

Exercise Sheet 6

Discussion: 30 July 2025

Exercise 1

Let G be a comparability graph and $[B_1, \ldots, B_k]$ a G-decomposition. A tupel (e_1, \ldots, e_k) of edges is called a *decomposition scheme* of G if there is a G-decomposition $[B_1, \ldots, B_k]$ such that $e_i \in B_i$ for all $i \in [k]$.

Let G be a comparability graph and (e_1, \ldots, e_k) a decomposition scheme of G. Prove that every permutation of (e_1, \ldots, e_k) is a decomposition scheme as well.

Exercise 2

Let G be a graph. Prove that every G-decomposition has the same length. As an intermediate step prove that for every pair of decomposition schemes (e_1, \ldots, e_k) and (f_1, \ldots, f_l) of G there is a $j \in [l]$ such that $(f_1, \ldots, f_{j-1}, e_1, f_{j+1}, \ldots, f_l)$ is a decomposition scheme of G.

Exercise 3

A graph can be chordal, co-chordal, a comparability graph or a co-comparability graph. Prove that these properties are independent by giving an example for each of the 16 possible combinations.

Exercise 4

Let H be the graph depicted on the right. Prove that H is a permutation graph by finding a matching representation of H. Furthermore, prove that H and its complement \overline{H} are comparability graphs.

Is there a matching representation of H such that the vertices in the top row are ordered a, b, c, d, e?

Exercise 5

Which trees are permutation graphs?

Hint: Consider *spiders* (depicted on the right).

Exercise 6

This is a bonus problem that is most likely harder than the other problems. We might discuss it only briefly in the problem session.

For a fixed linear order \prec of a graph, we say that two edges vw, xy with $v \prec w$ and $x \prec y$ nest if $v \prec x \prec y \prec w$ or $x \prec v \prec w \prec y$. A rainbow (w.r.t. a linear vertex order) is a set of edges that are pairwise nesting. The rainbow number of a graph is the smallest k such that there is a linear vertex order whose largest rainbow has size at most k. The queue number of a graph is the smallest k such that there is a linear vertex order and a partition of the edges into at most k sets such that no two edges in the same part nest.

Prove that the rainbow number and the queue number are equal for every graph.