
Realistic Pedestrian Routing

Bachelor Thesis of

Simeon Danailov Andreev

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Dr. Martin Nöllenburg
Dipl.-Inform. Julian Dibbelt
Dipl.-Inform. Thomas Pajor

Time Period: 17th August 2012 – 16th November 2012

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text.

Karlsruhe, 16th November 2012

iii

Abstract

Pedestrian routing receives more and more attention, as devices capable of route
planning are nowadays increasingly available. A problem arises – road network
databases generally lack explicit information about street walkways. This bachelor
thesis shows how the walkways can be computed based on such a database. A
solution is also designed to avoid large traffic junctions, as pedestrians generally
do. An additional problem are areas where pedestrians can walk freely, for instance
plazas, squares and parks. This problem is solved by computing visibility graphs and
adding special handling for parks – areas where footpaths are preferred to walking
across. Experimental evaluations are then shown for all solutions.

Deutsche Zusammenfassung

Mit der steigenden Verfügbarkeit von Geräten, die routen können, wird die
Routenplanung für Fußgänger noch aktueller. Dabei entsteht das Problem, dass die
meisten in Datenbanken verfügbaren Straßennetze keine (bzw. nicht alle) expliziten
Fußwege am Straßenrand modellieren. Dieses Problem wird in dieser Bachelor-
Thesis gelöst, indem solche Fußwege automatisch berechnet werden. Außerdem
wird ein Mechanismus entwickelt, um große Straßenkreuzungen beim Routen zu
vermeiden. Ein weiteres Problem sind die Bereiche, wo die Fußgänger frei laufen
können – auf Plätzen oder in Parks. Für die Plätze wie eine Piazza werden Sicht-
barkeitsgraphen berechnet. Die Parkanlagen werden spezifisch behandelt, da dort
die Fußgänger normalerweise die Gehwege vorziehen. Die vorgestellten Lösungen
werden in der Arbeit experimentell evaluiert.

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Common terms . 3
2.2 Thesis specific terms . 7

3 Modeling 9
3.1 Creating the walkways . 9

3.1.1 Computing the street polygons . 11
3.1.2 Tying stubs . 11
3.1.3 Splitting edges . 14
3.1.4 Computing the walkways . 14
3.1.5 Connecting the walkways to the routing graph 18

3.2 Handling free areas and parks . 18
3.2.1 Extracting the free areas . 18
3.2.2 Merging free areas . 18
3.2.3 Adding visibility graph edges . 20
3.2.4 Processing parks . 21

4 Routing 23
4.1 Routing algorithm . 23
4.2 Considering road junctions . 24
4.3 Start or destination in a free area . 27
4.4 Start or destination in a park . 27

5 Experiments 31
5.1 Implementation details . 31
5.2 Comparison to standard routing . 33
5.3 Modeling statistics . 35
5.4 Query statistics . 36

6 Conclusion 39

Bibliography 41

vii

1. Introduction

With the raising availability of devices capable of route planning, such as smart
phones, pedestrian and bicycle routing is more and more feasible. Route planners for
vehicles nowadays are capable of avoiding traffic jams, warning of speed limits and much
more. Route planning when travelling on foot or with a bicycle however has received less
attention, as few would buy a standalone system for this task alone. Routing software on
a mobile device on the other hand is much more adequate and the problems of pedestrian
and bicycle routing can be explored without fear of having no field of application.

The goal of this bachelor thesis is to address and find solutions to two problems that
arise with route planning for pedestrians.

First, pedestrian walkways are generally not modeled in non-commercial road network
databases. So far, existing route planners for pedestrians simply use the street as where
the pedestrian should walk. No indication is given which side of the street a pedestrian
should walk on and where streets should be crossed when this is needed. Additionally,
when computing a fastest way between two points, traffic junctions are not taken into
consideration. A pedestrian may be forced to wait long periods of time in order to pass
crossings and other quicker ways (such as bridges) may be found when large junctions are
avoided. In this thesis a mechanisms is devised to automatically create walkways around
streets and hinder the usage of traffic intersections.

The second problem is how areas where pedestrians can walk freely (parks, plazas,
etc.) are handled. This is not a problem in vehicle routing – such areas for vehicles are
mapped with lanes that indicate how the area can be traversed. For pedestrians however
a mechanism is needed that will guide the routing through the area, so that the route
remains optimal. This problem is similar to movement planning for robots[AG92] and its
solution in this thesis is the usage of visibility graphs[GM91]. The definition of visibility
graphs and their application to solve this second problem can be found in the following
chapters.

Related work

Due to its many practical applications, route planning is a widely researched area in
the field of informatics. As the topic of this thesis is also route planning in one of its many
forms, an array of publications with related content exist. The thesis can be decomposed
in four general problems – walkway generation, crossing areas, actual routing and consid-
eration of traffic junctions. Sources and publications are listed for each of those problems.

Automatic creation of walkways based on a road network database is a rarely re-
viewed topic. In [BPS11] the authors show how walkways can be generated based mainly

1

1. Introduction

on building layout. While the results are good, building layout is not necessarily part
of road network databases. Considering the building layout however can be used to im-
prove the approach in this thesis – which is based solely on street layout. On the other
hand, multiple publications show how road networks can be extracted via satellite photos
[TW98, Pet03, GM04, MZ07]. While adaptation may be possible in order to extract walk-
ways, this is not the aim of this thesis.

Crossing open spaces is a common problem in many fields, especially in robotics.
Thus a multitude of publications exist, that describe how this problem can be solved
[OIRK87, AG92, MAN04]. The common approach is the usage of visibility graphs. The
problem of computing a visibility graph for a set of n obstacles can be solved in O(E +
n log n), where E is the number of edges in the visibility graph [GM91].

Exhaustive works exist covering shortest paths algorithms and speed-up techniques
[Dij59, CGR96, DSSW09, ADGW11, DGW11].

Time spent waiting for traffic lights to turn green is why traffic junctions should be
considered. A modeling of traffic lights and computation of minimum time paths can
be found in [AOPS02]. This approach requires the knowledge of traffic lights as well as
their switching periods. It also changes the costs in the routing network from static to
dynamic, as arrival time at traffic lights dictates how much time is spent waiting. In order
to not complicate matters further, a simple heuristic is used in place of such a model. It
is also worth mentioning that traffic junction are modeled in context of vehicle routing
[HB07, Faw00]. Thus the models are mostly impractical for pedestrians – for example
their waiting time is normally independent of the number of waiting pedestrians.

In addition, the modeling done in this thesis relies heavily on geometrical computa-
tion. Information about algorithms such as intersections of line segments, yet more about
visibility graphs and some used data structures can be found in [dBCvKO08].

Thesis organization

The thesis is organized in following manner:
Chapter 2 gives definitions to any used terms.
Chapter 3 deals with any computations that are done as preparation for the actual routing,
i.e. the modeling.
Chapter 4 explains how the route is computed.
Chapter 5 gives evaluations as to the amount of extra information and extra computational
cost that are needed to support the given solutions when routing.
Chapter 6 offers a summary of what the thesis achieves, what improvements are possible
and what further problems could be reviewed when routing for pedestrians.

2

2. Preliminaries

Throughout this bachelor thesis several common terms and several terms specific to
the thesis are used. This chapter gives definitions to those terms as well as explanations
to their meaning and their significance for the thesis.

2.1 Common terms

The necessary common terms such as graph and quadtree are now defined. Those
terms are common in the field of informatics and no alteration from their standard defini-
tions are needed.

Graphs

Graphs are a commonly used concept in the field of informatics. A graph G is defined
as the tuple (V,E). The set V contains the vertices {v1, v2, ..., vn}, which are also com-
monly named nodes. The set E ⊆ V × V represents the edges that connect those vertices.

Some important types of graphs for this thesis are simple graphs, multigraphs, directed
graphs and undirected graphs.

In a simple graph any edge (u, v) ∈ E may appear only once in E, i.e. only one edge
may connect two vertices. In addition, no edge (u, u), u ∈ V, is allowed in E. Such an edge
is also called a loop. In a multigraph, E is a multiset, i.e. E allows any number of edges
between any two vertices of the graph, including loop edges.

In an undirected graph an edge (u, v) ∈ E implies that v is also connected to u, i.e.
(v, u) ∈ E. In contrast to undirected graphs, a directed graph can have an edge (u, v) in
E, without having the reverse edge (v, u) in E.

In this thesis a directed simple graph is used to determine where a pedestrian can
walk. Edges represent streets, walkways, etc. Each vertex has assigned geographic coor-
dinates (longitude and latitude), so each edge is equivalent to a walkable physical stretch.

Figure 2.1 shows the sets E for different types of graphs with a common set of nodes
V := {A,B,C,D,E, F}.

Node degree

Each node v ∈ V in a graph G = (V,E) has a node degree, denoted by deg v. The
degree of a node v is the number of nodes connected with an edge to v, where v may be
either the source of the edge or its target. Formally, deg v := |{u ∈ V | (u, v) ∈ E∨(v, u) ∈

3

2. Preliminaries

A B

F

E

C

D

(1)
E := {(A,B), (B,A), (B,C),

(C,E), (D,B), (E,D), (E,F)}

A B

F

E

C

D

(2)
E := {(A,B), (B,A), (B,C), (C,B), (C,E),

(E,C), (D,B), (B,D), (D,E), (E,D),

(E,F), (F,E)}

A B

F

E

C

D

(3)
E := {(A,B), (B,A), (B,C), (E,F),

(C,E), (D,B), (E,D), (E,F),
(B,C), (E,F), (E,F), (F,E)}

A B

F

E

C

D

(4)
E := {(A,B), (B,A), (B,C), (C,B), (C,E),

(E,C), (D,B), (B,D), (D,E), (E,D),

(E,F), (F,E), (B,C), (C,B), (E,F),

(E,F), (E,F), (F,E), (F,E), (F,E)}

Figure 2.1: A directed simple graph (1), an undirected simple graph (2), a directed multi-
graph (3) and an undirected multigraph (4).

E}|.
Additionally, the incoming degree of a node v is defined as indeg v := |{u ∈ V |

(u, v) ∈ E}|, i.e. the number of ingoing edges. The outgoing degree of a node v is defined
as outdeg v := |{u ∈ V | (v, u) ∈ E}|, i.e. the number of outgoing edges. Note that
deg v = indeg v + outdeg v is not necesarrily true.

The node degree is needed to determine whether a node is an intersection node or it
lies on a intersection-free path. Intersection nodes and intersection-free paths are defined
in Chapter 2.2.

Planar graphs

A graph G is said to be planar if it can be drawn in a plane without intersecting
edges, which are drawn as plane curves. Planar graphs are important when computing the
faces of a graph.

Face

The faces of a planar embedded graph G (G’s nodes have assigned coordinates in the
plane) are defined as the smallest regions bounded by edges. Figure 2.2a shows a planar
graph drawn on a plane. The graph’s faces are denoted by letters from A to F. A face of
a planar graph G is also often named a facet of G.

Faces are important when computing the areas between street lanes (street polygons,
Chapter 2.2), where no walkways should be placed.

Polyline

A polyline is a set of several connected line segments. For this thesis, each point on a
polyline may belong to a maximum of two line segments of the polyline. A closed polyline
is a polyline with the same start and end point. Polylines that are not closed are paths.

4

2.1. Common terms

A
B

C

E

D

F

(a) A planar graph and its
faces A, B, C, D, E, F.

p1

p2
p3

p4 p5

p6

(b) A polyline with its points
drawn as squares.

Figure 2.2: A planar graph and a polyline.

Figure 2.2b shows a polyline composed of five lines, where the endpoints of those lines are
depicted as squares.

Polylines are important for the creation of the walkways.

Polygon

A polygon in a plane is a figure bounded by a closed polyline. The line segments of
its bounding polyline are generally called edges and the points of the polyline are called
vertices. Two important types are simple polygons and not necesarrily simple polygons. A
simple polygon has no inner holes, where not necesarrily simple polygons may have inner
holes.

In this thesis free areas and parks are described by not necesarrily simple polygons,
as they may contain inaccessible areas such as lakes or fountains. In addition, the inner
area of streets is described by simple polygons.

Quadtree

A quadtree[dBCvKO08] is a data structure that stores geometric figures in the plane,
i.e. 2D shapes such as circles, polygons, line segments and points. The main function of
the quadtree is to locate all stored figures in a specified area. Ideally, such queries should
be run in O(log n + m), where n is the number of stored figures and m is the number of
returned figures. The quadtree also defines procedures that add and remove figures to and
from the tree, ideally in O(log n).

The structure of the quadtree is a tree. Each node of the tree defines a bounding
box (i.e. rectangle) and is either a node with exactly 4 children or a leaf containing figures
that are all within the bounding box. In other words, the leaf’s figures have common area
with the leaf’s bounding box. A leaf containing more than a specified number of figures
generates 4 other leaves and becomes their parent. The new children leaves partition the
bounding box of their parent into 4 new bounding boxes and the figures of the parent are
redistributed in the leaves. Queries to the quadtree then locate all leaves with a bounding
box within a given area. For this, all nodes with a bounding box that shares common area
with the area are visited.

Quadtrees are extensively used throughout this thesis in order to efficiently locate
figures that share common area with a given figure. Additional information on quadtrees
can be found in [dBCvKO08].

Planarization

In different parts of the modeling nodes must be placed where specific edges intersect,
if no such nodes exist. Additionally, when computing the inner areas of wide streets we are

5

2. Preliminaries

Figure 2.3: The visibility graph of a polygon.

interested in areas closed by street edges. If nodes exist at every intersection of edges, such
areas are easily described by facets. So a simple procedure is used to add nodes where
edges cross, effectivly making the graph planar (thus planarization). This procedure is
now described.

All intersections between edges of the graph are computed. For each such intersection
we check, whether a node exists on the coordinate of the intersection. If no such node
exists, we add a new node to the graph with the same coordinate as the intersection. The
existing or added node is denoted by s. Each edge (u, v) involved in this intersection, with
u 6= s and v 6= s, is deleted and the edges (u, s) and (s, v) are added to the graph. Those
two edges have the same properties as the original edge (u, v) (same layer, category and
so on).

In order to find the intersections fast, a quadtree is used. For each edge in the
graph e ∈ E nearby edges are located by using the quadtree. Those nearby edges are
then tested for intersections with e. Edges that are added/deleted to/from the graph are
also added/deleted to/from the quadtree. An improvement for the planarization method
would be to use the line-sweep algorithm to compute all intersections in linear time. This
improvement is not used as the described method is fast enough.

In order to utilize the planarization procedure further, an additional set of edges
B ⊆ E is passed as an argument. Intersections between edges in B will be ignored during
the procedure. Another argument indicates whether different layers of the edges should
be respected. If not, intersections between edges in different layers are ignored.

The time complexity of the planarization is bounded by Θ(|E′|QTQuery |E′|), where
QTQuery n stands for a query to a quadtree with n elements and E′ is the set of edges in
the graph after the planarization. The size of E′ is bounded by O(

∑
i∈I deg i+ |E|). Here

E is the set of edges before the planarization and I is the set of intersections that will be
processed. The number of edges that cross at an intersection i ∈ I is denoted by deg i.

Visibility graph

The visibility graph[GM91] of a polygon P is defined as GP := (VP , EP), where VP
is the set of vertices of the polygon P . The set of edges is defined as EP := {(u, v) ∈
VP × VP | u 6= v and the line segment between u and v is completely within P}. Two
nodes connected with an edge e ∈ EP are said to be visible to each other. Figure 2.3 shows
the visibility graph of a polygon. The vertices that are visible to each other are connected
with dotted lines.

Visibility graphs are important for the processing of the free areas. A visibility graph
is computed for each free area, so that a route can pass through the free area, instead of
going around it.

6

2.2. Thesis specific terms

2.2 Thesis specific terms

The terms defined in this chapter are specific to this bachelor thesis. They are needed
to understand the problems of the thesis and their solutions, as well as to name specific
places and objects of interest, such as areas that can be traversed freely and streets that
have walkways.

Intersection node

In this thesis an intersection node is any node with node degree greater than 2. The
set of all intersection nodes is denoted by Vi := Vintersections := {v ∈ V | deg v > 2}.
Intersection nodes are important when creating the walkways around wider streets.

Intersection-free path

An intersection-free path represents a path of nodes P connecting two intersection
nodes. The path P starts with an intersection node s ∈ Vi and ends with an intersection
node t ∈ Vi. In between s and t any number of nodes with degree 2 may exist, however s
and t are the only intersection nodes on P.

Formally, P := {s, v1, v2, ...vm, t}, where s, t ∈ Vi,m ∈ N0 and ∀i ∈ {1, ...,m} :
deg(vi) = 2. In addition, the set E must contain the edges (vi, vi+1), where i ∈ {0, ...,m+
1}, v0 := s and vm+1 := t.

The set of intersection-free paths is denoted by Ei := Eintersections and is also impor-
tant for the creation of the walkways.

Edge layer

In this thesis each edge has a layer value. Edges with higher layer value are physically
above edges with lower layer value. E.g. a bridge passing over a street has a higher layer
value than the street.

Layers are important when connecting the created walkways to the already existing
routing network. If layers are not respected, the created walkways will also be connected
to bridges passing over the street and tunnels passing under them.

Splittable edge

A splittable edge is an edge representing a street of a category which has walkways
for pedestrians. Such edges will be “split” in two walkways to both sides of the represented
street. As already mentioned, walkways for most streets are not explicitly modeled routing
databases. Thus the need for this “splitting”. Edges of the following street categories are
considered splittable:

� A roads. This category marks major roads. Such roads usually connect cities, ports
and airports.

� B roads. Such roads connect smaller cities and towns.

� C roads. Major streets in cities are often marked as such.

Several additional categories are used for the routing, however edges of those cate-
gories are not considered splittable. Such non-splittable edges denote streets traversable
without the usage of walkways. Living streets, footpaths, walkways, cycleways, etc. fall in
those categories.

Es := Esplittable := {e ∈ E | e is splittable} denotes the set of all splittable edges.
Vs := Vsplittable := {v ∈ V | (v, u) ∈ Es ∨ (u, v) ∈ Es} denotes the vertex set induced by
Es. Both sets are needed when creating the walkways (Chapter 3.1).

7

2. Preliminaries

Street polygon

A street polygon represents the inner area of a wider street. Those polygons are used
to prevent walkways being placed on streets with many lanes. The street polygons can be
seen as purple polygons in some figures throughout the thesis. A more detailed explanation
for their calculation and purpose can be found in Chapter 3.1.1.

Free area

Free areas are places where one can walk freely. Only pedestrian areas such as squares
and piazzas are considered free areas. For every free area additional edges will be added
during the modeling, so that it can be traversed as one would traverse a square – walking
directly through the square instead of going around it.

In this thesis areas such as parks, forests, gardens, etc. are considered to be traversable
only by using the existing footpaths, so no additional edges are added for them.

Park

While it may be obvious what a park is, a park in this thesis denotes the free areas
which will not be traversed freely. Such areas are expected to have footpaths that should
be used, instead of simply walking through the area. When starting at a location in a park
however, reaching the nearby footpaths is done in a more realistic fashion (Chapter 4.4).

8

3. Modeling

In this chapter the modeling of the routing graph is described. This modeling has
the following goals: Creating walkways around wide streets, as road network databases
generally have no information about pedestrian walkways. Adding extra edges to allow
routing through, instead of around, free areas. Finding the facets in parks, so that a route
starting or ending in a park can find its way (in a realistic fashion) out of the facet where
the start/destination is.

The modeling achieves these goals in a number of steps:

1. The routing graph is extracted from the input data. As this step is specific to the
input data, it is discussed in Chapter 5.1 (along with other implementation details).

2. The positions of the walkways are computed. Nodes and edges corresponding to the
walkways are added to the graph. This includes the connection of the walkways to
the routing graph.

3. Overlapping and touching free areas are merged. Visibility graphs are then computed
for each free area and the visibility edges are added to the routing graph. Two types
of such edges are distinguished here. Edges that are needed to completely pass a free
area and edges that are only needed when starting or ending in a specific free area.
The first type will always be considered while routing. The second type will only be
used when starting or ending in the free area the edges are in.

4. Overlapping and touching parks are merged. All facets composed of edges in parks
are then computed.

The modeling is done in a preprocessing phase and so is also referred to as preprocessing.

3.1 Creating the walkways

A problem when creating the walkways is that different lanes of the same street are
generally modeled as different nodes and edges in the road network databases. Figure 3.1
shows an example of a street with many lanes. Simply adding the walkways for each edge
will put walkways in the inner area of streets. As already mentioned in Chapter 2.2, the
street polygons are used to avoid this. The first two parts of this section describe how
these street polygons are computed.

The next three sections describe the actual computation of where walkways should
be, if every edge was an actual street. Walkways that are inside street polygons are then
removed, resulting in the desired output.

9

3. Modeling

(a)

(b)

(c)

Figure 3.1: A street with many lanes (a), its representation in the input data (b) and the
computed walkways (when assuming that each edge is a part of a single street)
colored in red (c).

10

3.1. Creating the walkways

Figure 3.2: Street polygons (colored red) between different lanes of streets and the actual
streets (colored green).

3.1.1 Computing the street polygons

To compute the street polygons, a graph is composed of all splittable edges, denoted
by Gs := Gsplittable := (Vs, Es). This graph is then converted into a planar graph Gp

s

using the general planarization procedure (Section 2.1). The set of faces F of Gp
s are then

computed. This can be done by any procedure that computes faces of a planar graph.
The method used in this thesis traverses the planar graph in a Depth-First-Search manner
and attempts to close one face at a time. For this, the next edge that is visited by the
Depth-First-Search is always a non-visited edge with the smallest angle to the previously
visited edge.

The set F is then filtered to keep only thin polygons and polygons covering small
areas. Polygons with an area less than 1000m2 are considered to be small places surrounded
by streets (pedestrian islands, intersections, etc.) where no walkways should exist. Thin
polygons are long and narrow polygons, places where streets run parallel for a long distance.
Figure 3.2 shows some thin polygons and some small polygons that are colored red.

A polygon P is considered thin if ratioP is between a lower bound and an upper
bound:

ratioP :=
areaP[cm2]

perimeterP[cm]
∈ [0, 3170]

So a face P of the graph Gp
s is considered a street polygon, iff:

ratioP ∈ [0, 3170] ∨ areaP[m2] ∈ [0, 1000]

The bounds for ratioP and the area of P were determined empirically. Further criteria
could be used to detect faces that are street polygons, however this proved to be unneces-
sary.

All street polygons define an area where no walkways should be created. Edges cre-
ated by the splitting process (Section 3.1.4) are removed if they are in this forbidden area.

The time complexity needed to compute the street polygons is bounded by Θ(|Es|+
planarizationGs).

3.1.2 Tying stubs

Due to the used bounding box and places where the type of the street changes from
splittable to non-splittable, stubs occur in the graph (Figure 3.3). Many of those stubs
run parallel, or are near parts of the graph. The relation of those stubs to the rest of the

11

3. Modeling

(a) (b)

Figure 3.3: Stubs that should be connected to the graph in order to close a street polygon
(surrounded by red circles).

A

C

B

Figure 3.4: The first approach when tying stubs, situations that are handled well (B and
C) and a situation that is not handled well (A).

graph are (to a human) obvious. A single drawn line would close a street polygon, where
a street polygon obviously should be. As the computing of the street polygons is done
automatically, an approach is needed to create this closing line. Several such approaches
were tried and then one is used. Those approaches and their problems are described below.

The first approach connects each degree-1 node to the nearest degree-1 node, in terms
of the Euclidean distance between the nodes. To avoid connecting single stubs that are
unrelated, an upper bound for the distance between the connected nodes is used. This
approach works well for cases where two stubs end close to each other (Figure 3.4: B and
C). However, a single stub causes problems for this approach (Figure 3.4: A).

The second approach adds the bounding box of the graph as lines. For stubs caused
by the bounding box limitations this solves the problem. However, stubs in the inner parts
of the graph remain a problem. Figure 3.5: (b) shows some results by using this method.

The third approach is to use non-splittable edges to connect the stub to the rest of
the graph. A shortest path P (consisting of only non-splittable edges) to the graph is
computed with its start being the end of the stub. The main problem of this approach
is that in some cases, the path P creates a face which is not considered a street polygon.
Figure 3.6a shows an example of this problem.

An additional fourth approach is to use all edges (split and non-split) to compute
the facets. Here some facets, that are easily recognized in the previous graph, are cut into

12

3.1. Creating the walkways

(a)

(b) (c)

Figure 3.5: A part of the original problem (a), the result of the second approach (b) and
the result of the fourth approach (c).

(a) Two detours of non-splittable edges
(colored purple) that creates two
faces which are not thin polygons.

(b) A partial result of the used method for ty-
ing stubs, showing the same situations from
Figure 3.4.

Figure 3.6: Some results of the third approach and the used approach.

13

3. Modeling

3m

3m

e

l

r

(a) Calculating the positions of the walk-
ways l and r for an edge e.

α2
α3

α1

p1

p2
p3

c

(b) Sorting points p1, p2 and p3 using a cen-
ter point c, resulting in p1 < p3 < p2.

Figure 3.7: The positioning of walkways and sorting of points.

many smaller facets. Those smaller facets no longer satisfy the thinness-criteria (Section
3.1.1). Figure 3.5: (c) shows some results by using this method.

The fifth method, which is the one used for the tying, adds a perpendicular edge at
the end of each stub, where the length of this edge is a parameter. Nodes are then added
at the intersections of this line with the graph. Edges between the stub and these nodes
are added, so that the graph remains planar. The planarization method (Section 2.1) is
used to do this, where intersections between original graph edges are ignored.

An improvement to the used method would be using only the nearest intersection,
instead of adding nodes for all intersections. This improvement was omitted in order to
avoid further complications of the planarization method. In addition, if the intersections
of this line with the graph are more than one, then there are graph edges that run nearly
parallel and are close to each other. The newly added edges will either be in an already
existing red (forbidden) polygon, or will create one. Due to the meaning of the street
polygons, both cases are plausible.

The used length for the perpendicular edge is 5.5m. Figure 3.6b shows some results
of this method.

The time complexity needed when tying stubs is bounded by Θ(#stubs+planarizationG).

3.1.3 Splitting edges

A procedure is needed to create walkways around a single edge. The method used in
this thesis is to create a rectangle R. The edge e ∈ E being split is a side of R. The two
other sides of R that are perpendicular to e have length equal to 3m. The side of R that
is parallel to e is then one of the walkways around e. Two such polygons exist and they
yield the two walkways l and r around e.

Figure 3.7a shows an example of the method for an edge e ∈ E.

3.1.4 Computing the walkways

Similar to the tying of stubs, several approaches were designed to create the walk-
ways, before a satisfying method was discovered. All approaches and their problems are
described below.

The first approach uses intersection nodes and their direct incoming edges. The
direct edges (vjo, vi) := (vjouter, vinner), j ∈ {1, ..., indeg vi} of an intersection node vi ∈ Vi

14

3.1. Creating the walkways

are sorted according to their angle, using the coordinate of vi as a center point. Figure
3.7b shows how lines {(p1, c), (p2, c), (p3, c)} are sorted arount a center point c. In this case
the resulting sorted set is {(p1, c), (p3, c), (p2, c)}, as ∠p1 < ∠p3 < ∠p2.

According to this order, each edge e := (vjo, vi) ∈ E has a left unique neighboring
edge le := (vj+1

o , vi) ∈ E and a right neighboring edge re := (vj−1o , vi) ∈ E. Here, i ∈
{1, ..., n}, v0o := vno , v

n+1
o := v1o, n := indeg vi.

Each direct incoming edge e of an intersection node vi is then split into a left walkway,
denoted by lse, and a right walkway, denoted by rse. For this, the method described in
Section 3.1.3 is used. Additionally, the same sorting procedure is used to determine which
created walkway is the left edge (lse) and which is the right edge (rse). For this sorting,
as vi is not an end point of lse and rse, any end point of lse and rse can be connected to vi
to form the lines that represent lse and rse – either way the sorting will determine which
created walkway is to the left and which one is to the right of e.

The left walkway edge lse is crossed with the walkway edge rsle (right walkway of
left neighboring edge), resulting in a new node nl at their intersection point. The right
walkway edge rse is crossed with the walkway edge lsre (left walkway of right neighboring
edge), resulting into a new node nr at their intersection point. The endpoints of lse and rse
nearest to the current intersection node vi are then replaced with respectively nl and nr.
A bridge edge is then added between nl and nr, representing a crosswalk.

The other endpoints of lse and rse remain unchanged, unless the edge e connects two
intersection nodes. In this case the above procedure will be repeated when the other
intersection node is being processed. With a simple alteration this procedure can be used
to split the edges of all nodes, regardless of their degree. When a node v of degree 1 is
processed, its single direct edge e has no neighbors. In this case no crossings are computed
and the endpoints of the walkway edges corresponding to v are unchanged.

Figure 3.8a shows an example of the first approach. The main problem for this
approach are edges of small length. Such edges can be used to model curves of streets,
which is often seen in road network databases. The intersections with a neighboring
walkway edge that is too short lies outside this walkway edge. Another problem is the
crossing of the walkway edges, when the angle between those edges is of degree greater
than 90◦. Especially, for an angle with degree greater than 180◦ the intersection may have
a huge distance to the current intersection node. Figure 3.8b shows two such problems.

A simple solution is to create an edge between the endpoints (nearest to the current
intersection node) of the artificial edges being crossed, if the intersection of those artificial
edges is not in their interior. Figure 3.8c shows how this solution works for the two
problems in Figure 3.8b. As seen, this solution does not yield a plausible result when a
neighboring edge is too short.

The second approach is to use the union of rectangles. The splitting of each edge
defines a rectangle, two of its sides being the two artificial edges. For each edge that should
be split a rectangle is computed (similar to the method in Section 3.1.3). Then a union of
all those rectangles is created and its outline is used as the new pedestrian ways. Figure
3.9 shows an example of this approach.

A problem here is the amount of rectangles that need to be unified. Even for small
graphs (ca. 4 000 edges that should be split) the computing of this union would last for
minutes. As this approach would yield the best results, an attempt was made to reduce
the amount of polygons that need to be unified. Nodes with degree of 2 are aggregated into
degree-2 paths. Each such path P is then split (for instance by using the first approach).
The resulting two walkway paths define a polygon. The splitting is a fast procedure and
all small rectangles on P no longer need to be unified. Then a union needs to be computed

15

3. Modeling

rsle

lsrevi

nr

nl

ele

re

lse rsersle

lsrevi

nr

nl

ele

re

lse rse

(a) An example of the first approach for node vi and edge e.

lsle

vi

ele rse

� 180◦

rsle

vi

e

le

re

lse

nr

(b) Problems of the first approach with big
angles (left) and short edges (right).

lsle

vi

ele rse

rsle

vi

e

le

re

lse

(c) The simple (and flawed) solution for the
problems in Figure 3.8b.

Figure 3.8: The first approach for the splitting.

Figure 3.9: The second approach at complex street intersections.

16

3.1. Creating the walkways

(a) The second approach at a small in-
tersection up close, the outline of
the green area is where the walk-
ways should be.

u

v

(b) Several intersection-free paths
(curved and colored in red) adja-
cent to two intersection nodes u
and v.

Figure 3.10: The second splitting approach and intersection-free paths.

by using only the polygons around the degree-2 paths. However this, too, proved to be
slow. Figure 3.10a shows two polygons around two degree-2 paths and their union. The
outline of this union is then added as walkways.

In order to retain the speed of the first approach and deal with its problem, the used
method contracts the graph. Each path of degree-2 nodes is replaced by an intersection-
free path. This intersection-free path contains the path of nodes and the edges connecting
them and its start and end nodes are the start and end nodes of the path All intersection
nodes are then connected only by single intersection-free path. This new graph consisting
of intersection nodes and intersection-free paths is a multigraph. A small example can be
seen in Figure 3.10b.

A procedure splits the intersection-free path into 2 polylines as in the second approach,
but without creating polygons by using those polylines. Similar to the first approach, the
intersection-free paths of an intersection node are sorted according to their angle, with
the intersection node as center. For this sorting only the edge directly connected with the
intersection node is used (as in the first approach). The matching between the walkway
polylines is done in the same way as in the first approach, however crossings between 2
polylines can be more than 1. In such case, the closest (in euclidean distance) intersection
point to the current intersection node is used. When this crossing is computed, parts of
the walkway polylines are deleted, as seen in Figure 3.11a. Here the created walkway
edges are drawn in red, their endpoints are smaller red dots, the original edges are black,
the original nodes are bigger black dots, the intersection points are green and the deleted
parts of walkways are gray. The procedure is done for all intersection nodes and so all
intersection-free paths are split. Figure 3.11b shows the result of using this method for a
small portion of a graph, with the splittable edges drawn in gray, the walkways drawn in
red and non-splittable edges drawn in black.

The time complexity needed to compute the walkways is bounded by Θ(|Es|).

17

3. Modeling

(a) The walkways, after the intersection
points have been computed (deleted
segments are colored in gray).

(b) The result of the used walkway-
creating method for a couple of in-
tersections.

Figure 3.11: The used splitting approach and some results.

3.1.5 Connecting the walkways to the routing graph

After the set of walkways is computed (Section 3.1.4), all original splittable edges
are deleted. As the streets that should have walkways now do, these streets are no longer
needed. Now the new walkway edges need to be connected to the routing graph, so that
they can be used for the routing. To do this, intersections between the created walkways
and the non-splittable edges are computed and added as nodes. This is done with the
planarization procedure (Chapter 2.1), where the set of non-splittable edges is passed as
an argument in order to ignore intersections between non-splittable edges.

Additionally, the layers of edges are respected. This avoids connecting the walkways
to bridges above them and tunnels below them, as the walkways are considered to be on
the ground layer.

3.2 Handling free areas and parks

As already mentioned, in standard routing free areas are walked around. In order to
pass directly through such areas while routing, additional edges are added to the routing
graph. Further, when the route starts or ends in a park, the nearby footpaths are of
interest. Thus, the facets of the routing graph that lay in parks must be computed.

This chapter explains how this all is done. Extracting information about free areas
and parks, adding visibility graph edges for free areas and dividing parks in facets are
described here.

3.2.1 Extracting the free areas

Information about free areas is contained in the input data. Generally, any represen-
tation of the free areas can be in the input. Thus an extraction procedure is needed, that
is dependant on the input data. The extracted information about the free areas is in the
form of simple polygons, to enable uniform handling in the rest of the procedures.

3.2.2 Merging free areas

Because of their representation in this thesis, free areas may overlap, touch or be
completely within other free areas. A mechanism is needed to merge such areas, so that

18

3.2. Handling free areas and parks

Figure 3.12: An example for touching areas that need to be merged, before they can be
properly traversed via visibility graph edges.

A

B

Figure 3.13: Intersection of areas where no node exists in the graph.

a pedestrian can freely traverse an area as a whole, instead of having to traverse many
smaller areas one by one. Figure 3.12 shows a simple example with two overlapping areas.
For this, the union of geometrical figures is used. As the free areas are generally few (∼200
for a city with a population of ∼300 000), this procedure is fast.

It is possible that areas intersect at points where no node in the graph exists. Figure
3.13 shows an example of this. To simplify the merging, the planarization procedure is
used on the graph. The set of edges that do not lay to areas is passed as an argument, so
that only intersections between area edges are handled.

For the merging, all unions of free areas that share common area are computed. This
is done by using the union operator for 2D figures. Let A denote the set of all areas.
An area a ∈ A is chosen and the set Sa := {p ∈ A | p and a have common area} is
computed. To compute Sa faster, a quadtree is used. This quadtree returns all nearby
free areas of a, which are then tested for common area with a. If Sa = {a}, nothing is
done. Otherwise Ua := Sa ∪ {a} is unified into a single figure g (g is a not necessarily
simple polygon). All areas in Ua are removed from A, g is added to A and the quadtree is
updated in the same way. This procedure is repeated until no areas in A overlap or touch,
i.e. until ∀a ∈ A : Sa = {a}. A then contains all merged areas, and is hence denoted by
Am := Amerged.

Finally, barriers are removed from the merged areas. A barrier is an area that cannot
be traversed on foot, such as a lake. Similar to the free areas barriers should also be present
in the input data. When not, the removal of barriers is omitted.

The removal of the barriers from the merged areas is done in the same way as the

19

3. Modeling

(a) A route passing through a free area.

(b) A route starting in a free area.

Figure 3.14: Two scenarios for traversal of free areas.

merging. For a ∈ Am nearby barriers are located by using a quadtree containing all
barriers. All such barriers that aren’t disjoint to a are then removed from a. This is done
by using the difference operator for 2D figures.

The time complexity when merging n figures and removing m barriers is bounded by
O(n(QTQuery n+ QTQuerym)). Again, QTQuery n denotes a query to a quadtree with
n elements.

3.2.3 Adding visibility graph edges

A route can traverse, start in or end in a free area. Figure 3.14 shows an example
of two scenarios. For the first scenario only the shortest paths between entry points of
the areas are needed. An entry point is any intersection between the routing network and
the boundary of the free areas. However, when the route starts or ends in a free area all
visibility graph edges, denoted by Ev := Evisibility, are needed.

Generally, it is not known beforehand if the route will pass through a free area. So

20

3.2. Handling free areas and parks

visibility graph edges that lay on shortest paths, denoted by the set Eosp := Eon shortest path,
are always needed. On the other hand, whether the route starts or ends is in a specific
free area is known. So the rest of the visibility graph edges, Ev \ Eosp, can either be
used or ignored. How this is done is explained in Chapter 4.3. For this chapter, it is only
important to know why Eosp is explicitly computed, as this means additional computational
and implementation cost.

First, the boundary of the free areas is added as edges and nodes. The free areas
represent places where pedestrians can walk freely, thus their boundary can also be tra-
versed. After that, all intersections between the routing network and the boundary of the
free areas are added as nodes. Again, this is done by the general planarization procedure.
The nodes at those intersections are marked as entry nodes, i.e. the entry nodes of an area
a ∈ Am are denoted by ae := aentries.

For each area a ∈ Am the set of visibility edges Eav is then computed. Each line l
between two different vertices u, v ∈ a, that is completely within a, is added to the set Eav
as the edge (u, v).

To find the set Eaosp ⊆ Ev a shortest path tree Tv is computed for each node v ∈ ae.
The root node of Tv is v and Tv is computed only for the graph induced by the set of
edges Ev, namely Gv := ({v ∈ V |(v, u) ∈ Ev ∨ (u, v) ∈ Ev}, Ev). Here Dijkstra’s algorithm
(Algorithm 4.1) is used to compute each tree, however any other shortest paths algorithm
can be used. The edges present in Tv are the set Eaosp. Those edges are then added to the
routing network.

This is done for all areas and each area a now has its set of entry nodes ae and
its set of visibility graph edges that do not lay on shortest paths between entry nodes
Eavo := Eavisibility only := Eav \ Eaosp. Both sets will be needed when the route’s start or
destination is in the free area a.

The time complexity when adding the visibility graph edges is bounded by O(K +
planarizationG), where K :=

∑
a∈Am

|a|2 log |a|. Here |a| denotes the number of vertices
in the merged area a.

3.2.4 Processing parks

Similar to the free areas, the parks are extracted and then merged. This is done in
the same way as described in Section 3.2.1 and Section 3.2.2. The set of merged parks is
then denoted by Pm := Pmerged, a set of not necessarily simple polygons (figures).

The boundary of the merged parks are added to E and all edges that do not lay on
the ground layer are removed from E. All intersections between edges in parks are added
as nodes, so that the facets in parks can be computed. This is done by the planarization
procedure and the set Enp := Enon-park := {e ∈ E | e has no common area with any
p ∈ Pm} is passed as an argument, to ensure that only the parks are planarized.

For each park p ∈ Pm the set Epp := Eppark := {e ∈ E | e has common area with p}
is computed via the quadtree containing the figures of Pm. The graphs Gp := ({v ∈ V |v
is an end point of e ∈ E}, Epp) are constructed and their facets are computed. Each such
facet will represent a park area in which the route could have its start or destination.

The edges representing boundaries of parks are removed from E and the edges that
lay on layers different than the ground one are restored.

Finally, a not necessarily simple polygon is created for each computed facet. Barriers
are then removed from these polygons, as done in Section 3.2.2. Those polygons will be
used to determine whether the start or destination is in one of the facets and if so, in
exactly which facet. At this point barriers are also removed from the figures in Pm (by
using the same method).

The time complexity when processing the parks is bounded by O(|E|QTQuery |Pm|+
planarizationG).

21

4. Routing

After the modeling is done, the actual routing can take place. This chapter describes
how the route is computed and what additional procedures are needed when handling free
areas and parks.

4.1 Routing algorithm

We use the classic Dijkstra’s algorithm[Dij59] to compute all routes (Algorithm 4.1).
However, some modifications are required.

The start or end of a route can be at a random point of a park or a free area. In
order to compute such a route, some connection must be made from the start/destination
to the routing graph. This rises the need to either modify the graph before the routing,
or to alter Dijkstra’s algorithm so that a route with many start and end nodes can be
computed. For example, a route starting in a free area will have multiple start nodes – all
nodes that are visible from the start location. Another example would be a route ending
in a park – the multiple targets are nodes of the facet where the target location is in. To
allow simultaneous route queries on the same graph, the second approach is used. The
alterations of the algorithm are described below.

The input set of start nodes is denoted by S and the input set of target nodes is
denoted by T . Each node v ∈ S ∪ T also has an additional cost cv that is known before
the routing.

The queue is initialized with all nodes in S and their costs. So for v ∈ S we set
d(v) = cv, instead of 0. When a path to a source node v is found, with a cost less than cv,
v is no longer a source node and is removed from S.

When a node v ∈ T is removed from the priority queue, cv is added to d(v) and we
say that v is reached. The routing algorithm finishes when all targets have been reached,
or the current route length is longer than the distance to the first reached target.

The target of the computed route t is then the node v ∈ T with the least d[v]. The
start of the route s is the first node v ∈ S discovered on the path of parents of t. Thus
the shortest route between all pairs of start and target nodes is computed.

A binary heap is used as a priority queue, so the time complexity of a query is bounded
by O(n log n+m log n), with n := |V | and m := |E|.

23

4. Routing

Algorithm 4.1: Dijkstra

Input: Graph G = (V,E, ω), source node s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0

// Main loop

6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if d(u) + ω(u, v) < d(v) then

10 d(v)← d(u) + ω(u, v)
11 pred(v)← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, d(v))

14 else
15 Q.insert(v, d(v))

4.2 Considering road junctions

Due to traffic lights, road junctions are places where a pedestrian often waits some
time before continuing to walk. Bigger intersections normally take longer to traverse as the
traffic lights have longer switching times. Without the knowledge of the waiting times on
the different intersections, two general approaches were designed. Both exploit the street
polygons and the information needed for them can be computed during the preprocessing.

The first approach penalizes the entry of road junctions. For each edge e := (u, v) ∈ E
information is gathered during the preprocessing, whether u is not within a street polygon
and e has common area with any street polygon. If yes, then the edge e is marked for entry
penalties. Again, a quadtree is used to find nearby street polygons, so that the conditions
can be tested.

During the routing any marked edge will have additional weight added to it, based
on the entry penalty that is chosen currently. Figure 4.1 shows an example of how the
route can by the use of entry penalty. Street polygons here are painted in cyan, as bigger
streets are painted red in the OpenStreetMap tiles (which are used for the visualization of
the map).

The second approach penalizes the edges within crossroad areas. The length of each
edge e ∈ E that is within the street polygons area is computed. Here, nearby street
polygons of e are located with a quadtree. The common area of e with those polygons is
then computed. This area is denoted by lew := lewithin.

During the routing each edge e ∈ E receives an additional weight we := lew ·penaltyw,
where penaltyw is the current penalty per centimeter for edges within street polygons.
Figure 4.1 shows an example of how the route can differ based on penaltyw values.

24

4.2. Considering road junctions

(a) A route computed without penalties passes through the intersec-
tion.

(b) The route for the same query, computed with entry penalty of 60s
or within penalty of 1m

s . Here a bridge passing over the street is
used.

Figure 4.1: Difference between computed routes based on penalty values.

25

4. Routing

(a) The start location of the route has no visible entry nodes.

(b) The single entry node for the free area.

Figure 4.2: The need of free area describing edges and nodes in the graph, in order to route
properly.

26

4.3. Start or destination in a free area

4.3 Start or destination in a free area

While simply passing through a free area can be completely handled during the pre-
processing, special handling is needed when the route has its start or destination in a free
area. At the very least, all visible graph nodes must be located and connected with the
location in a free area. The start location for the route is hence denoted by sl and the
target location by tl.

When first approaching this problem, only entry nodes were considered to be graph
nodes and the set of edges Evo was ignored (Chapter 3.2.3). In other words, nodes and
edges that served only to describe the area were to be discarded. This is desirable as it
means fewer edges and nodes in the graph structures. The edges in Evo and their endpoints
are needed only when starting or ending in a free area, which is a special case of the general
routing. Unfortunately situations as the one seen in Figure 4.2 show the need for the set
Evo to be in the graph structure. Better routes are achievable with the usage of Evo, so
the edges of this set are also stored.

While the space cost cannot be avoided, the computational cost for using edges in
Evo can be minimized. For this, each edge e ∈ Evo is marked with the free area a it lies
in and we say that e belongs to a. In addition, a node n that has incident edges in Evo

has those edges stored in the end of its edge list. This way the relaxing of incident edges
for n can stop as soon as an edge is discovered, which belongs to an irrelevant area. In
other words, if the route does not start or end in an area a, edges that belong to a are
not considered. No node can have incident edges belonging to two different free areas, as
free areas with common area are merged in Chapter 3.2.2, so the approach yields correct
results.

In order to find in which area a location lies, a quadtree is used. This quadtree
is built once during the program’s initialization and contains information about the free
areas. Each free area has its not necessarily simple polygon, the set of nodes on its border
and a unique id.

The actual routing regarding the starting or ending in a free area proceeds as follows.
The free area in which the route starts, denoted by as is found by using the quadtree.
Same is done for the free area in which the route ends, denoted by at.

If as = at and sl is visible to tl, then the two points are simply connected and the
route’s distance is the distance between sl and tl.

If as is empty, i.e. sl is not in a free area, then the graph node n nearest to sl is
located and the routing algorithm is started from the pair (n, 0). Otherwise all boundary
nodes ni ∈ as visible to sl are added as pairs (ni, distance(n, sl)), to serve as the starting
points for the routing.

If at is empty the target of the routing is the graph node nearest to tl. If not, the
nodes nj ∈ at visible to tl are used as targets for the routing, with distance to them equal
to distance(nj , tl).

When the route is computed, sl and tl are also added to the drawing of the route.
Figure 4.2 shows an example of a route starting in a free area.

4.4 Start or destination in a park

Unlike free areas, parks are not traversed freely, as it is expected that footpaths are
used to traverse the parks. As already mentioned, those footpaths are to be reached in a
more realistic fashion, than simply finding the nearest footpath. Thus, the preprocessing
for parks is done to allow special handling when starting or ending in a park. The selection

27

4. Routing

u
v

l

α2
α1 α3

vs ≈ 1
100vn vs ≈ 1

10vn
vs ≈ 7

10vn

Figure 4.3: Entering an edge (u, v) from a location l to node v by using different speeds
for vs.

p

v

dp

db
d dn

ds min ds
vs
+ dn

vn

φ π

Figure 4.4: Walking inside the park for a distance ds with speed vs and on a path of the
park for distance dn with speed vn.

of the starts, targets and the drawing of the route are now described.

The park facets in which the start and destination lie in, denoted by Ps and Pt are
located. As with the free areas, this is done by using a quadtree. For each edge e := (v, u),
that shares common area with Ps∪Pt, two additional points pv(e) and pu(e) are computed.
We say that pv and pu are the projected points of v and u. Those points define where the
route can enter or leave the inner area of a park facet.

In order to connect the route with the start or destination inside a park facet, some
distance must be covered inside the facet. As already mentioned, we assume that parks
have footpaths which pedestrians prefer. Thus, a different speed, vs := vslow, is used to
make the walking inside a park facet more expensive than walking on the boundary of the
facet. This speed vs is less or equal to the normal walking speed, vn := vnormal. A very
small value of vs compared to vn should yield as little distance walked inside the facet as
possible. Higher values of vs should allow more distance walked inside the facet, effectivly
changing the angle with which the facet boundary is reached. Figure 4.3 shows how an
edge e is entered with different angles α, caused by different speeds vs.

We want to minimize the sum of the expensive walking inside a park facet and
walking the rest of the route. Lemma 4.1 yields the desired projection point of a node v
on a edge e of a park facet P .

Lemma 4.1. The fastest route from a point p in a polygon P to the endpoint v of a
polygon edge e := (u, v) consists of a straight segment from p to a point π on e and then
from π along e to v, where

π =
d

length e
· (v − φ),

φ := the perpendicular projection of p on e, d := ρ·distance (p,φ)√
1−ρ2

and ρ := vs
vn

28

4.4. Start or destination in a park

sl

tl vs = vn

Figure 4.5: A detour caused by a thin park facet.

Proof. Figure 4.4 depicts the situation. The straight segment from p to π is denoted by ds
and the straight segment from π to v is denoted by dn. The length of e is denoted by db.

We want to minimize the function ds
vs

+ dn
vn

= ds + dn · ρ, i.e. the time spent “slowly”
walking inside the facet plus the time spent walking “normally” on the boundary of the
facet. Note that any distance walked “slowly” is acceptable, as any projection of p that is
not on the edge e will be set to v (clipping). In other words, we are solving an unrestricted
minimization problem. Thus, we simply check where the derivative is equal to 0.

To simplify matters, let dn := db − d and ds :=
√
d2p + d2 (we consider only positive

distances). In this way our function to minimize is f(d) := (db − d) · ρ +
√
d2p + d2. We

set its derivative to be equal to 0, i.e. −ρ + d√
d2p+d

2

.
= 0, and receive the value we set

for distance (π, φ) = d. Plotting the function f shows that this single extremum is a
minimum.

Each node n incident to a park facet edge of Ps or Pt is given an additional cost
cn,l := vs ·distance (l, pn) +vn ·distance (pn, n), where pn is n’s projected point on the edge
n is incident to and l is the start location, if n ∈ Ps, or the destination, if n ∈ Pt. If n
is incident to two edges, then the point that yields smaller distance is chosen. The pair
(n, dn,sl) is then added as a start, if n ∈ Ps, or (n, dn,tl) is added as a target, if n ∈ Pt.

A final step after the routing is to check whether the pedestrian could walk directly
from sl to tl. If Ps = Pt, sl is visible to tl and the cost of walking directly (in the park)
is less than the cost of the already computed route, the actual route consists of the line
between the start and destination.

A problem here occurs when Ps or Pt have thin neighboring facets. This could cause
a considerable detour, as depicted in Figure 4.5. A simple mechanism is used to avoid
this. Instead of using only the facets Ps and Pt, the procedures above are applied for all
facets in an ε-Neighborhood of sl and tl. Again, those facets are found with the quadtree
and the value of ε can be chosen freely before the routing. Edges that belong to facets
other than Ps and Pt must also be within the ε-Neighborhood in order to be used. This
avoids using far away edges of neighboring huge facets, as such edges may be far beyond
the ε-Neighborhood.

To check whether sl or tl are visible to any projected point, the whole merged park
geometry (in which sl and tl lay) is used.

While this solution yields plausible results, the time needed by the quadtree to find

29

4. Routing

nearby facets grows the bigger ε is and is generally huge compared to the time needed for
the routing.

30

5. Experiments

In this chapter exemplary computed routes are shown and compared to standard
routing software routes. Statistics about the amount of additional information computed
in the preprocessing are given, as well as statistics about the routing queries. The modeling
is done for several cities and statistics are gathered. For the queries the city Karlsruhe
(Baden-Württemberg, Germany) is used, as it is a standard city of population 300 000.
It has a reasonable amount of plazas and parks, as well as a structured road network. Its
OpenStreetMap data is also rich and frequently updated.

5.1 Implementation details

The implementation of the preprocessing is written in Java. This choice is made for
convenience only and does not affect how the modeling is done. The complete modeling
is done in a preprocessing phase, so the slower execution time is not an issue.

The routing is written in C++, as the routing queries are done online and their
execution time is important. For compiling GCC 4.6.2 with optimization level 3 is used.

This chapter shows some information about query and modeling execution time. The
specifications of the machine on which they are run can be seen in Table 5.1.

Input data

The used road network database is the OpenStreetMap (OSM). It is free to use in
non-commercial projects and offers highly detailed information about roads, landscapes,
points of interest, etc. In addition, it is updated frequently, well documented and easy to

Table 5.1: Reference machine specifications.

CPU Count 2
Cores per CPU 8
CPU Vendor Intel
CPU Type Xeon(R) E5-26700
Clock speed 2.6GHz
Platform 64bit
Operating System SuSE 12.1-64
Total Memory 64532M

31

5. Experiments

use.
The OSM information is stored in XML format. As the modeling part is written in

Java, the java SAXParser is used to handle the input format. It is a SAX (Simple API for
XML) parser implementation that is fast and easy to use.

Generally, the OSM information consists of two elements: Nodes mark significant
locations, such as road junctions, points of interest and so on. Ways are paths of nodes
that represent the actual roads, area and park boundaries. Nodes and ways are marked by
tags (tuples (key, value)) that clarify what the node or way represents. For the modeling,
several important tags are:

� The tag (highway, *) defines the type of a way. All ways of a type traversable by a
pedestrian are added to the routing graph.

� The tag (layer, *) indicates the level of a way or a node. This tag is important when
connecting the created walkways to the routing graph, as they are only connected
to edges and nodes of the same layer. Otherwise a walkway could be connected to
the middle of a bridge or a tunnel. The tag is also important when finding nearby
paths in a park.

� Closed ways (ways that start and end with the same node) that belong to the routing
graph and are marked by the tag (area, yes) are considered to be free areas.

� Closed ways marked by any of the tags (leisure, common), (leisure, dog park),
(leisure, park), (leisure, garden) in combination with the tag (area, yes) are con-
sidered to be parks.

� Closed ways marked by any of the tags (natural, water), (leisure, swimming pool),
(landuse, pond), (barrier, *) in combination with the tag (area, yes) are considered
to be barriers.

The information in a OSM file generally covers huge areas. To model specific areas, during
the extraction of the input a bounding box is used for the nodes and edges that should be
in the routing graph. This bounding box is a rectangle and all nodes and edges that are
not completely within it are not added to the routing graph.

Projection

Similar to other road network databases, in the OpenStreetMap database coordinates
are kept in the geographic coordinate system, i.e. latitudes and longitudes. To allow simple
geometrical computations during the modeling, all node coordinates are projected from
the geographic coordinate system in the Euclidean plane.

For this, the Elliptical Mercator[Sny87] projection is used, as it offers good precision.
It is generally slower than other projections, however this is not an issue – the coordinates
of each node are projected only once. The Elliptical Mercator gives the projection a specific
metric, so centimeters were chosen for higher precision.

An exemplary implementation can be found at the OSM wiki1. This is also the used
implementation for this thesis.

Java Topology Suite

The JTS (Java Topology Suite2) is an open source library with a convenient API and
a port to C++ (Geometry Engine Open Source3). It provides various operators for 2D
geometrical figures (unification, difference, coverage, area computing, etc.) and the funct

1http://wiki.openstreetmap.org/wiki/Mercator#C_implementation
2http://www.vividsolutions.com/jts/jtshome.htm
3http://trac.osgeo.org/geos/

32

http://wiki.openstreetmap.org/wiki/Mercator# C_implementation
http://www.vividsolutions.com/jts/jtshome.htm
http://trac.osgeo.org/geos/

5.2. Comparison to standard routing

to save them in the WKB (Well Known Binary) format. This library is used extensively
for the various procedures described in Chapter 3.2.

Storing free area and park information

The merged free areas and the merged parks are not necessarily simple polygons. As
they are needed for the routing, a mechanism is needed to store them when the modeling
is done. The JTS library offers functionality to store and load its geometry objects (that
represent the not necessarily simple polygons) using the WKB (Well Known Binary) for-
mat. Its C++ port, GEOS, offers the same functionality, so this format is used to store
and load the merged free areas and the merged parks.

Precision problems

When determining the visible nodes of a start or destination that lays in a free area,
precision problems with the GEOS library occur. To test whether two points p1 and p2
are visible to each other in an area a, a geometry object l representing the line segment
between p1 and p2 is created. The points are visible if a contains all points of l (a.covers(l)).
This condition fails for some lines within an area, when the line has one or both of its
endpoints on the boundary of the area. To go around this problem, a is removed from l
(l := l.difference(a)) and the remaining length of l is checked. If this length is smaller than
an epsilon value, l is considered to be in a and the two endpoints of l are visible to each
other. The epsilon value we use is ε = 1cm. The remaining length of l generally ranges
from less than 0.01cm to less than a µm, so we consider the failing of the a.covers(l)
method to be due to a precision problem.

5.2 Comparison to standard routing

As standard routing software for pedestrians OpenRouteService4, Google Maps5 and
Bing6 are used. They route in the same way standart routing software for vehicles does
– the middle of the street is used, free areas are not taken in consideration and street
junctions do not cost extra time. In addition, OpenRouteService uses the same input data
and has the same map visualisation. Several other route planners for pedestrians that
use the same input data were also tried. Their results are not shown, as they are almost
identical to the results of OpenRouteService:

� CloudMade7. Its difference to OpenRouteService is that the nearest node is chosen
for the start/destination, instead of the nearest edge.

� Routino8. Similar to CloudMade.

� YOURS 9. Similar to CloudMade.

� MapQuest10. Some computed routes have odd detours, otherwise similar to Cloud-
Made.

The first route query (Figure 5.1) shows the usage of the walkways as opposed to
walking on the streets. Aside from knowing which side of the street the pedestrian should
use, a very small difference in the route length is also present.

4http://www.openrouteservice.org/
5https://maps.google.de/
6http://www.bing.com/maps/
7http://maps.cloudmade.com/#
8http://www.routino.org/
9http://wiki.openstreetmap.org/wiki/YOURS

10http://www.mapquest.com/

33

http://www.openrouteservice.org/
https://maps.google.de/
http://www.bing.com/maps/
http://maps.cloudmade.com/#
http://www.routino.org/
http://wiki.openstreetmap.org/wiki/YOURS
http://www.mapquest.com/

5. Experiments

(a) A route query computed with Google Maps. (b) A route query computed with Bing.

(c) A route query computed with OpenRouteSer-
vice.

(d) The same route query when using the created
walkways.

Figure 5.1: Route difference when using the walkways instead of their streets.

(a) A route query computed with Google Maps. (b) A route query computed with Bing.

(c) A route query computed with OpenRouteSer-
vice.

(d) The same route query when adding a small
junction penalty.

Figure 5.2: Route difference when using the street junction penalty.

34

5.3. Modeling statistics

(a) A route query com-
puted with Google
Maps.

(b) A route query com-
puted with Bing.

(c) A route query com-
puted with Open-
RouteService.

(d) The same route
query when using
the free area edges.

Figure 5.3: Route difference when using the free area handling.

The second route query (Figure 5.2) shows how the route can differ based even on
a small penalty (1 min) added to crossing big street junctions. The route computed
with a minute entry penalty uses a bridge over the crossings. Despite the small penalty
and the detours of getting on and off the bridge, the traffic junction is avoided. The
OpenStreetService route crosses four streets with traffic lights, in which case a minute
waiting time is usually an underestimation. Ignoring the time needed to traverse such
crossings can lead to computed routes that a pedestrian will otherwise avoid, similar to
not considering traffic jams in navigational systems for vehicles. The footpaths near the
route start and destination are not present in Google Maps and Bing, leading to a somewhat
odd route for a pedestrian.

The third route query (Figure 5.3) shows how the route goes through a plaza, instead
of going around it. This leads to a faster route and is also something that a pedestrian will
generally do. The computed route costs are as follows. Google Maps: ∼4 min, Bing : ∼4
min, OpenRouteService: ∼5 min and ∼3 min when the route is computed with visibility
graph edges.

The fourth route query (Figure 5.4) shows how the route can differ when walking in
a park. Again, several footpaths are missing in Google Maps and Bing.

5.3 Modeling statistics

The walkways, penalties, free areas and parks cost additional space. In order to gain
some idea about the amount of this space, several figures of the modeling of several cities
are given in Table 5.2. In addition, the running time for the different procedures is also
given. The row Other edges shows the number of edges, other than walkways and visibility
graph edges, that are part of the output routing graph.

The number of created walkways intuitively grows with the number of edges in the
input data. How much it grows can vary, based on the number of streets in the input

35

5. Experiments

(a) A route query computed with Google Maps. (b) A route query computed with Bing.

(c) A route query computed with OpenRouteSer-
vice.

(d) The same route query when considering the
park facets.

Figure 5.4: Route difference when using the park handling.

that should have walkways. The average numbers of edges per area and per facet are more
dependant on how detailed the descriptions of free areas are in the input data. For instance,
the input data for Karlsruhe is near 5 times the size of the input data for Cambridgeshire,
even though Cambridgeshire has a significantly higher population and covers a lot more
area. Also worth notice is the difference between the edges per area on shortest paths
and the total edges per area. In order to route through a free area much less information
is needed, compared to starting or ending in a free area. The relatively small number of
facets per park shows the presence of many small places marked as parks in the input data.
Thus the ε value (which defines the ε-Neighborhood in which nearby facets are considered)
offers a trade-off between how well the few parks with many facets are handled and the
time spent for this specific handling.

5.4 Query statistics

Due to the specific handling of start or destination being in a free area or a park,
several types of queries are possible. The start and destination can be a node, a point in
a free area or a point in a park. The statistics are gathered from 10 000 queries for each
different combination. For the queries with a start or end in a free area or park, a random
point of a random free area/park is chosen. Table 5.3 shows the running times, as well
as the search space covered by the different queries. For the queries the routing graph
for Karlsruhe is used, which has 49 023 nodes, 164 648 edges, 702 park facets and 116 free
areas.

The column Vertices shows the average number of nodes visited by the query and the
column Edges shows the average number of relaxed edges. The columns F. area nodes and
Park edges show the average number of free area nodes and park edges that are visited
before the actual routing algorithm. The free area nodes are tested for visibility and for
the park edges special entry points are computed, which are also tested for visibility.

As expected, the search spaces does not vary significantly between the different types
of queries. The actual work when the start or destination is in a free area or a park is done

36

5.4. Query statistics

Table 5.2: Modeling statistics (osp. abbreviates on shortest paths).

Measure Karlsruhe Stuttgart Cambridgeshire London

Walkways
Created walkways 24 918 121 290 285 764 549 920
Procedure time [s] 5.4 35.6 82.0 297.0
Free areas
Merged f. area 116 293 599 471
Avg. edges per f. area 497.8 180.4 164.6 256.8
Avg. edges per f. area (osp.) 36.9 17.8 7.7 17.6
Procedure time [s] 27.0 128.4 92.4 405.6
Parks
Merged parks 242 203 825 2625
Avg. facets per park 2.9 6.4 1.7 3.4
Avg. edges per facet 18.2 12.4 12.9 17.0
Procedure time [s] 8.9 35.8 93.5 649.2
Other
Other edges 81 990 361 102 505 768 1 147 862

Table 5.3: Query statistics (v.v. abbreviates vice versa).

Type Time [ms] Vertices Edges F. area nodes Park edges

Basic
Node to node 19.5 23 263 55 908 — —
Free area
Node to area (and v.v.) 42.4 22 505 54 256 29.6 —
Area to area 64.6 21 261 51 388 30.1 —
Park
Park to node (and v.v.) 34.2 22 096 53 079 — 22.6
Park to park 43.0 20 219 48 566 — 22.0
Free area and park
Area to park (and v.v.) 54.2 21 175 51 011 29.6 22.6

before the Dijkstra algorithm. The cost for this work can be seen in the average running
times of the queries. Especially for the free area to free area queries, the processing
beforehand takes about 22-23 ms, which is twice as long as Dijkstra’s execution time.
Additionally, the queries for free areas are more expensive than the park queries – a start
or a destination in a park takes from 9 to 15 ms. This can be explained by the fact that
the free areas are generally a lot larger than the park facets. Thus, checking whether a
location is visible to node in a free area is more expensive than checking if a line is in a
park facet.

37

6. Conclusion

Similar to vehicle route planning, routing for pedestrians has its own set of specific
problems. In this bachelor thesis two of those problems were addressed, namely the lack of
explicit walkways in free road network databases and the traversal of areas such as parks
and plazas.

Feasible solutions to those problems were found and fully described. Most of the
computing for the solutions is done during a preprocessing phase and the additional time
cost during the actual routing is moderate. It is caused mainly by the special handling of
the start or destination being in a free area or park. The additional space cost is moderate
and its greater portion is also caused by the information needed to start or end the route
in a free area or park.

The designed solutions were then tested in a prototype implementation of a route
planner. The result showed that solving the two problems yields a route that is a lot more
realistic than a route computed without those solutions.

Several possible improvements to the modeling done in this thesis are: The considera-
tion of building layout when creating walkways, as this would lead to more precise placing
of the walkways. A study of how pedestrians walk in parks can be used to better model
routes passing through parks. In addition, traffic lights can be modeled in a more precise
manner. For the computation of routes, an important improvement to this thesis is the
usage of speed-up techniques. Particularly, testing how known speed-up techniques behave
on the generated routing graph.

Further problems that can be considered when routing for pedestrians are, for exam-
ple, the handling of rush hours (similar to traffic jams when routing for vehicles) or the
usage of public transportation.

39

Bibliography

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. A Hub-Based Labeling Algorithm for Shortest Paths on Road Net-
works. In Panos M. Pardalos and Steffen Rebennack, editors, Proceedings
of the 10th International Symposium on Experimental Algorithms (SEA’11),
volume 6630 of Lecture Notes in Computer Science, pages 230–241. Springer,
2011.

[AG92] C. Alexopoulos and P. M. Griffin. Path planning for a mobile robot. Systems,
Man and Cybernetics, 22:318–322, 1992.

[AOPS02] Ravindra K. Ahuja, James B. Orlin, Stefano Pallottino, and Maria Grazia
Scutellà. Transportation Science. INFORMS, 36:326–336, 2002.

[BPS11] Miquel Ginard Ballester, Maurici Ruiz Pèrez, and John Stuiver. Automatic
Pedestrian Network Generation. AGILE, pages 1–13, 2011.

[CGR96] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest
paths algorithms. Mathematical Programming, Series A, 73:129–174, 1996.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Overmars.
Computational Geometry: Algorithms and Applications. Springer, 2008.

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Short-
est Paths in Road Networks: From Practice to Theory and Back. it—
Information Technology, 53:294–301, December 2011.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. En-
gineering Route Planning Algorithms. In Jürgen Lerner, Dorothea Wagner,
and Katharina A. Zweig, editors, Algorithmics of Large and Complex Net-
works, volume 5515 of Lecture Notes in Computer Science, pages 117–139.
Springer, 2009.

[Faw00] J. Fawcett. Adaptive routing for road traffic. Computer Graphics and Ap-
plications, 20:46–53, 2000.

[GM91] Subir Kumar Ghosh and David M. Mount. An output-sensitive algorithm
for computing visibility graphs. SIAM J. Comput., 20:888–910, 1991.

[GM04] Thierry Gèraud and Jean-Baptiste Mouret. Fast road network extraction in
satellite images using mathematical morphology and Markov random fields.
EURASIP Journal on Applied Signal Processing, 2004:2503–2514, 2004.

41

Bibliography

[HB07] Bertrand Haut and Georges Bastin. A SECOND ORDER MODEL OF
ROAD JUNCTIONS IN FLUID MODELS OF TRAFFIC NETWORKS.
Networks and Heterogeneous Media, 2:227–253, 2007.

[MAN04] Ellips Masehian and M. R. Amin-Naseri. A voronoi diagram-visibility graph-
potential field compound algorithm for robot path planning. Robotic Sys-
tems, 21:275–300, 2004.

[MZ07] M. Mokhtarzade and M. J. Valadan Zoej. Road detection from high-
resolution satellite images using artificial neural networks. International
Journal of Applied Earth Observation and Geoinformation, 9:32–40, 2007.

[OIRK87] B. Oommen, S. Iyengar, N. Rao, and R. Kashyap. Robot navigation in
unknown terrains using learned visibility graphs. Robotics and Automation,
3:672–681, 1987.

[Pet03] R. Peteri. Detection and extraction of road networks from high resolution
satellite images. 1:301–304, 2003.

[Sny87] John Parr Snyder. Map projections–a working manual, volume 1. 1987.

[TW98] John C. Trinder and Yandong Wang. Automatic Road Extraction from
Aerial Images. Digital Signal Processing, 8:215–224, 1998.

42

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Common terms
	2.2 Thesis specific terms

	3 Modeling
	3.1 Creating the walkways
	3.1.1 Computing the street polygons
	3.1.2 Tying stubs
	3.1.3 Splitting edges
	3.1.4 Computing the walkways
	3.1.5 Connecting the walkways to the routing graph

	3.2 Handling free areas and parks
	3.2.1 Extracting the free areas
	3.2.2 Merging free areas
	3.2.3 Adding visibility graph edges
	3.2.4 Processing parks

	4 Routing
	4.1 Routing algorithm
	4.2 Considering road junctions
	4.3 Start or destination in a free area
	4.4 Start or destination in a park

	5 Experiments
	5.1 Implementation details
	5.2 Comparison to standard routing
	5.3 Modeling statistics
	5.4 Query statistics

	6 Conclusion
	Bibliography

