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Abstract

An k-graph is a hypergraph where every edge has size k. If every automorphism on a
k-graph G is the identity we say that G is asymmetric. Furthermore we call G mini-
mal asymmetric, if G is asymmetric and every non-trivial induced subgraph on at least
two vertices of G is not asymmetric. In 2016 Schweitzer and Schweitzer [13] confirmed a
conjecture by Nešetřil [14] that there are only finitely many minimal asymmetric graphs.

In this thesis we study minimal asymmetry of k-graphs. We extend a result by Jiang
and Nešetřil [19] to show, that in contrast to the case k = 2, for every k ≥ 3 there are
infinitely many asymmetric k-graphs that are linear and have maximum degree 2. We
generalize the concept of the degree of asymmetry introduced to graphs by Erdős and
Rényi [12] to the setting of k-graphs. Then, we consider regular asymmetric k-graphs
which have some interior symmetry as every vertex has the same degree. Finally, we
analyze an algorithm proposed by Luks [5] which decides in exponential running time
whether a given hypergraph is minimal asymmetric.
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1 Introduction

1 Introduction

Symmetries play an import role in our lives as we often associate them with beauty and
perfection. From art like the Vitruvian Man by Leonardo da Vinci that depicts a man
with idealistic body proportions which is at least superficially symmetric to architecture
like the Taj Mahal where we can see symmetry and harmony to perfection, symmetric
elements can be found in many aspects of our history.

One can also consider symmetries of mathematical objects. For instance consider an
equilateral triangle T , then there are the 3 mirror axes, as show in Figure 1.

(a) Triangle T (b) The first mirror
axis

(c) The second mirror
axis

(d) The third mirror
axis

Figure 1: Triangle T and its 3 mirror axes

Or even simpler, we can take an equidistant chain C of an odd number of indistin-
guishable objects and reflect all objects on the middle one, as shown in Figure 2.

Figure 2: Chain C and its mirror axis

But as beautiful symmetry might seem as interesting are asymmetric things, things
that are almost "perfect" and symmetric or things where we are hopeless to find symme-
tries at all even if we were to ignore some imperfections. We can destroy the symmetries
of our triangle T by adding just another point that is not in any mirror-axis and we
destroy the symmetry of our chain C by adding a simple triangle as depicted in Figure
3.

4



1 Introduction

T with an additional point C with an extra triangle

Figure 3: Destruction of symmetry

Here we study asymmetry of discrete objects called k-graphs, a generalisation of
graphs.

1.1 Basic Definitions

For any n ∈ N we denote the set [n] := {1, 2, 3, . . . , n}. Let V be a finite set. We define(
V
k

)
as the set of all subsets of size k of V .

A hypergraph is a tuple G := (V (G), E(G)) of a vertex set V (G) and an edge-set
E(G) ⊆

⋃
k∈[|V (G)|]

(
V (G)
k

)
. We call v ∈ V (G) a vertex and e ∈ E(G) and edge.

For k ∈ N, k ≥ 2 we call a hypergraph G := (V (G), E(G)) a k-graph if every edge has
size k, i.e. |e| = k for every e ∈ E(G). If every edge e ∈ E(G) has size 2 we call G a
graph.

Example: We give an 3-graph H with vertex set V (H) = {v1, v2, v3, v4, v5, v6} and
edge set E(H) = {{v1, v2, v3}, {v2, v3, v5}{v1, v5, v6}} We can represent hypergraphs by
enclosing vertices in one edge, as depicted in Figure 4a or by connecting them in a line
of the same color, as depicted in Figure 4b. The latter will be helpful in depicting more
complex examples later.

(a) H drawn enclosing. (b) H drawn connecting.

Figure 4
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1 Introduction

Let G = (V (G), E(G)) be a hypergraph. We call G′ = (V (G′), E(G′)) a subgraph of
G if V (G′) ⊆ V (G) and if for every edge e ∈ E(G′) also e ⊆ V (G′) and e ∈ E(G).
Furthermore G′ is an induced subgraph if E(G′) = {e : e ∈ E(G), e ⊆ V (G′). We call G′

a proper (induced) subgraph of G if G′ ̸= G.

Let G = (V (G), E(G)) be a hypergraph and v ∈ V (G) a vertex. We call deg(v) :=
|{e ∈ E(G) : v ∈ e}| the degree of v and max

v∈V (G)
deg(v) the degree of G. In our example

graph H above we have deg(v1) = 2, deg(v4) = 0 and deg(H) = 2.

We call a hypergraph G = (V (G), E(G)) linear if any two distinct edges of G intersect
in at most one vertex, i.e. if for every e1, e2 ∈ E(G) with e1 ̸= e2 it holds that |e1∩e2| ≤ 1.

Let G = (V (G), E(G)) be a hypergraph. For any function Φ: V (G) 7→ V (G) define
for any set S ⊆ V (G), Φ(S) = {Φ(v) : v ∈ S}. We say that a bijection Φ: V (G) 7→ V (G)
is an automorphism on G if for every edge e ∈ E(G) also Φ(e) ∈ E(G).

Example: Automorphism Φ on H depicted in Figure 5 with Φ(v2) = v3,Φ(v3) = v2
and Φ(w) = w for all other w ∈ V (H).

(a) H before automorphism Φ (b) H after automorphism Φ

Figure 5: The automorphism Φ on H with highlighted non-invariant vertices.

We call an automorphism Φ on a hypergraph G = (V (G), E(G)) an involution if Φ2

is the identity, so if (Φ(Φ(v)) = v for each vertex v ∈ V (G).

Let G = (V (G), E(G)) be a hypergraph and let Φ be an automorphism of G. We call
a set S ⊆ V (G) (e.g. S ∈ E(G)) invariant under Φ if Φ(S) = S i.e. Φ(v) ∈ S for every
vertex v ∈ S .

We call a hypergraph G = (V (G), E(G)) asymmetric if the only automorphism Φ on
G is the identity so Φ(v) = v for every vertex v ∈ V (G). If furthermore every induced
subgraph G′ of G is no longer asymmetric we call G minimal asymmetric.

Example: Let H1 and H2 be the graphs as depicted in Figure 6.
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1 Introduction

H1 H2

Figure 6: An asymmetric graph H1 and a minimal asymmetric graph H2.

We claim that H1 is asymmetric but not minimal asymmetric and H2 is minimal
asymmetric. Let us first show that H2 is asymmetric. So let Φ be any automorphism
on H2. We will later see in Lemma 1.1 that the sets of vertices of the same degree are
invariant under any automorphism. Thus v1 and v6 are either both invariant under Φ
or we have Φ(v1) = v6 and Φ(v6) = v1. The latter would also induce Φ(v2) = v5 and
Φ(v5) = v2 as v2 is the only neighbour of v1 and v5 the only neighbour of v6. But this is
already a contradiction as deg(v2) = 3 ̸= 2 = deg(v5). Thus Φ leaves v1 and v6 invariant.
Therefore we also know that Φ(v5) = v5 and Φ(v2) = v2. Now v4 is the only vertex that
is a direct neighbour to both v2 and v5 and thus Φ(v4) = v4. The only vertex left is v3
and thus also Φ(v3) = v3. So indeed Φ must be the identity and thus H2 is asymmetric.

By a straightforward case by case analysis, which is not provided here, we can see
that every proper non-trivial induced subgraph H ′

2 of H2 has an automorphism.

One can show that H1 is asymmetric by the same argument that we used to show
that H2 is asymmetric. It is also clear that H2 is a proper induced subgraph of H1 so
indeed H1 is asymmetric but not minimal asymmetric.

Let G = (V (G), E(G)) be a hypergraph. For every v ∈ V (G) we define the link of v
as Lv := {e \ {v} : e ∈ E(G), v ∈ e}.

In Section 4 we consider random k-graphs where each edge occurs with a proba-
bility p ∈ (0, 1) on potentially countable infinite many vertices. On a k-graph G =
(V (G), E(G)) on countable infinite many vertices V (G) we define the edge set E(G) by
E(G) ⊆ [V (G)]k where [V (G)]k is the set of all subset of V (G) with size k.

Formally let V be a countable set and k ∈ N. We now give a probability space
G(V, p, k) for all k-graphs G with with vertex set V (G) = V . Let E be the set of all
k-subsets of V , so E := {{u1, . . . , uk} : ui ∈ V for all i ∈ [k] and ui ̸= uj if i ̸= j}
and let p ∈ (0, 1). It should be noted that if V was countable, then E is countable
too. Define for every e ∈ E its own probability space by Ωe := {0, 1},Pe(1) = p and
Pe(0) = 1 − p. With this we define the product space Ω =

∏
e∈E

Ωe, so G(V, p, k) =

(
∏
e∈E

Ωe,
⊗
e∈E

{∅, {0}, {0, 1}, {1}},
⊗
e∈E

Pe). Strictly speaking the elements w ∈ G(V, p, k)

are 0-1-vectors, but we can interpret them as the edges and non-edges in a k-graph G
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1 Introduction

with vertex set V . Note that if |V | = n for some n ∈ N we denote our probability space
with G(n, p, k).

Let G = (V (G), E(G)) be a k-graph. G can be made symmetric by removing or adding
new edges to E(G), e.g. by just removing all edges in E(G). We call such an operation
that makes G symmetric a symmetrization s and the set of all symmetrizations of G we
call S(G). For any s ∈ S(G) let αs be the number of edges that are removed and βs be
the number of edges are added to E(G) by s. Then we define the degree of asymmetry
A(G) := min

s∈S
αs + βs. Note that if G is symmetric then A(G) = 0.

For formal definitions of graph theoretical objects the reader is referred to Distel [4].

1.2 Historical Background

In 1939, Frucht [16] was one of the first to study the automorphism group of graphs. He
showed that for every abstract group G there is a graph whose automorphism group is
isomorphic to G. 10 years later he gave a 3-regular asymmetric graph, the Frucht-Graph
[17].

In 1963 Erdős and Rényi [12] introduced the concept of degree of asymmetry which
measures how much one has to change a given hypergraph to make it symmetric. They
also showed that not only almost every finite random graph is asymmetric but also that
almost every graph has a high degree of asymmetry.

Brewer et.al. [1] considered it from the opposite direction and asked how much one
has to change a symmetric graph to make it asymmetric.

Quintas [15] studied extremal values for the number of edges and vertices of an asym-
metric graph. The minimum number of edges m an asymmetric graph with n vertices
must contain was studied by Shelah [18].

In 1988, Nešetřil conjectured at an Oberwolfach seminar [14] that there are only a
finite number of minimal asymmetric graphs. Nešetřil and Sabidussi [7, 8, 10], among
other things, found the 18 minimal asymmetric graphs of Figure 7. The conjecture was
confirmed to be true, in 2016, by Schweitzer and Schweitzer [13]. They showed that the
minimal involution free graphs are exactly the ones that are also minimal asymmetric
and that the 18 graphs in Figure 7 are, up to isomorphism, the only graphs that are
minimal involution free and thus minimal asymmetric.
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1 Introduction

Figure 7: All 18 minimal asymmetric graphs
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1 Introduction

2021 Nešetřil and Jiang [19] refuted equivalent statements for hypergraphs and showed
the following Theorem.

Theorem. 2.1(Jiang Nešetřil [19])
For every k ≥ 3 there are infinitely many minimal asymmetric k-graphs.

1.3 Results of this Thesis

After presenting some basic observations in Section 1.4, already mentioned by Erdős and
Rényi [12], we consider the sparsity of asymmetric k-graphs.

In the Section 2 we give the main construction used by Jinag and Nešetřil [19]. We
then introduce the concept of a path in a k-graph and modify their construction to show
the following result.

Theorem. 2.2
For every k ≥ 3, k ∈ N there are infinitely many minimal asymmetric k-graphs that

are linear and have maximum degree 2.

Then in Section 3 we consider regular asymmetric k-graphs. There we introduce
the concept of edge-asymmetry and the dual of a hypergraph for showing the following
statement.

Theorem. 3.1 There are infinitely many 2-regular asymmetric k-graphs for any k ∈ N
with k ≥ 3.

In Section 4 we then consider the results of Erdős and Rényi [12] and generalise their
results from graphs to k-graphs, so we show the following two Theorems.

Theorem. 4.4 Let k ∈ N with k ≥ 3 and let G = (V (G), E(G)) be a random k-graph in
G(V (G), 0.5, k) with an infinite countable vertex set V (G). Then G is with a probability
1 symmetric.

Theorem. 4.5 For a k-graph G with |V (G)| = n the degree of asymmetry A(G) can be
bounded by A(G) ≤

(
n−1
k−1

)
n−1

2(n−k+1)
.

In the last Section we then survey an algorithm due to Luks, [5] that calculates
all automorphism of a hypergraph: We modify it slightly to decide whether a given
hypergraph G is minimal asymmetric, so we show the following Theorem.

Theorem. 5.17 Let G = (V (G), E(G)) be a hypergraph. For some constant c′ it can be
decided in O(c′|V (G)|) time whether G is minimal asymmetric.

10



1 Introduction

1.4 Basic Results

The following two Lemmata are general results about asymmetry on hypergraphs, al-
ready mentioned by Erdős and Rényi [12].

Let G = (V (G), E(G)) be a hypergraph and v ∈ V (G). We call the set NE(v) := {e ∈
E(G) : v ∈ e} the adjacency set of v.

Lemma 1.1. Let G = (V (G), E(G)) be a hypergraph and Φ : V (G) 7→ V (G) an
automorphism. Then the degree deg(v) of every vertex is invariant under Φ, so for every
vertex v ∈ V (G) it holds that deg(v) = deg(Φ(v)).

Proof. Assume the statement is false, i.e. let there be a vertex v ∈ V (G) with deg(v) ̸=
deg(Φ(v)). Then either |NE(v)| < |NE(Φ(v))| or |NE(v)| > |NE(Φ(v)|. Thus, there
either is an edge e ∈ NE(v) with e /∈ NE(Φ(v)) or there is an edge e′ ∈ NE(Φ(v))
with e′ /∈ NE(v). This would be a contradiction to our assumption that Φ is a proper
automorphism, as either Φ(e) /∈ E(G) or e∗ /∈ E(G) where e∗ is the set with Φ(e∗) = e′.
Thus, indeed it follows deg(v) = deg(Φ(v)) for every vertex v ∈ V (G).

Lemma 1.2.

(i) If G = (V (G), E(G)) is an asymmetric hypergraph then its complement graph
H = (V (H), E(H)) with V (G) = V (H) and E(H) =

⋃
k∈[|V (G)|]

(
V (G)
k

)
\E(G) is

also asymmetric.

(ii) If G = (V (G), E(G)) is an asymmetric k-graph for some k ∈ N with k ≥ 2 then its
k-complement H = (V (H), E(H)) with V (H) = V (G) and E(H) =

(
V (G)
k

)
\E(G)

is also asymmetric.

Proof.
(i) Let G be a hypergraph and H be its complement. Assume that H is not asym-
metric, so there is a non-trivial automorphism Φ on H. Let S be a arbitrary subset of
V (H). We know, due to the automorphism properties of Φ, that S ∈ E(H) if and only
if Φ(S) ∈ E(H).

Now because Φ is a bijection of V (H) = V (G) we can also look at it as a function on
G. Thus let S again be an arbitrary subset of V (G). By definition of H, if S ∈ E(G)
then S /∈ E(H) . Thus Φ(S) /∈ E(H). But then Φ(S) ∈ E(G). Therefore Φ is also a
automorphism on G. The statement follows by contraposition.

(ii) Let G = (V (G), E(G)) be an asymmetric k-graph. Note that the auxiliary hyper-
graph A = (V (A), E(A)) with V (A) = V (G) and E(A) =

⋃
j∈[|V (A)|],j ̸=k

(
V (A)
j

)
∪E(G)

is also asymmetric as any automorphism on A would also be an automorphism on G.
Also note that the k-complement H of G is exactly the complement graph of A. Thus
the statement of (ii) just follows from (i).

11
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By similar argumentation we can show equivalent statements for minimal asymmetric
hypergraphs.

The following lemma gives some intuitions about the behaviour of the degrees of
asymmetric and minimal asymmetric hypergraphs. There we will already see a differ-
ence between asymmetry and minimal asymmetry as minimal asymmetric hypergraphs
have stronger structural restrictions. We will also see in the proof that Lemma 1.2 is
not a only useful tool but also a nice help in changing the perspective when thinking
about asymmetry problems.

Proposition 1.3. For every n ∈ N there is no minimal asymmetric k-graph G on n
vertices with deg(G) =

(
n−1
k−1

)
. However there are asymmetric k-graphs on n vertices for

some n ∈ N that achieve this bound.

Proof. Assume there is a minimal asymmetric k-graph G = (V (G), E(G)) with max-
imum degree

(
n−1
k−1

)
, so assume there exists a vertex v ∈ V (G) with deg(v) =

(
n−1
k−1

)
.

Consider the k-graph G′ = (V (G′), E(G′)) with V (G′) = V (G) \ {v} and E(G′) = {e :
e ∈ E(G), v /∈ e}. If G′ is asymmetric then G was not minimal asymmetric. If G′ is
symmetric then there is a non-trivial automorphism Φ on G′. Let Φ′ be a extension of
Φ to G with Φ′(v) = v and Φ′(u) = Φ(u) for all u ∈ V (G), u ̸= v. Let e ∈ E(G) be an
arbitrary edge. If v ∈ e then Φ′(e) ∈ E. Thus Φ′ is also a non-trivial automorphism on
G, a contradiction to the asymmetry of G.

Let G = (V (G), E(G)) be any asymmetric graph. We have already seen an example
of an asymmetric 2-graph so the set of asymmetric k-graphs in non-empty. If there is a
vertex v ∈ V (G) with deg(v) = 0 we can take the edge-complement H of G and know
that the degree of v in H is equal to

(
n−1
k−1

)
. By Lemma 1.2 H is also asymmetric. If there

is no vertex in V (G) with a degree of 0 we know that the extension G′ = (V (G′), E(G′))
of G, with V (G′) = V (G) ∪ x for a vertex x disjoint from V (G) and E(G′) = E(G) is
asymmetric. Then we again can take the complement of G′ to show the statement.

Next we show that in contrast to asymmetric hypergraphs, symmetric hypergraphs G
can appear independently of the sparsity of G.

Proposition 1.4. For any n ∈ N with n ≥ 2 and k ≤ n there is a symmetric k-graph
with m edges for any 0 ≤ m ≤

(
n
k

)
.

Proof. Let [n] be the vertex set of our k-graph. For n = 2 the statement is trivial so let
n ≥ 3 and u, v ∈ [n] with u ̸= v. We define two sets of possible edges:

Snice := {e ⊆ [n] : |e| = k and u, v ∈ e or u, v /∈ e}

and
Sp := {e ⊆ [n] : |e| = k and u ∈ e, v /∈ e or u /∈ e, v ∈ e}

12



1 Introduction

It is easy to check that Snice ∩Sp = ∅ and that Snice ∪Sp contains all possible k-edges
in the vertex set [n]. We say two edges e1, e2 ∈ Sp are a pair (e1, e2) if e1 = e2 ∪ v \ u.
Then it is clear that v ∈ e1 and u ∈ e2. Now we can define a sequence of k-graphs
G0, G1, . . . , G(nk)

with vertex set [n]: Let G0 = {[n], ∅}. Next we define Gi for i ∈ [
(
n
k

)
].

Case 1: i ≥ |Sp|.
Let Ehelp ⊆ Snice be any subset with |Ehelp| = i− |Ep|. Then let E(Gi) := Sp ∪ Ehelp

Case 2: i < |Sp| and i is odd.
Let Ehelp ⊂ Sp be a subset of i−1

2
distinct pairs in Sp and let e ∈ Enice be an arbitrary

edge. Then define E(Gi) := Ehelp ∪ e.

Case 3: i < |Sp| and i is even.
Let Ehelp ⊂ Sp be a set of i

2
distinct pairs in Sp. Then let E(Gi) := Ehelp.

In each case define the automorphism Φ: [n] 7→ [n] as Φ(v) = u, Φ(u) = v and
Φ(w) = w for all other w ∈ [n], w ̸∈ {u, v}. Then it is easy to see that in every case Φ
defines a proper non-trivial automorphism of Gi because otherwise, if there is an edge
e ∈ E(Gi) with u ∈ e and v ̸∈ e then the edge e′ with e′ = e ∪ v \ u is also in E(Gi).

13



2 Minimal Asymmetric k-graphs

2 Minimal Asymmetric k-graphs

The problem of finding infinitely many minimal asymmetric k-graphs for k ≥ 3 was first
considered by Jiang and Nešetřil [19].

Theorem 2.1. (Jiang Nešetřil [19])
For every k ≥ 3 there are infinitely many minimal asymmetric k-graphs.

We modify their construction to show the following result.

Theorem 2.2. For every k ≥ 3, k ∈ N there are infinitely many minimal asymmetric
k-graphs that are linear and have maximum degree 2.

2.1 Construction by Jiang and Nešetřil

We first give the construction of Jiang and Nešetřil used in [19] that we call the JN -
graph. Then we fix an inaccuracy in Lemma 8 of [19] and prove some other useful
properties of the JN -graph. Afterwards we construct a family of k-graphs by extending
the JN -graph Gk,t and show that every graph in this family is minimal asymmetric,
linear and has max degree of 2.

Construction 2.3. JN -graph

For k ≥ 3 and t ≥ 2 we define the JN -graph Gk,t = (Xk,t, Ek,t) as the k-graph with
vertex set

Xk,t = {vi : i ∈ [tk]} ∪ {ui : i ∈ [tk]} ∪ {vji : i ∈ [tk], j ∈ [k − 3]} and edge set

Ek,t = EL ∪ Ecyc.

We define the set of L-edges EL and the set of cyclic-edges Ecyc by

EL :=
⋃

i∈[tk]
Ei with Ei = {vi, ui, v

1
i , v

2
i , . . . , v

k−3
i vi+1}

and for the following pairs of indices

P := {(i, j) : j ∈ [k − 3], i = j + sk; s ∈ {0, 1, . . . , t− 1}} let

Ecyc :=
⋃

(i,j)∈P
Ei,j with Ei,j = {vji , v

j
i+1, . . . , v

j
i+k−1}.

In Figure 8 we give an example of the JN -graph for k = 6 and t = 3.

Here and in the rest of this section let any index i with i > tk or i ≤ 0 be replaced
by i−tk and i+tk respectively unless mentioned otherwise. With this we guarantee
that all our vertices and edges are indeed a subset of our vertex set defined above.
To be consistent with the original authors we start counting at 1 instead of 0.

14



2 Minimal Asymmetric k-graphs

Figure 8: The JN-graph G6,3 with parameters k = 6, t = 3

Lemma 2.4. Let k, t ∈ N with k = 3 and t ≥ 2 let Gk,t be the JN -graph. Let
furthermore Φ be an automorphism on Gk,t then:

(i) Φ(uj) ∈ {ui : i ∈ [tk]} for every j ∈ [tk].

(ii) Φ(Ej) ∈ EL for all j ∈ [tk].

(iii) If Φ(E1) = Ej for some j ∈ [tk] then either Φ(v1) = vj,Φ(v2) = vj+1 or Φ(v1) =
vj+1,Φ(v2) = vj.

(iv) If Φ(E1) = Ej for some j ∈ [tk] then either Φ(Ei) = Ej+i−1 or Φ(Ej) = Ei−j+1 for
all i ∈ [tk]. We call the first kind of mapping a cyclic shift and the second kind a
reflection.

Proof. Let U := {ui : i ∈ [tk]}, then the only vertices of Gk,t with a degree of 1 are those
in U . Therefore by Lemma 1.1 the set U is invariant under Φ and the first property holds.

Observe that all edges E ∈ EL have a vertex u ∈ E with deg(u) = 1 and all vertices
of edges in Ecyc have a degree of 2. We know that Φ(E) is an edge of Gk,t and also that
deg(Φ(u)) = 1. Thus Φ(E) ∈ EL, which shows the second property.

The only vertices with v ∈ E1 and v ∈ E for another edge E ̸= E1, E ∈ EL are v1 and
v2. Due to (ii) we know that Φ(E1) = Ej for some j ∈ [tk]. Furthermore, vj and vj+1 are
the only vertices in Ej with vj ∈ E ′, vj+1 ∈ E ′′ for other edges E ′, E ′′ ̸= Ej;E

′, E ′′ ∈ EL.

15



2 Minimal Asymmetric k-graphs

Assume Φ(v1) = w /∈ {vj, vj+1} then w ∈ E∗ for some edge E∗ ∈ Ecyc. Every vertex in
E∗ has a degree of 2 but E1, Etk both have a vertex with a degree of 1, a contradiction
to Lemma 1.1. Thus Φ(v1) ∈ {vj, vj+1} and by the same argument also v2 ∈ {vj, vj+1}
which shows (iii).

Consider now v1 and v2 and their possible mappings by Φ according to (ii) and (iii).
So if Φ(v1) = vj and Φ(v2) = vj+1 for some j ∈ [tk] then we also know by (iii) that
Φ(v3) = vj+2 and inductively Φ(vi) = vi+j−1 for all i ∈ [tk]. It directly follows that
also Φ(Ei) = Ei+j−1 for all i ∈ [tk]. Otherwise, Φ(v1) = vj and Φ(v2) = vj−1 for some
j ∈ [tk]. Then Φ(v3) = vj−2 and inductively Φ(vi) = vj−i+1 for all i ∈ [tk]. And again it
follows that Φ(Ei) = Ej−i+1 for all i ∈ [tk], which shows (iv).

Jiang and Nešetřil stated the following Lemma, here with give an independent proof.

Lemma 2.5. (Jiang Nešetřil [19])
Let k, t ∈ N with k = 4 or k ≥ 6 and t ≥ 2. Let Gk,t be the JN -graph. Let furthermore

Φ be a homomorphism on Gk,t. Then if E1 is invariant under Φ, so Φ(w) ∈ E1 for every
vertex w ∈ E1, then Φ is the identity.

Proof. To show the statement we construct some sets of indexes for each Eℓ, ℓ ∈ [tk],
helping us to find possible mappings Φ′(E1) for some automorphism Φ′ complying with
Lemma 2.4 (iii), (iv). For any ℓ ∈ [tk] a vertex x ∈ Eℓ \ {vℓ, uℓ, vℓ+1} has deg(x) = 2
and by construction x ∈ E for some edge E ∈ Ecyc. Note that for any edge Ei,j ∈ Ecyc,
Ei,j ∩ Eℓ ̸= ∅ if ℓ ∈ {i, . . . , i + k − 1}. So Ei,j intersects an "interval" of edges. If we
consider it from the opposite perspective we fix an ℓ and the set Eℓ to determine all i
such that there exists an j ∈ [k− 3] with Ei,j ∈ Ecyc and Ei,j ∩Eℓ ̸= ∅. This leads to the
following definition of the forward set F (Eℓ). For any edge Ei,j ∈ Ecyc let

I(Ei,j) := {Eℓ : ℓ ∈ {i, . . . , i+ k − 1}}

and for any set Eℓ ∈ EL let

F (El) := {(ℓ− i) mod k : ∃j with Eℓ ∈ I(Ei,j)}.

Then the forwards set F (Eℓ) contains the "distance from the starting points" of the
intersecting edges of Eℓ. For example the forward set F (E1) of E1 in G6,3 is given by
F (E1) = {0, 4, 5}, see Figure 9.
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Figure 9: Construction of the forward set of E1 in G6,3

Similarly we define the backwards set B(Eℓ) that contains the "distance to the ending
points" of the intersecting edges of edge El. Let us first rename all edges in Ecyc so
E∗

i,j = Ei+k−1,j for all i with i + k − 1 ∈ [tk] and (i, j) ∈ P . Then define E∗
cyc := {E∗

i,j :
Ei.j ∈ Ecyc}. Note that Ecyc and E∗

cyc contain the same elements we only renamed the
indices to define the following for each edge E∗

i,j ∈ E∗:

I(E∗
i,j) := {Eℓ : ℓ ∈ {i− k + 1, . . . , i}}

and
B(Eℓ) = {(i− ℓ) mod k : ∃j with Eℓ ∈ I(E∗

i,j)}.

In the following all indices in the backward and forward set are considered mod k.
Now let Eℓ ∈ EL for some ℓ ∈ [tk]. If we compare F (Eℓ) and F (Eℓ+1) we see that for
any x ∈ F (Eℓ) with x ̸= k − 1 there is an x′ ∈ F (Eℓ+1) with x′ = x+ 1. This is due to
the fact that x = (ℓ− i) for some j with Eℓ ∈ I(Ei,j). Because x ̸= k − 1 we know that
Eℓ+1 ∈ I(Ei,j) and thus ((l + 1)− i) = x+ 1 ∈ F (Eℓ+1).

If x ∈ F (Eℓ) with x = k − 1 then again there exist an j with x = (l − i) and
Eℓ ∈ I(Ei,j) but now Eℓ+1 /∈ I(Ei,j) because ℓ − i = k − 1. Then there must be
an j′ and an edge Ei+k,j′ with Eℓ+1 ∈ I(Ei+k,j′) and thus 0 ∈ F (Eℓ+1). So all in all
we know that F (Eℓ+1) = {(x + 1) : x ∈ F (ℓ)} and similarly it can be shown that
B(Eℓ) = {(x− 1) : x ∈ B(Eℓ+1)}.

Next we want to show a different viewpoint of the possible edges in Ecyc meaning we
will look at sets of size k that intersect with k sets in EL.

Claim: If Φ′ is an automorphism on Gk,t with Φ′(E1) = Ej, then F (E1) ∈ {F (Ej), B(Ej)}.

For proving the claim we consider "strips" of vertices. We noticed in the definition
of the set I(Ei,j) that every Ei,j ∈ Ecyc intersects some Eℓ. This leads to the following
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definitions. For any edge Eℓ ∈ EL we define the upper part of Eℓ as

U(Eℓ) := Eℓ \ {vℓ, uℓ, vℓ+1}.

Let then

Q := {(x0, . . . , xk−1) : x0 ∈ U(Eℓ), . . . , xk−1 ∈ U(Eℓ+k−1) for ℓ ∈ [tk]}

and
Strip(α, β) := {x = (x0, . . . , xβ, . . . , xk−1) : xβ ∈ Eα ∈ EL, x ∈ Q}

Note that, according to our observations above, Q contains all k-tuples which intersect
exactly k consecutive edges in EL. Thus Strip(α, β) contains all (k − 3)k different k-
tuples q ∈ Q that start in Eα−β.

Let Φ′ be any automorphism with Φ′(E1) = Ei for an edge Ei ∈ EL. Assume
now F (E1) ̸∈ {F (Ei), B(Ei)}. Because |F (E)| = |F (E ′)| = |B(E ′)| = k for any
two edges E,E ′ ∈ EL there are a, b ∈ F (E1) with a /∈ F (Ei), b /∈ B(Ei). There-
fore Strip(i, a) ∩ Ecyc = ∅ as well as Strip(i, k − b) ∩ Ecyc = ∅. Thus we know that
Ea,j, Eb,j′ ∈ Ecyc for some j, j′ ∈ [k − 3] by a, b ∈ F (E1). But we also know that either
Φ(Ea,j) /∈ Ecyc or Φ(Eb,j′) /∈ Ecyc. This is a contradiction to Lemma 2.4 (iv). Thus we
can conclude that that F (E1) = F (Ei) or F (E1) = B(Ei), otherwise Φ would not be a
proper automorphism.

Before we consider the two remaining cases F (E1) = F (Ei) or F (E1) = B(Ei) let us
study some additional properties of the forward and backward sets. By definition, every
forward set is a subset of {0, 1, . . . , k − 1} that contains k − 3 distinct elements. Thus,
the elements of any forward or backward set are also given by its 3 missing elements. So
we define for any edge Eℓ ∈ EL the missing elements of its forward and backward set:

MF (Eℓ) = {0, 1, . . . , k − 1} \ F (Eℓ)

and
MB(Eℓ) = {0, 1, . . . , k − 1} \B(Eℓ).

First note that by definition MF (E1) = {1, 2, 3} and thus MB(E1) = {k−2, k−3, k−4}.
Then it is clear that for k = 4 and k ≥ 6 the backward and forward set of E1 differ so
MF (E1) ̸= MB(E1).
The missing elements of two consecutive edges Eℓ′ , Eℓ′+1 behave like the forward and
backward set themselves in the sense that MF (Eℓ+1) = {(x + 1) : x ∈ MF (Eℓ)} and
MB(Eℓ+1) = {(x − 1) : x ∈ MB(Eℓ)}. Also note that by definition the sets MF (Eℓ)
and MB(Eℓ) for any edge Eℓ ∈ EL are always of the form {x, (x + 1), (x + 2)} for
some x ∈ {0, 1, . . . , k − 1}. So if there now is an edge Eℓ ∈ EL with F (Eℓ) = F (Eℓ′)
for another edge Eℓ′ then also MF (Eℓ) = MF (Eℓ′). Thus ℓ′ = (ℓ + sk) mod tk for
some s ∈ {0, 1, . . . , t − 1} as ℓ and ℓ′ must be a multiple of k edges apart as only then
MF (Eℓ) = MF (Eℓ′).
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Next we want to make a similar statement comparing edges Eℓ and Eℓ′ with F (Eℓ) =
B(Eℓ′). Let Eℓ ∈ EL be an arbitrary edge and let x ∈ MF (Eℓ). Then for some j
there is no edge Eℓ−x,j ∈ Ecyc with Eℓ−x,j ∩ Eℓ ̸= ∅. So by definition there is no
edge Eℓ−x+k−1,j ∈ E∗

cyc, where E∗
cyc is the set of relabeled cyclic edges from before, with

Eℓ−x+k−1,j ∩ Eℓ ̸= ∅ and thus by definition (ℓ − x + k − 1 − ℓ) = (x + k − 1) /∈ B(Eℓ).
Therefore (x+ k − 1) ∈ MB(Eℓ) . It follows that MB(Eℓ) = {k − 1− x : x ∈ MF (Eℓ)}.
By definition of the JN graph MF (E1) = {1, 2, 3} and thus MF (Eℓ) = {ℓ, (ℓ+1), (ℓ+2)}
for every edge Eℓ ∈ EL. If now MF (Eℓ) = MB(Eℓ′) then

{ℓ, (ℓ+ 1),(ℓ+ 2)} (2.1)
={(k − 1− (ℓ′ + 2)), (k − 1− (ℓ′ + 1)),(k − 1− ℓ′)}. (2.2)

Thus we see that ℓ mod k = (k − 3− ℓ′) mod k.

Finally we can come back to our two remaining cases F (E1) = F (Eℓ) and F (E1) =
B(Eℓ). So let us assume Φ is an automorphism with Φ(E1) = Eℓ for some edge Eℓ ∈ EL.
Then Lemma 2.4 (iii) implies Φ(v1) ∈ {vℓ, vℓ+1}.

case 1: F (E1) = F (Eℓ) :

Let us further assume that Φ(v1) = vℓ. Then we know by Lemma 2.4 (iii) and (iv) that
Φ(vi) = vi+ℓ and Φ(ui) = ui+ℓ−i for all i ∈ [tk]. This tells us also that Φ(Ei,j) = (Ei+ℓ−1,j)
for all edges Ei,j ∈ Ecyc, so Φ(vji ) = vji+ℓ−1 for all remaining vertices vji ∈ Xk,t \ V0 where
V0 := {vi, ui : i ∈ [tk]}. So indeed we have a valid automorphism Φ. If we assume
Φ(v1) = vℓ+1 then Lemma 2.4 (iii) and (iv) as well as our previous analysis tell us if
F (E1) ̸= B(Eℓ) that Φ is no proper automorphism since there would be an edge E ∈ Ecyc
with E ∩ E1 ̸= ∅ and Φ(E) /∈ Ek,t.

case 2: F (E1) = B(Eℓ) :

If Φ(v1) = vℓ then Lemma 2.4 (iii) and (iv) as well as our previous analysis tell us
again if F (E1) ̸= F (Eℓ) that Φ is no proper automorphism. If F (E1) = F (Ej) we refer
to the previous case. Thus let us assume that Φ(v1) = vℓ+1. Then we know by (iii) and
(iv) that vi = vℓ−i+1 and ui = uℓ−i+1 for all i ∈ [tk]. We also know by analyzing the
backward sets that Φ(Ei,j) = Eℓ−i+1,k−2−j for all Ei,j ∈ Ecyc. Thus Φ(vji ) = vk−2−j

ℓ−i+1 for
all remaining vertices. And again Φ is a proper automorphism.

We have already have seen, because k ̸= 3 and k ̸= 5, that F (E1) ̸= B(E1) so the
only automorphism that leaves E1 invariant is given by case 1 and thus the identity.

It is easy to check that in the case F (E1) = B(Ej) the given automorphism is also an
involution.

In their Lemma 8.2 Jiang and Nešetřil [19] claim, that the only automorphism of Gk,t

which leaves the set E1 invariant (i.e. for each vertex v ∈ E1,Φ(v) ∈ E1) is the identity.
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However their provided proof does not extend to the cases k = 3 and k = 5. Indeed
for both cases we give the following explicit examples in Figure 10 and Figure 11 where
it fails.

Figure 10: A non-trivial automorphism on G3,2 that leaves E1 = {v1, u1, v2} invariant.

Figure 11: A non-trivial automorphism on G5,2 that leaves E1 = {v1, v11, v21, u1, v2} in-
variant.

We can even state the following Lemma.

Lemma 2.6. Let k ∈ {3, 5} and t ≥ 2, t ∈ N and let Gk,t be the JN -graph. Then
there are two distinct automorphisms that leave the set E1 invariant, so in particular
one automorphism that is not the identity.

Proof. First we consider k = 5. In this case, if we compare the backward and forward
set of E1 we see that F (E1) = {0, 4} but also that B(E1) = {0, 4}. Thus case 1 of
Lemma 2.5 gives us an automorphism that leaves E1 invariant, i.e. the identity, but case
2 also gives an involution that leaves E1 invariant. Similarly for k = 3, all backward
and forward sets off all edges are equal as they all are empty. Thus again there is a
non-trivial automorphism that leaves E1 invariant.
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Later this will be a problem because our main Construction 2.10 would produce sym-
metric 3 and 5-graphs. Thus we will have to consider those cases separately and give
another construction that only allows one automorphism that leaves the set E1 invariant,
the identity.

Jiang and Nešetřil [19] mention the following statement without providing a proof.
Here we give a proof. Recall that in the definition for minimal asymmetric k-graphs
we required that on every non-trivial induced subgraph on at least two vertices of the
considered graph should be a non-trivial automorphism. The next statement is even
stronger than that because we show the property not only for all induced subgraphs but
for all subgraphs of the JN -graph.

Lemma 2.7. (Jiang Nešetřil [19])
For t, k ∈ N with t ≥ 2, k ≥ 3 let Gk,t be the JN -graph and G ′

k,t be an arbitrary
subgraph of Gk,t with at least two vertices. Then G ′

k,t is symmetric.

Proof. Let G ′
k,t = (V ′, E ′) be a subgraph with at least two vertices of the JN -graph Gk,t.

If there are vertices u, v ∈ V ′ with degG′
k,t
(u) = degG′

k,t
(v) = 0 then G ′

k,t is symmetric. So
let us assume there is at most on vertex v ∈ V ′ with degG′

k,t
(v) = 0. Due to G ′

k,t having
at least two vertices we know that |E ′| ≥ 1. Now if there are two vertices u, v ∈ V with
degG′

k,t
(u) = degG′

k,t
(v) = 1 and there is an edge E ∈ E ′ with u, v ∈ E then again there

is a non-trivial autmorphism Φ with Φ(u) = v,Φ(v) = u and Φ(w) = w for all other
vertices w ∈ V ′. Thus, let us assume that for every edge E ∈ E ′ there is only one vertex
v ∈ E with deg(v) = 1.

As we noted earlier G ′
k,t contains at least one edge E, so there are two cases either

E ∈ Ecyc or E ∈ EL.

case 1: E ∈ EL.
Suppose that E = Ei for an i ∈ [tk]. We know that degG′

k,t
(ui) = 1, thus degG′

k,t
(vi) ̸=

1 ̸= degG′
k,t
(vi+1). This directly tells us that Ei−1, Ei+1 ∈ E ′. Therefore, we can conclude

inductively that EL ⊆ E ′. This also yields that V ′ = Xk,t where Xk,t is the vertex set of
Gk,t. But then we also know that Ecyc ⊆ E ′ because every vertex vji for i ∈ [tk], j ∈ [k−3]
must have a degree of 2. But then G ′

k,t = Gk,t.

case 2: E ∈ Ecyc.
There must be at least one vertex v ∈ E with degG′

k,t
(v) = 2. Thus, there is an edge

E ′ ∈ E ′ with E ′ ∈ EL. Therefore, this case can just be reduced to the previous one.
We conclude that G ′

k,t is in both cases just our original JN -graph Gk,t and we already
saw in the proof of Lemma 2.5 that Gk,t is not asymmetric.

Lemma 2.8. (Jiang Nešetřil [19])
For t, k ∈ N with t ≥ 2, k ≥ 4 let Gk,t be the JN -graph and let G ′

k,t be a non-trivial
subgraph of Gk,t with E1 ∈ E(G ′). Then there is a non-trivial automorphism Φ on G ′

with Φ(u1) = u1 that leaves E1 invariant.
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Proof. Let Gk,t be the JN -graph for k, t ∈ N with k ≥ 4, t ≥ 2 and let G ′ = (V ′, E ′)
be a non-trivial subgraph of Gk,t with E1 ∈ E ′. We now construct a non-trivial auto-
morphism on G ′ that leaves E1 and u1 invariant. Let s be the maximal index such that
E1, E2, . . . , Es ∈ E ′..

case s = 1:
Let s′ be the index such that Es+1, . . . , Es′−1 /∈ E ′ and Es′ ∈ E ′. Now if s′ = 1 then

deg(v1) = deg(v2) = 1. Thus define Φ with Φ(v1) = v2, Φ(v2) = v1 and Φ(w) = w for
all other w ∈ V ′. Otherwise, so for s′ ̸= 1, we know that deg(vs′) = deg(us′) = 1 thus
define Φ(vs′) = us′ , Φ(u′

s) = vs′ and Φ(w) = w for all other w ∈ V .

case s ∈ {2, . . . , tk − 1}:
Here it is clear that deg(vs+1) = deg(us) = 1 hence define Φ(vs+1) = us, Φ(us) = vs+1

and Φ(w) = w for all other vertices w ∈ V ′.

case s = tk:
In this case we know that V ′ = Xk,t. We also know that G′ is a proper subgraph

of Gk,t and thus there is an edge Ei,j ∈ Ecyc with Ei,j /∈ E(G ′). Now choose an i′ ̸= 1
such that Ei′ ∩ Ei,j ̸= ∅. This is possible because all our edges have size k ≥ 4. Then
deg(vji′) = deg(ui′) = 1 and therefore define Φ(vji′) = ui′ , Φ(ui′) = (vji′) as well as
Φ(w) = w for all other vertices in V (G ′).

Before we continue we will sketch how Jiang and Nešetřil showed Theorem 2.1. They
extended the JN -graph Gk,t to the following k-graph G ′

k,t = (V (G ′
k,t), E(G ′

k,t)) with
V (G ′

k,t) := Xk,t ∪ x0 for some vertex x0 disjoint from Xk,t and E(G ′
k,t) := Ek,t ∪ {E0}

for E0 = {x0, v1, v2, u1, v
1
1 . . . vk−3

1 }. We give in Figure 12 the construction with parame-
ter t = 3, k = 6. They then proceeded to show that G ′

k,t is minimal asymmetric by using
Lemma 2.5. Note that the edge E0 prevents reflections.
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Figure 12: The k-graph G ′
6,3

2.2 Proof of the main Theorem 2.2

Lemma 2.9. (i) For t, k ∈ N with t ≥ 2, k ≥ 3 let Gk,t be the JN -graph and let G ′ be
a non-trivial subgraph of Gk,t with E1, E2 ∈ E(G ′). Then there is an automorphism
Φ on G ′ with Φ(u1) = u1,Φ(u2) = u2 that leaves E1 and E2 invariant.

(ii) Let Gk,t be the JN -graph for k, t ∈ N with k = 3, t ≥ 2 and let G ′ be a non-
trivial subgraph of Gk,t with E1, E2, . . . , Er ∈ E(G ′) and r ∈ {3, 4}. Then there is
an automorphism Φ on G ′ with Φ(u1) = u1, . . .Φ(ur) = ur that leaves E1, . . . , Er

invariant.

Proof. (i) Here we consider a non-trivial subgraph G ′ of Gk,t with E1, E2 ∈ E(G ′). Let s
be, as above in Lemma 2.8, the maximal index such that E1, E2, . . . , Es ∈ E(G ′). The
cases s = 3, . . . , tk−1 and s = tk work similar as the second case of the proof of Lemma
2.8. So let s = 2 and s′ be the index such that E3, . . . , Es′−1 /∈ E(G ′) and Es′ ∈ E(G ′).
The subcase s′ ̸= 1 then works as above. Let us now consider the case s′ = 1. Note
that because k ≥ 4 we know v13, v

1
4 ∈ E1,1. Then if E1,1 ∈ E(G ′) we also know that

v13, v
1
4 ∈ V (G ′) with deg(v13) = deg(v14) = 1. Thus we define Φ(v13) = v14, Φ(v14) = v13 and

Φ(w) = w for all other w ∈ V (G∗). Otherwise E1,1 /∈ E(G ′), then define Φ(v11) = v1,
Φ(v1) = v11 and Φ(w) = w for all other w ∈ V (G ′).

(ii) Let s again be the maximal index such that E1, E2, . . . , Es ∈ E(G)′. Note that
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s ̸= 3t as then G ′ = G3,t. Thus we are left with cases s = r and s ∈ {r + 1, . . . , 3t − 1}
and those can be solved just as the second case of the proof of Lemma 2.8.

We now give the construction used for proving Theorem 2.2.

Construction 2.10. Let k, t1, t2, . . . , tk−1 ∈ N such that k ≥ 3 and 2 ≤ t1 < t2 < · · · <
tk−1. For ℓ ∈ [k−1] let Gℓ := (X ℓ, E ℓ) be a k-graph isomorphic to Gk,tℓ from Construction
2.3 such that Xℓ′s are pairwise vertex-disjoint. We refer to the edges in Gℓ isomorphic
to Ei and Ei,j in Gk,tℓ as Eℓ

i and Eℓ
i,j respectively. Let x0 be an additional vertex disjoint

from
⋃

ℓ∈[k−1]X ℓ and let E0 := {x0, u
1
1, u

2
1, . . . , u

k−1
1 }. Then we define our final k-graph

G = Gt1,t2,...,tk−1
:= (V , E) with V :=

⋃
ℓ∈[k−1]

X ℓ ∪ {x0} and E :=
⋃

ℓ∈[k−1]

E l ∪ E0. We give a

sketch of this construction in Figure 13.

Figure 13: Sketch of the graph Gt1,...,tk−1

We want to use similar techniques as Jiang and Nešetřil in [19] to show that the k-
graph G in Construction 2.10 is minimal asymmetric. For that we still have to solve
some problems. We have seen that for the cases k = 3 and k = 5 Lemma 2.5 does not
hold. Thus we have to do some extra construction for those. Secondly ,in the general
cases, so k = 4 and k ≥ 6, we want to have an easy argument why an automorphism
on G leaves the underlying JN -graphs invariant. Therefore we introduce the following
definition of a path in a hypergraph.

Let G be a hypergraph and u, v ∈ V (G) with u ̸= v. We call a set of edges P an
u − v-path if P = {e} with u, v ∈ e or P = {e1, . . . , ei} for an positive integer i such
that there are edges ej, j ∈ [i] with u ∈ e1, v ∈ ei, ej ∩ ej+1 ̸= ∅ for j ∈ [i − 1],
ej ̸= el for j, l ∈ [i], j ̸= l. We say there is a path between a vertex v and an edge e if
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there is a v−v′-path for a vertex v′ ∈ e. Two paths P1,P2 are edge-disjoint if P1∩P2 = ∅.

Let G = (V (G), E(G)) be a hypergraph and u, v ∈ V (G). We say that u and v are
connected if there is an u− v-Path in G. Let E ∈ E(G) be an edge, we say u and E are
connected if there is a vertex v′ ∈ E such that u and v′ are connected.

Lemma 2.11. For t, k ∈ N, k ≥ 3 and t ≥ 2 let E ∈ Ek,t be an edge of the JN -graph
Gk,t = (Xk,t, Ek,t). Then for any two vertices u, v ∈ E with u, v /∈ {u1, u2, ..., utk} there
are two edge disjoint u− v-paths.

Proof. Case 1: E = Ei ∈ EL for some i ∈ [tk]:
We consider the k-graph G′

k,t := (Xk,t, E \{Ei}) and show that u, v are still connected.
If we look at u we see that either u ∈ Ei+1 or u ∈ Ei−1 or there is an edge E∗ ∈ Ecyc
with u ∈ E∗ and E∗ ∩ (Ei+1 ∪ Ei−1) ̸= ∅. So without loss of generality we can say that
u is connected to Ei+1. Otherwise it is connected to Ei−1 and a similar argument can
be applied. Because vj+1 ∈ Ej and vj+1 ∈ Ej+1 for any j ∈ [tk], j ̸= i there is a path
between u and Ei−1. With the same argument we can show that v is connected to Ei−1

or to Ei+1. These paths can now be combined by considering their earliest intersecting
Edge. Note that they always intersect in Ei−1 or in Ei+1 and thus there is a u− v path
in G′

k,t

Case 2: E = Ei,j ∈ Ecyc for some j ∈ [k − 3], i = j + sk; s ∈ {0, 1, . . . , t− 1}.
We now consider the k-graph G′

k,t := (Xk,t, Ek,t \ {Ei,j}). For u, v there are distinct
vertices vi and vi′ and edges E ′, E ′′ ∈ EL with u, vi ∈ E ′ and v, vi′ ∈ E

′′ . Similarly to
Case 1, vi and vi′ are still connected and thus there is a u− v-path in G′

k,t.
So in both cases there exists another path additionally to {E}, connecting the two
vertices u, v.

Lemma 2.12. Let G be a k-graph and Φ be an automorphism of G. Then the number
of edge-disjoint paths between any two vertices of G is invariant under Φ.

Proof. Take any two vertices u, v ∈ V (G). If they are not connected in G they can’t be
connected in Φ(G). Assume Φ(u) and Φ(v) are connected, then there is a Φ(u)− Φ(v)
path P := {E1, E2, . . . , El}. Because there is no u− v-path in G we find an Edge E ∈ P
such that there is no edge E ′ ∈ E(G) with Φ(E ′) = E. Let P(u, v) = {P1, . . . ,Pc a
set of edge disjoint u − v -paths in G. Now take any P ∈ P (u, v) and see that Φ(P )
is a Φ(u) − Φ(v)-path. Furthermore, any two paths Pi, Pj ∈ P (u, v) are by definition
edge-disjoint and thus Φ(Pi),Φ(Pj) again must be edge-disjoint. There also can not be
an extra path in Φ(G) which can be seen by reversing the preceding argument.

Finally we can prove Theorem 2.2 by showing that our Construction 2.10 provides a
minimal asymmetric k-graph which is linear and has a maximum degree of 2.

Proof. We first consider the general case.
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2 Minimal Asymmetric k-graphs

Case 1: k = 4 or k ≥ 6.
We will show that Gt1,t2,...,tk−1 is minimal asymmetric for every 2 ≤ t1, . . . , tk−1. We

begin by showing that Gt1,t2,...,tk−1 is asymmetric and afterwards that each induced sub-
graph is symmetric.

Let Φ be an automorphism on G := Gt1,t2,...,tk−1. First we show that E0 is invariant
under Φ, i.e. for every v ∈ E0, Φ(v) ∈ E0. Assume that there is an edge E ̸= E0 with
Φ(E0) = E. Note that E is an edge of some JN -graph Gl and also note that every pair
of distinct vertices u, v ∈ E0 with u ̸= v each u−v-Path contains E0. Thus the maximal
number of edge disjoint u− v Paths us 1. By Lemma 2.11 and because k ≥ 3 there are
two vertices u, v ∈ E0 such that there are two edge disjoint Φ(u)−Φ(v)-paths in Gl and
thus in Gt1,...,tk . Therefore, by Lemma 2.12, we have a contradiction and E0 is indeed
invariant under Φ.

Because x0 is the only vertex in E0 with degree 1 we know that Φ(x0) = x0. Assume
that Φ(u1,i) = u1,j for some i ̸= j ∈ N. Because E1,i is the only edge, other than E0, that
contains u1,i we know that for every vertex w ∈ E1,i also Φ(w) ∈ Gk,i. If there now is an
edge E ∈ E(Gk,i) with Φ(E) ̸∈ E(Gk,j) then again there is a vertex w′ ∈ E such that there
are two edge-disjoint w−w′-paths for a vertex w ∈ E1,i. But there are no longer two edge
disjoint Φ(w)−Φ(w′)-paths. Thus by Lemma 2.11 and Lemma 2.12 Φ(Gk,ti) = Gk,tj . But
this is a contradiction because ti ̸= tj and thus |V (Gk,ti)| ≠ |V (Gk,tj)|. So Φ(u1,i) = u1,i

for every i ∈ [k − 1].
Then we know that E1,i is also invariant under Φ for every i ∈ [k − 1]. Therefore

Lemma 2.5 yields that Φ restricted to Gti is the identity so Φ is the identity. We con-
clude the proof that G is asymmetric.

Now in order to show that G is even minimal asymmetric let G ′ be an arbitrary proper
induced subgraph on at least two vertices of G.

Case 1(a): E0 /∈ E(G ′).
Assume there are connected vertices in G ′. If not then all vertices have degree 0,

thus there would be a non-trivial automorphism. Then these connected vertices are in a
subgraph on at least two vertices of some Gk,tj . Therefore Lemma 2.7 yields a non-trivial
automorphism G ′ restricted to Gk,tj . Note here that the statement in Lemma 2.7 is even
stronger than needed because it covers all subgraphs not only the induced ones that we
need. The given non-trivial automorphism Φ′ on Gk,tj can easily be extended to to the
whole subgraph G ′ defining Φ′(w) = w for all other vertices w ∈ V (G).

Case 1(b): E0 ∈ E(G ′).
Then there is an ℓ ∈ [tk] such that the vertex set of Gk,tl is not fully contained in

our subgraph, so V (Gk,tl) ̸⊆ V (G ′). Then there is at least one vertex w ∈ V (Gk,tl) with
w /∈ V (G ′). Thus Lemma 2.8 yields an automorphism Φ′ on G ′ restricted to V (Gk,tl)
with Φ′(ul

1) = ul
1 that can easily be extended to the rest of G ′ by defining Φ′(w) = w for

all other vertices w ∈ V (G ′).
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2 Minimal Asymmetric k-graphs

Thus G is indeed a minimal asymmetric k-graph as claimed. It is easy to check that
G is linear and has maximum degree 2.

Case 2: k = 5.
This case is similar to the general case. We only have to modify the construction a

little to prevent the reflection automorphism on the underlying JN -graphs. So let G5,t

and G5,t′ be two JN -graphs with t, t′ ∈ N , t, t ≥ 2 and t ̸= t′. To indicate to which
underlying k-graph an object belongs we denote it with an apostrophe for example u1

if we talk about the vertex u1 ∈ V (G5,t) and u′
1 if we talk about u1 ∈ V (G5,t′). Let

x0 be an extra vertex disjoint from V (G5,t) ∪ V (G5,t′) and let E0 := {x0, u1, u2, u
′
1, u

′
2}.

Then define F = (V (F), E(F)) with V (F) = V (G5,t) ∪ V (G5,t′) ∪ {x0} and E(F) =
E(G5,t) ∪ E(G5,t′) ∪ {E0}. A sketch of this construction can be seen in Figure 14.

Similarly to case 1 we see that E0 must be invariant under any automorphism Φ on F .
Then it also follows that {u1(t), u2(t)} and {u1(t

′), u2(t
′)} are invariant under Φ because

t ̸= t′. Thus there can not be a reflection automorphism on F . The rest of the analysis
is similar to the general case by considering Lemma 2.8.

Figure 14: Sketch of the graph F

case 3: k = 3.
Let G3,t and G3,t′ be two disjoint JN -graphs with t, t′ ∈ N, t, t′ ≥ 2 and t ̸= t′. As be-

fore in case 2 to indicate to which underlying k-graph an object belongs we denote it with
an apostrophe. We then introduce new vertices x0, y0, z0 disjoint from those of G3,t,G3,t′

and 3 new edges Ex, Ey, Ez with Ex := {x0, u1, u2}, Ey := {y0, u′
1, u

′
2}, Ez := {z0, u3, u

′
3}.

With this we define the 3-graph Ht,t′ = (V (Ht,t′), E(Ht,t′)) where V (Ht,t′) := V (G3,t) ∪
V (G3,t′) ∪ {x0, y0, z0} and E(Ht,t′) := E(G3,t) ∪ E(G3,t′) ∪ {Ex, Ey, Ez}. A sketch of this
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2 Minimal Asymmetric k-graphs

construction can be seen in Figure 14.

Figure 15: Sketch of the graph Ht,t′

Now we show that Ht,t′ is asymmetric. So let Φ be an arbitrary automorphism on Ht,t′ .
Assume Φ(z0) ̸= z0, then there is an edge E ̸= Ez with E ∈ E(Ht,t′) with Φ(E) = Ez.
By connectivity reason, namely Lemma 2.12 we are already at a contradiction. Thus
Φ(z0) = z0. Then it also follows that V (G3,t)∪{x0} and V (G3,t)∪{y0} are invariant under
Φ. Therefore Φ(u3) = u3 and Φ(u′

3) = u′
3. Note that E1, E

′
1, E2, E

′
2 are the only other

edges besides Ez in which every vertex has a degree of 2, thus E1 ∪E2 and E ′
1 ∪E ′

2 are
invariant under Φ. It immediately follows that Φ(v1) = v1, Φ(v2) = v2 and Φ(v3) = v3
as well as the equivalent statements for v′1, v

′
2, v

′
3. Thus there can not be a reflection

mapping and also no cyclic mapping according to Lemma 2.4 on either of the subgraphs
induced by V (G3,t) and V (G3,t′). Therefore Φ must be identity.

Next we show that every non-trivial induced subgraph H∗ of Ht,t′ on at least two
vertices has non-trivial automorphism. Assume Ez /∈ E(H∗) then we either need to find
an automorphism on a subgraph of an JN -graph or we need to find an automorphism
on some disjoint vertices. The former is given by Lemma 2.8 and the latter is trivial. So
let Ez ∈ E(H∗), then there are two cases.

Case 3(a): Ex, Ey /∈ E(H∗):
Assume that there is another vertex w, other then u3, u

′
3, with w ∈ V (G3,t)∪ V (G3,t′)

and also w ∈ V (H∗). If there is no such w then there is a non-trivial automorphism Φ′

with Φ′(u3) = u′
3. Without loss of generality we say w ∈ V (G3,t). Now if E3 /∈ E(H∗)

then there is a non-trivial automorphism Φ′ with Φ′(u3) = z0. Otherwise E3 ∈ E(H∗),
but then there is a non-trivial automorphism that leaves u3 invariant by Lemma 2.8.

Case 3(b): Ex ∈ E(H∗) or Ey ∈ E(H∗).
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2 Minimal Asymmetric k-graphs

We can again assume that E3 ∈ E(H∗). Then Lemma 2.8 yields the required non-
trivial automorphism.

Therefore Ht,t′ is indeed a minimal asymmetric 3-graph. It is easy to check that it is
linear and has a maximum degree of 2.

It should be mentioned that there are infinitely many possibilities to choose indices
t1, . . . , tk−1 that suffice to the conditions in Construction 2.10. There are also infinitely
many ways to choose indices t, t′ that suffice to the constructions presented in case 2 and
case 3. Thus indeed we have shown that for every k ∈ N with ≥ 3 there are infinitely
many linear asymmetric k-graphs with maximum degree 2.
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3 Regular Asymmetric k-graphs

3 Regular Asymmetric k-graphs

In this section we want to study asymmetry and minimal asymmetry of regular hyper-
graphs. We often look at sets of vertices with distinct degrees if we want to prove the
asymmetry of some k-graph G. So it might be reasonable to assume that if all vertices of
G have the same degree then G is symmetric. But in 1969 Baron and Imrich [6] already
showed that this is not the case for graphs.

Theorem 3.1. There are infinitely many 2−regular asymmetric k-graphs for any k ∈ N
with k ≥ 3.

Here we construct some 2-regular k-graphs that are asymmetric. For this we introduce
the concept of edge-asymmetry on graphs that will be very similar to our normal (vertex)-
asymmetry and shall be very helpful in proving the following theorem.

Recall the definition of the adjacency set.

Definition 3.2. (adjacency set)
Let G = (V (G), E(G)) be a hypergraph and v ∈ V (G). We call the set NE(v) := {e ∈

E(G) : v ∈ e} the adjacency set of v

Definition 3.3. (edge-automorphism)
Let G = (V,E) be a graph. We call a bijection Θ : E 7→ E an edge-automorphism if

for every vertex v ∈ V and set of adjacent edges NE(v) there is another vertex v′ ∈ V
with NE(v

′) = {Θ(e) : e ∈ NE(v)}.

Definition 3.4. (edge-asymmetric)
Let G = (V,E) be a graph. We call G edge-asymmetric if the only edge automorphism

of G is the identity.

We will later see that edge-asymmetry is equivalent to asymmetry on non-trivial
graphs, even though there are trivial examples like Figure 16, where a k-graph G is
symmetric but edge-symmetric.

Figure 16: The graph Q, consisting of one of the 18 minimal asymmetric graphs with
two disjoint vertices
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3 Regular Asymmetric k-graphs

Any edge automorphism on Q would induce a non-trivial automorphism on one of the
18 minimal asymmetric graphs. But there obviously is a non-trivial automorphism that
just swaps the two disjoint vertices.

Definition 3.5. (dual of a hypergraph)
Let G = (V (G), E(G)) be a hypergraph. Then its dual graph is H = (V (H), E(H))

where V (H) := E(G) and E(H) := {NE(v) : v ∈ V (G)}. Figure 17 shows the transfor-
mation from the Frucht-graph G to its dual graph H.

G H

Figure 17: The transformation of the Frucht-graph G to is dual H

Lemma 3.6. If G = (V (G), E(G)) is an r-regular graph for r ∈ N, r ≥ 3 then its dual
H = (V (H), E(H)) is an 2-regular r-graph.

Proof. Let G = (V (G), E(G)) be a r-regular graph and H = (V (H), E(H)) its dual.
Let e ∈ E(G) be an arbitrary edge of G, and note that e is also a vertex of H, so we refer
to eG and eH respectively to denote the object we are looking at. There are exactly two
distinct vertices v1, v2 ∈ V (G) with v1, v2 ∈ eG, thus deg(eH) = 2 and we know that H
is 2-regular. On the other hand for every v ∈ V (G), |NE(v)| = r and thus H is indeed
a r-graph.

Lemma 3.7. Let G = (V (G), E(G)) be a graph. If there is an automorphism Φ: V (G) 7→
V (G) with Φ(v) ̸= v for a vertex v ∈ V (G) with deg(v) ≥ 2 then there also is a non-
trivial edge-automorphism for G.

Proof. We see in definition 3.4 that if the condition mentioned above is not met, i.e. if all
automorphisms restricted to vertices of degree ≥ 2 are the identity then the statement
does not hold.

So let G be a graph with an automorphism that suffices to the condition. Now we
give an non-trivial edge-autmorphism Θ: E(G) 7→ E(G). Let e = {u, v} ∈ E(G) be an
arbitrary edge. We know that e′ = {Φ(u),Φ(v)} ∈ E(G) because Φ is an automorphism,
thus we just define Θ(e) = e′. Now let v ∈ V (G) be an arbitrary vertex, then x ∈
NE(Φ(v)) if and only if there is an edge x′ with x′ ∈ NE(v) and Θ(x′) = x. Thus Θ
is indeed an edge-automorphism. It remains to show that Θ is not the identity. Let
v ∈ V (G) be a vertex with deg(v) ≥ 2 and Φ(v) ̸= v. Then there is an edge e with
e ∈ NE(v), e /∈ NE(Φ(v)), and thus Θ(e) ̸= Θ.
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3 Regular Asymmetric k-graphs

Proposition 3.8. Let G = (V (G), E(G)) be an r-regular graph for r ∈ N with r ≥ 3,
then G is asymmetric if and only if G is edge asymmetric.

Proof. We prove the first direction by contraposition. So let G = (V (G), E(G)) be a
graph that is not edge-asymmetric. Then there exists a non-trivial edge-automorphism
Θ : E(G) 7→ E(G). Now we give a non-trivial automorphism Φ : V (G) 7→ V (G). Let
{u, v} = e ∈ E(G) be an arbitrary edge with Θ(e) = {u′, v′}. Because Θ is an edge-
automorphism, there is a vertex w ∈ V (G) such that NE(w) = {Θ(f) : f ∈ NE(v)}.
G is an r-regular graph and thus NE(u

′) ̸= NE(v
′). Therefore w = u′ or w = v′. In

the first case define Φ(v) = u′ and in the latter Φ(v) = v′. If there are two edges e, e′

that intersect in a vertex v ∈ V (G) then the procedure above gives for both edges the
same vertex v′ for v to be mapped to. Second let e = {u, v} ∈ E(G) be an arbitrary
edge and let w,w′ ∈ V (G) be vertices such that NE(w) = {Θ(f) : f ∈ NE(u)} and
NE(w

′) = {Θ(f) : f ∈ NE(v)}. Then NE(w) ∩ NE(w
′) ̸= ∅ and thus there is a edge

{w,w′} = {Φ(u),Φ(v)} ∈ E(G) which shows that Φ is indeed a proper automorphism.
It remains to show that Φ is not the identity. Since Θ is not the identity there is an
edge {u, v} = e ∈ E(G) with Θ(e) = e′, e ̸= e′. Then the procedure defined above tells
us that either Φ(u) ̸= u or Φ(v) ̸= v.

The other direction follows by contraposition directly of Lemma 3.7 because every
vertex of G has degree ≥ 3.

Lemma 3.9. If G = (V (G), E(G)) is an edge-asymmetric r-regular graph for r ≥ 3
then its dual H = (V (H), E(H)) is asymmetric.

Proof. Let Θ: V (H) 7→ V (H) be a non-trivial automorphism on H. By definition 3.5
the dual of a hypergraph transforms the edges E(G) to vertices V (H) and adds edges
E(H) corresponding to the vertices V (G), so to the intersection points of the edges
in E(G). Thus Θ induces an non-trivial edge-automorphism Θ′ : E(G) 7→ E(G) on G
with Θ′(e) = Θ(e) for each edge e ∈ E(G). Let u ∈ V (G) be an arbitrary vertex,
then because G is r-regular, there are distinct edges e1, . . . , er ∈ NE(u) . Then there
is an edge u′ ∈ E(H) with Θ{e1}, . . . ,Θ{er} ∈ NE(u

′). If we now view u′ as a vertex
in G then we know that NE(u

′) = {Θ′(e) : e ∈ NE(u)} and thus Θ′ is indeed a edge-
automorphism on G. Furthermore Θ′ is non-trivial as Θ already was non-trivial which
proves the statement.

Now we can finally prove Theorem 3.1.

Proof. Baron and Imrich [6] showed the existence of infinitely many r-regular asymmetric
graphs for every r ∈ N with r ≥ 3. By Proposition 3.8 these graphs are also edge-
asymmetric and thus by Lemma 3.9 the dual of those graphs are asymmetric. By
construction the duals of two distinct regular graphs are again distinct and Lemma 3.6
tells us that the dual of an r-regular graph is a 2-regular r-graph which completes the
proof that there are infinitely many 2-regular k-graphs for every k ∈ N with k ≥ 3.
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Now that we have shown the existence of regular asymmetric k-graph the next natural
question to ask is if there are minimal regular asymmetric k-graphs. For k = 2 the answer
is no because there are only 18 minimal asymmetric graphs [13] and none of them is
regular. But already the case of 2-regular 3-graphs seems hard. The techniques in this
section sadly can not be applied to this problem as minimal asymmetric k-graphs are in
general not minimal edge-asymmetric as the following example shows.

(a) Graph G1 (b) Graph G2

Figure 18: Two of the 18 minimal asymmetric graphs

In Figure 18 we see two of the minimal asymmetric graphs and also that G1 can be
obtained by deleting an edge of G2, so G2 is indeed not minimal edge asymmetric
Nevertheless this leads to the following conjecture.

Conjecture 3.10. There is no minimal asymmetric r-regular k-graph for any r, k ∈ N
with k ≥ 3

We were able to show the following interim result.

Lemma 3.11. Let G = (V (G), E(G)) be a minimal asymmetric 2-regular k-graph.
Then G is linear.

Proof. Assume there are two intersecting edges e1, e2 ∈ E(G) with e1 ∩ e2 = {v1, v2}
for two vertices v1, v2 ∈ V (G). Then there is a non-trivial automorphism Φ on G with
Φ(v1) = v2,Φ(v2) = v1 and Φ(w) = w for all other vertices w ∈ V (G).
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4 Random Asymmetric k-graphs

In this Section we will consider the degree of asymmetry of random k-graphs. Remember
that the degree of asymmetry A(G) of a k-graph G, introduced by Erdős and Rényi [12]
for graphs, is the minimum number of edge deletions and additions to the edge set of
G, such that the resulting graph G′ is symmetric. Erdős and Rényi [12] also showed the
following two results.

Theorem 4.1 (Erdős and Rényi [12]). Let G = (V (G), E(G)) be a random graph in
G(V (G), 0.5, 2) with an infinite countable vertex set V (G). Then G is, with a probability
1, symmetric.

Theorem 4.2 (Erdős and Rényi [12]). Let G = (V (G), E(G)) be a graph with |V (G)| =
n. The degree of asymmetry A(G) of G can be bounded by A(G) ≤ n−1

2
.

Here we will use their techniques and extend them to show similar results for k-
graphs with k ∈ N and k ≥ 3. To prove the next result we need the following lemma
formulated by Henze [11]. Originally the lemma was proven by Borel [2] and Cantelli
[3] independently.

Lemma 4.3. Lemma of Borel-Cantelli
Let (An)n≥1 be an arbitrary sequence of events in some probability space (Ω,A,P)

then:

1. If
∞∑
n=1

P(An) < ∞ then P(lim supn→∞ An) = 0.

2. Let the events A1, A2, . . . be independent.

Then if
∞∑
n=1

P(An) = ∞ then P(lim supn→∞An) = 1.

Theorem 4.4. Let k ∈ N with k ≥ 3 and let G = (V (G), E(G)) be a random k-graph in
G(V (G), 0.5, k) with an infinite countable vertex set V (G). Then G is with a probability
1 symmetric.

Proof. We will modify the procedure given in section 3 of [12] to build up a non-trivial
automorphism for k-graphs.

Let G(V, 0.5, k) be the probability space of k-graphs with vertex set V = {vi : i ∈ N}
and edge probability 0.5. Furthermore let G = (V (G), E(G)) ∈ G. Then we start
defining a non-trivial function Φ : V (G) 7→ V (G). We will show that Φ is almost surely
a non-trivial automorphism and moreover an involution. Let Φ(v1) := v2, Φ(v2) := v1 as
well as Φ(vi) = vi for i = 3, ..., k. Because the k-graph G′ induced by {v1, ..., vk} has only
one possible edge consisting of all its vertices all vertex permutations are automorphisms.
Thus Φ restricted G′ to it is indeed a non-trivial automporphism. Also by definition of
the restriction of Φ the only vertices that are not fixed by it are v1 and v2, thus it is also
an involution.
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Now we iteratively assign a value to the next "free" vertex. So let I be an index set
such that Φ(vi) is already defined for every i ∈ I and let j ∈ N be the smallest index not
in I. For any vertex vα ∈ V (G), α /∈ I let Gvα

I be the k-graph induced by
⋃

i∈I vi ∪ vα.
Let furthermore LGvα

I (vα) be the link of vα in Gvα
I . We call LGvα

I
good(vα) := {ℓ ∈ LGvα

I (vα) :

Φ(ℓ) = ℓ} the set of good links of vα and L
Gvα

I
bad (vα) := {ℓ ∈ LGvα

I (vα) : Φ(ℓ) ̸= ℓ} the set
of bad links of vα in Gvα

l . Now we want to find suitable vertex vj′ for vj to be mapped
to by Φ. Thus we need a vertex vj′ ∈ V (G) with j′ ̸= j, j′ /∈ I as well as L

vj
good = L

vj′

good

and L
vj
bad = Φ(L

vj′

bad). Moreover we need to restrict ourselves to vertices vj′ such that in
the k-graph G′ induced by

⋃
i∈I vi ∪ vj ∪ vj′ there is no edge e ∈ E(G′) with vj, vj′ ∈ e.

We then define Φ(vj) = Φ(vj′) and Φ(vj′) = Φ(vj).

Now let G′ be the subgraph of G induced by
⋃

i∈I vi ∪ vj ∪ vj′ . Then we need to
check if Φ restricted to G′ is indeed an involution. By construction we know that if it
is an automorphism then it is already an involution. Let v ∈ V (G′) be an arbitrary
vertex and e ∈ E(G′) be an arbitrary edge with v ∈ e. If vj, vj′ /∈ e then ϕ(e) ∈ E(G′)
because we know inductively that Φ restricted to the k-graph induced by

⋃
i∈I vi is an

automorphism. So without loss of generality let vj ∈ e, the case vj′ ∈ e works similarly.

If e \ vj ∈ L
G

vj
I

good(vj) then also by definition e \ vj ∈ L
G

vj′
I

good(vj′) and thus Φ(e) ∈ E(G′).

Else e \ vj ∈ L
G

vj
I

bad (vj), but then Φ(e \ vj) ∈ L
G

vj′
I

bad (vj′) and thus Φ(e) ∈ E(G′). Then Φ is
indeed an involution on G′.

The only thing left to do is to show the existence of such a "swapping vertex". So let
us assume we are in the setting above and already have defined Φ for some n vertices,
so = |I| = n for a n ≥ k ∈ N. Let vj again be the vertex to be "swapped" and let
J ′ = {x ∈ N : x /∈

⋃
i∈I vi ∪ vj}. Because there are α :=

(
n

k−1

)
many possibilities to pick

k − 1 vertices out of those defined by I we know that |Lvj
good|, |L

vj
bad| ≤ α. Furthermore

there are β :=
(

n
k−2

)
many possibilities to pick a k − 2 set out of I. Thus let pj′ be

the probability of the event Aj′ that a vertex vj′ with vj′ /∈
⋃

i∈I vi ∪ vj satisfies all our
conditions. Then pj ≥ 1

2

α · 1
2

α · 1
2

β
= 1

2

2α+β. It is clear that the events Aj′ are independent
for each vertex vj′ . Also because 1

2

2α+β
> 0 is a constant we know that

∑
j′∈J ′

pj′ = ∞.

Thus all conditions for the Lemma of Borell-Cantelli are satisfied and we know that
lim sup
x→∞

Aj′ = 1. So in every step there are almost surely infinite many vertices that

our current vertex can be swapped with and thus indeed our algorithm produces, with
probability 1 an inversion.

Theorem 4.5. For a k-graph G with k ∈ N, k ≥ 2 and |V (G)| = n the degree of
asymmetry A(G) of G can be bounded by A(G) ≤

(
n−1
k−1

)
n−1

2(n−k+1)
.

Note that a trivial upper bound A(G) ≤
(
n−1
k−1

)
can be achieved by knowing that there

are two vertices u, v ∈ V (G) with either deg(u), deg(v) ≤
(
n−1
k−1

)
·1
2

or deg(u), deg(v) ≥
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4 Random Asymmetric k-graphs

(
n−1
k−1

)
·1
2
. So if we either remove all edges incident to u or v or add all possible edges then

we can define an automorphism on this modified k-graph that just swaps u and v and
thus A(G) ≤

(
n−1
k−1

)
.

Proof. By potential relabeling of vertices we may assume that V (G) = {v1, . . . vn}. If two
vertices have the same link it is clear that there is automorphism that just interchanges
those vertices. Therefore we can bound A(G) by the smallest number of edges that can
be removed such that in the resulting graph G′ there are two vertices u, v ∈ V (G′), u ̸= v
with Lu = Lv. We call this number ∆u,v.

We define the good and bad link of a pair of vertices u, v ∈ G as

Lgood(u, v) := {ℓ : (ℓ ∈ L(u) and (ℓ ∈ L(v) or v ∈ ℓ)) or ℓ ∈ L(v) and u ∈ ℓ}

and
Lbad(u, v) := L(u) ∪ L(v) \ Lgood(u, v).

Note that Lgood(u, u) = L(u) and Lbad(u, u) = ∅ for every u ∈ V (G).

For u, v ∈ V (G) and ℓ ∈ L(u) it is clear that ℓ ∈ Lgood(u, v) or ℓ ∈ Lbad(u, v, ) and
in reverse if ℓ′ ∈ Lbad(u, v) then either ℓ′ ∈ L(u) or ℓ′ ∈ L(v). Moreover Lgood(u, v) and
Lbad(u, v) are symmetric so Lgood(i, j) = Lgood(j, i) and Lbad(i, j) = Lbad(j, i). This leads
us to conclude |L(u)|+ |L(v)|−2|Lgood(u, v)| = |Lbad(u, v)| for every vertex u, v ∈ V (G).
On the other hand we can make the following estimate

A(G) ≤ min
u,v∈V (G),u ̸=v

|L(u)|+ |L(v)| − 2Lgood(u, v),

because a symmetrization of minimal size that equalizes the link of two vertices would
not have to modify edges that contribute to good links of those vertices.

Ergo
A(G) ≤ min

u̸=v
|Lbad(u, v)|

and by forming the average and because Lbad(w,w) = ∅ for all w ∈ V (G)

A(G) ≤ min
u,v∈V (G)

|Lbad(u, v)| ≤

n∑
i=1

n∑
j=1

|Lbad(vi, vj)|

n(n− 1)
.

Now define l1, . . . , l( n
k−1)

to be all the (k − 1)-size subsets of V (G) and for s ∈ [
(

n
k−1

)
]

let α(ls) := |{e : e ∈ E(G), ls ⊂ e}| be the number of edges in E(G) that have ls as a
subset.

Then by a double counting argument the following equation holds

n∑
i=1

n∑
j=1,j ̸=i

Lbad(vi, vj) = 2

( n
k−1)∑
s=1

α(ls)(n− 1− α(ls)).
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4 Random Asymmetric k-graphs

By definition of the bad link of two vertices the first part of the equation counts the
triples (vi, {w1, . . . , wk−1}, vj) such that either {vi, w1, . . . , wk−1} ∈ E(G) or {vj, w1, . . . , wk−1} ∈
E(G). In the second part we fix an k − 1 element subset ls ⊂ V (G). Then there are
α(ls) many possibilities to choose a vertex vj such that ls∪vj ∈ E(G) and (n−1−α(ls))
many possibilities to choose a vertex vi such that there is no edge with ls ∪ vi ∈ E(G).
In the end we have to double the value because in our triple we can interchange the first
and last vertex.

Furthermore

α(ls)(n− 1− α(ls)) =

(
n− 1

2

)2

−
(
n− 1

2

)2

+ (n− 1)α(ls)− (α(ls))
2

=

(
n− 1

2

)2

−
(
α(ls)−

n− 1

2

)2

Now because
(
α(ls)− n−1

2

)2 ≥ 0

2 ·
( n
k−1)∑
s=1

α(ls)(n− 1− α(ls)) ≤
(

n

k − 1

)
(n− 1)2

2
.

Dividing by n(n− 1) yields

A(G) ≤
(

n

k − 1

)
(n− 1)2

2n(n− 1)

=
n!

(k − 1)!(n− k + 1)!

(n− 1)

2n

=
(n− 1)!

(k − 1)!(n− k + 1)!

(n− 1)

2

=
(n− 1)!

(k − 1)!(n− 1− k + 1)!

(n− 1)

2(n− k + 1)

=

(
n− 1

k − 1

)
(n− 1)

2(n− k + 1)
.

We see that this bound is only an improvement compared to the trivial bound
(
n−1
k−1

)
if k ≤ n

2
. But for k << n, i.e. if n is large compared to k we get an improvement of

almost 1
2
. Also note that in the case k = 2 we get bound of Theorem 4.2, i.e. we can

bound the degree of asymmetry for every 2-graph G by A(G) ≤ n−1
2

.

Theorem 4.6. (Erdős Rènyi [12]) Let G ∈ G([n], p) for p ∈ (0, 1) and let ϵ > 0. We
call Pn the probability that G can be made symmetric by changing no more then n(1−ϵ)

2

edges of G. Than
lim
n→∞

Pn(ϵ) = 0.
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This result tells us that not only almost every graph is asymmetric but also that it
has a high degree of asymmetry as n−1

2
is an upper bound for the degree of asymmetry

of a graph. It is in stark contrast to Theorem 4.2 where it is shown that almost every
graph with countable infinite vertices is symmetric. To prove it Erdős and Rényi used
the following estimate:

Pn(ϵ) ≤
n∑

q=2

An,q ·Bn,q · Cn,q

2(
n
2)

where An,q is the number of permutations Sn,q on [n] leaving exactly n − q elements
invariant. Bn,q is an upper bound for the number of graphs where such permutation is a
proper automorphism and Cn,q is an upper bound for the number of graphs G that can
be transformed into a graph G′ such that there is a permutation p ∈ Sn,q that is a proper
automorphism on G′ where the transformation from G to G′ consists of no more then
n(1−ϵ)

2
edge additions or deletions. It is clear that this indeed is an estimate because

if G is a graph with degree of asymmetry A(G) ≤ n(1−ϵ)
2

then there is a non-trivial
automorphism on a modified graph G′ that is the identity for some q′ ∈ {0, . . . , n − 2}
vertices. Note that there is no automorphism that changes just one vertex and any
automorphism that is the identity on all vertices is trivially just the identity. They then
go on to look at those terms individually.

Within the limits of this thesis we were not able to show the equivalent statement for
k-graphs but we conjecture the following.

Conjecture 4.7. Almost every k-graph is asymmetric.
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5 Computing Hypergraph Automorphism

5 Computing Hypergraph Automorphism

In the following we will discuss a paper due to Luks [5]. We aim to solve the following
problem.

Problem 5.1. hypergraph automorphism
Input: Hypergraph G = (Σ, E).
Output: The set of automorphisms on G, Aut(G).

Luks showed the following theorem.

Theorem 5.2. Luks [5] hypergraph automorphism can be solved in O(c|Σ|) time for a
constant c.

The Author solves the problem hypergraph automorphism by first solving the prob-
lem graph isomorphism. But even testing if two graphs are isomorphic is not trivial at
all. Thus graph isomorphism gets reduced to another Problem: coset-intersection.

Problem 5.3. graph isomorphism
Input: Two graphs G1 and G2.
Output: The isomorphism group between G1 and G2 or ∅.

5.1 Group theoretical notation

In order to understand Luks proof we will need to dive into Group Theory so here are
some basic definitions.

Definition 5.4. (group)
A group G = (G, ·) is tuple where G is a set and ” · ” is a binary relation on the

elements of G satisfying the following group axioms.

Associativity: For every a, b, c ∈ G: a · (b · c) = (a · b) · c.

Existence of Neutral element: There is an e ∈ G with a · e = a for every a in G.

Existence of inverse element: For every a ∈ G there is an a′ ∈ G with a · a′ = e
for the neutral element e. We denote a−1 := a′.

Example: For a set Σ we call Sym(Σ) the group of all permutations of Σ. If Σ = [n]
for some n ∈ N we denote Sn := Sym([n]). The operation · in this case is the composition
of two permutations. For instance let n = 6 and consider the permuations group S6

as above. If we take two elements π1, π2 ∈ in cyclic notation e.g. π1 = (123456),
π2 = (132465) then π1 ·π2 = (14)(2)(36)(5). In the following we often omit the operation
” · ”.
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5 Computing Hypergraph Automorphism

Definition 5.5. (subgroup)
Let G = (G, ·) be a group. We say that H = (H, ·) is a subgroup of G if H ⊆ G and

for all h1, h2 ∈ H, h1 · h−1
2 ∈ H. If H is a subgroup of G we denote this by H ≤ G.

Example: Let G6 be the group as above. Then H = (H, ·′) with H = {(123456),
(135)(246), (14)(25)(36), (153)(264), (1654321)} is a subgroup of G.So Informally we say
H consist of all shifts of 123456, so all operation that shifts every digit the same distance
to the left or right.

Definition 5.6. (coset)
Let G be a group and H be a subgroup of G with g ∈ G then we define the right-coset

of H with g in G: Hg = {h · g : h ∈ H}. The left-coset are defined similarly.

Example: Let G and H as above and g = (12)(3)(4)(5)(6) ∈ G. Then Hg =
{h · (12)(3)(4)(5)(6) : h ∈ H} is the right-coset of H in G with g that consists of all shifts
of 123456 that afterwards swap the first and and second digit.

Let Σ be a set. For X ⊆ Σ and π ∈ Sym(Σ) we denote the image of X under
π as Xπ := {aπ : a ∈ X}. So if Σ = {[5]} and π = (15243) then 3π = 1 and
{1, 2, 3}π = {5, 4, 1}.

Definition 5.7. (stabiliser)
Let Σ be a set and A ⊆ Sym(Σ). For any ∆ ∈ Σ the set stabiliser of ∆ in A is

A∆ := {a ∈ A : ∆a = ∆}.

Example: Let A = {(123)(456), (142635), (1)(564)(23)} ⊂ Sym([6]) and ∆ = {1, 3, 5}.
Then the set-stabilizer A∆ consist of all elements in A that leave {1, 2, 3} invariant so
A∆ = {(123)(456), (1)(564)(23)}.

Definition 5.8. (diagonal of a set)
For any set Σ define the diagonal of Σ as diag(Σ) := {(x, x) : x ∈ Σ}

5.2 Solving graph isomorphism

We will reduce graph isomorphism to the following problem.

Problem 5.9. coset-intersection
Let Σ be a set.
Input: G,H ≤ Sym(Σ) and π1, π2 ∈ Sym(Σ)
Output: Gπ1 ∩Hπ2.

Luks [5] showed the following theorem. To not immerse too deeply into group theory
we only provide a sketch of the proof. The interested reader is referred to [5].

Theorem 5.10. Luks [5] coset-intersection can be solved in O(c|Σ|) time for a con-
stant c.
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5 Computing Hypergraph Automorphism

Babai [9] improved on this bound and showed that coset-intersection can be solved
in exp (O(

√
n log n)) time.

In order to solve coset-intersection, we first state two generalisations of it.

Problem 5.11. partial coset
Let Γ and ∆ be two sets.
Input: L ≤ Sym(Γ)× Sym(∆), z ∈ Sym(Γ×∆), Π ⊆ Γ×∆
Output: (Lz)Π := {x ∈ Lz : Πx = Π}.

To have an efficient algorithm we need to do two more things. First we need to assume
that both Γ and ∆ are sets with a size of a power of 2. This can be done by extending
both sets and letting our group operations act trivially on the extended part. Second,
we need to refine our problem to be able to solve it recursively, thus:

Problem 5.12. partial coset recursion
Let Γ and ∆ be two sets.
Input: L ≤ Sym(Γ)× Sym(∆), z ∈ Sym(Γ×∆), Π ⊆ Γ×∆, Θ := Φ× Ψ ⊆ Γ×∆

such that LΘ = L and with |Θ| being a power of 2.
Output: (Lz)Π[Θ] := {x ∈ Lz : (Π ∪Θ)x = Π ∪Θx}

Note that with Θ = Γ×∆ we have a instance of the partial coset problem.

Lemma 5.13. Luks [5] partial coset can be solved in O(c|Γ|+|∆|) time for a constant
c.

Here we omit the proof of Lemma 5.13.

Proof of Theorem 5.10. To solve coset-intersection we now use partial coset in the
following setting. Let L = G × H, z = (x, y),Γ = ∆ = Σ, Π = diag(Σ × Σ). Then
for g ∈ G, h ∈ H with (gx, hy) ∈ (Sym(Σ) × Sym(Σ)) it follows that if gx = hy then
(g, h) ∈ (Lz)Π. Thus the first coordinate projection of our special case of partial
coset is the solution to coset-intersection.

Theorem 5.14. Luks [5] graph isomorphism can be solved in c|V (G1)| time for some
constant c.

Proof. Assume That V (G1) ∩ V (G2) = ∅. If not just rename the vertices of one of the
graphs. Secondly assume |V (G1)| = |V (G2)| if not then there obviously can not be any
any isomorphism between G1 and G2.

We set Σ := V (G1) ∪ V (G2) and Π := {e = (σ, r) : e ∈ E(G1) ∪ E(G2)} as well as
G = Sym(Σ)V (G1), so G is the subgroup of Sym(Σ) that leaves V (G1) invariant. Let
t ∈ Sym(Σ) be a fixed permutation that transposes V (G1) and V (G2). Then Gt contains
all permutations that transpose V (G1) and V (G2) because any such permutation can be
split in a part that transposes the two vertex sets, which is done by t, and a part that
is just a permutation on each vertex set, and those are just in G.
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Now we consider a special case of coset-intersection with Γ = ∆ = Σ, L =
diag(G,G), z = (t, t) and Π as above. As we noted above any permutation that trans-
poses V (G1) and V (G2) is in Gt and thus any bijection f : V (G1) 7→ V (G2) induces a
permutation π ∈ Gt such that πV (G1) = f and πV (G2) = f−1. If f is an isomorphism then
for its induced permutation π it must hold that π ∈ LzΠ because this guarantees that
previously connected vertices are still connected after the permutation. On the other
hand if (xt, xt) ∈ LzΠ then the corresponding bijection xtV (G1) is an isomorphism. Thus
(Lz)V (G1) already contains all isomorphism if we restricted the elements to V (G1).

5.3 Solving hypergraph automorphism

Now we can finally prove the equivalent statement for hypergraphs.

Problem 5.15. hypergraph isomorphism
Input: Two hypergraphs G and H.
Output: isomorphism group between G and H or ∅

Any hypergraph G has a natural bijection to a bipartite graph B where one partite
set represents the vertices of the original hypergraph and the other one represents the
edges so V (B) = V (G) ∪ E(G), and the edges of B are getting added by inclusion so
E(B) := {(v, e) : v ∈ V (H), e ∈ E(H) with v ∈ e}.

But bluntly solving the isomorphism problem for the appropriate bipartite graph
would yield an explosion in the running time due to there being potentially up to 2|V (G)|

many edges in G and thus |V (G)| + 2|V (G)| /∈ O(|V (G)|) many vertices in B. Thus we
need a more clever way to solve the problem.

Due to hypergraph isomorphism being reducible to hypergraph automorphism [5]
it suffices to solve the latter. To minimize running time we use a dynamic programming
scheme. For this define for every hypergraph and subsets of vertices a corresponding
bipartite graphs the following way. For any ∆ ⊆ Σ define

E∆ := {Θ ∩∆ : Θ ∈ E,Θ ∪∆ = Σ},

and for any ∆,Γ ⊆ Σ let B∆
Γ = (V (B), E(B)) be the bipartite graph with

V (B) := Σ ∪ P(Σ)

where P(Σ) is the power set of Σ and

E(B∆
Γ ) := {(λ,Φ) : Φ ∈ E∆, λ ∈ Φ ∩ Γ}.

Note that for ∆ = Γ = Σ and the deletion of some vertices corresponding to non-
existent edges we get the natural bipartite graph corresponding to our hypergraph G.
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Lemma 5.16. Luks [5]

(i) For γ ∈ ∆ : E(B∆
{γ}) = {(γ, {γ}

.
∪ Φ) : Φ ∈ E∆\{γ}}

(ii) E(B∆
Σ ) = {(σ,Φ) : σ ∈ Φ ∈ E∆}

Proof. (i) Let Φ ∈ E∆ then either γ∩Φ = ∅ or γ∩Φ = γ, thus each element E ∈ E(B∆
{γ})

must contain γ. Then each E ∈ E(B∆
{γ}) has the form E = {γ} ∪ E ′ for a determined

later E ′. Note that E ′ ∈ E∆\γ because for any Φ ∈ E with Φ ∪∆ = Σ and γ ∈ Φ ∩∆
we also know that Φ ∪ (∆ \ γ) = Σ and Φ ∩ (∆ \ γ) = E ′. On the other hand if we take
any E ′ ∈ E∆\{γ} then it follows directly that E ′ ∪ {γ} ∈ E∆.
(ii) This follows directly by definition because Φ ∩ Σ = Φ.

Proof of Theorem 5.2. As before we assume that |Σ| is a power of 2 by extending G and
looking at the subgroup of the solution that fixes the added points. In the following we
construct a table of sub-solutions and use dynamic programming to reduce calculation
overhead. Let ∆,∆′,Γ,Γ′ ⊆ Σ with |∆| = |∆′| and |Γ| = |Γ′| both being a power of 2.
Let additionally Iso(Γ,∆,Γ′,∆′) be a subset of Sym(Σ) mapping Γ to Γ′ and E∆

Γ to E∆′

Γ′ .
Now we show that Iso(Γ,∆,Γ,∆) is a subgroup of Sym(Σ) and that Iso(Γ,∆,Γ′,∆′)
is a right coset of this subgroup. Let S = Iso(Γ,∆,Γ,∆) then it is clear that the iden-
tity is in S. Let s1, s2 ∈ S and let E ∈ E∆

Γ then s2(E) ∈ E∆
Γ , additionally there is an

edge E ′ ∈ E∆
Γ with s2(E

′) = E implying that s−1
2 (E) = E ′ and therefore we know that

s−1
2 ∈ S. So S is by Definition 5.5 a subgroup of Sym(Σ). If there is no π ∈ Sym(Σ)

with Γπ = Γ′ with π ∈ Iso(Γ,∆,Γ′,∆′), then Iso(Γ,∆,Γ′,∆′) = ∅. So let us assume
it is non-empty and π ∈ Iso(Γ,∆,Γ′,∆′). Let again s1 ∈ Iso(Γ,∆,Γ,∆), E ∈ E∆

Γ and
x = s1π. We know that s1(E) = E ′ for an E ′ ∈ E∆

Γ , thus x(E) = π(E ′) ∈ E ′∆′
Γ . Then

Iso(Γ,∆,Γ′,∆′) is indeed a right coset of Iso(Γ,∆,Γ,∆).

Now we fill the lookup-table with all of those cosets in order of increasing ∆ and for
each ∆ in order of increasing Γ. The full table contains in particular Iso(Σ,Σ,Σ,Σ),
the solution of hypergraph automorphism.

Computation of Iso(Γ,∆,Γ′,∆′) :
First note that for ∆ = ∅ the entry of Iso(Γ,∆,Γ′,∆′) contains just all permutations

of Sym(Σ) that map Γ to Γ′ which can be calculated in polynomial time. For ∆ ̸= ∅ we
distinguish between the two following cases.

Case 1: |Γ| = 1.
Let Γ = {γ} and Γ′ = {γ′}. If exactly one of E(B∆

{γ}), E(B∆
{γ′}) is empty then there

obviously can not exist an isomorphism between them and if both are empty then by a
previous remake Iso({γ},∆, {γ′},∆′) contains all isomorphism mapping γ to γ′. So let
us assume from now on that both are non-empty.

Then γ ∈ ∆ and γ′ ∈ ∆′. Thus by Lemma 5.16 (i) Iso({γ},∆, {γ′},∆′) contains
those permutations that map γ to γ′ and E∆\{γ} to E∆′\{γ′}. Then Lemma 5.16 (ii) tells
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us that the edges of B∆\γ
Σ , B∆′\γ′

Σ are self contained and thus the permutations that map
E∆\{γ} to E∆′\{γ′} are precisely those that induce isomorphism from B

∆\γ
Σ to B

∆′\γ′

Σ so
Iso(Σ,∆ \ {γ},Σ,∆′ \ γ′). Those again were already calculated and can be just read
from our lookup-table.

Case 2: Γ > 1.
We use a simple divide and conquer approach to solve this case. For each Γ1 ⊂ Γ with

|Γ1| = |Γ|
2

determine Iso(Γ1,∆,Γ′
1,∆

′)∩ Iso(Γ \Γ1,∆,Γ′ \Γ′
1,∆

′). The subisomorphism
can just be read off the lookup-table and the coset-intersection gets solved by the The-
orem 5.10 in exponential time. Now we just form the union over the results for all of
those Γ1.

Now that we have an algorithm that computes the automorphism group G of an
hypergraph G we can also decide if G is asymmetric by considering the order of G.
Within the limits of this thesis were not able to extend the dynamic programming
scheme to decide if a given hypergraph is minimal asymmetric. Instead we have to
execute the algorithm above on every induced subgraph of G.

Theorem 5.17. Let G = (V (G), E(G)) be a hypergraph. For some constant c′ it can be
decided in O(c′|V (G)|) time whether G is minimal asymmetric.

Proof. There are 2|V (G)| induced subgraphs of G. We can bound the computation time of
hypergraph automorphism of every subgraph by the computation time of hypergraph
automorphism of G. Thus we can bound the computation time of deciding whether
G is minimal asymmetric by 2|V (G)|c|V (G)| = c′|V (G)| for some constant c′ where c is the
constant of Theorem 5.2.
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6 Concluding Remarks

In Section 2 we gave a construction for minimal asymmetric linear k-graphs with max-
imum degree 2. These are optimal in the sense that there can not be a minimal asym-
metric or even an asymmetric k-graph with smaller degree. Another related property,
that we did not consider here, is the sparsity of a minimal asymmetric graph. So
one could ask what is the minimal number |E(G)|

(|V (G)|
k )

for a minimal asymmetric k-graph

G = (V (G), E(G)).

The third Section concluded in Theorem 3.1, where we showed that for every k ∈ N
there are infinitely many asymmetric 2-regular k-graphs. We believe it is possible to
extend this result and construct infinitely many asymmetric r-regular k-graphs for every
r ≥ 3, k ≥ 3. We also stated a more difficult problem in Conjecture 3.10 where we
conjecture that there is no minimal asymmetric r-regular k-graph for any r, k ∈ N with
k ≥ 3.

In the forth Section we then studied the degree of asymmetry of k-graphs. We gener-
alised some results on graph by Erdős and Rényi [12] to k-graphs. Probably the most
well known result of their paper is Theorem 4.6, where they showed that almost every
graph is asymmetric. Here we also conjectured that this result can be generalised to
k-graphs.

In the fifth Section we studied an algorithm by Luks [5] that calculates the automor-
phism group of an given hypergraph G in exponential running time. We then gave a
slight extension of said algorithm to also decide in c|V (G)| running time, for a constant c,
if a given hypergraph G is minimal asymmetric. Here and in Luks [5] it remains open
to minimize the base c.
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