

Algorithmic Graph Theory Solution Sheet 6

Laura Merker and Samuel Schneider, July 30, 2025

Let G be a comparability graph and $[B_1, \ldots, B_k]$ a G-decomposition. A tupel (e_1, \ldots, e_k) of edges is called a **decomposition scheme** of G if there is a G-decomposition $[B_1, \ldots, B_k]$ such that $e_i \in B_i$ for all $i \in [k]$.

- (1) Prove that every permutation of a decomposition scheme is a decomposition scheme as well.
- (2) Let G be a comparability graph. Prove that every G-decomposition has the same length.
- (3) Give an example for each combination of chordal, co-chordal, comparability graph and co-comparability graph.
- (4) Find a matching representation for the graph on the bottom. Is there a matching representation such that the vertices in the top row are ordered a, b, c, d, e?
- (5) Which trees are permutation graphs?
- (6) Prove that the rainbow number and the queue number are equal for every graph.

Let (e_1, \ldots, e_k) be a decomposition scheme and $[B_1, \ldots, B_k]$ corresponding G-decomposition. For k = 1 the statement holds trivially. Thus, let $k \geq 2$ and i < k.

Notation:

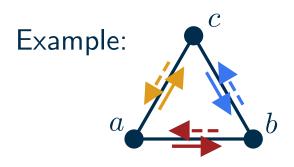
$$E_i = \hat{B_i} + \ldots + \hat{B_k}$$

 C_i : implication class in E_i s. t. $e_{i+1} \in C_i$

 C_{i+1} : implication class in $E_i - \hat{C}_i$ s. t. $e_i \in C_{i+1}$

$$(ab,ac)$$
 is a scheme with $B_1 = \{ab\}, B_2 = \{ac,bc\}.$

(ac, ab) is a scheme with $C_1 = \{ac\}, C_2 = \{ab, cb\}.$



Let (e_1, \ldots, e_k) be a decomposition scheme and $[B_1, \ldots, B_k]$ corresponding G-decomposition.

For k = 1 the statement holds trivially. Thus, let $k \geq 2$ and i < k.

Notation:

$$E_i = \hat{B_i} + \ldots + \hat{B_k}$$

 C_i : implication class in E_i s. t. $e_{i+1} \in C_i$

 C_{i+1} : implication class in $E_i - \hat{C}_i$ s.t. $e_i \in C_{i+1}$

Thm 4.6 $A \in \mathcal{I}(G), D \in \mathcal{I}(E - \hat{A})$

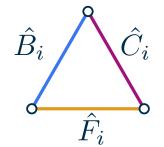
(i)
$$D \in \mathcal{I}(G)$$
 and $A \in \mathcal{I}(E - \hat{D})$

or (ii) D=B+C, \hat{A},\hat{B},\hat{C} in rainbow triangle

Goal: $[B_1, ..., B_{i-1}, C_i, C_{i+1}, B_{i+2}, ..., B_k]$ is *G*-decomposition.

By Theorem 4.6 and $A=B_i$ and $D=B_{i+1}$ we have:

- (i) $B_{i+1} \in \mathcal{I}(E_i)$ and $B_i \in \mathcal{I}(E_i \hat{B}_{i+1})$ or
 - Then, $B_{i+1}=C_i$ and $B_i=C_{i+1}$ and it holds that $\hat{B}_i+\hat{B}_{i+1}=\hat{C}_i+\hat{C}_{i+1}$.
- (ii) $B_{i+1} = C_i + F$, $\hat{B}_i, \hat{C}_i, \hat{F}$ in rainbow triangle
 - Then, $C_{i+1} = B_i + F$ or $C_{i+1} = B_i + F^{-1}$.
 - Thus, $\hat{C}_{i+1} = \hat{B}_i + \hat{F}$ and therefore $\hat{B}_i + \hat{B}_{i+1} = \hat{C}_i + \hat{C}_{i+1}$.



Let (e_1, \ldots, e_k) be a decomposition scheme and $[B_1, \ldots, B_k]$ corresponding G-decomposition.

For k = 1 the statement holds trivially. Thus, let $k \geq 2$ and i < k.

Notation:

$$E_i = \hat{B}_i + \ldots + \hat{B}_k$$

 C_i : implication class in E_i s. t. $e_{i+1} \in C_i$

 C_{i+1} : implication class in $E_i - \hat{C}_i$ s.t. $e_i \in C_{i+1}$

Thm 4.6 $A \in \mathcal{I}(G), D \in \mathcal{I}(E - \hat{A})$

(i)
$$D \in \mathcal{I}(G)$$
 and $A \in \mathcal{I}(E - \hat{D})$

or (ii) D=B+C, \hat{A},\hat{B},\hat{C} in rainbow triangle

Goal: $[B_1, \ldots B_{i-1}, C_i, C_{i+1}, B_{i+2}, \ldots B_k]$ is G-decomposition.

By Theorem 4.6 and $A=B_i$ and $D=B_{i+1}$ we have:

- (i) $B_{i+1} \in \mathcal{I}(E_i)$ and $B_i \in \mathcal{I}(E_i \hat{B}_{i+1})$ or
- (ii) $B_{i+1} = C_i + F$ with $F \in \mathcal{I}(E_i)$ and $\hat{B}_i, \hat{C}_i, \hat{F}$ rainbow triangle
- In both cases we have $\hat{B}_i + \hat{B}_{i+1} = \hat{C}_i + \hat{C}_{i+1}$.
- Thus, $E = \hat{B}_1 + \dots \hat{B}_{i-1} + \hat{C}_i + \hat{C}_{i+1} + \hat{B}_{i+2} + \dots \hat{B}_k$.
- Therefore, $[B_1, \ldots, B_{i-1}, C_i, C_{i+1}, B_{i+2}, \ldots, B_k]$ is G-decomposition with scheme

We can obtain all permutations by repeating this.

$$(e_1,\ldots,e_{i-1},e_{i+1},e_i,e_{i+2},\ldots,e_k).$$

Let (e_1, \ldots, e_k) , (f_1, \ldots, f_l) be schemes, $[B_1, \ldots, B_l]$ G-decomposition w.r.t. (f_i) .

Lemma:

There is $j \in [l]$ s. t. $(f_1, ..., f_{j-1}, e_1, f_{j+1}, ..., f_l)$ is scheme of G.

- Since $E = \hat{B}_1 + \ldots + \hat{B}_l$ there is $j \in [l]$ s.t. $e_1 \in \hat{B}_j$.

Let (e_1, \ldots, e_k) , (f_1, \ldots, f_l) be schemes, $[B_1, \ldots, B_l]$ G-decomposition w.r.t. (f_i) .

Induction on the number of color classes of G.

If $E=\hat{A}$ for an implication class A then k=l=1 and every edge can be chosen.

Let $k, l \geq 2$.

Idea: Add e_1 to (f_i) and delete color class of e_1 .

Lemma from before: $\exists j \in [l]$ s. t. $(f_1, \ldots, f_{j-1}, e_1, f_{j+1}, \ldots f_l)$ is scheme.

By exercise 1: $(e_1, f_1, ..., f_{j-1}, f_{j+1}, ..., f_l)$ is scheme.

- Now we have **two** schemes of G with e_1 as the first edge.
- Deleting color class of e_1 in G results in graph $G \hat{B}$ with schemes

$$(e_2, \ldots, e_k)$$
 and $(f_1, \ldots, f_{j-1}, f_{j+1}, \ldots, f_l)$.

 $lacksquare G-\hat{B}$ has less color classes than G. By induction we have k-1=l-1.

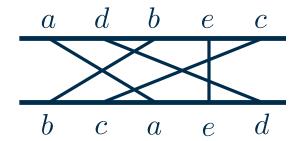
obtain bottom-left of table by taking complement of graphs on top-right

G	chordal & comp.	chordal & ¬comp.	¬chordal & comp.	¬chordal & ¬comp.
chordal & comp.	0			
chordal & ¬comp.				
¬chordal & comp.				
¬chordal & ¬comp.				

Matching representation:

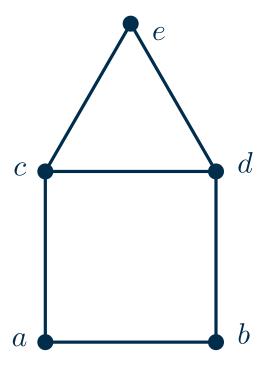
Observation: aeb not possible in top row

- a and b have to be inverted.
- Then, a or b are inverted with e.



Verification:

- \blacksquare d is with everything but a inverted.
- c is with everything but b inverted.
- a and b are with each other but not e inverted.



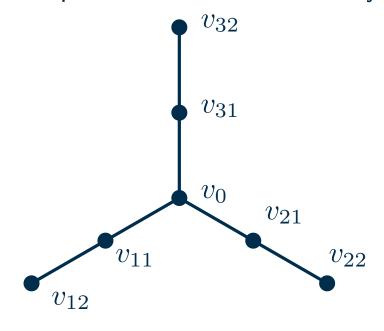
Possible with top row abcde?

■ Incident (non-)edges to *e* force:

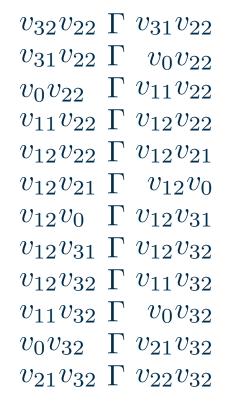
$$\{a,b\}$$
 e $\{c,d\}$

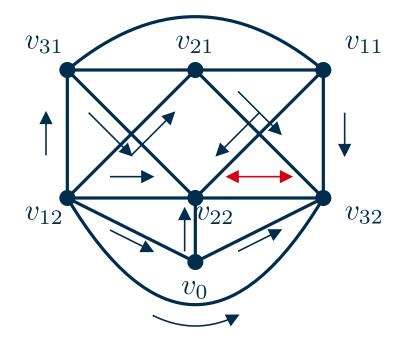
lacksquare and d have to be inverted f

We show that a spider is not a permutation graph by showing that its complement is not transitively orientable.



spider: at least three legs, each of length at least 2





$$\Rightarrow v_{32}v_{22}\Gamma^*v_{22}v_{32}$$

⇒ spiders are not permutation graphs

Fun Fact: Spider-free trees are called caterpillars

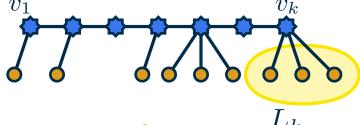
Claim: A tree is a permutation graph if and only if it is spider-free.

" \Rightarrow " Permutation graphs are hereditary, so they do not contain spiders as induced subgraphs

" \Leftarrow " Let T be a spider-free tree.

 $V' = \{v \in V : \deg(v) \ge 2\}$ induces a path v_1, \ldots, v_k in T.

Idea: Find a vertex order without and and



- Every vertex below an edge e has to be connected to an end vertex of e. \checkmark
- Every vertex has edges in only one direction. (stronger statement)

For $i \in [k]$ let L_i be the leaves adajcent to v_i .

Queue Layouts

- For a fixed linear order \prec of a graph, we say that two edges vw, xy with $v \prec w$ and $x \prec y$ nest if $v \prec x \prec y \prec w$ or $x \prec v \prec w \prec y$.
- A rainbow (w.r.t. a linear vertex order) is a set of edges that are pairwise nesting.
- The *rainbow number* of a graph is the smallest k such that there is a linear vertex order whose largest rainbow has size at most k.
- The *queue number* of a graph is the smallest k such that there is a linear vertex order and a partition of the edges into at most k sets such that no two edges in the same part nest.

Prove that the rainbow number and the queue number are equal for every graph.

Warm-up: Find families of graphs with small (constant), respectively large (unbounded), queue number / rainbow number.

level planar graphs

complete graphs

Queue Layouts

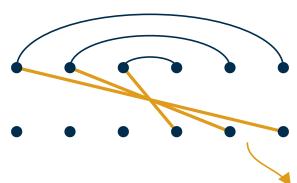
 $\operatorname{qn}_{\prec}(G)=\min \#$ of colors such that there is an edge coloring without monochromatic f

We prove: $\operatorname{qn}_{\prec}(G) = \operatorname{rn}_{\prec}(G)$ for all G and \prec

 $\operatorname{rn}_{\prec}(G) = \min \text{ size of a rainbow w.r.t. } \prec$

transform ordered graph to matching

Observation: two edges nest w.r.t $\prec \iff$ they cross in the matching representation Γ



queue layout w.r.t. ≺

matching representation Γ : startpoints at the top, endpoints at the bottom

Conflict graph H with V(H) = E(G), $E(H) = \{e_1e_2 \mid e_1, e_2 \text{ cross in } \Gamma\}$

- matching representation Γ : \blacksquare H is a permutation graph
 - $\bullet \ \omega(H) = \chi(H)$

colors in Γ transfer to queue layout

We conclude: $\operatorname{rn}_{\prec}(G) = \max \# \text{ of pw crossing edges in } \Gamma = \omega(H) = \chi(H) = \operatorname{qn}_{\prec}(G)$

