategy for the robbers. We place
one robber at every vertex, no matter where the cops were placed. Assume that half of the
robbers are frozen (if fewer robbers are frozen we pretend that more robbers are frozen). Next
we prove the claim that we can find a matching with size at least 𝑟

2 between vertices with free
and frozen robbers.
Case 1: Every row contains a free and a frozen robber.
Then we find a match in every row for a total of 𝑟 matches.
Case 2: There is a row that contains only free or only frozen robbers.
We can assume, that there is a row that contains only frozen robbers. From this it follows
that every column contains a frozen robber. Because only 𝑟 2

2 robbers are frozen there can
be at most 𝑟

2 columns containing 𝑟 frozen robbers. This means there are at least 𝑟
2 columns

containing a free robber. In each of these columns we find a match.
Now we look at the subset of these 𝑟

2 matches where the frozen robber cannot be reached by
a cop in his next move. We want to prevent the cops from freezing two robbers on one vertex,
which could happen if the frozen robber is near a cop. Every cop can reach at most 5 different
vertices in one move. Therefore, our subset has size at least 𝑟

2 − 5𝑐 = 𝑟
4 . In the next 2 turns for

every of these pairs the free robber frees the frozen robber and moves back. After two moves
there is one robber on every vertex again and the cops can freeze at most 𝑟

20 · 2 robbers in the
meantime. This is because a cop can never freeze more than one robber on a single vertex.
The total number of frozen robbers is then at most 𝑟 2

2 − 𝑟
4 +

𝑟
10 < 𝑟 2

2 . Because less than half of
the robbers are frozen we can repeat this strategy indefinitely and the robbers win.

Next we will generalize the strategy we just used. We can place one robber on every vertex
and assume half of them are frozen. Then we need to find a matching between free and frozen
robbers. One tool that will help us calculate a lower bound for the size of the matching is the
minimal bisection.

Definition 4.2: The minimum bisection problem is to partition the set of vertices into two sets
in such a way, that the number of edges between the sets is minimal. Additionally, the sizes of the
two sets may differ by at most one. The minimal number of edges in this case is called minimum
bisection.
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4 Graphs with Large Freeze Tag Cop Numbers

Theminimum bisection of a graph together with the maximum degree is enough to calculate
a lower bound on the size of the matching. With that lower bound and the maximum degree
of a graph we can then determine a lower bound on the cop number for graphs.

Theorem 4.3: Let 𝐺 be a graph on 𝑟 vertices with a maximum degree of 𝑑 and with a minimal
bisection of 𝑏. Then 𝑐FT𝑟 (𝐺) ≥ 𝑏

5𝑑+1 .

Proof. We describe a strategy for 𝑟 robbers, to win against 𝑐 = 𝑏
5𝑑+1 cops. We place one robber

on every vertex and assume that half of the robbers are frozen. It follows, that there are at least
𝑏 edges, where the robber on one vertex is free and the robber on the other vertex is frozen.
Every cop can reach at most 𝑑 + 1 vertices in one move. In total the cops can cover at most
𝑐 (𝑑 + 1) of these edges. Therefore, there are 𝑏 − 𝑐 (𝑑 + 1) of these edges where the vertex with
the frozen robber cannot be reached by a cop in one move. We can greedily find a matching of
size 𝑏−𝑐 (𝑑+1)

2𝑑 between vertices with free and frozen robbers. We do this by iteratively choosing
an edge and removing all other edges adjacent to the two vertices. We remove less than 2𝑑
edges in every iteration. Therefore, every two moves at least 𝑏−𝑐 (𝑑+1)

2𝑑 free robbers can free a
neighboring frozen robber and not be caught there. Then they return to their vertex where
they potentially can be caught. Because the cops can never freeze two robbers on the same
vertex, the maximum number of robbers the cops can catch in two moves is 2𝑐 . After two
moves, there are at most 𝑟

2 −
𝑏−𝑐 (𝑑+1)

2𝑑 + 2𝑐 = 𝑟
2 −

𝑏−𝑐 (𝑑+1)+4𝑐𝑑
2𝑑 = 𝑟

2 −
𝑏−𝑐 (5𝑑+1)

2𝑑 = 𝑟
2 robbers

frozen. Consequentially, the cops will never be able to freeze all robbers and the robbers
win.

Our goal is to find graphs for which we get a high lower bound on the cop number, using
the formula we just proved in Theorem 4.3. So we are looking for graphs with a large minimal
bisection and a small maximum degree. Next, we will show that by applying our strategy for
grids to cubes with more dimensions we can construct graphs whose freeze tag cop number
is arbitrarily close to being linear in the number of robbers. First we define what we mean by
more dimensional cubes.

Definition 4.4: Let 𝐻 = 𝐻 (𝑘, 𝑛) be a graph where 𝑉 (𝐻 ) = {1, . . . , 𝑘}𝑛 . Two vertices 𝑢, 𝜈 are
adjacent if and only if there exists an 𝑖 ∈ {1, . . . , 𝑛} such that: ∀𝑗 ∈ {1, . . . , 𝑛}, 𝑗 ≠ 𝑖 : 𝑢 𝑗 = 𝜈 𝑗
and |𝑢𝑖 − 𝜈𝑖 | = 1. We say that 𝐻 is a 𝑘-ary 𝑛-dimensional cube.

Grid graphs, for example, are 𝑘-ary 2-dimensional cubes, because they are 2-dimensional
and 𝑘 is their side length. The number of vertices in 𝐻 (𝑘, 𝑛) are 𝑘𝑛 and the maximum degree
is 2𝑛. Their minimal bisection is easy to determine, as it is 𝑘𝑛−1(see [LC16] without proof).
Now we only need to choose the right values for 𝑘 and 𝑛.

Theorem 4.5: For every 𝜀 ∈ ℝ, 𝜀 > 0 and 𝑟 ∈ ℕ+ there exist values for 𝑟 ′(𝑟 ′ ≥ 𝑟 ), 𝑘 and 𝑛, such
that 𝑐FT

𝑟 ′ (𝐻 (𝑘, 𝑛)) > 𝑟 ′1−𝜀 .

Proof. We show that the inequality holds for 𝑛 = ⌈ 2
𝜀
⌉, 𝑘 = 10𝑛 + 1 + 𝑟 and 𝑟 ′ = 𝑘𝑑 (note that 𝑟 ′

are the number of vertices in 𝐻 ). It obviously holds that 𝑟 ′ = 𝑘𝑑 ≥ 𝑟 . The minimum bisection
of 𝐻 is 𝑘𝑛−1. Every vertex in 𝐻 has degree at most 2𝑛. Together with Theorem 4.3, this yields
that 𝑐FT

𝑟 ′ (𝐻 ) ≥
𝑘𝑛−1

10𝑛+1 . Next we show that: 𝑘𝑛−1

10𝑛+1 > 𝑟 ′1−𝜀 .
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𝑘𝑛−1

10𝑛 + 1
> 𝑟 ′1−𝜀

⇐⇒ 𝑘𝑛−1

10𝑛 + 1
> 𝑘𝑛−𝑛𝜀

⇐⇒ 𝑘𝑛−1

𝑘𝑛−𝑛𝜀
> 10𝑛 + 1

⇐⇒ 𝑘𝑛𝜀−1 > 10𝑛 + 1

⇐⇒ 𝑘 ⌈
2
𝜀
⌉𝜀−1 > 10𝑛 + 1

⇐= 𝑘
2
𝜀
𝜀−1 > 10𝑛 + 1

⇐⇒ 𝑘 > 10𝑛 + 1
⇐⇒ 10𝑛 + 1 + 𝑟 > 10𝑛 + 1
⇐⇒ 𝑟 > 0

(4.1)

We have thereby proven that 𝑐FT
𝑟 ′ (𝐻 ) ≥

𝑘𝑛−1

10𝑛+1 > 𝑟 ′1−𝜀 .

In different words, this means that for every function 𝑓 (𝑟 ) ∈ 𝑜 (𝑟 ) we can construct a graph
𝐺 such that 𝑐FT𝑟 (𝐺) > 𝑓 (𝑟 ) +𝑐 (𝐺) for large enough values of 𝑟 . Last but not least, we show that
graphs exist for which the freeze tag cop number is exactly linear in the number of robbers.
We will look at 3-regular graphs. Their maximum degree is 3 and the minimal bisection for
large random 3-regular graphs is about 1

10 of the number of vertices([LM20]). Therefore, we
can show that there are graphs where the freeze tag cop number is linear in the number of
robbers.

Theorem 4.6: For sufficiently large 𝑟 ∈ ℕ+ there exist 3-regular graphs𝐺 , such that 𝑐FT𝑟 (𝐺) ≥
𝑟
160 .

Proof. Let 𝐺 be a 3-regular graph with 𝑟 vertices and a minimal bisection of size > 𝑟
10 (such a

graph exists according to [LM20]). Theorem 4.3 yields that 𝑐FT𝑟 (𝐺) ≥
𝑟
10

5·3+1 = 𝑟
160 .
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5 Conclusion

In this thesis, we explored the freeze tag variant of the game cops and robbers. We first related
the freeze tag cop number to the cop number. We showed trivial lower and upper bounds
that hold on every graph for the freeze tag cop number, 𝑐FT𝑟 (𝐺), with regard to the number of
robbers 𝑟 . We then proved that a constant number of cops suffices to catch any number of
robbers on paths, cycles, complete graphs and graphs containing a universal vertex.
The same holds for a subclass of the chordal graphs known as interval graphs. However,
it remains an open question whether there are tighter bounds than the trivial ones from
Chapter 2 on the freeze tag cop number for chordal graphs in general.
Following that in Chapter 3, we showed for trees, that there is a function 𝑓 ∈ O(log 𝑟 ) such
that 𝑓 (𝑟 ) > 𝑐FT𝑟 (𝑇 ) for every tree 𝑇 . We also proved that this bound is tight, i.e. that there is
no such function in 𝑜 (log 𝑟 ). We then extended this result by proving a logarithmic upper
bound for graphs with bounded treewidth.
In Chapter 4 we first examined grid graphs and showed that the freeze tag cop number is at
least proportional to the square root of the number of robbers. This represents asymptotically
faster growth than for any other family of graphs studied up to that point. We then generalized
the approach to 𝑘-ary 𝑛-cubes and showed that we can construct graphs whose freeze tag cop
number can get arbitrarily close to being linear in the number of robbers.
Unfortunately we were not able to present a graph whose freeze tag cop number is strictly
linear in the number of robbers. But we could show that graphs exist for which this is the case,
although we do not know how they look like. Identifying or constructing a group of graphs
whose freeze tag cop number is linear in the number of robbers remains an open problem.
The most important question that came up while working on this thesis was whether there
exists a constant 𝑘 such that 𝑘 log(𝑟 )𝑐 (𝐺) > 𝑐FT𝑟 (𝐺) for every graph𝐺 . But in the last chapter
we could show that this is not the case.
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