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Abstract

The Existential Theory of the Reals consists of true sentences of formulas of polyno-
mial equations and inequalities over real variables that are existentially quantified.
The corresponding decision problem ETR asks if a given formula of this structure is
true. Similar to the relation between SAT and NP, the complexity class ∃R is defined
as the problems that are polynomially transformable into ETR.

We first classify ∃R as a class inbetween NP and PSPACE and present a machine
modell equivalent to ∃R. Then we take a look at multiple ∃R-complete variants of
ETR that are commonly used as a basis for ∃R-completeness proofs. We investigate
many of these proofs for problems from a graph drawing background and find a
framework that starts at an ∃R-complete restriction of ETR called ETR-INV, or its
planar variants.

After that, we apply this framework to conduct our own ∃R completeness proof for the
problem DrawingOnSegments where we are given a graph G and an arrangement
of segments and have to draw the graph on the segments in a planar way. Finally,
we show ∃R-membership for three more graph drawing problems. RAC-Drawing
and α-CrossingAngle restrict the angles of crossing edges to 90 degrees and to
minimum α, respectively, and AngularResolution that only allows angles of at
least α between consecutive edges on their common vertex. We suspect that these
problems are also ∃R-complete.

Deutsche Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit der Komplexitätsklasse ∃R. Diese wird über
die Existentielle Theorie der Reellen Zahlen definiert, welche eine Menge von wahren
Formeln ist, diese bestehen aus logischen Verknüpfungen von Polynomgleichungen
und Polynomungleichungen über reellen Variablen, wobei alle Variablen existentiell
quantifiziert sind. Das zugehörige Entscheidungsproblem, das für eine Formel φ
dieser Struktur entscheidet, ob φ wahr ist, heißt ETR. ∃R besteht dann aus allen
Problemen, die in einer ETR-Formel in polynomieller Länge darstellbar sind.

Zunächst zeigen wir, dass ∃R zwischen NP und PSPACE eingeordnet werden kann.
Dann stellen wir ein Maschinenmodell für ∃R vor und führen mehrere ∃R-vollständige
Varianten von ETR ein, die als Basis für Vollständigkeitsbeweise genutzt werden.
Anschließend stellen wir einige dieser Beweise vor und finden für eine Art von
Reduktionen ein Gerüst, das von ETR-INV und planaren Varianten des Problems
ausgeht.

Dieses Gerüst benutzen wir dann selbst, um ∃R-Vollständigkeit für das Problem
DrawingOnSegments zu zeigen, wo wir einen gegebenen Graphen planar auf
eine Menge von Segmenten zeichnen müssen. Außerdem zeigen wir für drei weitere
Probleme die Zugehörigkeit zur Komplexitätsklasse ∃R: Bei RAC-Drawing müssen
wir für einen gegebenen Graphen entscheiden, ob er mit geraden Linien als Kan-
ten gezeichnet werden kann, wobei Kreuzungen zwischen Kanten rechtwinklig sein
müssen. Das Problem α-CrossingAngle verallgemeinert das und erlaubt minimalen
Winkel α für Kreuzungen. Bei AngularResolution müssen stattdessen die Winkel
zwischen adjazenten Kanten am gemeinsamen Endknoten einen Mindestwinkel α
haben. Wir vermuten, dass diese Probleme auch ∃R-vollständig sind.

v





Contents

1 Introduction 1

2 Preliminaries 3
2.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Complexity Class ∃R 7
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 NP ⊆ ∃R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 ∃R ⊆ PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Feasibility and StrictIneq . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 ETR-INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Existing Problems and Reductions 15
4.1 Simple Stretchability of Pseudolines . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Reductions from SimpleStretchability . . . . . . . . . . . . . . . . . . . 16

4.2.1 Rectilinear Crossing Number . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 CurveToPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Other Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Reductions from ETR-INV and its Variants . . . . . . . . . . . . . . . . . . 25
4.3.1 Drawing a Graph in a Polygonal Region . . . . . . . . . . . . . . . . 25
4.3.2 Art Gallery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 Prescribed Area PE . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Drawing a Graph on Segments 29
5.1 ∃R-Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 ∃R- Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Open/Closed Segments . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Pervious/Impenetrable Segments . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Using only few Slopes/Lengths . . . . . . . . . . . . . . . . . . . . . 45

6 Crossing Angle Problems 47
6.1 Angular Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Right Angle Crosing Drawings . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 α-CrossingAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 ∃R-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 53

vii



Contents

Bibliography 55

viii



1. Introduction

In Complexity Theory, the goal is to find problems of similar complexity and group
those problems into complexity classes to find properties of the whole set of problems.
Additionally, if two problems are polynomially equivalent, an algorithm that solves one of
them in polynomial time directly leads to an algorithm for the other as the problems can be
transformed into each other in polynomial time. The current order of the main complexity
classes is P ⊆ NP ⊆ PSPACE ⊆ EXP with no answer to the question if the inclusions are
proper. In the case of NP 6= PSPACE, this classification is not really sufficient as the gap
between NP-completeness and PSPACE-completeness is quite large and there are many
NP-hard problems with unclear relations of complexity. One approach to close that gap
is the Polynomial Hierarchy, though the resulting complexity classes are very technical
and non-inutitive. In this thesis, we explore another approach for mainly geometrical and
topological problems: the complexity class ∃R.

The Existential Theory of the Reals consists of formulas ∃x1, . . . , xn : p(x1, . . . , xn), where
p is a quantifier-free formula of polynomial equations and inequalities over real variables,
that are feasible. The corresponding decision problem ETR asks if, given a formula φ of
this structure, there are real numbers which satisfy φ. This problem was shown to be
decidable by Tarski [Tar98], and later to be in PSPACE by Canny [Can88]. Schaefer used
ETR to define a complexity class he called ∃R [Sch09], the relation between the two being
the same as between NP and SAT as ∃R consists of all problems that are polynomially
reducible to ETR. Our goal in this thesis is to explore ∃R and its complete problems and
also show ∃R-completeness for a new problem, DrawingOnSegments.

There has been a lot of research on this complexity class in the last years, mainly additional
problems that are ∃R-complete have been found. Schaefer started by introducing the
class and completing ∃R-completeness proofs for problems where there has been earlier
research to indicate a relation to the Esixtential Theory of the Reals [Sch09]. Matousek
also expanded his earlier research on intersection graphs to show ∃R-completeness for
RECOG(SEG), the problem of deciding whether a given graph is an intersection graph
of segments [Mat14]. After that, multiple other researchers expanded ∃R by conducting
their own reductions from the same starting problem, SimpleStretchability, where the
input is a simple arrangement of pseudolines and the question is if there is an isomorphic
arrangement of line segments. This problem has been proven to be equivalent to a variant
of ETR by Mnëv [Mnë88] and Shor [Sho] way before ∃R as a complexity class had been
established. These reductions go into different kinds of topics: topology and realizability
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1. Introduction

of topological expressions [DGC99], game theory [SŠ17, BM16] and more geometric and
graph drawing problems [Sch13, Eri19, Car15].

Abrahamsen et al. then developed a new way to carry out ∃R-completeness proofs by
introducing ETR-INV, a new variant of ETR, as a starting point [AM19]. They used
ETR-INV and its planar variants to show ∃R-completeness for the art gallery problem of
finding a set of points within a simple polygon that guards the whole polygon [AAM18].
Additionally, they showed that GraphInPolygon, where we have to find a planar drawing
of a graph inside a polygon with some vertices having fixed positions on the boundary
of the polygon [LMM18], and PrescribedAreaPE, where we are given a planar graph
with an area assignment a and have to find a planar drawing that respects a while some
vertices have fixed positions [DKMR18], are also ∃R-complete in the same manner. In the
latter paper, they also generalize ∃R to a more general complexity class allowing also a
layer of univeral quantifiers to the formula, ∀∃R, and compare that to the beginning of the
polynomial hierarchy in classic complexity theory.

Our own contribution in this paper is to show ∃R-completeness for DrawingOnSegments.
In this problem, we are given a graph G = (V,E) with a combinatorial embedding and
an arrangement of line segments of two different kinds: Each vertex belongs to a vertex
segment and has to be placed on that segment, additionally we have obstacle segments
that edges cannot pass. The problem is to find a straight-line planar drawing of G where
each vertex of V is placed on the corresponding segment and no edge passes an obstacle
segment. We will show that DrawingOnSegments is ∃R-complete.

Additionally, we show ∃R-membership for three additional graph drawing problems with
focus on drawing edges in certain angles: AngularResolution where the angles between
consecutive edges on the same vertex have to be at least as big as the input α, and
RAC-Drawing as well as α-CrossingAngle where the crossing angles are regulated. We
also discuss first approaches for reductions to show ∃R-completeness for these problems.

The thesis is structured in the following way: In Chapter 2, we introduce basic definitions
from the areas complexity theory, graph theory and algebra that will be used throughout
the thesis. In Chapter 3, we then formally define the Existential Theory of the Reals
and the corresponding complexity class ∃R and show that ∃R lies between the known
classes NP and PSPACE. We also find a machine modell for ∃R and introduce different
variants of the problem ETR. We use these variants in Chapter 4 to present different proofs
of ∃R-completeness for geometrical and graph drawing problems that have been made
in the past years. We generalize the reductions into different categories and explain a
framework for the reductions from ETR-INV and its variants. In Chapter 5, we implement
that framework to show ∃R-completeness for DrawingOnSegments and look at different
variants of the problem. Finally, in Chapter 6, we deal with the angular graph drawing
problems and give formulas that prove their membership in ∃R.
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2. Preliminaries

In this chapter, we introduce some of the basic terms and definitions that are used
throughout the thesis. We group them by their original topic, not in the order they are
used in the thesis.

2.1 Complexity Theory
First, we recall a few basic terms from complexity theory, and also add specific definitions
we need in Chapter 3. To understand some of the following definitions, we first introduce
the turing machine as the basic way to define computations in our setting. A deterministic
turing machine M consists of an infinite tape, a finite control section and a head that is on
a specified position of the tape and can change the symbol on its position. Formally, M is
a quintuple (Q,Γ, δ, q0, F ) with a finite set of states Q, a subset of final states F , a starting
state q0, the finite set of symbols that are allowed to be written on the tape Γ and the
function that represents a computation step of the machine, δ : Q×Γ→ Q×Γ×{L,N,R}.
At the start, the input is written on the tape and the head is on the first symbol. In every
step, M reads the symbol on its head position, computes the new state according to δ,
writes a new symbol and moves the head one to the left, one to the right or not at all.
The computation ends if either a final state is reached or if M is in a state where it does
not change its state, position and tape anymore. M decides a problem Π if M finishes
the computation for every input and ends in a final state exactly when the input is a
yes-instance of Π. A nondeterministic turing machine N has an additional computation
phase where it can write an arbitrary word y left of the input onto the tape and then
switches to the normal computation phase that works the same way as the deterministic
one. N accepts an input x if a y exists so that the computation phase ends in a final state,
y is called a witness for x.

A deterministic turing machine M has a polynomial time complexity if for each input I
with length |I| it decides in time p(|I|) for a polynomial p if M accepts I. Similarly, M
has polynomial space complexity if the amount of space that T needs in the computation is
bounded by a polynomial p(|I|). For a nondeterministic turing machine N , the definition
changes to asking if, for each input I, there exists a witness y such that N needs polynomial
time/space to decide if I is accepted when y is written on the tape in the first phase.

A complexity class is a set of problems that are equivalent in complexity in regards to some
property, mostly time or space that is needed to solve the problem. Some complexity classes,
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2. Preliminaries

like P and NP, are defined via a machine modell that can decide exactly the problems
in the class, others are defined by a basic problem that has to be at least as complex as
all the problems in the class (as ETR for ∃R). To express that formally, we need a new
terminology: A polynomial reduction is a function f that transforms instances I from one
problem Π1 into instances f(I) of a problem Π2 that fulfills the following properties: f has
to be computable by a turing machine in polynomial time, and f has to map yes-instances
onto yes-instances and no-instances onto no-instances. Using this term, we can define
complete problems for a complexity class C: A problem Π is C-hard if for every Π1 ∈ C
there is a polynomial reduction f : Π1 → Π. If additionally Π ∈ C holds, Π is called
C-complete.

As we need the complexity classes NP and PSPACE later in the thesis, we want to shortly
define them here. NP is the complexity class that contains exactly the problems that are
decidable in polynomial time by a nondeterministic turing machine. PSPACE consists of
the problems that are solvable by a deterministic turing machine with polynomial space
complexity. One NP-complete problem that we will need in the thesis is 3SAT:

3SAT:
Input: Pair (U,C) with variables U and clauses C that consist of exactly three literals
from the variables in U .
Problem: Is there an assignement f : U → {t, f} that assignes boolean values to the
variables in U such that in every clause c ∈ C at least one of the literals is true?

We need a final definition for our machine modell for ∃R in Section 3.3: R∗ is a set that
consists of sequences of real numbers with finite length. For x ∈ R∗, we will note the length
of the sequence, in other terms the amount of real numbers in x, as |x|.

2.2 Graph Theory
In this thesis , we consider many problems that are related to graphs and graph drawing,
so we want to clarify the way we use a few terms and notations throughout the thesis:

We use [n] = {1, ..., n} to describe the set of integers from 1 to n. A graph is a pair (V,E)
consisting of an vertex set V = [n] and an edge set E ⊆

([n]
2
)
which means that E consists

of subsets of [n] of size two. For the edge set, we also set m = |E|.

A graph drawing is a concrete assignment of vertices and edges onto the plane R2, this
means that we assign each vertex coordinates from R2 and assign each edge a Jordan curve
that starts and ends in the endpoints of the edge. There are different properties a drawing
can have: A planar drawing is a drawing of a graph G where no two edges intersect. In a
straight-line drawing of a graph G, every edge is drawn as a line segment. In an orthogonal
drawing of G, the edges only run horizontally or vertically, though they are allowed to have
turns and switch directions. Those concepts are visualized in Figure 2.1. Note that we
sometimes refer to straight-line drawings as rectilinear drawings for consistency reasons as
it is used in the original papers in this way, although the term is somewhat non-intuitive
for that.

A planar graph is a graph that has a planar graph drawing. A plane graph is a concrete
drawing of a graph that has no intersections between two edges. Note that, for the purpose
of this paper, we allow degenerate drawings, which means that we also include drawings
that are limits of sequences of normal graph drawings. This results in two edges being able
to run on top of each other. A region bounded by the edges of a plane graph is called a
face. The combinatorial embedding of a planar graph dictates the general structure for the
planar graph drawing by giving an order in which the edges are orientated around a vertex
for every vertex of the graph.
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2.3. Algebra

Figure 2.1: A planar drawing, an orthogonal drawing, a straight-line drawing and a non-
planar drawing of a graph G

As a final definition, we introduce the concept of an incidence graph G(φ) = (V (φ), E(φ))
to an ETR formula φ. V (φ) includes a vertex vu for each variable u from φ, and a vertex
vp for each equation or inequality p in φ. There are no edges between two variable vertices
and no edges between two equation vertices in E(φ), and the edge vuvp is in E(φ) if and
only if the variable u is used in p.

2.3 Algebra
Finally, in Chapter 3, we mention the connection between the Existential Theory of the
Reals and its underlying algebraic relations. For that we need a few definitions:

A semialgebraic set S is a set of points in Rn that can be described via a quantifier-free
formula φ of polynomial equations and inequalities. Each member x ∈ S then has to be
a solution of φ. If S can be defined by only conjunctions of polynomial equations and
inequalities, S is called a basic semialgebraic set. If we additionally only allow equations, S
is called an algebraic set.

A real closed field is a field F with the same first order properties as the real numbers: A
sentence φ of first order logic is feasible with variables from F if and only if it is feasible
with variables from R.

To prepare for Mnëv’s Universality Theorem, which we deal with in Chapter 4, we
additionally need the concept of Rank-3 Orientated Matroids. As we do not work with
them in detail in the thesis, we do not give an exact definition here and just intuitively
explain the concept. A rank-3 oriented matroid is a combinatorial abstraction of a set P
of points in the plane that uses the order type (defines for three points in a plane if they
are collinear or form a left or a right turn) as a way to measure relations between three
points. It can be expressed as a ternary predicate χ(p, q, r). This predicate has to fulfill
the chirotope axioms cyclic symmetry, antisymmetry and Grassmann-Plücker relations. A
more detailed explanation can be found here [CK13].
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3. Complexity Class ∃R

First, we define our main problem ETR and the corresponding complexity class ∃R:

3.1 Definition
The Existential Theory of the Reals is the set of all true logic formulas from the existential
first order logic over real numbers. These formulas include real variables xi, which can be
used in polynomial equations and inequalities with integer coefficients. The Existential
Theory of the Reals then consists of all sentences of this structure that are feasible.
This means that we can introduce all variables with existential quantifiers and comprise
our definition of the Existential Theory of the Reals to all true formulas of the following
structure: ∃x1, . . . , xn : p(x1, . . . , xn), with p being such a logical combination of polynomial
equations and inequalities. Formally, we can define the corresponding decision problem
ETR in the following way:

ETR:
Input: Formula ∃x1, . . . , xn : p(x1, . . . , xn) where p is a quantifier-free formula over the
signature {0, 1,+, ·, <,≤,=} with connectives {∨,∧,¬}.
Problem: Are there real numbers x1, . . . , xn for which the formula p is true?

An example for such an instance of ETR can be a simple formula of the following structure:

φ ≡ ∃x, y, z ∈ R : (x2 + 3y = 1 ∨ x = z) ∧ z ≤ 0

This formula is feasible, e.g. with variables x = z = −1, y = 0, and therefore φ belongs
to the Existential Theory of the Reals. Note that, while not technically allowed in the
definition of ETR, we use multiple abbreviations such as writing x2 instead of x · x and
3 instead of (1 + 1 + 1), which are obviously equivalent. We use these abbreviations
throughout the thesis.

Note that solution sets of the Existential Theory of the Reals directly correspond to the
algebraic term semialgebraic set as their definitions are similar. This connection can be
helpful when considering properties of semialgebraic sets that can be used in reductions in
this topic. Mnëv [Mnë88], Schaefer [Sch09] and McDiarmid and Müller [MM13] all used
this approach for their reductions, as we mention again later in the thesis. We do not go
into detail for this direction though, as our thesis mainly looks at the reductions from a
geometric viewpoint.
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3. Complexity Class ∃R

With the help of the problem ETR, we can now define a complexity class that includes
all problems that can be expressed (in a formula of polynomial length) in the Existential
Theory of the Reals:

Definition 3.1 (∃R). The complexity class ∃R consists of the problems that can be reduced
to the Existential Theory of the Reals (ETR) in polynomial time.

One can compare the relation of ∃R and ETR to the relation between NP and SAT. The
biggest difference is that for SAT, NP-completeness was proven by Cook [Coo71] while
for ETR, ∃R-completeness follows from the definition of ∃R. Still, both problems are the
starting point for every hardness proof in NP and ∃R respectively. Known problems that
are complete for ∃R generally are from topology, game theory, geometry or graph drawing.
For this thesis, we focus on the graph drawing problems, for topology and game theory we
refer to [SŠ17] and [BM16]. The complexity class was first proposed by Schaefer [Sch09],
and then quickly adopted and expanded by other authors, notably Miltzow who, along
with other colleagues, has designed reductions for multiple graph drawing problems which
we explore later.

Note that, although the existential first order logic over real numbers is not expressable and
computable by turing machines as the input is not finite, the input of the problem ETR
(and thus of all problems in ∃R as they have to be transformable into ETR) is finite because
only integer coefficiants are allowed. This means that we can use the same definition for
polynomial transformations between problems in this context, although the solutions of
the problems can contain real numbers.

We now classify our new complexity class into the hierarchy of known complexity classes
and then discuss a theoretical equivalent machine modell to ∃R similar as turing machines
to P and NP. After that, we introduce multiple variants of ETR that are equivalent in
their complexity and will later be the foundation to show ∃R-completeness for multiple
geometrical and graph drawing problems.

3.2 Classification
While there have been successful attempts to generalize ∃R and to build a more detailed
hierarchy by adding more quantifiers by Dobbins et al. ([DKMR18]), similar to the
polynomial hierarchy, we focus on simply classifying ∃R itself. The result we get and
explain in the following sections is:

Theorem 3.2 ([Sch09], [Can88]). NP ⊆ ∃R ⊆ PSPACE

3.2.1 NP ⊆ ∃R

In this section, we prove that NP is a subset of ∃R. For that, it is sufficient to show that a
3SAT instance can be polynomially reduced to an ETR-formula. 3SAT is NP-complete, so
every problem in NP can be polynomially reduced to 3SAT and then to ETR, thus every
problem in NP is also in ∃R and NP ⊆ ∃R.

Note that is it unlikely that NP = ∃R holds as there are instances of many of the ∃R-
complete problems that require irrational coordinates for displaying their solutions, thus
the solutions cannot be directly computed by turing machines. In Chapter 5, we explicitly
give such an instance for the problem DrawingOnSegments.
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3.2. Classification

Lemma 3.3 ([Sch09]). NP ⊆ ∃R

Proof. We mainly follow the proof Schaefer gave in [Sch09], but modify it at a few points
to make it easier to understand.

Let (U,C) be a 3SAT instance with variables U and C as the set of clauses. We construct
an ETR-formula φ that is satisfiable if and only if (U,C) is satisfiable as well. First of all,
for each 3SAT variable u ∈ U we introduce a real variable xu. For each of the real variables
xu also add the following formula: (xu = 1 ∨ xu = 0), all combined by conjunctions.
Finally, let l be a literal in a clause c ∈ C. If l is not negated, use let bl = xl, if it is negated,
then bl = (1− xl). For each c ∈ C with literals x, y, z add (bx + by + bz ≥ 1) to φ.

This reduction is polynomial because for each 3SAT variable and each clause there is a
constant part of φ, so the size of the formula is polynomial in the size of the 3SAT instance.
If the 3SAT instance is satisfiable, an assignment of variables exists so that each clause is
satisfied. For each 3SAT variable u that is true under the assignement choose xu = 1, for
each false variable xu = 0 for the real counterpart. Every clause is satisfied, so in each of
the (bx + by + bz), one of the bi has to be 1 so each of these formulas are true. That means
the whole formula is satisfied. On the other hand, if φ is satisfied, there is an assignement
that assigns each of the real variables xu either the value 0 or 1. One can construct an
assignment of 3SAT variables by setting u true exactly when xu = 1, and false otherwise.
Then, each of the clauses is satisfied because if there was a clause x ∨ y ∨ z that was not
satisfied, the formula bx + by + bz ≥ 1 would not be satisfied as well and thus φ would not
be true.

3.2.2 ∃R ⊆ PSPACE

For the other part of Theorem 3.2, we take a look at the development of algorithms that
solve ETR throughout the later part of the 20th century. They develop from solving the
more general first order logic over real numbers in exponential time and space to specific
ETR-algorithms that only need polynomial space. We then shortly mention more modern
and efficient algorithms and implementations to solve ETR. The running time of these
algorithms is dependant on four variables: the number of variables n, the number of
polynomials m, the total degree of the polynomials d and the coefficient bit length L.

Lemma 3.4 ([Can88]). ∃R ⊆ PSPACE

Historically, there were multiple different algorithms that can be used to solve the decidabil-
ity of ETR-formulas. The first algorithms solve a more general problem, the general first
order logic of the reals (which corresponds to real closed fields in an algebraic sense). The
person who first showed that this problem is decidable was Alfred Tarski in 1948 [Tar98]
where he used a method called quantifier elimination to reduce a formula of the first order
logic to a formula that does not contain quantifiers and its satisfiability does not change.
However, this algorithm is not practical because its time complexity is non-elementary and
cannot be bounded by any tower of exponentials.

In 1975, John Collins designed a new algorithm to solve the same problem, quantifier
elimination in the real first order logic [Col75]. He used a new technique called Cylindrical
Algebraic Decomposition (CAD) to vastly speed up the computation time. Although
the theoretical time complexity is double exponential, it is quite fast in practice and was
implemented and improved multiple times since then, e.g. by Brown in the QEPCAD-B
system [Bro03].

9
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In 1987, Grigor’ev and Vorobjov designed an algorithm for solving ETR that reduced the
complexity to L(md)n2 , although still needing an exponential amount of space [GVJ88].
One year later, Canny developed an algorithm with polynomial space complexity for
ETR, thus proving that ∃R⊆ PSPACE [Can88]. From a complexity theory point of view,
this result is important and has not been refined since. Renegar later improved Canny’s
algorithm to run in L·log(L)·log(L)(md)O(n) while the space complexitiy stayed polynomial,
thus preserving a polynomial runtime if the number of variables is fixed, a property Canny’s
algorithm did not have [Ren88].

Although the algorithms of Grigorev and Renegar focus on a more specialized problem
than Collins and have a better theoretical runtime, they are dramatically slower on small
inputs as Hong discovered in 1991 [H+91]. While Collin’s algorithm can solve inputs with
small parameters in seconds on modern computers, Renegar und Grigorev would need
more than a million years to calculate a solution even if every single parameter (number of
variables, number of polynomials, total degree and coefficient bit length) is just 2. Because
of that, these algorithms designed especially for ETR are mostly of theoretical value. Still,
there have been attempts to at least use the new ideas for algorithms that perform in an
acceptable manner for special cases of ETR [HRS93].

3.3 Machine Model
We present a machine modell for ∃R similar to turing machines for P and NP. There have
been attempts to conceptualize what machine modells for problems over real numbers
could look like. The work we explore is from Blum, Shub and Smale and is called the
BSS-machine [BSS+89]. While the BSS-machine itself corresponds to a wider field of
problems, there are subclasses in the hierarchy of the BSS-machine that are achieved by
removing features from the machine, and one of these subclasses directly corresponds to
the Existential Theory of the Reals.

The BSS-machine is a register machine where it is assumed that real numbers can be saved,
loaded and computed exactly in constant time and constant space (unlike reality where we
would need to approximate them and run into space and time problems as well as rounding
inaccuracies. Formally, the BSS-machine was defined in the following way by Grädel:

Definition 3.5 (BSS-machine [Gra07]). A BSS-machine B over R is a register machine
without an explicit working register. It consists of N instructions. The input x ∈ R∗ is
saved in the first |x| registers. A configuration of B consists of 4 variables: the current
instruction k ∈ [0, . . . , N ], the reading and writing registers r, w ∈ N and the current content
of the registers, z ∈ R∗. There are three types of instructions:

• Compute a rational function f(z) and save the result in the first register, and
optionally update the read and write registers to either the next one or the first one

• Branch if the first register has a non-negative content

• Copy the value of the read register to the write register

Similar to the definitions of P and NP with turing machines, we can define PR and NPR in
our BSS-setting. For NPR we do that explicitly because we need the class later:

Definition 3.6 (NPR [Gra07]). A set L ⊆ R∗ is in NPR if there exists a nondeterministic
BSS-machine B that decides L in polynomial time.

We do not go into detail how a nondeterministic BSS-machine B can be defined. One
way to look at it is analogously to nondeterministic turing machines: B can guess real
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numbers y ∈ R∗ before the computation starts, y then acts as a witness that helps prove
the correctness of the input x (if x is correct).

The BSS-machine was designed for a much broader context than the Existential Theory
of the Reals, it can even be used for other rings than the ring of the real numbers. We
can still find a subclass of this modell which corresponds to our problem, as Bürgisser
and Cucker describe [BC06]. The subclass is denoted as BP (NP 0

R). The two restrictions
compared to the general class NPR are that there are no registers allowed (indicated by
the 0) and that the input has to be encoded as a string of 0 and 1 (indicated by the BP,
short for boolean part). These restrictions narrow down the BSS-setting just enough that
we land in our complexity class ∃R:

Theorem 3.7 ([BC06]). The class BP (NP 0
R) of the BSS-machine modell directly corre-

sponds to the Existential Theory of the Reals.

For the proof, we need a variant of ETR called Feasibility,which we reuse later in the
thesis. This variant restricts ETR-formulas to only consist of one polynomial that is tested
on its equality to zero:

Feasibility:
Input: ETR instance, of the form ∃x1, . . . , xn : g(x1, . . . , xn) = 0.
Problem: Are there real numbers x1, . . . , xn for which the formula is true?

Proof outline (Theorem 3.7). The main idea of the proof is to show that the problem
Feasibility is both complete for ∃R and for BP (NP 0

R). We show in the next section that
Feasibility is indeed complete for ∃R, although it restricts the structure of the formulas
a lot. For now, we outline the proof by Bürgisser and Cucker [BC06] that Feasibility, or
FeasibilityZ

R (meaning that we have a polynomial over R with integer coefficients, exactly
our setting) as it is denoted in their paper, is BP (NP 0

R)-complete. For that, they show
that the more general problem FeasibilityR where the coefficients can be real numbers
as well is NPR-complete. This was in fact already shown by Blum et al. in their original
paper [BSS+89] by reducing the FeasibilityR to polynomials with a maximal degree of 4
and then proving NPR-completeness for that problem. Bürgisser and Cucker then outline
that the reduction of an arbitrary problem in NPR to FeasibilityR directly leads to a
reduction in the BP (NP 0

R)-context to Feasibility, and consecutively, Feasibility is
indeed complete in BP (NP 0

R).

With this equivalence, we get a new possibility to define ∃R, similar to how NP is canonically
defined over nondeterministic turing machines. This topic has not yet been explored much
though, and we are going to stop here as well as our main purpose of this thesis is to
show how geometrical ∃R-completeness proofs can be achieved. For that, we now lay the
foundation by giving multiple possible starting points for these reductions.

3.4 Variants

Now we take a look at different versions of ETR that will be our toolbox to prove ∃R-
completeness for our different problems in the next chapters, for example Feasibility.
All these variants restrict the way the formulas and variables are constructed to allow for
easier reductions.
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3.4.1 Feasibility and StrictIneq

The first variant we explore is StrictIneq which only allows strict inequalities. Although
these theories correspond to different algebraic constructs (as e.g. x2 = 2 cannot be
expressed without equations), the complexity classes one could define over them are
identical, as Marcus Schaefer proved in [SŠ17].

Theorem 3.8 ([SŠ17]). ETR, Feasibility and StrictIneq are polynomial-time equiva-
lent.

Proof outline. One direction of the proof is easy, because every operation allowed in
StrictIneq is also allowed in ETR, so every problem portrayable in StrictIneqis
trivially portrayable in ETR. To prove the opposite direction, Schaefer uses Feasibility
of the previous section. He then proves that ETR reduces to Feasibility by using that
every semi-algebraic set is a projection of an algebraic set, and proves that Feasibility
reduces to StrictIneq by using multiple distance observations for semi-algebraic sets to
transform the equation g(x1, ..., xn) = 0 into a system of inequalities, thus showing that
ETR can be reduced to Feasibility which then can be reduced to StrictIneq.

3.4.2 ETR-INV

While these variants already restrict ETR a lot, we go even further to ease our reductions
even more. We limit the logical operations to just conjunctions, as well as having only
equations of specific types. The problem ETR-INV does exactly that:

ETR-INV

ETR-INV:
Input: ETR instance where the equations and inequalities are all of one of the following
forms: x = 1, x + y = z or x · y = 1. Additionally, the only logical operations that are
allowed are conjunctions.
Problem: Are there real numbers x1, . . . , xn in [0.5, 2] for which the formula is true?

This problem was introduced by Abrahamsen et al. [AAM18] to show that the art gallery
problem1 is ∃R-complete and is the foundation of multiple similar reductions. Although it
restricts the rules of ETR a lot, it is still ∃R-complete:

Theorem 3.9 ([AAM18]). ETR-INV is ∃R-complete.

Proof outline. First, ETR-INV is obviously in ∃R as it is only a restriction of ETR and
thus all allowed formulas in ETR-INV are allowed in ETR as well. For the ∃R-completeness,
we do not go into detail how the proof is done but instead refer to two papers where the
proof is done in detail: In [AAM18], Abrahamsen et al. prove the ∃R-completeness of
ETR-INV to then use it as a basis to show ∃R-completeness for the art gallery problem.
They start with Feasibility and then slowly transform the formula into fitting into the
allowed operations. In [AM19], Abrahamsen and Miltzow refine the work already done by
them and others and give a more detailed and comprehensive proof by defining multiple
other variants of ETR along the way.

1As a reminder: The art gallery problem asks if, for a simply polygon P , there is a set of points within
the polygon G that guards the whole polygon, in other words, for every point p on the boundary of P ,
there is a guard g ∈ G so that the line segment pg is completely in the interior of P .
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Figure 3.1: Crossing Gadget for Planar-ETR-INV (Original: [DKMR18])

While it is already easier to work with ETR-INV than ETR itself, we can restrict our
formulas even more to even get planar incidence graphs. As a tradeoff, we get a polynomial
increase in formula length and number of variables. These planar incidence graphs are the
foundation of our own reductions for ∃R-completeness later, so we introduce two versions
of the Planar-ETR-INV problem, both used by Miltzow et al. [LMM18, DKMR18] in
multiple reductions, which we cover in Section 4.3, and also by us in Chapter 5.

Planar-ETR-INV

This version of ETR-INV was used by Miltzow et al. [LMM18, DKMR18], as other problems
need planarity in their reduction as opposed to the art gallery problem. Still, even with a
planar incidence graph, the problem stays ∃R-complete:

Planar-ETR-INV:
Input: ETR-INV instance where additionally the incidence graph of the formula is planar.
Problem: Are there real numbers x1, . . . , xn in the range (0, 5) for which the formula is
true?

Theorem 3.10 ([DKMR18]). Planar-ETR-INV is ∃R-complete.

Proof outline. We outline the proof of Dobbins et al. [DKMR18]. For that, we consider an
ETR-INV instance I and take an incidence graph of I with minimal amount of crossings.
We then systematically remove all the crossings by replacing them with a crossing gadget
(Figure 3.1). This gadget introduces new variables X ′, Y ′, Z for the original variables X
and Y and removes the crossing by adding addition gadgets that make sure that X = X ′

and Y = Y ′. In the end, we have no crossings left, and polynomially more variables and
constraints as the gadget has constant size and there is at most a quadratic amount of
crossings.

Planar-ETR-INV*

A few adjustments to the problem are beneficial for other kinds of reductions. We want to
allow for inequalities instead of equations for addition and inversion, and also want to have
a closed interval for our variables. This leads to the following version of Planar-ETR-INV,
the distinction being signaled by the star in the problem name:
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(c) A half-crossing gadget

Figure 3.2: Crossing Gadget for Planar-ETR-INV* (Original: [LMM18])

Planar-ETR-INV*:
Input: ETR instance where the equations and inequalities are all of one of the following
forms: x = 1, x + y ≤ z, x + y ≥ z, x · y ≤ 1, x · y ≥ 1. Additionally, the only logical
operations that are allowed are conjunctions and the incidence graph of the formula is
planar.
Problem: Are there real numbers x1, . . . , xn in the range [0.5, 4] for which the formula is
true?

Theorem 3.11 ([LMM18]). Planar-ETR-INV* is ∃R-complete.

Proof outline. This proof is similar to the one for Planar-ETR-INV, the only thing that
changes is the structure of the crossing gadget (depicted in Figure 3.2). We cannot directly
ensure equality anymore, that is why we need additional variables and 4 "half-crossing
gadgets" (d) that only ensure x ≤ x′ and y ≤ y′. If we combine them in the way shown
in (b) and add additional variables x′′ and y′′, we can ensure that x = x′′ and y = y′′ and
eliminate the crossing.
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After learning about the complexity class and the different variants of ETR, we now give
an overview over the problems that are already known to be ∃R-complete and categorize
the corresponding reductions. We focus on geometrical graph problems, but there are other
categories of problems that are known to be ∃R-complete, too, like topological problems or
problems belonging to game theory. All these reductions are from one of two problems:
SimpleStretchability, which we cover in the next section, and ETR-INV (or its planar
variants), which we already introduced in the last chapter. Figure 4.1 gives an overview
over the reductions we look at in the following sections. We start with the proof by Mnëv
that SimpleStretchaility is ∃R-complete, and then generalize the reductions from the
two basic problems.

4.1 Simple Stretchability of Pseudolines

The first problem to be proven ∃R-complete was SimpleStretchability. For that, we
first need a few definitions: A pseudoline is a simple curve in the plane. A pseudoline
arrangement A is a set of pseudolines that is situated in the plane such that pairs of
pseudolines cross each other exactly once. A is called simple if in each intersection no
more than two pseudolines cross. Two pseudoline arrangements A and B are isomorphic
if there exists a homeomorphism (continous bijective function with a continous reverse
function) of the plane that maps A onto B. A realization of a pseudoline arrangement A is
an arrangement of straight lines that is isomorphic to A. With these terms, we can define
the problem:

SimpleStretchability:
Input: Simple arrangement A of pseudolines.
Problem: Does an arrangement of line segments exist that is isomorphic to A?

The proof of the ∃R-completeness directly follows from Mnëv’s Universality Theorem, which
covers the reduction from StrictIneq to SimpleStretchability, but in a different
context. We do not explain the concept of stable equivalence as it would need much more
work and is not detrimental to our thesis, just note that it is a very strong statement that
expresses much more than the reduction.

Theorem 4.1 (Universality Theorem [Mnë88]). Every semialgebraic set is stably equivalent
to the realization space of a rank-3 oriented matroid.
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ETR

Feasibility
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Figure 4.1: An overview over known ∃R-complete problems, with the direction of the arrows
indicating the direction of the reduction

We do not prove this theorem here because it is very technical and more algebraic, instead
we refer to the original proof by Mnëv and the later work by Shor [Sho]. Shor simplified
the proof and explicitly showed that the stretchability problem is NP-hard. Instead,
we use the Universality Theorem to show that SimpleStretchability is ∃R-complete.
Indeed, the claim directly follows from the Universality Theorem as the oriented matroid
can be seen as a pseudoline arrangement A and its realization space corresponds to a
realization of A. Mnëv’s proof can directly be used to get a procedure that transforms a
StrictIneq instance into such a rank-3 orientated matroid, and thus into an instance of
SimpleStretchability.

Theorem 4.2 ([Mnë88, Sho]). SimpleStretchability is ∃R-complete.

Note that there are other approaches to prove this theorem, e.g. Matous̆ek [Mat14] used a
geometrical reduction to show the statement rather than the algebraic approach by Mnëv
and Shor.

Now that we have our first geometrical ∃R-complete problem, we can take a look at
the different kind of reductions that were made to other geometrical and graph drawing
problems:

4.2 Reductions from SimpleStretchability
There are too many problems in this category to go into detail for each reduction, so we
focus on two problems with different kinds of reductions: RectilinearCrossingNumber
and CurveToPolygon. For the other problems, we give a problem definition and a short
idea how the reduction is made.

4.2.1 Rectilinear Crossing Number
For the first problem of this kind, deciding whether a graph has a rectilinear crossing
number of at least k, we give a full proof of ∃R-completeness to give an indication as to how
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such a proof looks like. The rectilinear crossing number of a graph G, denoted as lin-cr(G),
is the minimal number of crossings a straight-line drawing of G can have. The decision
problem takes an integer k and asks for an input graph G if lin-cr(G) ≤ k. This problem is
∃R-complete even when G is restricted to be cubic, that means that every vertex in G has
a degree of three.

RectilinearCrossingNumber:
Input: Cubic graph G, integer k.
Problem: Is there a straight-line drawing of G with at most k crossings?

Theorem 4.3 ([Bie91, Sch09]). RectilinearCrossingNumber is ∃R-complete.

Proof. The proof of such a statement is done in two parts: First we show that the problem
is in ∃R by giving an ETR-formula that is polynomial in size in the input size and is
equivalent to the problem, and then we show that the problem is ∃R-hard by reducing
ETR to our problem. For RectilinearCrossingNumber, Schaefer proves that the
problem is in ∃R [Sch09] while Bienstock gives a reduction from SimpleStretchability
to RectilinearCrossingNumber [Bie91].

RectilinearCrossingNumber is in ∃R

We need a few preliminaries to comprehend Schaefer’s proof: Let G = (V,E) be the
input graph. We assume that V = [n] and E ⊆

([n]
2
)
. We assume that the edges of G

are orientated in an arbitrary way such that we have a clearly defined head and tail for
each edge. With these orientations, we define functions h, t : E → V that return the
endpoints of an edge e. The formula is build by having a pair of variables (xi, yi) for each
vertex encoding the position of the vertex in a planar drawing of G and then checking the
properties of the problem for that drawing.

Schaefer’s general idea for the formula is to allow at most k edges to cross by assigning
additional variables zei,ej to each pair of edges (ei, ej) and to ensure that at most k of these
zei,ej are greater than 0 which indicates that the pair of edges is allowed to cross. He also
ensures that if zei,ej is not greater than 0, then the corresponding edges do not intersect.
Note that we only need to check each pair of edges once, and that the same edge does not
cross itself, so we only need the additional zei,ej for i < j.

In detail, he needs three predicates for that. The first predicate atmostk(ze1,e2 , ..., zem−1,em)
checks if at most k of the variables are greater than zero. The predicate
collinear(x1, y1, x2, y2, x3, y3) ensures that the three points (x1, y1), (x2, y2), (x3, y3) are not
collinear (do not lie on a line), and the final predicate cross(x1, y1, x2, y2, x

′
1, y
′
1, x
′
2, y
′
2) en-

sures that the corresponding line segments with endpoints (xi, yi) and (x′i, y′i) respectively
do not intersect.

With those predicates, Schaefer builds the formula for checking if lin-cr(G) ≤ k:

∃(x1, y1), . . . , (xn, yn), ze1,e2 , . . . , zem−1,em : atmostk(ze1,e2 , . . . , zem−1,em)
∧

∧
i<j<k∈[n]

collinear(xi, yi, xj , yj , xk, yk)

∧
∧

ei,ej∈E,i<j

(zei,ej > 0 ∨ cross(xh(ei), yh(ei), xt(ei), yt(ei), xh(ej), yh(ej), xt(ej), yt(ej)))

We do not explain the predicates further as that would be very technical and add little
value here. The implementations can be found in the original paper [Sch09].
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Rectilinear Crossing Number is ∃R-hard

We give Bienstock’s reduction and then briefly justify its correctness. Bienstock starts
with an instance of SimpleStretchability, an arrangement A of n pseudolines. He then
gradually transforms that into a graph G along the following steps (depicted in Figure 4.2)
and chooses k = 5n(n− 1):

1. Copy each pseudoline and place the copy directly next to the original segment.

2. Add vertices at each end of a pseudoline and each intersection between pseudolines
to form a planar graph. For each original pseudoline l ∈ A, we call the four
resulting vertices that represent the ends of the original pseudoline and its copy
ui,j(l), i, j ∈ {1, 2} with i representing if the vertex belongs to the original pseudoline
or the copy and j to which end of the pseudoline the vertex belongs.

3. For each original pseudoline l, add vertices cj(l) between the neighbouring end points
of the original pseudolines and its copy u1,j(l) and u2,j(l) and edges between the
neighbouring vertices on each end. Additionally, add edges el between the newly
added vertices v1(l) and v2(l) belonging to the same line segment, and also add edges
between neighbouring ui,j(lk) to form a cycle on the boundary of the graph in the
obvious way.

4. Copy the whole graph G1, we call the copy G2, add a matching between the corre-
sponding vertices on the outer cycle.

5. Replace each edge in both of the cycles on the boundaries of G1 and G2 and the
matching by 5n(n− 1) + 1 paths of length two where each path does not share its
inner vertex or edges with any other path.

The resulting graph G has a crossing number of 5n(n− 1) exactly when G is stretchable
because every crossing has to be in the interior of the two smaller graphs G1 and G2
because of the way the matching and cycles are thickened. If A is stretchable, G can be
drawn with 5n(n − 1) crossings because we can draw G in the way depicted in Figure
4.2 and only have intersections between the edges el. Each pseudoline crosses each other
exactly once and we have 5 crossings per intersection (both edges also cross the the two
paths around the other edge), so we get 1/2 · 5n(n − 1) crossings per copy (as we have
1/2 · n(n− 1) pairs of pseudolines), and thus exactly 5n(n− 1) crossings in general, thus
lin-cr(G) ≤ k. On the other hand, these crossings always have to exist in any straight-line
drawing of G, so if there is a straight-line drawing of G with lin-cr(G) ≤ k, the rest of
the graph has to be plane, thus it automatically has the required structure and omits a
realization of A.

4.2.2 CurveToPolygon

The second problem in this section we take a closer look at is CurveToPolygon. This
problem is different from the others as it is not a graph problem, but because it is different
and the proof is quite intuitive and comparably easy to understand we include it here. The
problem is defined in the following way:

CurveToPolygon:
Input: Self-intersecting closed curve γ, integer m.
Problem: Is there a polygon with m vertices that is isotopic to γ, in other words, can γ
be continuously deformed into a polygon with at most m vertices without changing the
pattern of intersections?

Erickson proved the problem to be ∃R-complete:
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Figure 4.2: The steps of the reduction for RectilinearCrossingNumber (Source:
[Bie91])
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Figure 4.3: Pseudoline arrangement and the resulting CurveToPolygon instance (Source:
[Eri19])

Figure 4.4: The resulting polygon that realizes the pseudoline arrangement (Source: [Eri19])

Theorem 4.4 ([Eri19]). CurveToPolygon is ∃R-complete.

Let A be a pseudoline arrangement with n pseudolines. Erickson assumes the pseudolines
to be arranged in a specific way as depicted in Figure 4.3. He then extracts a closed curve
γ by connecting neighbouring line segments in the way depicted in Figure 4.3. This figure
shows the case if there is an odd number of line segments; then the top ends on both sides
are connected. He also sets the parameter m to be four times the number of pseudolines.

This was the whole reduction, and directly corresponds to the stretchability problem. The
vertices of the polygon have to be in the added end loops, as each loop needs two vertices
to be isotopic to a polygon. This means that there can be no additional vertices inside the
closed curve where the original pseudolines where, so if there is a polygon with m vertices
that is isotopic to γ, its edges that do not connect vertices from the same end gadget
directly correspond to a straight-line realization of the set of pseudolines (as depicted in
Figure 4.4).

4.2.3 Other Problems
We have gone into detail for two of the reductions, but there are more problems that are ∃R-
complete and have been shown to be that way by reduction from SimpleStretchability.
We shortly define the problems, give a general idea of the proof and link the papers where
the reductions are done in detail. Note that, as it is our main focus in this thesis, we try to
give a complete overview over problems that deal with graph drawings and have omitted a
few geometrical problems that do also belong in this category. For a few more of those, we
refer to [Car15].

Intersection Graphs of Segments

For a set of segments S, an intersection graph G = (V,E) is a graph with a vertex v for
each segment lv with the property that uv ∈ E if and only if lu and lv intersect. The
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Figure 4.5: The ordering gadget for RECOG(SEG) (Source: [Sch09])

class of all graphs that are an intersection graph for a set of segments is SEG, the decision
problem RECOG(SEG) asks if a given abstract graph G is part of SEG:

RECOG(SEG):
Input: Abstract graph G = (V,E).
Problem: Is there a set of segments S such that G is the intersection graph of S?

Matous̆ek and Schaefer showed that this problem is ∃R-complete:

Theorem 4.5 ([Mat14, Sch09]). RECOG(SEG) is ∃R-complete.

First, they add a triangle of segments that surrounds every intersection of a pseudoline
arrangement A and cut all the segments shortly outside the triangle. Then, for each
intersection, ordering gadgets are added (structure in Figure 4.5). They define G as the
intersection graph of this arrangement. The ordering gadgets force the order in which the
original segments intersect to be either in original order or exactly reversed in every line
segment arrangement for G, thus the arrangement is stretchable if and only if G is in SEG.

Unit Disk Graphs and k-dot Product Graphs

Another ∃R-complete recognition problem deals with the recognition of disk intersection
graphs. A unit disk graph is an intersection graph corresponding to disks in the plane with
an uniform radius. The corresponding decision problem is RECOG(DISK):

RECOG(DISK):
Input: A graph G.
Problem: Is there an arrangement of disks with uniform radius in the plane such that G
is the corresponding disk intersection graph?

McDiarmid and Müller indirectly showed that this problem is ∃R-complete as they concen-
trated on integer representations of the problem. Because of that, the reduction is very
technical and not geometrical, so we do not give an overview how the reduction is done.

Theorem 4.6 ([MM13]). RECOG(DISK) is ∃R-complete.

Note that, as a generalization of that, Kang and Müller show that the problem stays
∃R-complete if we move to other dimensions. The decision problem for these k-dot product
graphs is defined in the following way:

21



4. Existing Problems and Reductions

Figure 4.6: The planar graph G, original line segments are black, intersection vertices blue
(Source: [Hof17])

RECOG(k-DOT):
Input: Graph G = (V,E), integer k.
Problem: Is there a subset S of points in Rk such that each vertex i ∈ V is identified
with a point si and an edge ij exists if and only if the scalar product si · sj is at least one?

Planar Slope Number

The planar slope number of a planar graph G is the minimal amount of different slopes
of edges in a plane straight-line drawing of G. The corresponding problem of deciding
whether a graph with maximum degree ∆ has planar slope number ∆/2 is ∃R-complete:

PlanarSlopeNumber:
Input: Planar graph G with maximum degree ∆.
Problem: Is there a plane straight-line drawing of G with at most ∆/2 different slopes?

Theorem 4.7 ([Hof17]). PlanarSlopeNumber is ∃R-complete.

Hoffmann takes a pseudoline arrangement A of n pseudolines and constructs a planar
graph G with ∆ = 2n where each vertex that represents an intersection has degree ∆
(G is pictured in Figure 4.6). G is drawable with n slopes if and only if A is stretchable
and a drawing of G realizes L because in a graph with slope number ∆/2 opposite edges
of a vertex with degree ∆ have the same slope, and G is constructed in a way that the
corresponding parts of a pseudoline on an intersection vertex are on the opposing side.

Point Visibility Graphs

As recognition of certain types of graphs seems to be of equal complexity for many different
of these types, we now consider another recognition problem. This time, we have to decide
if a given graph G is a point visibility graph, which is a graph G = (V,E) that corresponds
to a set of points P in the plane with the property that uv ∈ E if and only if the points pu
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and pv see each other, which means that there is no other point p ∈ P on the line segment
between pu and pv. Cardinal and Hoffman show that this decision problem is ∃R-complete:
RECOG(PVG):
Input: Graph G = (V,E).
Problem: Is G a point visibility graph, in other words, does a set P with |P | = n of
points in the plane and a bijective function between P and V exist so that uv ∈ E if and
only if pu and pv see each other?
Theorem 4.8 ([CH17]). RECOG(PVG) is ∃R-complete.

We want to highlight that Cardinal and Hoffman use a different method to prove ∃R-
completeness for this problem as they followed the idea of Mnëv and showed that a semial-
gebraic set is stably equivalent to the realization space of an instance of RECOG(PVG).
There is a direct relation between point visibility graphs and the spanning ratio of graphs.
The spanning ratio of a graph G = (V,E) is the minimal k so that, for each pair u, v ∈ V
the edge distance on the shortest path between u and v is at most k · ||uv||. As Aichholzer
et al. showed [ABB+20], the answer to the question if a given graph has a spanning ratio
of one is yes if and only if the graph is a point visibility graph. Thus, the following problem
is also ∃R-complete:
1-SpanningRatio:
Input: Graph G = (V,E).
Problem: Can G be drawn as a proper straight-line drawing with spanning ratio 1?

Realization of AT graphs and Simultaneous Geometric Embedding
An abstract topological graph is a pair AT = (G,R) with R being a set of pairs of edges
from G. R expresses which edges of G are allowed to cross in a drawing of G. A weak
realization of AT is a drawing of G where only the edge pairs in R cross, if all of them
cross in the drawing, it is just called a realization. For a given AT-graph, deciding whether
it is (weak) realizable with a straight-line drawing is ∃R-complete, as shown by Kync̆l. We
are going to focus on the weak version of the problem as it leads to another ∃R-complete
problem:
WeakRectilinearRealizability:
Input: Abstract topological graph T = (G,R).
Problem: Does a straight-line drawing of G exist where only edge pairs from R cross?
Theorem 4.9 ([Kyn11]). WeakRectilinearRealizability is ∃R-complete.

Kync̆l constructs an AT-graph T from a pseudoline arrangement A with n pseudolines
by placing a circle around all the intersections in A. He then defines T as a cycle of
6n vertices with n chords corresponding to the pseudolines and 2n additional paths that
connect certain vertices of the cycle and have length n − 1. Two types of crossings are
allowed: chords can cross each other and the edge pj of a path j can cross the chord cj . T
is realizable if and only if A is stretchable as the chords directly correspond to the stretched
pseudolines.
Cardinal then used that problem to show ∃R-completeness for another graph drawing
problem, Simultaneous Geometric Embedding (or k-SGE) as it is equivalent [Car15]. Note
that the reduction only works when k is for some constant c at least in Ω(nc) for the size n
of the original instance.
k-SGE:
Input: k Graphs G1 = (V,E1), . . . Gk = (V,Ek) with a shared vertex set V .
Problem: Does a set of coordinates P ⊂ R2 and a bijection π : V → P exist such that
every induced drawing of any Gi is planar?
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Figure 4.7: A Peaucellier linkage for LinkageRealizability (Source: [Sch13])

Linkage Realization and Unit Distance Graphs

Another graph drawing problem proven to be ∃R-complete by Schaefer is the problem of
drawing a graph with straight lines and given lengths for each of the edges:

LinkageRealizability:
Input: Graph G = (V,E), function l : E → R>0.
Problem: Is there a straight-line drawing of G where every edge e has its corresponding
length l(e)?

Schaefer showed that this problem is ∃R-complete even when we consider unit lengths:

Theorem 4.10 ([Sch13]). LinkageRealizability is ∃R-complete.

The idea of the reduction is to use Peaucellier linkages (Figure 4.7) to make sure that three
points have to be drawn on a line. These Peaucellier gadgets can be built in a way that
the edges are uniform. Schaefer transforms a pseudoline arrangement A into a graph G by
adding vertices on each intersection and end of a pseudoline and then replace edges between
consecutive vertices on the pseudolines by the Peaucellier gadgets. G then is realizable if
and only if the A is stretchable as ensured by the Peaucellier gadgets.

Partial Geometric 1-Planarity

Schaefer also researched the problem PartialPlanarity where for a graph G and a
subset of edges F the graph is to be drawn in such a way that the edges of F have no
intersections. Without further restrictions, Schaefer showed that the problem is solvable
in polynomial time. He did not find a classification for the problem if the edges should
be drawn as straight lines though. However, he showed ∃R-completeness for a slight variant:

PartialGeometric-1-Planarity:
Input: Graph G = (V,E), subset of edges F ⊆ E.
Problem: Is there a straight-line drawing of G such that every edge e ∈ F has at most
one crossing?

Theorem 4.11 ([Sch14]). PartialGeometric-1-Planarity is ∃R-complete.
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For the reduction, Schaefer surrounds the intersections of the pseudoline arrangement A
with a parabola R. He then constructs a graph from that by playing vertices on each
intersection of a line segment with the boundary, on each inner face of the resulting
arrangement and an additional one below the parabola. He adds edges corresponding to
the dual graph of the pseudoline arrangement and K6 gadgets to ensure that a drawing of
the graph leads to a realization of A.

4.3 Reductions from ETR-INV and its Variants
Overall, as we mentioned before, the reductions from SimpleStretchability differ very
much and depend on the right idea for the specific problem. Now, we consider the second
approach for showing ∃R-completeness, reductions from ETR-INV, where we find a structure
in the reductions that is much easier to replicate than the SimpleStretchability proofs.
As a reminder, here is the general ETR-INV problem:

ETR-INV:
Input: ETR instance where the variables are equations and inequalities are all of one of
the following forms: x = 1, x+ y = z, x · y = 1. Additionally, the only logical operations
that are allowed are conjunctions.
Problem: Are there real numbers in [0.5, 2] for which the formula is true?

The reductions from ETR-INV, as opposed to the ones in the previous section, all follow
the same blueprint: We build specific structures in the setting of our problem to encode
variables and to implement the different kinds of allowed formulas. We also need a way to
transfer values of variables. We give three examples where this general idea is implemented
in different ways. As a side note, Abrahamsen et al. [AMS20] modified this approach to
also work for geometrical packing problems instead of graph drawing problems.

4.3.1 Drawing a Graph in a Polygonal Region

The problem we mainly focus on is GraphInPolygon. We reuse and slightly modify most
of the gadgets later in Chapter 5 for our own proof. The problem is the following:

GraphInPolygon:
Input: Planar graph G = (V,E), polygonal region R, subset of V with fixed positions on
the border of R.
Problem: Is there a planar straight-line drawing of G where the fixed vertices are drawn
on their assigned positions?

Lubiw et al. [LMM18] show that this problem is complete in ∃R, using the blueprint for
reductions from ETR-INV problems:

Theorem 4.12 ([LMM18]). GraphInPolygon is ∃R-complete.

The general idea of the proof is to take an instance I of Planar-ETR-INV*, compute an
orthogonal straight-line drawing of the incidence graph G(I) of I and transform G(I) into
an instance of GraphInPolygon. For that, we need geometrical figures to express the
equations and inequalities from the ETR-INV-formulas in terms of our problem, we call
them gadgets in the rest of the thesis. We need gadgets for expressing variables and their
values, and we need gadgets for the different kinds of formulas that Planar-ETR-INV*
allows. We also need additional gadgets for transforming edges of the incidence graph into
our problem instance. In the following paragraph, we introduce and explain those different
kinds of gadgets (depicted in Figure 4.8).

First of all, we need a variable gadget to represent the variables and encode their values in
our drawing. For that, we force a vertex onto a line segment and use the position of the
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(a) Variable gadget (b) Copy gadget (c) Split gadget

(d) Turn gadget (e) Addition gadget (f) Inversion gadget

Figure 4.8: The gadgets for GraphInPolygon (Source: [LMM18])

vertex on the line segment to represent the value of the variable. How that is done can be
seen in Figure 4.8 a): The fixed vertex a and the two peaks of the polygon ensure that the
vertex p has to be at the same height as a, and the vertex b forces v to be on the right side
of p. On the other side of the gadget, there is a mirrored construction that forces v to also
be to the left of s, thus v has to be situated on the line segment ps.

We can divide the other gadgets into two categories: Formula gadgets that implement the
different operations allowed in Planar-ETR-INV* formulas and transport gadgets that we
use to replace the edges in the incidence graph to carry values of variables through the
drawing. We have three different transport gadgets. The copy gadget just copies the value
of a variable through space and replaces a straight-line part of an edge of the incidence
graph. The turn gadget implements rotations of an edge of 90 degrees. The splitter gadget
is there to transfer the value of a variable to different parts of the incidence graph if a
variable vertex has a degree of more than one. Additionally, we have addition gadgets that
ensure that a variable gadget z has value at most x+ y (or at least x+ y respectively) and
inversion gadgets who ensure that, for two variable gadgets x and y, x · y ≤ 1 or x · y ≥ 1
holds respectively. The gadgets are depicted in Figure 4.8. We explain how and why they
work in Chapter 5.

The final step now is to transform the planar incidence graph into an instance of GraphIn-
Polygon. For that, we replace variable vertices with variable gadgets, formula vertices
with the corresponding gadgets and edges with copy and turn segments. We again go into
detail in Chapter 5 why this transformation is correct and always possible.

4.3.2 Art Gallery Problem
The art gallery problem is the first problem that was shown to be ∃R-complete via reduction
from ETR-INV. Abrahamsen et. al [AAM18] explicitly designed the ETR-INV problem to
restrict the possible equations in the ETR formula to be better expressable with specific
gadgets. The gadgets are built by using properties of the art gallery problem, which is
defined in the following way:
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Figure 4.9: High-level polygon of the art gallery problem (Source: [AAM18])

ArtGalleryProblem:
Input: Simple polygon P with corners at rational coordinates, integer k.
Problem: Is there a set G of k guards (points in P ) that guards all of P , so that for each
p ∈ P there is a g ∈ G such that the line segment pg is completely in the interior of P?

Theorem 4.13 ([AAM18]). The art gallery problem is ∃R-complete.

Lubiw et al. base the reduction on the general ETR-INV problem. They again construct
gadgets for each type of equation in ETR-INV, but do not need the planar incidence graph
that is the base of the previous reduction as the values of the variables are transmitted to
the gadgets without additional constructions.

The high level sketch of the polygon can be seen in Figure 4.9. On the bottom, there
are the guard segments which represent the variables of the formula. The gadgets are on
the left and right side, with corridors at the beginning copying the values of the guard
segments into the segments. The idea of the gadgets is that only specific points of the
guard segments can see the entire gadget, and thus, to have an optimal set of guards, these
points have to be included and the values of the variables can be manipulated in this way.
For more details we refer to the original paper. For better understanding how the polygon
can be used to manipulate values of variables, we discuss the guard segments a bit more.

As seen in Figure 4.10, we force a guard to be on a line segment s. For that, we cut two
triangles on the left and right side into the polygon, so that a guard can only see the whole
left triangle if it is at least at the height of s, and only sees the whole right triangle if it is
at most at the height of s. Additionally, the ground is manipulated so that a guard on
the height of s can only see everything below it if it is exactly in the boundaries of s. The
reduction manipulates the number of allowed guards in a way that only one guard can
be spared to guard this area, so the guard has to be on s. If we force a specific value for
the variable, we can add more notches so that the position of the guard on s is even more
restricted, e.g. to the value one as seen in the right side of Figure 4.10.

4.3.3 Prescribed Area PE

The last problem that belongs in this category that we briefly mention is PrescribedAreaPE
(PE is short for partial extension) where we have to draw a plane graph with assigned
areas for the facets and fixed positions for a subset of vertices:
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Figure 4.10: Guard segments for the art gallery problem (Source: [AAM18])

Figure 4.11: The gadgets for Prescribed Area PE (Source: [DKMR18])

PrescribedAreaPE:
Input: Planar graph G = (V,E), vertices Vf ⊆ V with fixed positions in the plane, fixed
combinatorial embedding, function a : F → R>0 that assigns an area to each face.
Problem: Is there a planar drawing of G that respects the combinatorial embedding and
the fixed positions and such that the area of each face is exactly as a prescribes?

Theorem 4.14 ([DKMR18]). PrescribedAreaPE is ∃R-complete.

The reduction is made from Planar-ETR-INV, the outline of the proof is similar to the
one for GraphInPolygon. Only the construction of the gadgets is different. The gadgets
follow the idea that again certain not fixed vertices are forced onto a line segment to encode
the value of variable. The main manipulator this time is the area of the neighbouring faces,
they can only match their supposed area if the variables have a specific value. In Figure
4.11 we show a few of them visually: On the left a variable gadget and with the beginning
of a wire, then a splitter gadget, an addition gadget and an inversion gadget.

For more information we refer to the original paper. As a an additional note, in the
same paper Dobbins et al. [DKMR18] also showed ∃R-completeness for a more general-
ized version of the problem, Prescribed Volume, where the constructs are assigned to R3.

From now on, we use these observations to classify problems that were formerly not
associated with ∃R. We mainly use reductions from ETR-INV and its variants because
they are more uniform and easier to imitate, but reductions from SimpleStretchability
could also be possible.
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Now, we use the framework from the last section to show ∃R-completeness for the following
problem (Visualization in Figure 5.1):
DrawingGraphOnSegments:
Input: Graph G = (V,E), set S = Sv ∪̇ So of segments with vertex segments Sv that are
closed and pervious and obstacle segments So that are open and impenetrable, bijective
function f : V → Sv, fixed combinatorial embedding.
Problem: Is there a straight-line planar drawing of G that fulfills the embedding so that
each vertex v is located on the corresponding segment f(v) and that the edges do not cross
the obstacle segments?
To show that this problem is ∃R-complete, we first give an equivalent formula to show
∃R-membership, and then prove that it is also ∃R-hard. Afterwards, we discuss alterations
to the problem and their impact on the complexity of the problem.

5.1 ∃R-Membership
As the input of the problem, we have the graph G = (V,E), the set S = Sv ∪̇ So of line
segments and a bijective function f : V → Sv. We need a few definitions to construct an
ETR-formula for our problem. Let V = [n] as well as E ⊆

([n]
2
)
. We assume that the edges

of the graph are orientated in an arbitrary way, so that we get h, t : E → V as functions
that return the head and tail vertices of an edge respectively, and we assume to have start
and end functions for the segments which return the coordinates of the endpoints of the line
segment (more detailed: startX and startY for the x and y value of the coordinates, and
endX and endY for the other endpoint). We enumerate the vertex segments in a way that
si is the corresponding segment for vertex i according to f . We also need two functions ch

and ct that return the clockwise neighbour of every edge according to the embedding for
the head and tail vertex.
For the formula, we need pairs of variables to encode the vertices and we need to check
four things to ensure that the drawing fulfills the requirements of the problem: Are all the
vertices on the corresponding vertex segment, is the drawing of the graph planar, do the
edges not intersect with the obstacle segments and is the combinatorial embedding fulfilled.
We split these four checks into smaller formulas and combine them with conjunctions to
form our ETR formula. Thus, the general outline of the formula is the following:

∃(x1, y1), ..., (xn, yn), r1, .., rn, (s1,2, t1,2), .., (sm−1,m, tm−1,m) :
OnSegment ∧ Planar ∧ NoIntersection ∧ Embedding
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v1

v2

v3

v4

v6

v5

Figure 5.1: An instance with blue obstacle segments, black vertex segments and green edges

Here, the (xi, yi) variables encode the positions of the vertices, while the other variables
are auxiliary variables for the different parts of the formula. We have a polynomial amount
of variables, so the reduction works in polynomial time as each part has polynomial length.

Note that in this and any further ∃R-membership constructions, to counteract possible
divide-by-zero problems, we assume that no segment or edge has slope ∞ or −∞. We can
do that because if we have an edge or segment with that slope, we can turn our whole
drawing clockwise until no infinite slope is left (which will happen because we only have a
finite amount of edges/segments). Only the relative positions of our objects to each other
are relevant to our problems, not the absolute positions in the plane, and we do not change
those.

OnSegment:
To check if all vertices are on their respective vertex segments, we need to transform the
vertex segment si into a parametrized depiction of the form z = a+ r(b− a) for both x
and y coordinates and then check if the point is on the segment. For that, we construct a
system of equations with two equations and one parameter ri. If there is an ri that fulfills
both equations and lies on the segment itself and not just on the line through the segment,
which corresponds to checking if ri is between 0 and 1 (0 and 1 included as the segment is
closed), then the vertex lies on the segment (see Figure 5.2).

OnSegment ≡
∧

si∈Sv

(xi = startX(si)− ri · (endX(si)− startX(si))

∧ yi = startY (si)− ri · (endY (si)− startY (si)) ∧ (0 ≤ ri ∧ ri ≤ 1)

Planar:
To check planarity, we need to compare all possible pairs of edges and determine whether
they intersect in a point other than a common end point. For that, either the edges can be
parallel (note that we allow degenerate planar drawings so parallel edges are allowed in all
cases) or not parallel but also not crossing. The general formula is this:
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s

i

(startX(s), startY (s))

(endX(s), endY (s))

xi = startX(s)− ri(endX(s)− startX(s))

yi = startY (s)− ri(endY (s)− startY (s))

s

i

s

i

Figure 5.2: Visualization of the idea behind the formula OnSegment. Top: ri exists and is
between 0 and 1, bottom left: ri exists, but is greater than 1, bottom right: ri

does not exist

Planar ≡
∧

i,j,i<j∈[m]
Parallel(ei, ej) ∨NoCross(ei, ej)

Parallel:
Two edges are parallel if they have the same slope. The slope of an edge e can be computed
by (yt(e) − yh(e))/(xt(e) − xh(e)). Note that, as no edges are vertical, we are not dividing by
zero here. Rearranging the equation, we check if the slopes of both edges ei and ej are the
same with the following equation:

Parallel(ei, ej) ≡ (yt(ei) − yh(ei))(xt(ej) − xh(ej)) = (yt(ej) − yh(ej))(xt(ei) − xh(ei))

NoCross:
To check if two edges cross we need to check where the straight lines through the edges cross
(which we now assume to be non-parallel so the intersection exists). In order to do that, we
parametrize the two edges to get an equation for the straight line: (x(sei,ej ), y(sei,ej )) =
(xh(ei) + sei,ej (xt(ei)−xh(ei)), yh(ei) + sei,ej (yt(ei)− yh(ei))), same for edge ej with parameter
tei,ej . If we now equate the two lines to get the point where they intersect encoded in
(sei,ej , tei,ej ), we get the following two equations, combined with a conjunction, which we
call LineIntersection because we need them again in Chapter 6 (visualized in Figure 5.3):

LineIntersection(ei, ej) ≡ sei,ej (xt(ei) − xh(ei))− tei,ej (xt(ej) − xh(ej)) = xh(ej) − xh(ei)

∧ sei,ej (yt(ei) − yh(ei))− sei,ej (yt(ej) − yh(ej)) = yh(ej) − yh(ei)

These equations ensure that the point where the two lines intersect is encoded in the point
(sei,ej , tei,ej ). The two edges cross if the intersection lies on both edges, which translates to
both coordinates being between 0 and 1.If one of the parameters is not between 0 and 1,
the edges do not cross, which leads us to the following formula:

NoCross(ei, ej) ≡ LineIntersection(ei, ej) ∧ (sei,ej ≤ 0 ∨ sei,ej ≥ 1 ∨ tei,ej ≤ 0 ∨ tei,ej ≥ 1)
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s = 0

s = 1 t = 0

t = 1

s, t < 0

s = 0

s = 1

t = 1

t = 0

0 < s, t < 1

Figure 5.3: Visualization of the idea behind the formula LineIntersection

NoIntersection:
Additionally, we need to ensure is that edges cannot cross obstacle segments. For that, we
can reuse the same ideas as in the planarity formula. The formulas Parallel and NoCross
are nearly the same as above, only the second edge is replaced with an obstacle segment so
the corresponding x and y variables are replaced with the start and end functions of the
segment. We only give the higher level formula here because the implementations are just
copies of the section above.

NoIntersection ≡
∧

e∈E,b∈So

Parallel(e, b) ∨NoCross(e, b)

Embedding:
Finally, we need to check if the combinatorial embedding is fulfilled. For that, we simply
check for every edge e on each endpoint if the next consecutive edge is the correct one
according to the embedding. In order to do that, we need to check if the angle from e to
c(e) (we write c(e) as a substitute for ch(e) or ct(e) depending on if h(e) or t(e) is the vertex
we are checking) is smaller than the angle to the other adjacent edges on the common
endpoint.

We do not give the specific formula here, but instead explain the idea behind it to ensure that
the formula is expressible in ETR. For every edge e ∈ E, we ensure for both endpoints there
is no other edge between e and c(e), its clockwise neighbour according to the embedding.
For that, we need to go through every other edge e2 ∈ E, check if they have a common
endpoint and then ensure that the angle α between e and e2 is larger than the angle β
between e and c(e). For that, we use the cosinus of the angles (details how to express the
cosinus in our formula in Chapter 6). As the cosinus is not linear, we need to divide the
plane into two parts: the part to the right of the edge e and the part to the left of the edge
e (depicted in Figure 5.4).

Now, we need to differentiate between four cases: If both edges c(e) and e2 are in the left
section, we need to check if cos(β) ≥ cos(α) as the cosinus is monotonically decreasing
between 0 and 180 degrees. If c(e) is in the left section and e2 in the right one, β < α,
thus we accept the drawing. If it is the other way around, α < β and the embedding is not
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Left section

Right section

α

β

e

e2

c(e)

Figure 5.4: The idea behind the formula Embedding. Here, the embedding is not fulfilled
as cos(β) > cos(α) and thus α < β.

fulfilled. Finally, if both edges are in the right section, we need to check if cos(β) ≤ cos(α)
as the cosinus is monotonically increasing between 180 and 360 degrees.

5.2 ∃R- Hardness
For this proof, we mainly follow the proof of Lubiw at al. [LMM18] for the problem
GraphInPolygon. As outlined in Chapter 4, our main tool to use is adding additional
line segments instead of the holes in the polygon in the original proof. The general idea
is to reduce the known ∃R-complete Planar-ETR-INV* to our problem. We do that
by considering a planar incidence graph for a formula and transforming the graph into a
set of segments. For that, we need different kinds of gadgets: We need a way to depict
variables, we need copy gadgets to transfer the value of a variable through space, we need
turn and split gadgets to replace the edges of the incidence graph and we need gadgets to
implement the different kinds of formulas Planar-ETR-INV* allows: an addition gagdet,
an inversion gadget and a gadget for equality to 1. We introduce the gadgets, explain
why they are correct and then go in detail about how we use these gadgets to form the
incidence graph.

At multiple points, we need to force edges through specific points. The way to do that is to
place obstacle segments in a way that the point is not contained by either of the segments
so the edge can pass that point, and to block all other possible connections between the
endpoints of the edge with the line segments.

In the following figures, the black segments represent the vertex segments, their endpoints
are filled as the segments are closed. The blue segments with endpoints that are not filled
are the obstacle segments, their endpoints can be crossed. Vertices are represented by
green crosses and edges by green lines.

Variable gadget:
The variable gadget is pretty straight forward, we can directly use the idea from the original
proof, but do not need additional steps as the combination of line segments and variables
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0.5 4
x

x′
0.54

Figure 5.5: The mirror gagdet

is given by the problem. The variable gadget thus is just a line segment and the belonging
vertex where the position of the vertex on the line segment indicates which value the
variable holds. One endpoint of the segment holds the value 0.5, the other one the value
4. As the segment is closed, 0.5 and 4 can be represented and the segment can express
exactly the values of the closed interval [0.5, 4] as the problem requires.

Mirror gadget:
This gadget is not in the original proof, but seems relevant enough to get an independent
section because it is the basis of a few of the other gadgets. Its idea is the mirroring of a
variable gadget to be reused in other gadgets or to align the vertex segments as needed
in the reduction from the incidence graph. For that, it uses two parallel variable gadgets
exactly above each other and an edge between the vertices that is forced to go through
the middle point of the resulting rectangle between the variable gadgets. The gadget is
depicted in Figure 5.5.

Lemma 5.1. The mirror gadget works correctly.

Proof. The edge between the vertex segments is forced to go through the middle of the
resulting rectangle, thus the distances of the vertices to the endpoints of both segments
are similar, but swapped. Because of that, the position of the vertex on the top gadget is
mirrored, but as the endpoints representing value 0.5 and 4 are also swapped, the segment
represents the same value.

Copy gadget:
This gagdet is meant to copy the value of a variable x, so the position of the according
vertex on a line segment, onto another line segment. For that, we consecutively connect
two mirror gadgets directly above each other, so the top segment of the lower mirror gadget
is the base segment of the upper one. The first mirror gadget copies the value of x onto
the mirrored middle variable gadget, the second one copies it onto the destination segment
x′. The gadget can be seen in Figure 5.6.

Lemma 5.2. The copy gadget works correctly.

Proof. The copy gadget combines two mirror gadgets. As these work correctly, the value
of x is mirrored on the middle segment, and then mirrored again on the top segment x′.
Thus, x′ has the same value and same alignement as the original segment x.
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Figure 5.6: The copy gadget

Split gadget:
The split gadget is used to copy the value of a variable gadget onto two different ones to
implement vertices with higher degree in the incidence graph. Here, the idea is to use
two mirror gadgets, but in a skewed way so both mirror gadgets originate from the same
line segment. We have one vertex segment on the bottom, and two vertex segments next
to each other above it. The value of the bottom variable is copied onto the two different
upper line segments (Figure 5.7).

Lemma 5.3. The split gadget works correctly.

Proof. Skewing the mirror gadget does not change the geometrical idea behind the gadget.
The edges are now forced to go through the middle points of the resulting parallelogram,
where the symmetric properties again ensure that the distance to the endpoints is mirrored
in the same way as in the rectangle of the mirror gadget.

Turn gadget:
We need the turn gadget to implement the turning points of edges in the orthogonal
drawing of the incidence graph. The general idea is to use a line segment with slope 1/− 1
as a transmitter between a vertical and a horizontal variable gadget with edges from both
outer vertex segments to the middle one. For that, we place our obstacle segments in a
way that the point the edges can cross is on the intersection of the lines connecting the
endpoints of the segments (Figure 5.8). The distances of the horizontal and the vertical
segment to the diagonal transmitter segment are identical, and the transmitter segment
has half the length of the normal segments.
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Figure 5.7: The split gadget

Lemma 5.4. The turn gadget works correctly.

Proof. While the relative distance to the endpoints is not the same on the diagonal segment,
the gagdet works anyways because the difference can be described by a strictly monotone
function (variables closer to an endpoint on the original segment are closer to the endpoint
on the diagonal) and projecting the variable from the diagonal segment to the other one is
the reverse operation to that function because it is a mirroring geometrical operation with
the line through the diagonal segment acting as the mirror.

Equality to 1 gadget:
This gadget represents equations of the form x = 1. The idea of this gadget is to build it
like a mirror gadget with two vertex segments directly above each other, but add a second
layer of obstacle segments to ensure that the only way the edge between the two vertices
can be drawn as a straight line is on the line through the position of the variable gadget
representing the value one (Figure 5.9). For that, both layers of obstacle segments only
leave one point open for the edge between the vertices to cross, these points are directly
under the value one of the top segment.

Lemma 5.5. The equality to 1 gadget works correctly.

Proof. The two points between the obstacle segments define the only line on which the
edge can exist. This line only crosses the variable gagdet once, so the edge can only be
drawn if the position of the lower vertex corresponds to the value one.

Addition gadget:
This gadget is where we do not follow the approach from Miltzow but construct a different
kind of gadget. It represents inequalities of the form x+ y ≤ z or x+ y ≥ z. Here, we need
that the vertex segments are pervious and also the combinatorial embedding. We also need
two different constructions for x+y ≤ z and x+x ≥ z. The gadget consists of two different
parts: The addition part (segments x, y′ and z) and the part to get the value of y onto y′.
For the latter, we first need to halve the length of the variable gadget. For that, we need
two additional vertex segments. The first one has normal length and is the segment that
acts as the interface to the rest of the reduction. We then first halfen the length of the
vertex segment. For that, we place the shorter vertex segment above the larger one in a
way that the middle points of the segments are aligned. The obstacle segments now are
placed in a way that the point the edge can cross is aligned with the middle points of the
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Figure 5.8: The turn gadget
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Figure 5.9: The gadget ensuring equality to one
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Figure 5.10: Gadget ensuring z ≥ x+ y

segments, and the distance to the smaller segment is half of the distance to the bigger one.
This results in the value getting copied correctly onto the smaller segment. Finally, we
copy the value of y from the middle segment onto y′ with a normal copy gadget, though
we need to be careful that the obstacle segments do not disturb the addition part of the
gadget.

For the addition part, we have the three variable gadgets x, y′ and z. The length of x and
z is 7 distance units, and y′ is half that long. They are parallel in 3 different layers and the
distance between x and y′ is the same as the distance between y′ and z. The start of the
y′ segment is 0.75 distance units right to the end of the x gadget, and the start of the z
unit is 0.25 units to the right of that (so when the gadgets would be extended to include 0,
the zeros would be directly above each other). We have an edge between x and y′ and an
edge between x and z. For that last edge, the vertex segments have to be pervious as this
edge needs to be able to cross y′. If we would extend the edge between x and y′ to the z
segment, it would intersect the gadget exactly on the value of x+ y (proof later). We use
this observation to force xz to the left (or right) of the edge xy with our combinatorial
embedding to ensure that z lands on a position that is ≤ x+ y (≥ x+ y).

That is the general structure of the gadget, for details we must distinguish between the
greater than and the less than gadget:

If we want to express that z ≥ x+ y then we need to force the edge between x and z to the
right of the edge between x and y with our combinatorial embedding. We add an auxiliary
vertex segment v and an edge between x and s to ensure that the embedding indeed forces
xz to be to the right of xy as xz has to be on the right side of xy and on the left side of
xv. The embedding for x would then be z, y′, v (counter-clockwise). Due to the edge to
z being to the right of xy, we need to get the value of y onto y′ from the top left to not
disturb the rest of the gadget (Figure 5.10).

The difference for z ≤ x+ y is that xz is to the left of xy, so the embedding would be y′, z,
v (counter-clockwise). Because of that, we cannot keep the copy gadgets for y′ on the top
left because it would interfere with xz, instead we need to shift that to the bottom right
(Figure 5.11).

Lemma 5.6. The addition gadget is correct.

Proof. The first thing we note is that, as stated above, if we extend the edge between x
and y′ to z it intersects with z directly at the value of x+ y. That is the case because if
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Figure 5.11: Gadget ensuring z ≤ x+ y

we fix x = y = 0.5, then the extension of the edge would land on 1 due to the positions of
the gadgets. If we now move x to the left by a fixed length, due to the symmetry of the
gadget and because y′ is exactly in the middle of x and z, z moves by exactly the same
amount (like a mirror gadget). If we fix x and move y, the intersection on z moves by
exactly double the amount because y′ is at exactly half the distance between x and z, so
due to the intercept theorem z moves exactly double the distance of y′. We then force
the edge between x and z to be either to the left or to the right of the edge between x
and y′, so the position of z has to be to the left (or right) of the position of x+ y. That
means that z ≤ x+ y (z ≥ x+ y). We also guarantee that there is another edge from x
downwards to v, so with the combinatiorial embedding we indeed force the edge between x
and z to be in the right position.

Inversion gadget:
This gadget represents the inequalities of the form x · y ≤ 1 andx · y ≤ 1. Here, we again
need the distance units. We need two variable gadgets (again 7 units long) who are in a
right angle with each other and that are 1.5 units apart from the point where the two lines
would intersect. As Planar-ETR-INV* allows both x · y ≤ 1 and x · y ≥ 1, we need two
different gadgets to express that. For x · y ≤ 1,we then force an edge between the variables
that has to be to the right of the point p that is 1 unit from the middle point both in
both dimensions, depicted in Figure 5.12. As the edge through p would exactly invert the
variables, any edge to the right of p results in x · y ≤ 1. For x · y ≥ 1, we simply block the
other side next to p and force the edge to be situated on the left of p.

Lemma 5.7. The inversion gadget is correct.

Proof. The inversion gadget is correct because the two triangles in Figure 5.12 below are
similar (both have a right angle and the hypotenuses lie on the same straight line). In
similar triangles the proportions of lengths of the sides are equal. That means that in our
case, x

1 = 1
y , or in other words x · y = 1 if the edge goes through p, exactly what the gadget

is supposed to do. Forcing the edges to be on the right or left side of p thus results in the
desired outcome of x · y ≤ 1 and x · y ≥ 1 respectively.
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Figure 5.12: The inversion gadget
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Figure 5.13: Reduction from the planar incidence graph to DrawingOnSegments. The
red dots represent split gadgets, the green ones represent turn gadgets. The
dashed lines are implemented with copy gadgets. (Original: [LMM18])

Incidence graph:
We now have all the tools we need to perform the reduction (depicted in Figure 5.13). The
remaining question is: How do we transform the incidence graph of our Planar-ETR-
INV* instance I into an instance of our problem? For that, we need an incidence graph
for I. We have a vertex for each variable, a vertex for each formula and an edge between
vertices if the variable is part of the formula. We then need an orthogonal drawing of the
graph. Such a drawing always exists and can be computed in polynomial time as proven in
[NR04]. Also, all the gadgets can be adressed properly by either rotating the gadget or
using mirror and turn gadgets. The structure of the drawing also dictates the combinatorial
embedding for the DrawingOnSegments instance.

Every vertex with degree greater than 1 is then replaced by multiple splitter nodes with
maximum degree 3. Then every edge is replaced by a copy gadget, every 90 degree turn
is replaced by a turn gadget and the variable and formula vertices are replaced by the
corresponding gadgets. Every gadget works correctly as described in the lemmas above, so
this reduction is both possible and also correct.

Theorem 5.8. DrawingOnSegments is ∃R-complete.

Proof outline. We showed ∃R-membership in Section 5.1. For ∃R-hardness, we only give the
steps of the reduction, as we proved the correctness in the earlier lemmas. We reduce from
Planar-ETR-INV*, let I be an instance. The first step is to transform I into the adjusted
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Figure 5.14: Left: The art gallery instance (Source: [LMM18]), right: the DrawingOn-
Segments instance

incidence graph G(I) from above. Then we need an orthogonal drawing of G. Both these
steps are possible in polynomial time. We transform that into a DrawingOnSegments
instance as described above, which can also be done in polynomial time as all the gadgets
have a constant size.

As we mentioned earlier, it is unlikely that ∃R-complete problems are in NP. One reason for
that is that there are results for many ∃R-complete problems which show that, even when
the input consists of integers, for some problem instances the solution may require irrational
coordinates and is thus not computable by a turing machine, at least not explicitly. That
restricts the possibilities to find an algorithm to solve these ∃R-complete problems efficiently.
We now show that DrawingOnSegments also belongs in this category by giving an
instance with integer coordinates for the segments that requires a solution with irrational
coordinates. This instance was first found by Abrahamsen et al. for the art gallery problem
[AAM18] and then modified by Lubiw et al. for GraphInPolygon [LMM18], we now
adjust it for our problem:

Theorem 5.9. There are instances of DrawingOnSegments where the positions of all
segments can be described with integer coordinates that requires irrational coordinates for
the position of at least one vertex.

Proof outline. The original instance I of the ArtGalleryProblem and our modified
instance I ′ of DrawingOnSegments can be seen in Figure 5.14. We follow the same
approach as Lubiw et al. [LMM18] and modify I to fit our problem description. Abrahamsen
et al. [AAM18] show that I can be optimally guarded by three guards which they forced
on vertical guard segments. Because of the notches above and below the guard segments,
an optimal solution requires guards on these segments. They show that those three guards
x, y and z are enough if and only if they are placed on irrational coordinates. Note that
our instance I ′ fulfills the same properties as I. We have replaced the guard segments
for x, y and z with explicit vertex segments and the shape of the polygon with additional
vertex and obstacle segments. The relevant parts of the polygon that x, y and z have to
see together are replaced by vertex segments, and each of the corresponding variables to
the guards that can potentially see the segment has to be adjacent to it. Thus, we also
need irrational coordinates for the vertices x′, y′ and z′.

5.3 Variants
There are many changes to the problem we can discuss. We are going to focus on three
questions:
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• Is it possible to only allow open or only closed segments?

• Is it possible to build the gadgets without pervious segments, or maybe with only
pervious segments?

• Can we reduce the amount of different slopes of the segments or the amount of
different lengths of segments?

In the following paragraphs, we are one by one discussing these questions to varying results:

5.3.1 Open/Closed Segments

The first question we want to answer is if we can restrict all segments to be all open or all
closed. Note that in our proof in the previous section, the segments encoding variables are
all closed due to the variables lying in the closed interval [0.5, 4] and the obstacle segments
used to force edges through certain points are all open.

Open Segments

For now, we consider our problem, but with only open segments. That means that we have
to find a different solution for our variable gadgets, because in our proof, the variables come
from the closed interval [0.5, 4]. A possible approach to change that would be to change
our version of Planar-ETR-INV* to Planar-ETR-INV, here we have variables from
the open interval (0, 5). We would need to adjust our gadgets for inversion and addition
though to only allow equations and no inequalities, and while that works for the inversion
gadgets, we would need to allow multiple edges between the same vertices to be able to
force equality in the addition gadget. That would maybe lead to more problems for our
formulas to prove ∃R-membership, so we do not explore this direction further in this thesis.

Closed Segments

If we restrict all segments to be closed, we run into problems with our obstacle segments.
We cannot use the constructions to force edges through certain points anymore, and
can only construct corridors that lead to minimal errors in all the gadgets. A possible
approach for this problem could be to determine if an alternative version of ETR-INV
where each equation allows for an error ε is also ∃R-complete and if that could be reducible
to our problem with only closed segments. Indeed, as Delidkas et al. show [DFMS18], the
∃R-complete variant ε-ETR allows deviations in the equations up to a fixed ε. It could
be further explored if this problem also leads to an ∃R-complete problem ε-ETR-INV and
if our reduction could be modified in a way that the deviations in each gadgets can be
bounded by an ε.

5.3.2 Pervious/Impenetrable Segments

Impenetrable Segments

The addition gadget is the only gadget where we use that the vertex segments are pervious,
so we only need to adjust that gadget. Note that this gadget is also the only thing we need
the fixed embedding for, so we can drop that restriction from our problem. Our idea for
the addition gadget follows the approach from Lubiw et al. [LMM18], but it runs into a
different problem as we see later. The resulting problem can be defined as follows:

Input: Graph G = (V,E), set S of segments, subset Sv ⊆ S of vertex segments, bijective
function f : V → Sv.
Problem: Is there a straight-line planar drawing of G so that each vertex v is located on
the corresponding segment f(v) and that the edges do not cross the segments?
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Figure 5.15: The alternative addition gadget

For this gadget, we again, we need distance units to display the relative positions of the
segments. We need 3 different layers, with 8 distance units between them respectively. On
the lowest layer, we need to force edges through three points (a, b and c), again 8 units
apart from each other. On the layer above that, we have two variable segments for x and y,
the one for x ends 8 units to the left of a and the one for y starts 9 units to the right of c.
On the top layer we have another variable segment that encodes the value for z that starts
1 unit to the right of a and ends directly above b. All variable gadgets are 7 units long.
We have an additional vertex u below the lowest layer that we, for now, do not locate on a
segment (explanation follows). The idea is to have edges between x and u, between y and
u and between u and z where the position of u dictated by x and y influences the position
of z in a way that z = x+ y. The gadget is pictured in Figure 5.15.

The problem with this idea is that we cannot use a line segment for the node u because
it can lie anywhere in a quadrilateral area below the points a, b and c, so we need a
quadrilateral object to capture u.

For the correctness, we need two observations: The gadget must be correct for one concrete
set of variables for x and y, and it must stay correct if either x or y are changed. If both
are changed, we can treat the changes for x and y sequentially. For the first part, let us set
x = y = 2. Then both x and y are exactly the same distance from b, so their edges to u
forces u to be directly under b which in turn forces z to be directly above b and thus z = 4,
so the gadget is correct for x = y = 2.
For the second part, we only observe what a change to x results in, for y the same
argumentation applies. Let x and y initially have some arbitrary values, and then x changes
by an amount d (pictured in Figure 5.16) while y stays the same. We need to show that z
moves by exactly the same amount d. Let x1 be the initial value of x (Same argumentation
if x2 is the initial value and x becomes greater). Moving x to the left forces u to be higher
on the green edge from y, which in turn forces z to move left as well, so the direction
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Figure 5.16: The alternative addition gadget is correct.

is right. For the distance, we look at the intersection between the edges between u and
z on the level where the variable gadgets for x and y are. We note the difference by t.
The distance z moves to the left is 2t because the variable gadget is at exactly double the
distance from node b which both of the edges cross. Now the proof boils down to proving
d = 2t. For that we define the distances A, B, A′ and B′: A is the distance between y and
the endpoint of t in the context of x1, B to the new endpoint of t in the context of x2.
A′ is the distance between y and x1 and B′ between y and x2. Note that the difference
between A and B is t, and the difference between A′ and B′ is d. We know that |A′| = 2|A|
because the edges connecting the endpoints of A and A′ with u are straight and cross
the nodes a, b and c. With |ac| = 2|bc|, it follows that |A′| = 2|A| because the relations
do not change. We also know |B′| = 2|B| for the same reasons. Combining this leads to
d = |A′| − |B′| = 2|A| − 2|B| = 2t, so the gadget is correct.

To be able to contain u in an object, we need to change the problem and additionally allow
vertices to be situated on quadrilaterals. The problem then changes to:

Input: Graph G = (V,E), set O = S ∪Q with segments S and quadrilaterals Q, bijective
function f : V → S.
Problem: Is there a straight-line planar drawing of G so that each vertex v is located on
the corresponding object f(v) and that the edges do not intersect with the objects?

This problem is ∃R-complete because the reduction from Planar-ETR-INV* works
exactly as in Section 5.2. The problem is also in ∃R as only the formulas OnSegment and
NoIntersection change and the formula Embedding can be dropped. To handle the different
objects, we would need a partition of the set of objects into the special forms and functions
for each one to get information about the area the objects hold. The OnSegment formula
then checks if the variable is in that area, while the NoIntersection formula checks if there
are intersections between the edges and the borders of the objects. In the exact formulas
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for quadrilaterals, the NoIntersection formula would need to check for intersections between
edges and all 4 sides of the rectangle.

Pervious Segments

If on the other hand we drop the requirement that the edges should not intersect with the
segments, all of the gadgets are suddenly not possible anymore because we have no tools
to force certain edges through fixed points. We do not see a way to recreate the gadgets.
That is why this iteration of the problem is somewhat likely to not be ∃R-complete.

5.3.3 Using only few Slopes/Lengths

We currently have 4 different slopes in our constructions: horizontal and vertical segments
and segments with slope 1/-1 for the turn gadget. Because of the way the reduction from
the incidence graph is done, we for sure need the horizontal and vertical segments. It is
also not possible to drop the segments of slope 1/-1 in the turn segment, because when
trying to directly convert the value of a horizontal to a vertical segment and vice versa,
the ratio of the distance to the endpoints is always changed by a function f. We need to
undo that function by mirroring the operation, and to end up on a segment turned by 90
degrees, we need a segment of slope 1/-1 in the middle.
When trying to unify the length of each segment, we run into similar problems with the
addition gadget. Either y’ or z needs to have a different length than the other, because
changing the position of the node on y’ causes double that change on z. However, we can
restrict the lengths of all segments to either 3.5 or 7 distance units, with the shorter ones
only used for the addition gadget and the turn gadget.
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In this chapter, we consider problems which restrict different kind of angles between edges of
the graph, the crossing angles of edges and angles between consecutive edges on their shared
endpoint, in graph drawings. Those problems could be contenders for ∃R-completeness. We
first show that they are part of ∃R and then discuss first attempts to show ∃R-completeness
which we predict to be the case for each of these problems.

6.1 Angular Resolution
The first problem in this category is AngularResolution, where we force the adjacent
edges at a vertex to have at least a certain minimum angle α to each other to improve
readability of the graph drawing:

AngularResolution:
Input: Graph G = (V,E) with combinatorial embedding, angle α.
Problem: Is there a drawing of G so that the angle between each neighbouring edges of
the embedding is at least α?

To show that the problem is in ∃R, we need to give an ETR formula with size polynomial in
the input size that is satisfiable exactly when there exists such a drawing of G. For that, we
need a few adjustments: We assume G to be a directed graph where every undirected edge
is replaced by directed edges in both directions, and again that V = [n] as well as E ⊆

([n]
2
)
.

Let h, t : E → V be the head and tail functions, and c : E → E a function that returns the
clockwise neighbour of e according to the embedding where the vertex connecting e and its
consecutive neighbour is considered to be the head of both edges. Additionally, we need to
assume that cos(α) can be expressed by q1 · i

√
q2 where q1, q2 ∈ Q, q2 ≥ 0, i ∈ N because we

only can express such constants in our formula and not any irrational numbers. If q2 6= 1
we need an additional variable q and the atomic formula q ≥ 0 ∧ qi = q2 to encode the
value of i

√
q2 in q.

Now we can start to construct the formula φ. For each vertex v ∈ [n] we need two variables
(xv, yv) that encode the coordinates of v in the drawing. Additionally, we may need a
variable le for each e ∈ E that encodes the length of the edge. We need to check every
angle between two neighbouring edges. If one is below the angle α, the formula has to be
wrong. To check every angle, we need to look at every edge in our directed graph exactly
once, because every edge is part of exactly 4 angles, two of which are then checked by the
two directed edges and the other two by the counterclockwise neighbours (see Figure 6.1).
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Figure 6.1: General setting for the formula

Additionally, we use the same ideas as in Section 5.1 to ensure that the drawing fulfills the
embedding. Thus the general outline of our formula is the following:

∃(x1, y1), ..., (xn, yn) :
∧

e∈E

AtomicCheck(e) ∧ Embedding

To perform the atomic checks we need the law of cosines: In a triangle ABC with edges a, b
and c, the cosinus of the angle α at A can be described by cos(α) = (a2 + b2 − c2)/(2ab).
Using that, we can formulate the checks in the following way, although we distinguish the
special case α = π/2 because there we do not need the extra length variables:

Case 1: α = π/2
Because of cos(π/2) = 0, our inequality to check the condition is (a2 + b2 − c2)/(2ab) ≤ 0
which is equivalent to a2 + b2 − c2 ≤ 0, so we do not need the length variables. We
now insert the correct terms for a, b and c which are the lengths of the edges e, c(e) the
segment between t(e) and t(c(e)). As we only need them squared, Pythagoras allows us to
replace these lengths by the squared differences of the x and y coordinates of the respective
endpoints. This leads to the following formula:

AtomicCheck(e) ≡ ((xt(e) − xh(e))2 + (yt(e) − yh(e))2) + ((xt(c(e)) − xh(c(e)))2

+ (yt(c(e)) − yh(c(e)))2)− ((xc(e) − xt(c(e)))2 + (yt(e) − yt(c(e)))2) ≤ 0

Case 2: α 6= π/2
In this case, we need the length variables because we cannot eliminate 2ab from our formula,
so the general outline changes to this:

∃(x1, y1), ..., (xn, yn), le1 , ..., lem :
∧

e∈E

(Length(e) ∧AtomicCheck(e))

The atomic formula length is pretty straight forward: We use Pythagoras to get the length
of the edge e encoded in le (visualized in Figure 6.2):

Length(e) ≡ ((l2e = (xt(e) − xh(e))2 + (yt(e) − yh(e))2) ∧ le ≥ 0)

For the AtomicCheck formula, we only need to change the right side of the formula: cos(α)
is not equal to 0 this time, so the 0 must be replaced by cos(α) · (2 · le · lc(e)):

AtomicCheck(e) ≡ ((xt(e) − xh(e))2 + (yt(e) − yh(e))2) + ((xt(c(e)) − xh(c(e)))2

+ (yt(c(e)) − yh(c(e)))2)− ((xt(e) − xt(c(e)))2 + (yt(e) − yt(c(e)))2) ≤ (2 · le · lc(e)) · cos(α))

48



6.2. Right Angle Crosing Drawings

e

h(e)

t(e)

yt(e) − yh(e)

xt(e) − xh(e)

Figure 6.2: Visualization of the idea behind the formula Length

This formula is sufficient because if cos(β) for the angle β between e and c(e) is greater
than cos(α), then either β < α or the remaining angle 2π − β < α and either way there is
an angle that violates the condition of the problem.

We note that, while this version of the problem admits a shorter formula, we can also show
that we do not need to fix a combinatorial embedding to find a formula that solves the
problem. We use mainly the same ideas as in the formula above, but replace the function c
by simply checking pairs of edges, and check the angle between them if they are adjacent,
that is if the head of the edges is the same. The outline of the formula is following, Length
stays the same and in AtomicCheck each c(e) is assumed to be replaced by e2:

∃(x1, y1), ..., (xn, yn), le1 , ..., lem : (
∧

e∈E

Length(e))

∧ (
∧

e1,e2,e1 6=e2∈E

h(e1) 6= h(e2) ∨ AtomicCheck(e1, e2))

6.2 Right Angle Crosing Drawings

Another way to make graph drawings easier to read for humans is to ensure that two
edges only cross in a right angle to prevent edges that run almost parallel and cross. The
emerging problem is the following:

RAC-Drawing
Input: Graph G = (V,E).
Problem: Is there a drawing of G with straight-line edges where on each internal crossing
between two edges the crossing angles are right angles?

To prove ∃R-membership for this problem we again need a few modifications: We again
assume that G is a directed graph with V = [n], although this time, it is sufficient to simply
orientate each edge in an arbitrary way to gain a defined head and tail for our functions h
and t which we will need again.

This time, the problem requires us to look at pairs of edges and check if they cross and if
they do so in a right angle. For that, we again need the variables (xi, yi) for the coordinates
of the vertices, but we also need pairs (sei,ej , tei,ej )(i, j ∈ [m], i < j) to check for crossings
between edges. Then we need to iterate over each pair of edges and check if one of three
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6. Crossing Angle Problems

cases applies: the edges are parallel, or the edges are not parallel but do not cross, or the
edges cross but do so in a right angle. The outline of the formula is the following:

∃(x1, y1), ..., (xn, yn), (se1,e2 , te1,e2), ..., (sem−1,em , tem−1,em) :∧
ei,ej ,i<j∈E

(Parallel(ei, ej) ∨ NoCross (ei, ej) ∨ RightAngleCross(ei, ej))

Parallel:
We need to check for parallel edges because we later use a system of equations to find the
crossing between the straights going to the two edges. If the edges are parallel, then there
is no solution to the system of equations, so it has to be handled explicitly. We can reuse
the formula from Section 5.1:

Parallel(ei, ej) ≡ (yt(ei) − yh(ei))(xt(ej) − xh(ej)) = (yt(ej) − yh(ej))(xt(ei) − xh(ei))

NoCross:
We again can reuse the formula from Section 5.1:

NoCross(ei, ej) ≡ LineIntersection ∧ (sei,ej ≤ 0 ∨ sei,ej ≥ 1 ∨ tei,ej ≤ 0 ∨ tei,ej ≥ 1)

with the LineIntersection formula being:

LineIntersection ≡ sei,ej (xt(ei) − xh(ei))− tei,ej (xt(ej) − xh(ej)) = xh(ej) − xh(ei)

∧ sei,ej (yt(ei) − yh(ei))− sei,ej (yt(ej) − yh(ej)) = yh(ej) − yh(ei)

RightAngleCross:
The final tool we need is to check if the two edges build a right angle together, so that if
they cross, they fulfill the requirement of the crossing. We can use the scalar product to
do that: The edges build a right angle if their scalar product is equal to 0. The remaining
formula thus is the following:

RightAngleCross(ei, ej) ≡ (xt(ei)−xh(ei))·(xt(ej)−xh(ej))+(yt(ei)−yh(ei))·(yt(ej)−yh(ej)) = 0

6.3 α-CrossingAngle
Now, we generalize RAC-Drawing to also allow smaller angles than 90 degrees for the
crossing angle:

α-CrossingAngle
Input: Graph G = (V,E), angle α.
Problem: Is there a drawing of G with straight-line edges where on each internal crossing
between two edges the crossing angle is at least α?

We again make the same assumptions as with RAC-Drawing and the formula is also the
same for the most part. We also need to restrict α the same way as in Section 6.2. The only
thing we need to change is the last atomic formula where we need to now check for α and
not for a right angle. For that we use the following formula: cos(α) = (ei · ej)/(|ei| · |ej |).
For the length of the edges we again need additional variables le:

∃(x1, y1), ..., (xn, yn), (se1,e2 , te1,e2), ..., (sem−1,em , tem−1,em), le1 , ..., lem :
∧

e∈E

Length(e)

∧
∧

ei,ej ,ei<ej∈E

(Parallel(ei, ej) ∨NoCross(ei, ej) ∨ α-Cross(ei, ej))
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6.4. ∃R-Completeness

We reuse the formulas Length, Parallel and NoCross, only α-Cross needs to be defined.
For that, we need to check if (a · b)/(|a| · |b|) is both smaller than cos(α) and greater than
− cos(α) because we do not know if we look at the smaller or the greater angle at the
crossing and if and only if both inequalities are fulfilled, all the crossing angles are at least
α. Thus, the following formula, again restructured to avoid fractions, is sufficient:

α-Cross(ei, ej) ≡ ((xt(ei) − xh(ei)) · (xt(ej) − xh(ej))
+ (yt(ei) − yh(ei)) · (yt(ej) − yh(ej)) ≤ cos(α) · lei · lej )
∨ ((xt(eI) − xh(ei)) · (xt(ej) − xh(ej)) + (yt(ei) − yh(ei)) · (yt(ej) − yh(ej)) ≥ −cos(α) · lei · lej )

6.4 ∃R-Completeness
We tried to follow the same approach as in Chapter 5 to prove ∃R-completeness for each of
these problems, but ran into problems along the way for all of them. It is somewhat likely
that they are indeed ∃R-complete as it was proven that certain special cases of the problems
are NP-hard with no obvious way to show that they are also part of NP. RAC-Drawing
was proven to be NP-hard by Argyriou et al. [ABS11] and AngularResolution, at
least for graphs with maximum degree four, was also proven NP-hard by Formann et al.
[FHH+93]. The reductions only work for variables with boolean values though, and cannot
be modified to represent real values as well.

We suspect that these problems are in fact ∃R-complete, without having a concrete approach
for proving that. Maybe it is possible to build all the gadgets for the ETR-INV-proof,
maybe it is easier to find a reduction from SimpleStretchability, but the general
properties of the problems (geometrical graph drawing problems, known for being NP-hard,
but not yet proven to be part of NP) are very similar to known ∃R-complete problems.
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7. Conclusion

In this thesis, we considered the Existential Theory of the Reals and explored the cor-
responding complexity class ∃R, especially the problems that are complete in ∃R. We
showed that ∃R lies inbetween NP and PSPACE and found an equivalent machine modell.
After that, we presented different variants of ETR, notably Feasibility, ETR-INV and
the planar variants of ETR-INV in Chapter 3 as possible starting points for ∃R-hardness
reductions. We then treated the problem SimpleStretchability as another base for
reductions and summarized many of those reductions that were done in the last years,
notably the reductions to RECOG(SEG) and GraphInPolygon in detail. Also in
Chapter 4, we presented the blueprint introduced by Miltzow et al. for reductions from
ETR-INV and its planar variants and explained three reductions that follow this framework,
to prove that the Art Gallery Problem, GraphInPolygon and PrescribedAreaPE are
∃R-complete.

Our main goal was to characterize the existing reductions, find a way to replicate them
easily and apply that to conduct our own ∃R-completeness proof. As described above,
we did the first part in Chapter 4. In Chapter 5, we then successfully implemented
that framework for a reduction from Planar-ETR-INV* to show ∃R-completeness of our
new problem DrawingOnSegments. For that, we constructed an ETR formula for
DrawingOnSegments, created the necessary gadgets for the reduction from Planar-
ETR-INV* and explained the transformation from an incidence graph to the graph drawing
instance. Finally, we showed ∃R-membership for the graph drawing problems dealing with
angular issues, AngularResolution, RAC-Drawing and α-CrossingAngle.

Open questions

A few questions remained open in these last two sections. While we found a few interesting
facts about variants of the DrawingOnSegments problem, notably another slightly
different ∃R-complete version of the problem, there is more to explore in this setting: If
we have only impenetrable segments, is there a way to design the addition gadget that
does not require a quadrilateral object? If we have only closed segments, can we find an
ETR-INV variant that allows us to conduct a modified ∃R-hardness proof? And if we only
have pervious segments, does the problem remain ∃R-complete or does it maybe shift into
NP?

53



7. Conclusion

The main open questions from our thesis are the ones from Chapter 6: Are the problems
Angular Resolution, RAC-Drawing and α-CrossingAngle indeed ∃R-complete?
They are NP-hard, at least for special cases, with no obvious way to prove NP-membership,
and we showed that they belong in ∃R. Because of that, we believe that it is likely that
they could be shown to be ∃R-complete in the future and gave some first approaches how
such a proof could be conducted. While our attempts to create all the gadgets necessary
for an ETR-INV based ∃R-hardness proof have failed, maybe there are ways to do it
successfully. It could also be easier to base the reductions on SimpleStretchability, or
other ∃R-complete problems that are more similar to these angular problems.
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