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Abstract

Much work on orthogonal graph drawing has focused on 4-planar
graphs, that is planar graphs where all vertices have maximum degree
4. In this work, we study aspects of the Kandinsky model, which is a
model for orthogonal graph drawings of higher-degree graphs.

First, we examine the decision problem β-Embeddability, which
asks whether for a given planar graph with a fixed or variable embedding,
a drawing in the Kandinsky model exists where every edge has at most
β bends. We show that 0-Embeddability in the Kandinsky model is
equivalent to 0-Embeddability in the lower-degree case. We show that
1-Embeddability for multigraphs with variable planar embeddings is
NP-complete. Then, we show that any simple graph is 1-embeddable,
even if it has a fixed planar embedding, and we present a linear-time
algorithm for finding a corresponding 1-bend drawing. Furthermore,
we show to find a 2-bend Kandinsky drawing of any plane graph in
linear time.

Next, we study some restrictions of the bend minimization problem
OptimalKandinskyDraw, which finds a Kandinsky drawing with
the minimum number of bends for a plane graph. We present a linear-
time algorithm solving OptimalKandinskyDraw for biconnected,
outerplanar, inner-triangulated graphs. Then, we give an O(n3) time
algorithm for finding bend-minimal 1-bend Kandinsky drawings of
series-parallel graphs.

Finally, we inquire into new ways to solve OptimalKandinsky-
Draw using linear programming. We show that for any constant c ∈ R
a graph exists so that the difference between the real solution and the
integer solution of the corresponding linear program is greater than c.
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1 Introduction

Graphs consist of a set of vertices and a set of edges, each connecting two vertices. Graphs
can be used to represent a variety of data, models and systems. For example, graphs are
used to model geographic maps, social networks, or software dependencies.

Oftentimes when working with data, it is helpful to visualize it. A graph drawing is a
visualization of a graph, where vertices are usually drawn as simple geometric shapes
such as circles or rectangles and edges are usually drawn as curves. Graph drawing is a
field of theoretical computer science which deals with the automated generation of such
graph drawings.
In general, in a graph drawing, vertices and edges may have any shape. For example,

vertices might be drawn as polygons of varying size and an edge might be represented
as a sequence of arcs, geometric lines or even strings of geometric shapes. Sometimes
it is useful to restrict vertex shapes and edge shapes. Orthogonal graph drawing deals
with the automated generation of graph drawings where all vertices are represented as
squares of equal size and all edges are sequences of horizontal and vertical line segments.
In this work, we focus on planar graphs, that is graphs which may be drawn in the plane
so that edges only intersect at their endpoints. Graphs which are not planar may be
planarized using some planarization method (e.g. [12]). Orthogonal graph drawings have
a number of applications [18], e.g. for PERT charts in project management, for UML
diagrams in software engineering, for entity-relationship models in database modeling,
for VLSI circuit design [13], [16] and in architecture for floor plan layouts [14].
It is of interest to find nice orthogonal graph drawings. What makes a drawing nice

is, of course, subject to debate. For example, one might say that a drawing is nice if it
can be enclosed in a small area, or if all faces have approximately equal size, or if it has
some other aesthetic qualities. In this work, we focus on nuances of minimizing the total
number of bends in a drawing.

1.1 Related Work
A restriction often used in orthogonal graph drawing is to assume that the graphs are
4-planar, which means that they are planar and all vertices have maximum degree 4.
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1.2. Outline

Additionally, only one edge may be attached to each side of a square vertex. Given this
restriction, orthogonal graph drawing is a well-studied problem. Tamassia [15] shows
that for a plane graph (that is a graph together with a fixed embedding), a drawing with
the minimum number of bends can be found in O(n2 logn) time by transforming the
bend minimization problem into a minimum cost flow problem. Furthermore, Tamassia
and Garg [9] show that the problem of deciding whether for a planar graph there exists
an embedding and a corresponding orthogonal graph drawing so that no edge is bent is
NP-complete.
Bläsius et al. [4] introduce the generalized problem FlexDraw for 4-planar graphs

G = (V,E). In a FlexDraw instance, a function flex: E → N0 assigns a flexibility
to each edge. The problem is to decide whether there exists an embedding and an
orthogonal drawing of G so that every edge e is bent at most flex(e) times. For positive
flexibilities, that is flex: E → N+, FlexDraw has been shown to be solvable in O(n2)
time (this can be optimized even further). As a special case, FlexDraw contains the
problem β-Embeddability, where for some β ∈ N0 every edge e is assigned a flexibility
of flex(e) = β.
All of these contributions focus on 4-planar graphs. However, many graphs have

higher-degree vertices, that is vertices v with deg(v) > 4. If vertices should be represented
by squares and edges should be represented by orthogonal line segments, a higher-degree
vertex has to have at least one side to which more than one edge is attached.

A model for such higher-degree orthogonal graph drawings is the Kandinsky model.
Drawings in the Kandinsky model, also called Kandinsky drawings, have been introduced
by Fößmeier and Kaufmann [7] as planar orthogonal drawings with equal vertex size and
non-empty faces or podevsnef.
Fößmeier and Kaufmann [7] claimed to have found a polynomial time algorithm to

find bend-minimal Kandinsky drawings. However, Eiglsperger [5] later showed that
the presented algorithm is incorrect. It remains unknown whether a polynomial time
algorithm for finding Kandinsky drawings with the minimum number of bends exists,
even for graphs with a fixed planar embedding. Eiglsperger [5] and Yildiz [18] present
approximation algorithms for finding bend-minimal Kandinsky drawings. Both algorithms
have an approximation ratio of 2.

1.2 Outline
In this work, we study various aspects of Kandinsky drawings and their automated
generation.
After going over some preliminaries in Chapter 2, we first constrain the flexibility of

the edges in Chapter 3. Specifically, we consider some restrictions of the decision problem
β-Embeddability for β ∈ {0, 1, 2}. We see that 0-Embeddability in the Kandinsky
model is equivalent to the lower-degree case of 4-planar graphs and that we can reuse
the existing results for 4-planar graphs. Specifically, 0-Embeddability with variable
embeddings is NP-complete. With a fixed embedding, 0-Embeddability is solvable in
polynomial time and if a plane graph is 0-embeddable, we can find a 0-bend drawing in
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1.2. Outline

polynomial time. For 1-Embeddability and 2-Embeddability, linear-time algorithms
for finding 1-bend Kandinsky drawings and 2-bend Kandinsky drawings, respectively
(though not bend-minimal), are presented. Furthermore, we show that 1-Embeddability
for graphs with variable embeddings is NP-complete.
In Chapter 4, we study Kandinsky drawings of graphs from restricted graph classes.

Specifically, we consider the bend minimization problem OptimalKandinskyDraw for
biconnected, outerplanar inner-triangulated graphs. We show how to find an optimal
drawing of such a graph in linear time and prove that it has n−2 bends. For series-parallel
graphs we consider the bend minimization problem 1-OptimalKandinskyDraw, which
finds a bend-minimal 1-bend Kandinsky drawing, and give a solution algorithm running
in O(n3) time.
Finally, in Chapter 5, we refocus on solving OptimalKandinskyDraw for general

graphs and explore new solution approaches employing mixed integer linear programming.
We show that for any constant c ∈ R, we can find a graph so that the difference between
the real solution and the integer solution of the corresponding linear program is greater
than c.

4



2 Preliminaries

In this chapter, we cover some basic notions and definitions. A graph G = (V,E) is a
tuple of a set of vertices V and a set of edges E ⊆ V × V . A simple graph has at most
one edge between each pair of vertices. A multigraph is a graph which may have one, but
also more edges between the same pair of vertices. Such edges are called multiedges.
A graph is connected if we can find a consecutive path between any two vertices. A

separator of a connected graph G = (V,E) is a set S ⊆ V so that the graph (G \ S) =
(V ′, E′), where V ′ = V \S and E′ = {(u, v) ∈ E : {u, v} ∩ V ′ = ∅} is no longer connected.
We call a separator s ∈ S with |S| = 1 a cutvertex or a separator vertex and we call a
separator S with |S| = 2 a separator pair. If a graph does not have a separator vertex,
but it does have a separator pair, the graph is biconnected.

A planar graph is a graph which can be drawn in the plane so that no two edges cross
each other. If we delete all edges from such a drawing, the plane is decomposed into a
number of disjoint regions, called faces. Only one face is unbounded: This face is called
the outer face. All other faces are bounded and are called inner faces. Consider two
drawings of the same graph: Two faces – one from each drawing – are considered equal if
the ordered cycle of edges incident to the faces are equal. By F , denote the set of faces
of the first drawing and by F ′, denote the set of faces of the second drawing. If there is a
bijective binary relation ∼ ⊆ F × F ′ between the faces of the drawings so that for two
faces f ∈ F , f ′ ∈ F ′ from f ∼ f ′ it follows that f and f ′ are equal, the drawings have
the same (combinatorial) embedding. A planar graph together with a planar embedding
is called a plane graph. With faces(G), we denote the set of faces of a plane graph
G = (V,E), with faces(v) we denote the set of faces incident to a vertex v ∈ V , with
faces(e) we denote the set of faces incident to an edge e ∈ E and with faces(f) we denote
the set of faces adjacent to a face f ∈ faces(G). The contour of a face f is the subgraph
of vertices and edges incident to f .
A plane graph is called outerplanar if all vertices are incident to the outer face. A

graph G is called maximal planar if inserting an edge between any two vertices in G leads
to G no longer being planar. A maximal planar graph is also said to be triangulated. A
plane graph G is called inner-triangulated if all inner faces of G are incident to exactly
three vertices.
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2.1. The Tamassia Model
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Figure 2.1: An example graph G in (a) and an orthogonal drawing of G in (b). Graph edges
are drawn as thick black lines and grid lines are drawn as thin, gray lines.

2.1 The Tamassia Model

Tamassia [15] presents and studies a model for orthogonal graph drawings of graphs with
maximum degree 4. In this model, all vertices are placed on the points of a uniform grid.
They have equal, square size. Edges are represented by series of horizontal and vertical
segments which lie on the grid. They may not touch or cross each other. An edge e only
touches a vertex v if v is one of the two endpoints of e.

For an example of an orthogonal graph drawing in the Tamassia model, see Figure 2.1.

2.1.1 Orthogonal Representation
To formally describe an orthogonal drawing of a graph G = (V,E), Tamassia uses an
orthogonal representation, which is a set H = {Hf1 , Hf2 , . . .} of face descriptions. Every
face description Hf is a circularly ordered list Hf = (he1 , he2 , . . .) of edge descriptions
hei . The edge descriptions appear in the order in which they area encountered when
going around the contour of f in the “positive” direction, i.e. having the face at one’s
right. An edge description he ∈ Hf is a triple he = (e, s, a) where:

• e ∈ E is an edge of G.

• s is a binary string. The k-th bit of s represents the k-th bend of e, as it is
encountered on the right when going around f in the positive direction. The binary
symbols 0 and 1 denote an angle of 90◦ and 270◦, respectively. The empty word ε
describes an edge with no bends.

• a is an integer in the set {90, 180, 270, 360} specifying the angle in f formed by e
and its successor edge.

When working with orthogonal representations, a useful tool is the notion of rotations.
For a directed edge e, we define its rotation rot(e) as rot(e) = zeroes(s)− ones(s), where
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2.1. The Tamassia Model

s is the bitstring from the edge description he = (e, s, a) ∈ Hf , and f is the face to
the right of e. If e = (u, v) and e′ = (v, w) are two directed edges so that the face f
lies to the right of both e and e′, and he precedes he′ in Hf , we define the rotation
rot(e, e′) = 2− a/90, where a is the value from the edge description he = (e, s, a) ∈ Hf .
If π = (e1, e2, . . . , ek) is a path in the contour of some face f , that is if all pairs hei and
hei+1 for 1 ≤ i < k are successors in Hf , we define the rotation of π as follows:

rot(π) =
k−1∑
i=1

(rot(ei) + rot(ei, ei+1)) + rot(ek)

Tamassia shows that for any valid orthogonal representation a corresponding orthogonal
graph drawing exists [15, Theorem 1]. An orthogonal representation is valid if it meets
certain criteria:

1. There is an orthogonal graph drawing D of some 4-planar graph so that the
orthogonal representation describes D.

2. Each edge must have consistent descriptions in the faces in which it appears. More
formally, let e ∈ E be an edge of G and {f, f ′} = faces(e). Let he = (e, s, a) ∈ Hf

and h′e = (e, s′, a′) ∈ Hf ′ be the two edge descriptions of e. The string s′ can be
obtained from s by reversing s and exchanging zeroes and ones.

3. Every face described by H must be a rectilinear polygon. More formally, if for
a face f the path πf = (e1, e2, . . . , ek) denotes the contour path of f in positive
direction, the following equation must be true for all faces f :

rot(πf ) =
{

+4 if f is an inner face
−4 if f is the outer face

4. For each vertex v, the sum of angles between pairs of neighboring edges is equal to
360◦. More formally, if (e1, e2, . . . , ek, ek+1 = e1, . . .) denotes the cyclic list of edges
incident to v in counter-clockwise order, the following equation has to hold true:

k∑
i=1

(2− rot(e1, e2)) = 4

For an example of a (valid)1 orthogonal representation, see Figure 2.2. A plane graph
together with an orthogonal representation is called a configuration.

2.1.2 The Tamassia Flow Network
Tamassia [15] transforms the problem of computing a bend-minimized drawing of a plane
graph G = (V,E) into a minimum cost flow problem, which is solvable in polynomial

1In the following, we will not explicitely state that a valid orthogonal representation is valid.
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2.1. The Tamassia Model

α β

γ

δ

ε

e1

e2
e3

e4

e5 e6

f1

f2
f3

Hf1 = ((e1, 1, 90), (e3, ε, 90), (e2, 1, 270), (e5, ε, 180), (e6, 11, 180), (e1, 0, 360))
Hf2 = ((e2, 0, 90), (e4, 01, 90), (e5, ε, 90))
Hf3 = ((e3, ε, 90), (e6, 00, 90), (e4, 01, 180))

Figure 2.2: An orthogonal drawing and its orthogonal representation H = {Hf1 , Hf2 , Hf3} of
the graph G shown in Figure 2.1a.

time. To this end, he shows how to transform a flow into an orthogonal representation
and vice versa.
The Tamassia flow network T = (N,A, dem, cap, cost) is constructed as follows. By

F = faces(G), denote the set of faces of G. By N , denote the set of nodes N = NV ∪NF

in the flow network, where:

NV = {nv | v ∈ V } (vertex nodes)
NF = {nf | f ∈ F} (face nodes)

By A = AV F ∪ AFF , we denote the set of directed arcs in the flow network, where
AV F are arcs from vertex nodes to face nodes and AFF are arcs between face nodes:

AV F =
⋃
v∈V
{(nv, nf ) | f ∈ faces(v)}

AFF =
⋃
f∈F

{
(nf , nf ′) | f ′ ∈ faces(f)

}
If k units flow over an arc a = (nv, nf ) ∈ AV F , a (k + 1) · 90◦-angle is generated in f at
v. If k units flow over an arc a = (nf , nf ′ ∈ AFF , the edge e with faces(e) = {f, f ′} will
have a k · 90◦-bend in f .
By dem: A→ Z we denote the demand function, which is defined as follows:

∀nv ∈ NV : dem(nv) = deg(nv)− 4

∀nf ∈ NF : dem(nf ) =
{
size(f)− 4 if f is an inner face
size(f) + 4 if f is an outer face
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2.2. The Kandinsky Model

Note that the definition of the demand function correlates with criterium 3 of valid
orthogonal representations, as described above.
By cap: A→ {3,∞} we denote the capacity function, which is defined as follows:

∀a ∈ A : cap(a) =
{

3 a ∈ AV F
∞ a ∈ AFF

The capacity of 3 for arcs in AV F is based on the fact that flow over an arc a = (nv, nf ) ∈
AV F causes a (k + 1) · 90◦-angle. Since that angle obviously cannot be greater than 360◦,
the flow must not be greater than 3. The capacity of ∞ for arcs in AV F is founded in
the fact that edges may be bent an arbitrary number of times.
By cost : A→ {0, 1} we denote the cost function, which is defined as follows:

∀a ∈ A : cost(a) =
{

0 a ∈ AV F
1 a ∈ AFF

We try to minimize the number of bends: The cost of 1 for arcs in AFF is based on the
fact that one unit of flow over an arc in AFF causes one bend in an edge in the drawing.
Flow over arcs in AV F does not cause bends in edges, so the cost for those arcs is 0.
A valid flow in T is a function flow: A → N0 which has to satisfy the capacity

constraints and the demand constraints:

• ∀a ∈ A : flow(a) ≤ cap(a)

• ∀n ∈ N :
∑

(u,v)∈A
flow((u, v)) −

∑
(v,w)∈A

flow((v, w)) = dem(n)

The cost of a flow f is defined to be cost(f) =
∑
a∈A

f(a) · cost(a).

The minimum cost flow problem consists of finding a valid flow f in T so that for
any other valid flow f ′ the equation cost(f ′) ≥ cost(f) holds true. This problem is
well-studied and polynomial-time algorithms finding solutions for it are known (e.g. the
algorithm proposed by Goldberg and Tarjan [10]).
For an example of a Tamassia flow network, see Figure 2.3.

2.2 The Kandinsky Model
Since only one edge may be attached to each side of a vertex, it is impossible to draw
graphs with vertices of degree greater than 4 in the Tamassia model. So, for higher-degree
graphs, the Tamassia model is not applicable. The Kandinsky model is a model which
admits drawings of higher-degree graphs [7]. As in the Tamassia model, vertices are
placed on the points of a uniform grid. Again, the vertices have equal, square size and
edges are represented by series of horizontal and vertical straight-line segments. In
contrast to Tamassia’s model, more than one edge may be attached to a vertex side.
Thus, we have to extend the orthogonal representation from the Tamassia model.
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2.2. The Kandinsky Model

α β

γ δ
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f2

f3

f1

←1

←3

←1

2→

←1

2→

←
1

←
1→

1→

Figure 2.3: The Tamassia flow network T for the graph G shown in Figure 2.1a. The graph
G is drawn with dashed lines. Nodes in NV are drawn in purple, nodes in NF are
drawn in green. Arcs in AV F are drawn in red, arcs in AFF are drawn in blue. Edge
labels denote the amount and direction of flow in T . If an edge is unlabeled, there
is no flow on that edge. The flow corresponds to the orthogonal representation in
Figure 2.2.

2.2.1 Orthogonal Representation
Specifically, for an edge description he = (e, s, a) ∈ Hf we have to expand the value set
for a, the integer specifying the angle in f formed by e and its successor edge by the value
0, that is a ∈ {0, 90, 180, 270, 360}. For an orthogonal representation of a Kandinsky
drawing to be valid, all the criteria from Section 2.1.1 have to be met. Moreover, there is
an additional requirement: A Kandinsky drawing must not have any empty faces2. A
face is considered empty if its contour does not enclose at least one block of the grid. To
ensure that a drawing has no empty faces, Fößmeier and Kaufmann state the following:

Lemma 1 ([7, Lemma 4]). Every 0◦-angle of a Kandinsky drawing has a unique corre-
sponding 270◦-bend.

This property is also referred to as the bend-or-end property. For an example of an
orthogonal graph drawing in the Kandinsky model, see Figure 2.4.

2The original reason for this requirement is that Fößmeier and Kaufmann [7] conjecture that if empty
faces are allowed, the bend-minimization problem becomes N P-hard. Furthermore, empty faces are
problematic insofar as there is no way to prohibit subgraphs inside of an empty face, but a drawing
with such faces would require large nodes to provide space for the subgraph’s drawing.
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2.2. The Kandinsky Model

α
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Figure 2.4: A Kandinsky drawing of the graph from Figure 2.1a. Graph edges are drawn as
thick black lines and grid lines are drawn as thin, gray lines.

2.2.2 The Kandinsky Flow Network
The optimization problem OptimalKandinskyDraw is: Given a plane graph G, find
a Kandinsky drawing D of G so that the number of bends in D is minimal among all
Kandinsky drawings of G. To solve OptimalKandinskyDraw, the Kandinsky flow
network can be used.

The Kandinsky flow network is an extension of the Tamassia flow network. The main
difference is that in the Kandinsky flow network, it has to be possible to represent
0◦-angles between two edges at a vertex. As stated by Lemma 1, such a 0◦-angle has
to have a unique corresponding 270◦-bend. In a Kandinsky flow network, a 0◦-angle
can only be caused by flow through a helper node into the node associated with the
vertex where the 0◦-angle occurs. Flow can only enter the helper node from the two
nodes associated with the faces adjacent to the face in which the 0◦-angle occurs. For a
visualization, see Figure 2.5. Except for this, the flow networks are similar.

Let G = (V,E) be an undirected plane (multi-)graph. We define the Kandinsky flow
network K for G as a tuple K = (N,A, dem, cap, cost, B). By N we denote the set of
nodes N = NV ∪NF ∪NH in the flow network, where:

NV = {nv | v ∈ V } (vertex nodes)
NF = {nf | f ∈ F} (face nodes)

NH =
⋃
v∈V
{nv,f | f ∈ faces(v)} (helper nodes)

By A we denote the set of directed arcs in the flow network, where:

AV F =
⋃
v∈V
{(nv, nf ) | f ∈ faces(v)}

AFF =
⋃
f∈F

{
(nf , nf ′) | f ′ ∈ faces(f)

}
AFH =

⋃
f∈F

{
(nf , nv,f ′) |

{
f, f ′

}
⊆ faces(v) ∧ f ′ ∈ faces(f)

}
AHV =

⋃
v∈V
{(nv,f , nv) | f ∈ faces(v)}

11



2.2. The Kandinsky Model

α

f

e′e
a4 a5

a1 a2a3

Figure 2.5: Parts of a Kandinsky flow network. If the corresponding Kandinsky drawing should
have a 0◦-angle in face f between the edges e and e′ at the vertex associated with α,
one unit of flow has to flow int0 α over the arc a3. This unit must also flow either
over a1 or a2, thereby ensuring that a 270◦-angle corresponding to the 0◦-angle
exists. Since an edge cannot be bent in both directions, the arcs e1 and e4 are
bundled, and the arcs e2 and e5 are bundled (if two arcs are bundled, only one unit
may flow over both arcs cumulatively).

By dem: N → Z we denote the demand function, which is defined as follows:

∀nv ∈ NV : dem(nv) = deg(nv)− 4

∀nf ∈ NF : dem(nf ) =
{
size(f)− 4 f is inner face
size(f) + 4 f is outer face

∀n ∈ NH : dem(n) = 0

By cap: A→ N+ we denote the capacity function, which is defined as follows:

∀a ∈ A : cap(a) =


1 a ∈ AFH ∪AHV
3 a ∈ AV F
∞ a ∈ AFF

By cost : A→ {0, 1} we denote the cost function, which assigns a cost per unit of flow
to each edge:

∀a ∈ A : cost(a) =
{

0 a ∈ AV F ∪AHV
1 a ∈ AFF ∪AFH

With B = {C1, C2, . . . , Ck} we denote a set of bundles Ci = (C, c) where C ⊆ A and
c ∈ N+. Bundles allow the restriction of flow across arbitrary sets of arcs. In the following,
we will always implicitely assume B0 ⊆ B, where:

B0 =
⋃

(u,v)∈E
faces((u,v))={f,f ′}

{
(
{
(nf , nu,f ′), (nf ′ , nu,f )

}
, 1), (

{
(nf , nv,f ′), (nf ′ , nv,f )

}
, 1)
}

12



2.2. The Kandinsky Model

A valid flow in K is a function flow: A → N0 which has to satisfy the capacity
constraint, the demand constraints and the bundle constraints:

• ∀a ∈ A : flow(a) ≤ cap(a)

• ∀n ∈ N :
∑

(m,n)∈A
flow((m,n)) −

∑
(n,m)∈A

flow((n,m)) = dem(n)

• ∀ C = (C, c) ∈ B :
∑
a∈C

flow(a) ≤ c

The cost of the flow f is defined to be cost(f) =
∑
a∈A

f(a) · cost(a).

Yildiz shows the following lemma:

Lemma 2 ([18, Satz 5]). Let G be a plane graph. For every Kandinsky drawing D of G,
there exists an integer flow in the Kandinsky flow network K, so that the flow’s cost is
equal to the number of bends in D. Furthermore, for every integer flow in K, a drawing
D of G exists so that the flow’s cost is equal to the number of bends in D.

So, as with the Tamassia flow network, the Kandinsky minimum cost flow problem
consists of finding a valid flow f in K so that for any other valid flow f ′ the equation
cost(f) ≤ cost(f ′) holds true. Note that in addition to the standard constraints in
a flow network, namely the capacity constraints and the demand constraints, f has
to satisfy the bundle constraints. This means that standard algorithms for finding
minimum cost flows are not applicable to K. Fößmeier and Kaufmann [7] and Yildiz [18]
present approximation algorithms for OptimalKandinskyDraw, both of which have
an approxmiation ratio of 2.
For an example of a Kandinsky flow network, see Figure 2.6.
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2.2. The Kandinsky Model

α

βγ

δ

ε

f1 f1

f1

f2

f3

←
1

←
1 1→

←1

1→

←
2

←
2

1→

2→

←
3

Figure 2.6: Kandinsky flow network K for the graph G shown in Figure 2.1a. The graph G is
drawn with dashed lines. Nodes in NV are drawn in purple, nodes in NF are drawn
in light green and nodes in NH are drawn in dark green. Arcs in AV F are drawn
in red, arcs in AFF are drawn in blue and arcs in AFH ∪AHV are drawn in green.
Edge labels denote the amount and direction of flow in K. For the sake of clarity,
the node f1 has been split into three nodes.
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3 β-Embeddability

Taking a step back from the general problem OptimalKandinskyDraw we attempt to
make the problem more manageable by constraining the flexibility of edges, that is the
maximum number of bends allowed per edge. For some constant β ∈ N0, a planar graph
is said to be β-embeddable if it admits an orthogonal drawing where all bends have at
most β bends. The decision problem β-Embeddability can be studied for graphs with
fixed or variable embeddings. In this chapter, we explicitely study β-Embeddability
for β ∈ {0, 1, 2}. For β ≥ 3, we can reuse the results for β = 2.

3.1 0-Embeddability
In the Kandinsky model, all edges have the bend-or-end property, which ensures that
if two edges portrude from the same side of a vertex at least one of them has to have
a bend (this is an implication of Lemma 1). This means that in a 0-bend Kandinsky
drawing (a β-bend drawing is a drawing where all edges have at most β bends) no more
than one edge may portrude from each vertex side. Thus, 0-bend Kandinsky drawings
only exist for graphs with maximum degree 4. Orthogonal graph drawing for graphs with
maximum degree 4 is a well-studied problem, so we can reuse the corresponding results:

Theorem 1 ([15]). The decision problem 0-Embeddability for graphs with a fixed
embedding is solvable in polynomial time.

Theorem 2 ([9]). The decision problem 0-Embeddability for graphs with variable
embeddings is NP-complete.

3.2 1-Embeddability
Now that we have solved 0-Embeddability, a logical next step is to study 1-Embedda-
bility. We first show that for multigraphs with variable embeddings, 1-Embeddability
is NP-complete. Then, we show that all plane simple graphs are 1-embeddable.
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3.2. 1-Embeddability

(a) (b)

Figure 3.1: There is only one orthogonal representation for G1 where every edge has at most
one bend, as seen in Figure (a). In Figure (b), there is a 0◦-angle at the lower vertex,
at the cost of having two bends in an edge.

3.2.1 Multigraphs
In this section, we show that the decision problem 1-Embeddability for planar multi-
graphs with variable embeddings is NP-complete. The approach is to reuse the result
that 0-Embeddability with variable embeddings is NP-complete (see Theorem 2)
and then simulate unbendable edges with 1-bend Kandinsky drawings of rigid plane
multigraphs. In this context, a rigid plane multigraph is a plane multigraph graph G so
that for all 1-bend Kandinsky drawings of G we can draw a path π(s, t) between two
designated vertices s and t through G so that π(s, t) is contained within the contours of
G and rot(π(s, t)) = 0.
We start by constructing a very simple graph: Let G1 = (V,E) be the undirected

multigraph consisting of two parallel edges, that is V = {u, v} and E = {{u, v} , {u, v}}.
See Figure 3.1 for a visualisation. We state the following:

Lemma 3. A pair of parallel edges G1 = (V,E) has exactly one valid orthogonal
representation R where every edge has at most one bend.

Proof. First, note that G1 has exactly one planar embedding. Now, consider the Kandin-
sky flow network K for G1. Let f be the inner face of G1 and let vf be the corresponding
node in K. Let E = {e1, e2}. For any ej ∈ E, let Aj be the set of arcs in K with source
vfi

causing a bend on ej . Thus, |Aj | = 3. Note that for any arc a = (vf , v) ∈ A it is
a ∈ A1 ∪ A2. Since every edge in G1 should have at most one bend, every set Aj may
contain one arc with flow at most 1. We have dem(vf ) = −2, so in both sets Aj there
is exactly one arc with flow 1. This means that there cannot be more flow passing vf ,
which means that the flow on all arcs in K with target vf must be 0. Thus, the internal
face spans at most 90◦ at any vertex. If the internal face were to span 0◦ at a vertex,
there would have to be a non-zero flow over an arc in K associated with an edge ej . This
would cause an additional bend on that edge, so the internal face has to span exactly 90◦
at both adjacent vertices and the outer face has to span exactly 270◦ at both adjacent
vertices.

This describes the only possible orthogonal representationR of G1 where every edge has
at most one bend. A Kandinsky drawing corresponding to R is shown in Figure 3.1a.

Next, we construct a plane graph G2 with the intention to simulate an edge (u, v)
which is unbendable to the right. To this end, we start with three vertices u, a and v
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3.2. 1-Embeddability

v

a

u

Figure 3.2: The plane graph G2.

v

a

u

b

Figure 3.3: The graph G3.

and two edges (u, a) and (a, v). Then, we add four vertices and attach them to a via
two edges each. We embed G2 so that it is outerplanar and that the edges (u, a) and
(a, v) are neighbors in the cyclic edge incidency list of a. For a visualisation of G2, see
Figure 3.2.
Later on, we need this technical lemma:

Lemma 4. The outer face of G2 spans only 0◦-angles at vertex a.

Proof. It follows from Lemma 3 that all faces of size two span a 90◦-angle at a. Since
there are four such faces, together they span 360◦, and since the sum of angles spanned
by all faces around a given vertex is always 360◦, all other faces, including the outer face,
must span 0◦-angles at a.

If G2 is embedded as shown in Figure 3.2 and D is a corresponding 1-bend Kandinsky
drawing, we can draw a path π(u, v) in D so that the equation rot(π(u, v)) ≥ 0 holds
true. This means that in a sense, G2 is “unbendable” to the right.
Expanding upon this concept, we now construct a plane graph G3 with the intention

to simulate an edge (u, v) which is unbendable in both directions. To this end, we start
with two instances of G2, flip one of them horizontally and merge the two graphs at the
vertices u and v. For an illustration of G3, see Figure 3.3.

Then, by partly triangulating G3, we generate the plane graph G, which is shown in
Figure 3.4.
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3.2. 1-Embeddability

v

u

a

Figure 3.4: The replacement graph G. The instance of G3, on which G is based, is shaded in
red.

Lemma 5. The embedding of G is fixed up to a flip. Only one face can be chosen as the
outer face of G so that an orthogonal representation can be constructed where every edge
has at most one bend.

Proof. It is easy to see that G is triconnected. Whitney [17] showed that a triconnected
graph has a fixed embedding up to a flip and the choice of the outer face.
For the second part, we start by observing that there is one face f0 of G with

size(f0) = 10. For all other faces f 6= f0 of G it is size(f) ∈ {2, 3}. All faces of G except
for f0 are adjacent to exactly one of the vertices a or b. Furthermore, all faces f 6= f0,
have size(f) ≤ 3. First, assume that size(f) = 2. We embed the contour f in the plane,
which leads to a unique configuration (see Lemma 3). In this configuration, the angle
formed by the edges at the vertices in the inner face are both 90◦. The face f contains
a vertex x ∈ {a, b}. There are three more faces fi with size(fi) = 2 incident to x. By
assumption, f is the outer face so all other faces fi have to lie inside the 90◦-angle.
However, they require an angle of at least 270◦ to be embedded with at most one bend.
Thus, a face of size 2 cannot be the outer face.

Now, assume that size(f) = 3. Again, f contains one vertex x ∈ {a, b}. If the angle in
f formed at x by the incident edges is less than 360◦, we have the same problem as in
the case of faces of size 2. So, embed the contour of f so that the angle at x in f is 360◦,
which means that the angle at x in the outer face is 0◦. We now show that then one
edge of the contour of f has to have more than two bends: Let K be the Kandinsky flow
network for G. In K, for the node vf associated with the outer face it is dem(vf ) = 7.
Since f spans a 0◦-angle on the outer face, at least one edge of f will be bent and there
can be no flow from vx to vf . So, seven units must flow into vf . Since only two edges are
not bent, at least five units must flow into vf from two nodes in K associated with two
vertices other than x. Thus, there has to be at least one flow from some node vy into vf
of amount at least 3. Since dem(vy) = 2, pushing three units from this vertex into vf
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3.2. 1-Embeddability
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Figure 3.5: Illustration of Lemma 6. Regardless of the orthogonal representation of G, we may
choose a path π with rot(π) = 0, indicated as a dashed blue line.

requires receiving one unit from a 0◦-angle on the inner face. This 0◦-angle would cause
an edge to be bent once more, but all edges are already bent.

While the embedding of G is fixed up to a flip, there are lots of 1-bend Kandinsky
drawings of G. We show that regardless of the drawing, we can draw a path with rotation
zero through it.

Lemma 6. Let R be an orthogonal representation of G. In a corresponding drawing, it
is possible to draw a path π from one endpoint u to the other endpoint v of G so that
rot(π) = 0 and π is completely contained within the contours of the outer face of G.

Proof. Consider the shape of the edges (u, b) and (b, v) in G with respect to R. From
Lemma 4 we know that the angle between these two edges is 0◦. Thus, there are five
possible situations which may be pooled into three classes: the edges are bent in differing
directions, both edges are bent in the same direction, or one edge is a straight line while
the other edge is bent.
If the edges are bent in differing directions, we may choose a path along these two

edges as shown in Figure 3.5a.
Now, let one edge be a straigt line and let the other edge be bent. If the angle in the

inner face at u and v is at least 90◦, choosing π is trivial. The angle in the inner face
cannot be 0◦ at both u and v. If the angle in the inner face is 0◦ at u, the angle at v
must be 90◦ (see Figure 3.5b). Analogously, if the angle in the inner face is 0◦ at v, the
angle at u must be 90◦ (see Figure 3.5c). In both cases, we find the desired path π.

Finally, if both edges are bent in the same direction, we choose π similarily to the case
that one of the edges is a straight line; see Figure 3.5d.

Lemma 6 means that G is a rigid graph. We now show that in an orthogonal graph
drawing in the Tamassia model, an edge with rotation zero is equivalent to an unbent
edge.

Lemma 7. Let G be a 4-planar graph together with a drawing D of G. In D, let for all
paths π corresponding to edges in G be rot(π) = 0. Then G is admits a rectilinear planar
drawing, that is D can be altered in such a way that for all corresponding edges e the
equation bends(e) = 0 holds true.
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3.2. 1-Embeddability

Proof. This follows directly from the construction of the Tamassia flow network. If there
is a path πe in D corresponding to an edge e in G so that rot(πe) = 0 and bends(πe) ≥ 1,
there is a circular flow in the corresponding Tamassia flow network, which may be
removed, leading to an altered drawing D′ with the only difference to D that πe is a
straight line in D′. This process can be repeated for all edges e in G, leading to a
rectilinear planar drawing.

Theorem 3. In the Kandinsky model, the decision problem 1-Embeddability with
variable embeddings is NP-complete.

Proof. To see that 1-Embeddability is NP-hard, note that for a given configuration it
is obviously possible to check whether the configuration is a 1-bend drawing.

Now, to see that 1-Embeddability is even NP-complete, we show how to transform
an instance I of 0-Embeddability into an equivalent instance I ′ of 1-Embeddability.
Let G = (V,E) be the graph of I. We replace each edge e = (u, v) ∈ E by a copy of

the replacement graph G to G and merge G and G at the nodes u and v. For every edge
this transformation requires constant time, and the entire transformation requires O(m)
time (where m =

∣∣E∣∣). Since G has degree at most 4, it follows that m ≤ 2n, so the
entire transformation is feasible in O(n) time. We denote the new graph by G′. Let I ′
be the corresponding instance of 1-Embeddability. We show that the graph associated
with I is 0-embeddable if and only if the graph associated with I ′ 1-embeddable.

First, assume that G admits a rectilinear planar drawing. Then, G′ is clearly 1-
embeddable in the Kandinsky model – simply replace each edge in G by a replacement
graph G.

Now, assume that G′ is 1-embeddable in the Kandinsky model. Let E be an embedding
of G′ and let R be an orthogonal representation of G′.

Note that G′ need not be triconnected. This means that there may be more than one
embedding of G′. Recall that the replacement graph G is triconnected and only has one
embedding. Theorem 2 is proved by transforming an instance of NotAllEqual3SAT
into an instance I of 0-Embeddability [9]. The graph associated with I is always
biconnected, so in the following we can assume G to be biconnected.

Since G is biconnected, no part of G′ may be embedded in an inner face of a replacment
graph G. In a drawing of R, we can replace every drawing of a replacement graph G with
a path πG so that rot(πG) = 0 (Lemma 6). There are no path intersections in R. Since
these paths are completely contained in the contours of the outer faces of the replacement
graphs, there will be no path crossings in the altered drawings either. For every path π
it is rot(π) = 0. So, there exists a rectilinear planar drawing of G′ (Lemma 7).
Thus, G admits a rectilinear planar drawing.

3.2.2 Simple Graphs
We show that for any plane simple graph we can find a 1-bend Kandinsky drawing. To
this end, we use a decomposition known as a canonical ordering for graphs presented by
De Fraysseix, Pach and Pollack [6]:
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3.2. 1-Embeddability

vu

vk

Figure 3.6: Visualization of Lemma 8. The area shaded in blue is the graph Gk−1. The
corresponding cycle Ck−1 is drawn thickly. The vertex vk is the newly added vertex.
The blue area together with the red area make up the graph Gk. Note that in Gk,
vk is adjacent to a subinterval of vertices on Ck−1.

Lemma 8 ([6, Canonical representation lemma for plane graphs]). Let G be a maximal
planar graph embedded in the plane with exterior face u, v, w. Then there exists a
labelling of the vertices v1 = u, v2 = v, v3, . . . , vn = w meeting the following requirements
for every 4 ≤ k ≤ n.

• The subgraph Gk−1 ⊆ G induced by v1, v2, . . . , vk−1 is 2-connected, and the boundary
of its exterior face is a cycle Ck−1 containing the edge {u, v};

• vk is in the exterior face of Gk−1, and its neighbors in Gk−1 form an (at least
2-element) subinterval of the path Ck−1 \ {u, v}.

Moreover, it has been shown that such a canonical ordering for graphs can be computed
in linear time. For a visualization of Lemma 8, see Figure 3.6.
We use Lemma 8 to construct a 1-bend Kandinsky drawing for simple plane graphs.

Let G be a plane simple graph. First, triangulate G. This is possible in O(n) time.
Then, compute a canoncial ordering of G, which Lemma 8 guarantees to exist. This,
too, is possible in linear time. Starting with i = 2, we construct a 1-bend drawing for all
subgraphs Gi induced by v1, . . . , vi. To prove the correctness of our algorithm, we show
that an invariant holds true for the drawings of all Gi. To define the invariant, we need
some preliminary definitions. Let Ci = (vi1 = u, vi2 = v, vi3, . . . , v

i
i, v

i
i+1 = vi1 = u, . . .) be

the cyclic list of vertices incident to the outer face of Gi as encountered when going around
the outer face in positive direction. For a vertex vij , we define its location loc(vij) = (xij , yij)
in the drawing as a cartesian coordinate tuple. We describe the shape of an edge by a
sequence of cartesian coordinates. We are now in the position to define the invariant:

Invariant. The Kandinsky drawing Di for the graph Gi (3 ≤ i ≤ n) has the following
properties:

1. The location of u, v and the edge (u, v) are constant. It is loc(u) = (0, 1), loc(v) =
(1, 0) and the shape of (u, v) is ((0, 1), (0, 0), (1, 0)). Graphically, this means that u,
v and the edge between them form the shape of the letter “L”.
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3.2. 1-Embeddability

2. For the location (xij , yij) of the vertex vij with 3 ≤ j ≤ i it is xij−1 ≥ xij ≥ xij+1 and
yij−1 ≤ yij ≤ yij+1. Graphically, this means that the vertices in Di are arranged as
a “cascade”.

3. The edge (vij , vij+1) has the shape ((xij , yij), (xij+1, y
i
j), (xij+1, y

i
j+1)). Graphically,

this means that (vij , vij+1) is attached to the left side of vij, has a 90◦-bend in the
outer face and is attached to the lower side of vij+1.

We start by describing the drawing D3. In D3, let loc(u) = (1, 0), loc(v) = (0, 1) and
loc(v3

3) = (1
2 ,

1
2). Furthermore, let the shape of (v, v3

3) be ((1, 0), (1
2 , 0), (1

2 ,
1
2)) and let the

shape of (v3
3, u) be ((1

2 ,
1
2), (0, 1

2), (0, 1)). A visualization of D3 is shown in Figure 3.7a.
Clearly, the invariant from above is true for D3.
We now show that from a drawing Dk−1 with 4 ≤ k ≤ n for which the invariant is

true, we can construct a drawing Dk for which the invariant is true. So, start with the
drawing Dk−1. The task now is to add the vertex vk and all its incident edges to the
drawing so that afterwards, the invariant is still true. Let vk be adjacent to the vertices{
vk−1
i , . . . , vk−1

j

}
with i ≤ j. Set the location of vk to loc(vk) = (xk, yk), where:

xk =
xk−1
i + xk−1

i+1
2

yk =
yk−1
j−1 + yk−1

j

2
Then, we set the shape of (vk−1

i , vk) to:

(loc(vk−1
i ), (xk, yk−1

i ), loc(vk))

We set the shape of (vk, vk−1
j ) to:

(loc(vk), (xk−1
j , yk), loc(vk−1

j ))

For all other edges (vk, vk−1
h ) with i < h < j, we set the shape to:

(loc(vk), (xk, yk−1
h ), loc(vk−1

h ))

A visualization of this procedure is shown in Figure 3.7b.
Clearly, a valid Kandinsky drawing Dk is generated and the invariant is still true for

this drawing. Since all vertices and edges are only considered once by the algorithm, the
runtime lies in O(n). This leads to the following theorem:

Theorem 4. Let G be a plane simple graph. Then G is 1-embeddable and a 1-bend
Kandinsky drawing of G may be computed in linear time.

Note that this procedure does not necessarily work for multigraphs. Consider Figure
3.8. The nodes u and v3 are connected by two edges, e1 and e2. We start by drawing
either edge so that it has a 90◦-bend in the outer face, in this case e1. Since no edge may
have more than one bend, we have no choice in how we draw e2. But drawing e2 will
break the invariant of all edges adjacent to the outer face having a 90◦-bend in the outer
face.
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3.3. 2-Embeddability

u

v

v3

(a)

vk

vi

vh

vj

(b)

Figure 3.7: Construction of a 1-bend Kandinsky drawing. We start by drawing u and v. Next,
add v3, thereby generating the drawing D3; see (a). Note that the newly added
edges (shown in bold) have 90◦-bends in the outer face. We repeat the same process
for all remaining vertices vk, see (b).

e1

e2
u

v

v3

Figure 3.8: Adding multiedges breaks the invariant.

3.3 2-Embeddability
In this section, we study 2-Embeddability. Specifically, we show that for any plane
multigraph we can find a 2-bend Kandinsky drawing. We use a similar approach to the
one we used in the case of 1-Embeddability in Section 3.2.2.
We only alter the shape of the edges. Again, we can formulate an invariant:

Invariant. The Kandinsky drawing Di for the graph Gi (3 ≤ i ≤ n) has the following
properties:

1. The location of u, v and the edge (u, v) are constant. It is loc(u) = (0, 1), loc(v) =
(1, 0) and the shape of (u, v) is ((0, 1), (0,−ε), (1,−ε), (1, 0)).

2. For the location (xij , yij) of the vertex vij with 3 ≤ j ≤ i it is xij−1 ≥ xij ≥ xij+1 and
yij−1 ≤ yij ≤ yij+1. Graphically, this means that the vertices in Di are arranged as
a “cascade”.

3. The edge (vij , vij+1) has the shape ((xij , yij), (xij+1, y
i
j−ε), (xij+1, y

i
j+1−ε), (xij+1, y

i
j+1)).

Graphically, this means that (vij , vij+1) is attached to the lower side of vij, has two
90◦-bends in the outer face and is attached to the lower side of vij+1.
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Figure 3.9: Construction of a 2-bend Kandinsky drawing. We start by drawing u and v. Next,
we add v3, see (a). If u and v3 are connected by multiple edges, we can simply
“stack” the edges, see (b).

The variable ε is chosen so that the edges do not intersect. Due to the similarity of this
procedure to the case of 1-Embeddability, we will not explicitely prove its correctness.
For a visualization of the altered procedure, see Figure 3.9.
We deduce the following theorem:

Theorem 5. Let G be a plane multigraph. Then G is 2-embeddable and a 2-bend
Kandinsky drawing of G can be computed in linear time.

Obviously, for β ≥ 3 this means that any plane multigraph G is β-embeddable and
that a β-bend Kandinsky drawing of G can be computed in linear time.
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4 Bend Minimization for Special Graph
Classes

In the last chapter, we constrained the flexibility of edges, thereby solving some instances
of β-Embeddability and presented algorithms for finding β-bend Kandinsky drawings.
In this chapter, we try to make the bend minimization problem OptimalKandin-

skyDraw more manageable by constraining the flexibility of edges and restricting the
solution to special graph classes.
We begin by considering some very simple graph classes. For simple cycles, we make

the following observation:

Lemma 9. Let G be a simple cycle with n ≥ 2. There exists a Kandinsky drawing of G
with max(4− n, 0) bends. No drawing of G with fewer bends exists.

Proof. This statement is intuitively evident, but we prove it nonetheless as an excercise.
Start by observing that G has two faces, namely the inner face f and the outer face f̂ .

For now, consider the case n = 2. Then for the node nf in the Kandinsky flow network
K it is dem(nf ) = −2. Since for all arcs an′ = (nf , n′) in K it is cost(an′) = 1, any
Kandinsky drawing D of G will have at least two bends. Clearly, a drawing of G with
two bends exists, as shown in Figure 3.1a.
For n ∈ {3, 4}, we can make similar arguments. For n ≥ 5, each additional vertex

can intuitively be placed in the middle of a straight line, causing no additional bends.
Moreover, a 0-bend drawing is obviously bend-minimal.

For trees, we make the following observation:

Lemma 10. Let G = (V,E) be a tree. There exists a Kandinsky drawing D of G with∑
v∈V

max(deg(v)− 4, 0) bends. No drawing of G with fewer bends exists.

Proof. Clearly, such a drawing D exists. The optimality follows directly from the bend-
or-end property of the Kandinsky model.
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4.1. Biconnected, Outerplanar, Inner-Triangulated Graphs

v

u1

u2

u3

u4

u5

Figure 4.1: A fan with vertex v at its center.

4.1 Biconnected, Outerplanar, Inner-Triangulated Graphs
In this section, we present an algorithm solving OptimalKandinskyDraw for bicon-
nected, outerplanar, inner-triangulated plane graphs in linear time.

Let G be an outerplanar, inner-triangulated plane graph with n ≥ 3. Let v be a vertex
of G so that all faces of G are incident to v. Then G is referred to as a fan with v at its
center and (u1, u2, . . . , un−1) the sequence of fan vertices in the same order as they are
encountered when traversing the outer face of G in positive direction. For an example of
a fan with six vertices, see Figure 4.1.

We use the special structure of outerplanar, inner-triangulated graphs to find a super-
position of fans. A set of fans F = {F1 = (V1, E1), F2, . . . , Fk} is called a superposition
of G = (V,E) if it has the following properties:

• The entire graph G is covered, that is
k⋃
i=1

Vi = V .

• No face of G is covered by two fans: Let f be an inner face of G. Since G is
inner-triangulated, f is incident to three vertices u, v and w. There is exactly one
fan Fi ∈ F so that {u, v, w} ⊆ Vi holds true.

For an example of a superposition of fans, see Figure 4.2.
We now show the following:

Lemma 11. Let G be an outerplanar, inner-triangulated graph. It is possible to find a
superposition of fans F of G in linear time.

Proof. We show the existance of such a superposition F by describing an algorithm which
decomposes G into a superposition F .

Start the decomposition by arbitrarily choosing a vertex v, which – since G is outerpla-
nar – lies on the outer face. The vertex v will be the center vertex of a newly constructed
fan F . First, define the active edge e1 = (v, u1) as the successor edge of v on the outer
face of G in counter-clockwise order. The active edge e1 is incident to two faces, namely
the outer face and an inner face f1. Add f1 to the fan. Since G is inner-triangulated, f1
is incident to three vertices v, u1 and u2. Then, update the active edge to be e2 = (v, u2).
We repeat this procedure until the active edge becomes the predecessor edge of v on the
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u3

v

u1

u2

Figure 4.2: Example of an outerplanar, inner-triangulated graph and a superposition of fans
thereof. The colored areas represent the fans, the colored vertices are at their
respective centers.

outer face of G in counter-clockwise order, that is ek = (v, uk). The fan F now consists
of k − 1 faces fi. Any edge e = (ui, ui+1) is incident to a face fi in F and to some other
face f̂i. If f̂i is not the outer face, f̂i belongs to a rest graph. Note that any rest graph is
also an outerplanar, inner-triangulated graph G′. We recursively apply our procedure on
G′, starting with the vertex ui+1, yielding a superposition F ′. Then F = F ′ ∪ {F} is a
superposition of G. Since any fan consists of at least one face and the number of faces in
G is finite, the procedure terminates. The algorithm’s runtime is obviously proportional
to the number of faces in G, and thus in O(n).

For an example of the decomposition algorithm, consider Figure 4.2. We begin by
choosing the vertex v as the first fan’s center, which means that the edge (v, u1) becomes
the first active edge. We then add the face {v, u1, u2} to the fan and make (v, u2) the
active edge. Likewise, we then add the face {v, u2, u3}. At this point, (v, u3) becomes
the active edge and since this edge is the predecessor edge of a in counter-clockwise order,
the first fan is complete. In Figure 4.2, this first fan is shaded in red. The edge (u1, u2)
is not incident to a rest graph, but the edge (u2, u3) is. Here, the rest graph is the entire
graph, except for the first fan shaded in red. This means that we recursively apply the
algorithm on the rest graph, starting with the vertex u3. Ultimately, the algorithm finds
a superposition of five fans (each of which is shaded with a distinct color in Figure 4.2).
Consider a superposition of fans F = {F1, F2, . . . , Fk} of some outerplanar, inner-

triangulated graph G. Two fans Fi = (Vi, Ei) and Fj = (Vj , Ej) are said to conflict if
Ei ∩ Ej 6= ∅. Any edge in Ei ∩ Ej is a conflicting edge. We then define the undirected
conflict graph G× = (V ×, E×) of F , where V × = {vFi | Fi ∈ F} and (vFi , vFj ) ∈ E× if
and only if the fans Fi and Fj are conflicting. The conflict graphs of the superpositions
found by the algorithm from Lemma 11 have a special structure:
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Lemma 12. Let G be an outerplanar, inner-triangulated graph, let F be a superposition
of fans of G found by the algorithm presented in Lemma 11 and let G× be the conflict
graph of F . Then G× is a tree and we root it at vF1.

Proof. The graph G× is a tree if it does not contain a cycle. Clearly, if G× contained a
cycle, G would not be outerplanar.

Now that we have shown how to decompose a biconnected, outer-planar, inner-
triangulated graph G, let us proceed with drawing G. We start by defining two Kandinsky
drawings Ḋ(F ) and D̈(F ) for every fan F .
Let F be a fan of n vertices. We define the locations of all vertices w as follows:

loc(w) =


(n− 2, 1) if w = v

(0, 1) if w = u1

(i− 1, 0) if w = ui for 1 < i ≤ n− 1

The coordinate sequences π(e) describing the edges e = (v, ui) incident to the center
vertex v are defined as follows:

π((v, ui)) =
{

(loc(v), loc(ui)) if i ∈ {1, n− 1}
(loc(v), (i− 1, 1), loc(ui)) for 1 < i < n− 1

The coordinate sequences π(e) describing the edges e = (ui, ui+1) between fan vertices
are defined as follows:

π(ui, ui+1) =
{

(loc(ui), loc(ui+1)) for 1 < i < n− 1
((0, 1), (0, 0), (1, 0)) if i = 1

Obviously, the generated drawing Ḋ(F ) is a valid Kandinsky drawing and has n− 2
bends. For an example of such a drawing Ḋ(F ), see Figure 4.3b. We state the following:

Lemma 13. Let F be a fan. There exists a Kandinsky drawing of F with n− 2 bends.
No drawing with fewer bends exists.

Proof. Clearly, a Kandinsky drawing of F with n− 2 bends exists, namely Ḋ(F ).
To see the optimality of Ḋ(F ), consider the Kandinsky flow network K for F . All

inner faces f have size 3, so for the corresponding Kandinsky flow network nodes nf
it is dem(nf ) = −1. Every unit flowing from nf causes one bend because for every
arc an′ = (nf , n′) it is cost(an′) = 1. Since a fan has n − 2 faces, it follows that any
Kandinsky drawing of F has at least n− 2 bends.

The drawing D̈(F ) is a small variation of the drawing Ḋ(F ). To generate the drawing
D̈(F ) for a fan F , start with the drawing Ḋ(F ). We then reposition u1 so that loc(u1) =
(0, 2). For D̈(F ) to be a Kandinsky drawing, the shape of the edge (v, u1) has to be
redefined to (loc(v), (0, 1), loc(un−1)). Obviously, the generated drawing D̈(F ) is a valid
Kandinsky drawing and has n− 1 bends, that is one more bend than an optimal drawing.
For an example of such a drawing D̈(F ), see Figure 4.3c.
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α
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Figure 4.3: A fan F in (a), where the sequence of fan vertices is (u1 = α, u2 = β, . . . , un−2 =
ψ, un−1 = ω), and the corresponding Kandinsky drawings Ḋ(F ) in (b) and D̈(F )
in (c).

For the sake of clarity, it is useful to introduce a naming scheme for edges in a fan
drawing Ḋ(F ) and D̈(F ): We call the edge (v, u1) the upper edge, the edge (v, un−1) the
right edge and all other edges incident to v inner edges. Furthermore, we call the edge
(u1, u2) the corner edge and all other edges ui, ui+1 lower edges.

Consider a biconnected, outerplanar, inner-triangulated plane graph G, a superposition
of fans F (Lemma 11) of G and the corresponding conflict graph G×. Consider F , the
fan associated with the root of G× and F ′, a fan associated with a child of the root in
G×. Let e be the conflicting edge of F and F ′. In the drawing Ḋ(F ), e is either the
corner edge or a lower edge. To see this, note that e clearly is not an inner edge. It
also is not the upper edge or the right edge, because these edges are incident to the
outer face and F . In the drawing Ḋ(F ′), e is the upper edge by definition. The same
considerations are true for drawings D̈(F ) and D̈(F ′). We can extend the argument for
any two conflicting fans by considering the subtree rooted at the parent fan’s node. This
leads to the following lemma:
Lemma 14. Let F and F ′ be two conflicting graphs so that vF ′ is a child node of vF
in G×. The conflicting edge of F and F ′ is a corner edge or a lower edge in Ḋ(F ) and
D̈(F ), and it is the upper edge in Ḋ(F ′) and D̈(F ′).

Again, consider the conflict tree G×. For all nodes vFi in G×, we compute the drawing
D(Fi), which is either Ḋ(Fi) or D̈(Fi). We use a top-down approach: Starting with F1,
the fan associated with the root node of G×, we set D(F1) = Ḋ(F1). Let Fi and Fj be
any two conflicting fans so that without loss of generality vFj is a child node of vFi . If
the conflicting edge ej is a lower edge in D(Fi), we set D(Fj) = Ḋ(Fj). Otherwise, if
ej is the corner edge in D(Fi), we set D(Fj) = D̈(Fj). Clearly, the individual drawings
D(Fi) can be merged into a single drawing D(G). Such a drawing is shown in Figure 4.4.
We now claim the following:

Lemma 15. Let G = (V,E) be a biconnected outerplanar, inner-triangulated plane graph.
There exists a Kandinsky drawing of G with n− 2 bends and no drawing with fewer bends
exists.
Proof. The sought-after Kandinsky drawing is the drawing D(G), which is computed as
described above. We now need to show that D(G) has n− 2 bends. To see this, note that
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u2 u3

vu1

Figure 4.4: Kandinsky drawing of the graph shown in Figure 4.2. Two rest graphs, namely the
purple and yellow area are attached to the green area. Edges to which another rest
graph might be attached are drawn in bold.

the number of bends in D(G) is not equal to the sum of bends in all drawings D(Fi),
because some bends are counted twice. Specifically, this occurs if two fans Fi and Fj
conflict (w.l.o.g., let vFj be a child node of vFi in G×) and the conflicting edge ej is the
corner edge in D(Fi). Note that this occurs if and only if D(Fj) = D̈(Fj). Coincidentally,
the drawing D̈(Fj) has exactly one more bend than the drawing Ḋ(Fj). So, instead of
counting |Vj | − 1 bends for a drawing D(Fj) = D̈(Fj), we count |Vi| − 2 bends for all
drawings D(Fi). Thus, for the cumulated number of bends we know:∑

i

(|Vi| − 2) =
∑
i

|Vi| − 2k

Since G× is a tree, we count two vertices twice for each pair of conflicting fans. Since
there are k − 1 pairs of conflicting fans, we know:∑

i

|Vi| − 2k = |V |+ 2(k − 1)− 2k

= |V | − 2
= n− 2

To see the optimality of D(G), realize that any drawing with fewer bends would induce
a drawing of a fan with k nodes with less than k− 2 bends. In Lemma 13, we have shown
that this is impossible.

This leads to the following theorem:

Theorem 6. The bend minimization problem OptimalKandinskyDraw is solvable
in linear time for biconnected, outerplanar, inner-triangulated graphs. Every optimal
drawing has n− 2 bends.
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Figure 4.5: Illustration of the concept of virtual edges. Let G be the plane graph shown in (a)
and let G′ be the plane graph shown in (b) so that V ∩ V ′ = {u, v}. Then we can
define the edge e = (u, v) to be a virtual edge, and merge G′ into G at e. The result
of this is shown in (c).

4.2 Series-Parallel Graphs
In this section, we demonstrate how to compute bend-minimal 1-bend drawings of series-
parallel graphs. This solves the optimization problem of 1-OptimalKandinskyDraw:
Given a series-parallel plane graph G, find a Kandinsky drawing D so that every edge in
D is bent at most once and the total number of bends in D is minimal among all 1-bend
Kandinsky drawings of G.
To this end, we start by introducing a series-parallel decomposition tree T for any

series-parallel plane graph. This tree is quite similar to the SPQR-tree introduced by Di
Battista and Tamassia [3]. Unlike an SPQR-tree, the series-parallel decompositon tree
does not represent all planar embeddings of a series-parallel graph, but rather a specific,
fixed embedding.

The series-parallel decomposition makes use of the concept virtual edges. Let G = (V,E)
and G′ = (V ′, E′) be two plane graphs with the fixed embeddings E and E ′, respectively.
Let e = (u, v) ∈ E be an edge and V ∩ V ′ = {u, v}. Then we can define e to be a virtual
edge. The graph G′ can then be merged into G at e by replacing the occurence of e in G
with G′. More formally, we say that merging G′ into G at e yields a new plane graph
Ĝ = (V̂ , Ê) with the fixed embedding Ê with the following properties:

• The graphs are merged, that is V̂ = V ∪ V ′ and Ê = (E ∪ E′) \ {e}.

• The restriction of Ê to Ĝ \ V matches the restriction of E ′ to G′.

• Likewise, the restriction of Ê to Ĝ \ V ′ matches the restriction of E to G \ {e}.

For a visualization of the concept of virtual edges, see Figure 4.5.
Let G = (V,E) be a series-parallel plane graph with the fixed embedding E . The

series-parallel decomposition tree T of G = (V,E) has three kinds of nodes, namely S-,
P- and Q-nodes.
If G consists of a simple edge, that is V = {s, t} and E = {(s, t)}, we say that G has

the poles s and t, which we write as Gs,t. Then, T consists of a single Q-node µq. The
Q-node µq is associated with G = graph(µq). Note that all leaves of T are Q-nodes.
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If G is biconnected, it has a separator pair S = {s, t} which splits G into two subgraphs
G′ and G′′. These subgraphs may be composited in parallel to reconstruct G. All three
graphs have the same poles, namely the nodes in S, and we write Gs,t, G′s,t, G′′s,t. Then, T
is rooted at a P-node µp. The P-node µp has two children µ′p and µ′′p, which are the roots of
the series-parallel decomposition trees T ′ and T ′′ for G′ and G′′, respectively. The P-node
is associated with a plane skeleton graph skel(µp) = ({s, t} , {e1 = {s, t} , e2 = {s, t}})
(mind the multiset!). Both edges e1 and e2 of the skeleton graph are virtual edges. The
plane graph G = graph(µp) can be retrieved by merging graph(µ′p) into skel(µp) at e1
and graph(µ′′p) into skel(µp) at e2.
If G has a separator vertex s, it splits G into two subgraphs G′r,s and G′′s,t. These

subgraphs may be composited in series to reconstruct Gr,t. Then, T is rooted at an S-node
µs. The S-node µs has two children µ′s and µ′′s , which are the roots of the series-parallel
decomposition trees T ′ and T ′′ for G′ and G′′, respectively. The S-node is associated
with a plane skeleton graph skel(µs) = ({r, s, t} , {e1 = (r, s), e2 = (s, t)}). Both edges e1
and e2 of the skeleton graph are virtual edges. The plane graph G = graph(µs) can be
retrieved by merging graph(µ′s) into skel(µs) at e1 and graph(µ′′s) into skel(µs) at e2.
Due to the similarity of the series-parallel decomposition tree T to SPQR-trees, we

can reuse the results for SPQR-trees and state the following:

Lemma 16. The series-parallel composition tree for a series-parallel graph has linear
size and can be constructed in linear time.

This follows from a similar result for SPQR-trees shown by Gutwenger and Mutzel [11].
The general idea of the algorithm solving 1-OptimalKandinskyDraw is to use

dynamic programming: In order to compute the optimal Kandinsky drawing of a plane
series-parallel graph, we first construct the series-parallel decomposition tree T . Then, for
all Q-nodes µq we calculate all possible configurations for the associated graphs graph(µq).
For S-nodes and P-nodes we calculate all possible combinations of configurations of the
subgraphs and store them. Finally, for the root node, we pick the configuration with the
smallest number of bends. Since all possible configurations have been considered, the
optimal configuration will be found in the end.

In the rest of this section, we demonstrate how to perform the necessary computations
efficiently. The main idea behind this is that it is not necessary to consider the entire,
possibly large child graphs, but instead focus on a few relevant properties. We can then
reuse results which have been precomputed for graphs with the same relevant properties,
thus saving time.

As a first step, we define a binary equivalence relation of configurations ∼, where two
configurations K1 and K2 are related with respect to ∼ if in any drawing containing
K1, we can replace K1 by K2. More formally, let G be a biconnected graph and K a
configuration of G. Let G1 be a subgraph of G so that G1 may be separated from the
rest of G by a separator pair {s, t} and let the restriction of K to G1 be K1. Then we
can replace G1 by some graph G2, thereby generating an altered graph G′ = G \G1 ∪G2,
so that G2 may be separated from the rest of G′ by {s, t}, and find a configuration K′ so
that the restriction of K′ to G2 equals K2 and the restrictions of K and K′ to G′ \G2 are
equal.
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Figure 4.6: In (a), a configuration K of a simple graph where all edge shapes are present. The
value next to an edge e is shape(e) Note that for the closest shape σ′ for some shape
σ it might be |σ−σ′| > 1. For example, in (b) the closest shape in counter-clockwise
order for the edge (v, w) is not 3, but 2.

We show that whether two configurations are related depends on the shape of some
edges. In the case of 1-Embeddability, an edge adjacent to some vertex v has one of
twelve shapes. For a given configuration K = (G,R) of a graph G = (V,E), we define a
function shape: E → [0, 11] assigning a shape to an edge, as shown in Figure 4.6.
Let K = (G,R) with G = (V,E) be a configuration. Let e = (v, u) ∈ E be an edge

with shape(e) = σ. We call a shape σ′ the closest shape to e in clockwise order at v
if there is an edge e′ = (v, u′) ∈ E with shape(e′) = σ′ (or it is possible to add such
an edge to K) and for no other edge ē = (v, ū) ∈ E it is σ ≤ shape(ē) < σ′ (or it is
impossible to add such an edge to K). The closest shape in counter-clockwise order is
defined analogously.

Let G1 and G2 be two graphs so that G1∩G2 = {s, t}. For i ∈ {1, 2}, let Ki = (Gi,Ri)
be a configuration of Gi, so that s and t lie on the outer face of Ki. Let πi = (vi1 =
s, vi2, . . . , v

i
ji−1, v

i
ji

= t, viji+1, . . . , v
i
ki−1, v

i
ki

) be the sequence of vertices as encountered
when traversing the outer face of Ki in positive direction. By πi(s, t) we denote the
subsequence of πi from s to t and by πi(t, s) we denote the subsequence of πi from t to s.
Neither πi(s, t) nor πi(t, s) should consist of exactly one edge with a 270◦ angle in the
outer face. We call configurations which have such paths prohibited. A configuration
which is not prohibited is admissible. Let σ1

i be the closest shape to (viki
, s) at s in

counter-clockwise order and let σ2
i be the closest shape to (s, vi2) at s in clockwise order.

Analogously, let σ3
i be the closest shape to (viji−1, t) at t in counter-clockwise order and

let σ4
i be the closest shape to (t, viji+1) at t in clockwise order. Let σi = (σ1

i , σ
2
i , σ

3
i , σ

4
i ).

If σ1 = σ2, we say that K1 and K2 have equal shapes. If rot(π1(s, t)) = rot(π2(s, t)), we
say that K1 and K2 have equal rotations. We now claim the following:
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Figure 4.7: If we did not prohibit some paths π(s, t) in Lemma 17, the configuration K, shown
in (a), and the configuration K′, shown in (b) would be in the same equivalence
class. Consider the configuration K̂ shown in (c). Clearly, the configuration K can’t
be replaced by K′ in K̂.

Lemma 17. If two admissible configurations K1 and K2 have equal shapes and equal
rotations, it follows K1 ∼ K2. Conversely, if it is K1 ∼ K2, the two configurations have
equal shapes and equal rotations.

Proof. We start with showing that if two configurations K1 and K2 have equal shapes
and equal rotations, it follows K1 ∼ K1. Let G be a graph so that G1 is a subgraph of
G. Let K be a configuration of G so that the restriction of K to G1 equals K1. We start
by deleting K1 from K. By definition, we can insert the edges (v2

k2
, s), (s, v2

2), (v2
j2−1, t)

and (t, v2
j2+1) from K2 into K. Since rot(π1(s, t)) = rot(π2(s, t)) and σ1 = σ2 we know

rot(π1(t, s)) = rot(π2(t, s)). Because of this, we can add all of G2 into K. To see this,
recall that G2 is connected to the rest of G only through s and t. This means that in
the Kandinsky flow network K for G, any flow between G2 and the rest of G has to flow
through s, t and the two faces adjacent to the paths π2(s, t) and π2(t, s). The size of this
flow via the two faces depends only on the rotation of the respective path – which is
equal in G1 and G2. The flow through the vertices s and t depends only on the shape of
these incident edges. This leads to a special case. If one path π consists of only one edge
with a 270◦-angle in the outer face, this angle may not be assigned to 0◦-angles at both s
and t (remember Lemma 1). This is why we only allow admissible configurations (we
deal with prohibited configurations later on).

Following the above argument in reverse order, we realize that if two configurations K1
and K2 are related with respect to ∼, they have equal shapes and equal rotations.

As we have seen, the proof for Lemma 17 does not necessarily work for a prohibited
configuration K, that is if in K either path π(s, t) or π(t, s) is a path of length 1 with a
270◦angle in the outer face. For an example, see Figure 4.7.

The solution to this problem is to manually sort such configurations into two equivalence
classes, as shown in Figure 4.8. Since all configurations are sorted into a constant number
of equivalence classes, all of the following considerations remain correct.

Consider a graph G = (V,E) and a configuration K of some subgraph of G. As shown
in Lemma 17, all configurations K′ ∈ [K]∼ have the following properties:

• σK′ = σK. There are twelve possible values for each of the four variables σiK′ in σK′ ,
which means that there are 124 ∈ O(1) possible values for σK′ .
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Figure 4.8: The closest shapes for paths prohibited in Lemma 17. The configuration K, shaded
in blue, thus belongs to two equivalence classes Kσ,τ .

• rot(πK′(s, t) = rot(πK(s, t)) = τ . Since all edges have at most one bend and there
are at most n = |V | vertices in the graph associated with K′, the minimum and
maximum values for τ lie in O(n).

This means that there are O(n) equivalence classes of ∼. We refer to an equivalence
class [K′]∼ with Kσ,τ . Obviously, it is possible to compute which equivalence class a
configuration belongs to in O(n) time: σ can be computed in constant time and τ in
linear time.
Next, we show how to find simple representantives of an equivalence class Kσ,τ . Start

with six nodes vk, s, v2, vj−1, t, vj+1 and four edges e1 = (vk, s), e2 = (s, v2), e3 = (vj−1, t),
e4 = (t, vj+1). Shape the edges ei so that the equation shape(ei) = σi holds true. Now,
add a set of nodes {v3, v4, . . . , vj−2} and a set of edges {(vi, vi+1) | 2 ≤ i < j − 1} in such
a way that for the resulting path π = (s, v2, v3, . . . , vj−1, t) it is rot(π) = τ . This can
be achieved in a number of ways. For example, we might choose that all angles in the
outer face formed between two successive edges on π are 180◦ and that all added edges
have exactly one bend in the same direction. More formally, in terms of the orthogonal
representation, we require he = (e, s, 180) for all edge descriptions he ∈ Hf of all edges
e ∈ {(vi, vi+1) | 2 ≤ i < j − 1}, where s may globally be either 0 or 1 for all edges and f
denotes the outer face. Note that from τ ∈ O(n) it follows that j ∈ O(n). We can use a
similar procedure to add a path π̄ = (vj+1, vj+2, . . . , vk−1, vk). The resulting graph has
linear size and can be constructed in linear time.

Since there are O(n) equivalence classes of ∼ and the construction of a small represen-
tative of an equivalence class is feasible in O(n) time, we require O(n2) time to build a
list of one small representative for each equivalence class.

Next, we build a lookup table A with one entry A[Kσi,τj ,Kσj ,τj ] for every combination
of two equivalence classes Kσi,τi and Kσj ,τj .
The value of A[Kσi,τi ,Kσj ,τj ] is a tuple (Kσs,τs ,Kσp,τp), where Kσs,τs is the equivalence

class so that by performing a series composition with a configuration in Kσi,τi and a
configuration in Kσj ,τj we can generate a configuration in Kσs,τs . Likewise, Kσp,τp is an
equivalence classes so that by performing a parallel composition with a configuration
in Kσi,τi and a configuration in Kσj ,τj we can generate a configuration in Kσp,τp . If
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configurations in Kσi,τi and Kσj ,τj cannot be merged in series or in parallel, we write
Kσs,σs = K∅ or Kσs,σs = K∅, respectively.
Since there are O(n) equivalence classes there are O(n2) entries in A. A value

A[Kσi,τi ,Kσj ,τj ] can be computed in constant time: First, consider merging two config-
urations K1 ∈ Kσi,τi and K2 ∈ Kσj ,τj in series. We only have to take into account the
shapes σi and σj to find out whether this is possible. For {α, β, γ} ⊂ [0, 11], we define
the relationship:

α ≤◦ β ≤◦ γ ⇔ β ∈ {(α+ δ) mod 12 | δ ∈ [0,min {ε | (α+ ε) mod 12 = γ}]}

LetKi andKj be configurations of two graphs with the poles {si, ti = v} and {sj = v, tj},
that is they share a pole v. These configurations can be merged in series at v if the
equation σ1

j ≤◦ σ2
j ≤◦ σ3

i ≤◦ σ4
i ≤◦ σ1

j holds true. For a visualization, see Figure 4.9a.
Obviously, checking this condition is possible in constant time.

Now, let Ki and Kj be configurations of two graphs with the shared poles si = sj = s
and ti = tj = t. We try to merge these configurations in parallel so that πi(s, t) and
πj(t, s) lie on the outer face of the merged configuration, and πi(t, s) and πj(s, t) lie on
the boundary of a newly created inner face of the merged configuration. This is possible
if the following criteria are met:

1. The edges do not conflict at s, that is σ1
i ≤◦ σ2

i ≤◦ σ1
j ≤◦ σ2

j ≤◦ σ1
i .

2. The edges do not conflict at t, that is σ3
i ≤◦ σ4

i ≤◦ σ4
j ≤◦ σ4

j ≤◦ σ3
i .

3. The newly created inner face of the merged configuration must be a rectilinear
polygon. If ei and e′i (ej and e′j) are the first and last edges of the path πi(t, s)
(πj(s, t)), this is the case if the following equation holds:

rot(πi(t, s)) + rot(e′i, ej) + rot(πj(s, t)) + rot(e′j , ei) = 4

For a visualization of properties one and two, see Figure 4.9b.
Again, checking these criteria is possible in constant time. To see this, first note that

rot(πj(s, t)) = τj and τj is a known value. Next, both rot(e′i, ej) and rot(e′j , ei) can be
computed in constant time from σi and σj . Finally, rot(πi(t, s)) can be computed from
τi and σi.

To find the values σ and τ for the composite configuration, constant time is needed: It
is σ = (σ1

j , σ
2
i , σ

3
i , σ

4
j ) and τ = τi. This means that A can be computed in O(n2) time.

Now, consider the series-parallel decomposition tree T of a plane series-parallel graph
G. We start by generating all possible configurations for every Q-node (note that in T
all leaves are Q-nodes). Store the number of bends required (since we’re dealing with
1-Embeddability, this value will be either 0 or 1) in a new table, or ∞ if no suitable
configuration exists. Clearly, this is possible in linear time. Now, for any S- or P-node
µ, consider all configurations K1,i and K2,i of the child graphs graph(µ′) and graph(µ′′).
To find out whether K1,i and K2,i may be merged in series or in parallel, simply look up
the value A[[K1,i]∼, [K2,i]∼]. If it is possible to merge the configurations, calculate the
number of bends required by looking up the stored values and adding them, then, if the
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4.2. Series-Parallel Graphs

σ3
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σ4
i = 3

σ2
j = 10

σ1
j = 4

v

(a) Series composition of two configurations which share a pole v. The relationship σ1
j ≤◦ σ2

j ≤◦
σ3
i ≤◦ σ4

i ≤◦ σ1
j has to hold true.

σ2
i = 8

σ1
i = 7

σ1
j = 4

σ2
j = 4

σ4
j = 3

σ3
j = 1

σ4
i = 0

σ3
i = 11

π
i (t, s)

π
j
(s
, t

)

s

t

(b) Parallel composition of two configurations which share both poles s and t. The relationships
σ1
i ≤◦ σ2

i ≤◦ σ1
j ≤◦ σ2

j ≤◦ σ1
i and σ3

i ≤◦ σ4
i ≤◦ σ3

j ≤◦ σ4
j ≤◦ σ1

i have to hold true.

Figure 4.9
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4.2. Series-Parallel Graphs

new value is smaller than the previous value, store the new configuration and the new
value in the table. Clearly, this operation is feasible in O(n2) time.

Recall Lemma 16. Since T has linear size, the entire algorithm has a runtime in O(n3).
Furthermore, since we calculate all possible configurations, the ideal configuration will
be found by this procedure.
This leads to the following theorem:

Theorem 7. The optimization problem 1-OptimalKandinskyDraw can be solved in
O(n3) time for series-parallel graphs.
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5 Solving OptimalKandinskyDraw Using
Linear Programming

We can use linear programming to solve the Kandinsky flow network problem, and
thereby the optimization problem OptimalKandinskyDraw.

Definition A Kandinsky flow network K = (N,A, dem, cap, cost, B) is a standard flow
network with additional bundle constraints B. For every arc a ∈ A we introduce a
variable Xa. For every variable Xa add an equation which ensures that the capacity
constraint is satisfied:

0 ≤ Xa ≤ cap(a)

For every node v ∈ N add an equation which ensures that the demand constraint is
satisfied: ∑

(u,v)∈A
X(u,v) −

∑
(v,w)∈A

X(v,w) = dem(v)

For every bundle C = (C, c) ∈ B add an equation which ensures that the bundle constraint
is satisfied: ∑

a∈C
Xa ≤ c

Finally, define the cost of the solution X = {Xa | a ∈ A}:

cost(X) =
∑
a∈A

Xa · cost(a)

Note that all equations are linear. Thus, the Kandinsky minimum cost flow problem
may indeed be formulated as a linear program.

Results Linear programming can now be used to find a solution X so that cost(X)
is minimized. From this solution, we can construct a flow by using the relationship
flow(a) = Xa.
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(a)
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1

1.5

1

1

1

1.5

1.5

v

(b)

Figure 5.1: Drawings of a graph. The drawing in (a) is a bend-minimized Kandinsky drawing
with integer flow. The drawing in (b) is a bend-minimized Kandinsky drawing with
non-integer flows. Edges e in (b) are annotated with the amount of flow flowing
over arcs asociated with e in the corresponding Kandinsky flow network. In (b), the
value 1 for the unbent edge stems from the fact that in the flow network, half a unit
flow over arcs associated with the edge in opposing directions, thus “cancelling” out
each other.

In the Kandinsky flow network, all flows must have integer values, which means that
we require Xa ∈ Z. The linear program then becomes an integer linear program. As
shown by Garey and Johnson [8], in general integer linear programming is NP-complete.

However, we might decide to relax the requirements and allow non-integer solutions as
well, that is Xa ∈ R. In this case, the problem becomes solvable in polynomial time. It
is interesting to examine whether a non-integer solution allows us to make meaningful
statements about the integer solution as well. We investigate whether there is a constant
c ∈ R so that for a given solution XF of the linear program we can state XI ≤ XF + c
for solutions XI of the integer linear program.
Such a constant does not exist. Consider the graph in Figure 5.1. Figure 5.1a is a

bend-minimal Kandinsky drawing of the graph with 10 bends. In Figure 5.1b, non-integer
solutions are permitted, which leads to a solution with cost 9.5. Let G1 be the plane
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graph shown in Figure 5.1. Recursively define a family of graphs G = {G1, G2, . . .} by
Gn = Gn−1 ∪G1 ∪

{
vGn−1 , vG1

}
. Then Gn ∈ G has cost n · 10 in the case of an integer

solution and n · 9.5 in the case of a non-integer solution.
This leads to the following theorem:

Theorem 8. There is a family G of plane graphs so that for any constant c ∈ R there
is a graph G ∈ G so that XI −XF > c, where XI is the solution for the integer linear
program for KG and XF is the solution for the linear program.

Acknowledgements During the experimenting phase leading to the results presented
in this chapter, OGDF [2], the Open Graph Drawing Framework was used for creating
and manipulating graphs and Gurobi Optimizer [1] was used for solving linear programs.
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6 Conclusion

In this thesis, we studied various aspects of Kandinsky drawings.

Contribution First, in Chapter 3, we have seen that due to the bend-or-end property of
the Kandinsky model, the decision problem 0-Embeddability for Kandinsky drawings
is equivalent to 0-Embeddability for lower-degree graphs. It has been shown that
for fixed embeddings, the problem is solvable in polynomial time and that for variable
embeddings, the problem becomes NP-complete. Next, we demonstrated how to find
1-bend Kandinsky drawings of any simple planar graph, and we showed that solving
1-Embeddability with variable embeddings is NP-complete. Furthermore, we presented
a linear-time algorithm for finding 2-bend drawings of any planar graph.

Next, in Chapter 4, we gave a linear-time algorithm for finding bend-minimal Kandinsky
drawings of biconnected, outerplanar, inner-triangulated graphs. Additionally, we showed
how to find bend-minimal 1-bend Kandinsky drawings of series-parallel graphs in O(n3)
time.
Finally, in Chapter 5, we explored a new approach to solving OptimalKandinsky-

Draw. We found that for any constant c ∈ R, we can find a graph so that the difference
between the linear solution and the integer solution of the linear program corresponding
to the OptimalKandinskyDraw instance is greater than c.

Outlook With many questions answered, lots of new questions have been raised.
We have presented an algorithm finding bend-minimal 1-bend Kandinsky drawings

in O(n3) time. Can this runtime be improved? Is it possible to use a similar approach
for solving β-OptimalKandinskyDraw for series-parallel graphs? And finally, can we
generalize the flexibility of edges, thereby solving OptimalKandinskyFlexDraw?
Then, we showed that any planar simple graph is 1-embeddable. But some planar

multigraphs are 1-embeddable as well. Is there a simple characterization for these
1-embeddable multigraphs?

Moreover, it might be interesting to further investigate the use of linear programming
for solving OptimalKandinskyDraw. Specifically, given a real solution XF , what kind
of statement can we make about the integer solution XI? We have shown that there is

42



a family of graphs for which the equation XI = 10/9.5 ·XF holds true. Is there some
constant c ∈ R so that the equation XI ≤ c ·XF holds true for all graphs?

With so many open questions, higher-degree orthogonal graph drawing remains a hot
research topic.
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