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Exercises

b

d

e
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(1) Prove that every permutation of a decomposition scheme is a decomposition scheme as well.

(3) Give an example for each combination of chordal, co-chordal, comparability graph and co-
comparability graph.

(5) Which trees are permutation graphs?
(6) Prove that the rainbow number and the queue number are equal for every graph.

Let G be a comparability graph and [B1, . . . , Bk] a G-decomposition. A tupel (e1, . . . , ek) of
edges is called a decomposition scheme of G if there is a G-decomposition [B1, . . . , Bk] such
that ei ∈ Bi for all i ∈ [k].

(4) Find a matching representation for the graph on the bottom. Is there a matching
representation such that the vertices in the top row are ordered a, b, c, d, e?

(2) Let G be a comparability graph. Prove that every G-decomposition has the same length.
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Exercise 1

(ab, ac) is a scheme with B1 = {ab}, B2 = {ac, bc}.
(ac, ab) is a scheme with C1 = {ac}, C2 = {ab, cb}.

Let (e1, . . . , ek) be a decomposition scheme and [B1, . . . , Bk] corresponding G-decomposition.
For k = 1 the statement holds trivially. Thus, let k ≥ 2 and i < k.

a b

c
Example:

Notation:
Ei = B̂i + . . . + B̂k

Ci: implication class in Ei s. t. ei+1 ∈ Ci

Ci+1: implication class in Ei − Ĉi s. t. ei ∈ Ci+1
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Exercise 1

Then, Bi+1 = Ci and Bi = Ci+1 and it holds that B̂i + B̂i+1 = Ĉi + Ĉi+1.

Then, Ci+1 = Bi + F or Ci+1 = Bi + F −1.
Thus, Ĉi+1 = B̂i + F̂ and therefore B̂i + B̂i+1 = Ĉi + Ĉi+1.

Let (e1, . . . , ek) be a decomposition scheme and [B1, . . . , Bk] corresponding G-decomposition.
For k = 1 the statement holds trivially. Thus, let k ≥ 2 and i < k.

Goal: [B1, . . . Bi−1, Ci, Ci+1, Bi+2, . . . Bk] is G-decomposition.
By Theorem 4.6 and A = Bi and D = Bi+1 we have:

(ii) Bi+1 = Ci + F , B̂i, Ĉi, F̂ in rainbow triangle

(i) Bi+1 ∈ I(Ei) and Bi ∈ I(Ei − B̂i+1) or

Thm 4.6 A ∈ I(G), D ∈ I(E − Â)
(i) D ∈ I(G) and A ∈ I(E − D̂)
(ii) D = B + C, Â, B̂, Ĉ in rainbow triangleor

B̂i Ĉi

F̂i

Notation:
Ei = B̂i + . . . + B̂k

Ci: implication class in Ei s. t. ei+1 ∈ Ci

Ci+1: implication class in Ei − Ĉi s. t. ei ∈ Ci+1
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Exercise 1
Let (e1, . . . , ek) be a decomposition scheme and [B1, . . . , Bk] corresponding G-decomposition.
For k = 1 the statement holds trivially. Thus, let k ≥ 2 and i < k.

Goal: [B1, . . . Bi−1, Ci, Ci+1, Bi+2, . . . Bk] is G-decomposition.
By Theorem 4.6 and A = Bi and D = Bi+1 we have:

In both cases we have B̂i + B̂i+1 = Ĉi + Ĉi+1.
Thus, E = B̂1 + . . . B̂i−1 + Ĉi + Ĉi+1 + B̂i+2 + . . . B̂k.
Therefore, [B1, . . . , Bi−1, Ci, Ci+1, Bi+2, . . . , Bk] is G-decomposition with scheme

(e1, . . . , ei−1, ei+1, ei, ei+2, . . . , ek).

(ii) Bi+1 = Ci + F with F ∈ I(Ei) and B̂i, Ĉi, F̂ rainbow triangle

We can obtain all permutations by repeating this.

(i) Bi+1 ∈ I(Ei) and Bi ∈ I(Ei − B̂i+1) or

Thm 4.6 A ∈ I(G), D ∈ I(E − Â)
(i) D ∈ I(G) and A ∈ I(E − D̂)
(ii) D = B + C, Â, B̂, Ĉ in rainbow triangleor

Notation:
Ei = B̂i + . . . + B̂k

Ci: implication class in Ei s. t. ei+1 ∈ Ci

Ci+1: implication class in Ei − Ĉi s. t. ei ∈ Ci+1
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Exercise 2

Let (e1, . . . , ek), (f1, . . . , fl) be schemes, [B1, . . . , Bl] G-decomposition w. r. t. (fi).

Since E = B̂1 + . . . + B̂l there is j ∈ [l] s. t. e1 ∈ B̂j .

If then is G-decomposition w. r. t.
[B1, . . . , Bj−1, Bj , Bj+1, . . . Bl]
[B1, . . . , Bj−1, B−1

j , Bj+1, . . . Bl]
e1 ∈ Bj

e1 ∈ B−1
j (f1, . . . , fj−1, e1, fj+1, . . . fl).

Lemma:
There is j ∈ [l] s. t. (f1, . . . , fj−1, e1, fj+1, . . . fl) is scheme of G.
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Exercise 2

Induction on the number of color classes of G.
If E = Â for an implication class A then k = l = 1 and every edge can be chosen.

Let (e1, . . . , ek), (f1, . . . , fl) be schemes, [B1, . . . , Bl] G-decomposition w. r. t. (fi).

Let k, l ≥ 2.
Idea: Add e1 to (fi) and delete color class of e1.
Lemma from before: ∃j ∈ [l] s. t. (f1, . . . , fj−1, e1, fj+1, . . . fl) is scheme.
By exercise 1: (e1, f1, . . . , fj−1, fj+1, . . . , fl) is scheme.

Now we have two schemes of G with e1 as the first edge.

G − B̂ has less color classes than G. By induction we have k − 1 = l − 1.

Deleting color class of e1 in G results in graph G − B̂ with schemes
(e2, . . . , ek) and (f1, . . . , fj−1, fj+1, . . . , fl).
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Exercise 3

G
G

chordal

¬comp.
&

chordal

comp.
&

¬chordal

comp.
&

¬chordal

¬comp.
&

chordal & comp. chordal & ¬comp. ¬chordal & comp. ¬chordal & ¬comp.

obtain bottom-left of table by taking complement of graphs on top-right



July 30, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory6

Exercise 4

b

d

e

a

c

Matching representation:
Observation: aeb not possible in top row

a and b have to be inverted.

Verification:

a b e

b a e

c

c

d

d

d is with everything but a inverted.
c is with everything but b inverted.
a and b are with each other but not e inverted.

Possible with top row abcde?
Incident (non-)edges to e force:

b and d have to be inverted E
{a, b} e {c, d}

Then, a or b are inverted with e.
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Exercise 5

We show that a spider is not a permutation graph by showing that its
complement is not transitively orientable.

v0

v11

v12

v21

v22

v32

v31

v0

v12 v22 v32

v11v31 v21v32v22
v31v22

v11v22

v12v21
v12v0

v12v31

v11v32
v0v32

v21v32

Γ v31v22
v0v22Γ

Γv0v22
v11v22 Γ v12v22
v12v22 Γ
v12v21 Γ
v12v0 Γ
v12v31 Γ v12v32
v12v32 Γ
v11v32 Γ
v0v32 Γ
v21v32 Γ v22v32

⇒ v32v22Γ∗v22v32

⇒ spiders are not permutation graphs

spider: at least three legs,
each of length at least 2
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Exercise 5

v1 v3L1 L2 v2 v4

For i ∈ [k] let Li be the leaves adajcent to vi.

L5

Claim: A tree is a permutation graph if and only if it is spider-free.

“⇐” Let T be a spider-free tree.
V ′ = {v ∈ V : deg(v) ≥ 2} induces a path v1, . . . , vk in T .

Every vertex below an edge e has to be connected to an end vertex of e.
Idea: Find a vertex order without

Every vertex has edges in only one direction. (stronger statement)

Lk

v1 vk

“⇒” Permutation graphs are hereditary, so they do not contain spiders as induced subgraphs

✓
✓

Fun Fact: Spider-free trees are called caterpillars

and

v5



July 30, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory8

Queue Layouts

Warm-up: Find families of graphs with small (constant), respectively large (unbounded), queue
number / rainbow number.

level planar graphs
complete graphs

For a fixed linear order ≺ of a graph, we say that two edges vw, xy with v ≺ w and x ≺ y
nest if v ≺ x ≺ y ≺ w or x ≺ v ≺ w ≺ y.
A rainbow (w.r.t. a linear vertex order) is a set of edges that are pairwise nesting.
The rainbow number of a graph is the smallest k such that there is a linear vertex order
whose largest rainbow has size at most k.
The queue number of a graph is the smallest k such that there is a linear vertex order and a
partition of the edges into at most k sets such that no two edges in the same part nest.

Prove that the rainbow number and the queue number are equal for every graph.
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Queue Layouts

qn≺(G) = min # of colors such that there is an edge coloring without monochromatic

≺:
rn≺(G) = min size of a rainbow w.r.t. ≺

We prove: qn≺(G) = rn≺(G) for all G and ≺

Observation: two edges nest w.r.t ≺ ⇐⇒ they cross in the matching representation Γ

queue layout w.r.t. ≺
matching representation Γ:
startpoints at the top,
endpoints at the bottom

Conflict graph H with V (H) = E(G),
E(H) = {e1e2 | e1, e2 cross in Γ}

H is a permutation graph
ω(H) = χ(H)

We conclude: rn≺(G) = max # of pw crossing edges in Γ = ω(H) = χ(H) = qn≺(G)

colors in Γ transfer
to queue layout

transform ordered graph to matching
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