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Exercises

(2) Prove that: (i) ab Γ a′b′ ⇔ ba Γ b′a′

(ii) ab Γ∗ a′b′ ⇔ ba Γ∗ b′a′

(6) Let G = (V, E) be a graph. Prove the following statements.

(ii) G is a comparability graph if and only if there is a vertex oder σ such that a <σ b <σ c with
ab, bc ∈ E implies that ac ∈ E.

(i) A vertex order σ is a perfect elimination scheme of G if and only if a <σ b <σ c with
ab, ac ∈ E implies that bc ∈ E.

(5) Show that the algorithm for computing a transitive orientation can be implemented to run in
O(∆ · |E|) time and O(|V |+ |E|) space with ∆ denoting the maximum degree of a vertex.

(4) Apply the algorithm for computing a transitive orientation to the given graphs.
(3) Prove that the “bull head” is transitively orientationable.

(1) Give an algorithm that computes for a given chordal graph G and a PES σ a set of subtrees
of a tree such that G is the intersection graph of these subtrees.
Apply your algorithm to the given graph with σ = [a, b, c, d, e, f ].

Bonus
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Exercise 1

G is chordal
G is the intersection graph of subtrees of a tree
There is a tree T = (K, E) whose vertices K are the maximal cliques of G such that for
every v ∈ V (G) the induced subgraphs of TKv

are connected with Kv being the set of
cliques in K that contain v.

Theorem 3.14:
For all Graphs G the following are equivalent:

The proof is constructive!

Give an algorithm that computes for a given chordal graph G and
a PES σ a set of subtrees of a tree such that G is the intersection
graph of these subtrees.
Apply your algorithm to the given graph with σ = [a, b, c, d, e, f ].

adc

f e

b
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
B ← B ∪ {v}

else
B ← vertices of T with Adj(v) ∩ {σ(i + 1), . . . , σ(n)} ( B

VT ← VT ∪ {A}, ET ← ET ∪ {AB}
∀v ∈ V (G): identify vertices of T that contain v.

Input: G chordal, PES σ von G

T ← ({{σ(n)}} , ∅)
for i = n− 1 to 1 do

v ← σ(i)
A← {v} ∪ (Adj(v) ∩ {σ(i + 1), . . . , σ(n)})

1
2

3

4
5
6
7
8

9
10
11
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
B ← B ∪ {v}

else
B ← vertices of T with Adj(v) ∩ {σ(i + 1), . . . , σ(n)} ( B

VT ← VT ∪ {A}, ET ← ET ∪ {AB}
∀v ∈ V (G): identify vertices of T that contain v.

Correctness: proof of Theorem 3.14

recall sheet 4, exercise 3

Input: G chordal, PES σ von G

T ← ({{σ(n)}} , ∅)
for i = n− 1 to 1 do

v ← σ(i)
A← {v} ∪ (Adj(v) ∩ {σ(i + 1), . . . , σ(n)})
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∀v ∈ V (G): identify vertices of T that contain v.
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
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fe

∀v ∈ V (G): identify vertices of T that contain v.
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
B ← B ∪ {v}

else
B ← vertices of T with Adj(v) ∩ {σ(i + 1), . . . , σ(n)} ( B

VT ← VT ∪ {A}, ET ← ET ∪ {AB}

adc

f e

b

f

i = 5:

fe

i = 4:
fed

i = 3: A = {c, d, f}

∀v ∈ V (G): identify vertices of T that contain v.

ffed
fdc

Input: G chordal, PES σ von G

T ← ({{σ(n)}} , ∅)
for i = n− 1 to 1 do
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Exercise 1

if Adj(v) ∩ {σ(i + 1), . . . , σ(n)} is maximal clique G{σ(i+1),...,σ(n)}

B ← vertex of T corresponding to Adj(v) ∩ {σ(i + 1), . . . , σ(n)}
B ← B ∪ {v}

else
B ← vertices of T with Adj(v) ∩ {σ(i + 1), . . . , σ(n)} ( B

VT ← VT ∪ {A}, ET ← ET ∪ {AB}

adc

f e

b

f

i = 5:

fe

i = 4:
fed

i = 3: A = {c, d, f}

i = 2: A = {b, e, f}

fed

fdcfeb

∀v ∈ V (G): identify vertices of T that contain v.

ffed
fdc

Input: G chordal, PES σ von G

T ← ({{σ(n)}} , ∅)
for i = n− 1 to 1 do

v ← σ(i)
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i = 5:

fe

i = 4:
fed

i = 3: A = {c, d, f}

i = 2: A = {b, e, f}

fed

fdcfeb

i = 1: A = {a, d, e}

fed

fdcfeb
eda

∀v ∈ V (G): identify vertices of T that contain v.

ffed
fdc
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Subtree for each v ∈ V (G) is obtained by
taking the tree vertices that contain v.
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

By definition:
ab Γ a′b′ ⇔ either a = a′ and bb′ /∈ E(G) or b = b′ and aa′ /∈ E(G)

a = a′

b

b′ a′

a

b = b′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

By definition:
ab Γ a′b′ ⇔ either a = a′ and bb′ /∈ E(G) or b = b′ and aa′ /∈ E(G)

a = a′

b

b′ a′

a

b = b′

a = a′

b

b′ a′

a

b = b′

⇔ ba Γ b′a′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

(ii) ab Γ∗ a′b′ ⇔ ba Γ∗ b′a′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

(ii) ab Γ∗ a′b′ ⇔ ba Γ∗ b′a′

ab Γ∗ a′b′ ⇒ ab = a0b0 Γ a1b1 Γ . . . Γ ak−1bk−1 Γ akbk = a′b′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

(ii) ab Γ∗ a′b′ ⇔ ba Γ∗ b′a′

ab Γ∗ a′b′ ⇒ ab = a0b0 Γ a1b1 Γ . . . Γ ak−1bk−1 Γ akbk = a′b′

⇒ ba = b0a0 Γ b1a1 Γ . . . Γ bk−1ak−1 Γ bkak = b′a′
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Exercise 2
Because of symmetry we only have to show one of the implications each.

(i) ab Γ a′b′ ⇔ ba Γ b′a′

(ii) ab Γ∗ a′b′ ⇔ ba Γ∗ b′a′

ab Γ∗ a′b′ ⇒ ab = a0b0 Γ a1b1 Γ . . . Γ ak−1bk−1 Γ akbk = a′b′

⇒ ba = b0a0 Γ b1a1 Γ . . . Γ bk−1ak−1 Γ bkak = b′a′

⇒ ba Γ∗ b′a′
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef

ef Γ eg
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef

ef Γ eg

eg Γ bg
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef

ef Γ eg

eg Γ bg

ab Γ gb⇒ bg ∈ A−1
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef

ef Γ eg

eg Γ bg

ab Γ gb⇒ bg ∈ A−1

ab Γ∗ bg ⇒ bg ∈ A
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Exercise 3

Prove that the “bull head” is transitively orientationable. To do this prove that there is an
implication class A such that A = A−1.

a
b c d e

f

g

Let A be the implication class
that contains ab.
ab Γ gb

ab Γ cb

cb Γ cd

cd Γ ed

ed Γ ef

ef Γ eg

eg Γ bg

ab Γ gb⇒ bg ∈ A−1

ab Γ∗ bg ⇒ bg ∈ A Therefore, we have A ∩ A−1 ̸= ∅ and thus A = A−1.
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Exercise 4

a b c

d

e

f
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Exercise 4

a b c

d

e

f

compute implication class of ab
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Exercise 4
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Exercise 4

a b c

d

e

f

compute implication class of ab

A1 = {ab, ae, db, de}
A−1

1 = {ba, ea, bd, ed}
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Exercise 4

a b c

d

e

f

compute implication class of ab

A1 = {ab, ae, db, de}
A−1

1 = {ba, ea, bd, ed}

by symmetry we get:
A2 = {cb, ce, fe, fb}
A−1

2 = {bc, ec, ef, bf}
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Exercise 4

a b c

d

e

f

compute implication class of ab

A1 = {ab, ae, db, de}
A−1

1 = {ba, ea, bd, ed}

by symmetry we get:
A2 = {cb, ce, fe, fb}
A−1

2 = {bc, ec, ef, bf}

and
A3 = {ac, af, dc, df}
A−1

3 = {ca, fa, cd, fd}
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Exercise 4

a b c

d

e

f

A3 = {ac, af, dc, df}
choose an implication class

a b c

d

e

f
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Exercise 4

a b c

d

e

f

A3 = {ac, af, dc, df}
choose an implication class

a b c

d

e

f
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Exercise 4

a b c

d

e

f

a b c

d

e

f

compute implication classes again
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Exercise 4

a b c

d

e

f

a b c

d

e

f

compute implication classes again
B1 = {ab, ae, cb, ce, db, de, fb, fe}
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Exercise 4

a b c

d

e

f

a b c

d

e

f

compute implication classes again
B1 = {ab, ae, cb, ce, db, de, fb, fe}
B−1

1 = {ba, ea, bc, ec, bd, ed, bf, ef}
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Exercise 4

a b c

d

e

f

a b c

d

e

f

compute implication classes again
B1 = {ab, ae, cb, ce, db, de, fb, fe}
B−1

1 = {ba, ea, bc, ec, bd, ed, bf, ef}

Deleting the green color class merges
the red and blue farb classes
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a b c

d

e

f

compute implication classes again
B1 = {ab, ae, cb, ce, db, de, fb, fe}
B−1

1 = {ba, ea, bc, ec, bd, ed, bf, ef}

Deleting the green color class merges
the red and blue farb classes a b c

d

e

f
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{ad, bd} and as inverse {da, db}
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compute implication class of ac

{ad, bd} and as inverse {da, db}
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{ac, bc} and as inverse {ca, cb}
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compute implication class of ad

compute implication class of ac

{ad, bd} and as inverse {da, db}

compute implication class of cd

{ac, bc} and as inverse {ca, cb}

{cd}, inverse {dc}
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compute implication class of ac
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compute implication class of cd

{ac, bc} and as inverse {ca, cb}

{cd}, inverse {dc}
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c

d
a b

c

d

compute implication class of ad

compute implication class of ac

{ad, bd} and as inverse {da, db}

compute implication class of cd

{ac, bc} and as inverse {ca, cb}

{cd}, inverse {dc}

The color class of cd stays the same.
The color classes of ad and bd are merged.
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compute implication class of ad

compute implication class of ac

{ad, bd} and as inverse {da, db}

compute implication class of cd

{ac, bc} and as inverse {ca, cb}

{cd}, inverse {dc}

The color class of cd stays the same.
The color classes of ad and bd are merged.
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Exercise 5
Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
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i ∆|Bi|) = O(∆|E|).
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Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.

B

one position for each edge

N1 N2

Current step with edge uv:
1 iff vertex is neightbor of u, respectively v1 iff edge is in implication class

initialize with xiyi

1 1 11
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Exercise 5
Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.

B

one position for each edge

N1 N2

Current step with edge uv:
1 iff vertex is neightbor of u, respectively v1 iff edge is in implication class

initialize with xiyi

1 1 1

neighbor of u and v → no new entry in B

1
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Exercise 5
Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.

B

one position for each edge

N1 N2

Current step with edge uv:
1 iff vertex is neightbor of u, respectively v1 iff edge is in implication class

initialize with xiyi

1 1 1

neighbor of u bot not of v
→ add edge to B and orient away from u

1
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Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
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u v

Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.
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Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.
Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
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Global edge-ID-indexed array B, initialized with 0.
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Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.
Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
Look at edges v′v. If N2[v′] = 0 then v′v ∈ Bi. ➾ O(∆) time
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Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.

If B[v′v] = 0 set B[v′v] = 1 und append v′v to Bi.

Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
Look at edges v′v. If N2[v′] = 0 then v′v ∈ Bi. ➾ O(∆) time
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If B[v′v] = 0 set B[v′v] = 1 und append v′v to Bi.

Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
Look at edges v′v. If N2[v′] = 0 then v′v ∈ Bi. ➾ O(∆) time

Do the same for edges uu′. Then reset N1 and N2. ➾ O(∆) time
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u v

v′

Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.

If B[v′v] = 0 set B[v′v] = 1 und append v′v to Bi.

Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
Look at edges v′v. If N2[v′] = 0 then v′v ∈ Bi. ➾ O(∆) time

Do the same for edges uu′. Then reset N1 and N2. ➾ O(∆) time
Choose next edge from Bi and start from the beginning. At the end reset B. ➾ O(|Bi|) time
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u v

v′

Idea: computing the implication class Bi of xiyi is possible in O(∆ · |Bi|) time.
Test on Bi = B−1

i deleting B̂i takes O(|Bi|) time =⇒ in total O(
∑

i ∆|Bi|) = O(∆|E|).
Global vertex-ID-indexed arrays N1, N2, initialized with 0.
Global edge-ID-indexed array B, initialized with 0.
Bi as list of edges with pointer on the current edge.
Initialize B[xiyi] = 1 and set xiyi as the only element in Bi.
Let uv be the edge that is currently considered.

If B[v′v] = 0 set B[v′v] = 1 und append v′v to Bi.

Space: N1, N2, B, Bi ✓ O(|V |+ |E|) space

Set N1[v′] = 1∀v′ ∈ NG(v) & N2[u′] = 1∀u′ ∈ NG(u). ➾ O(∆) time
Look at edges v′v. If N2[v′] = 0 then v′v ∈ Bi. ➾ O(∆) time

Do the same for edges uu′. Then reset N1 and N2. ➾ O(∆) time
Choose next edge from Bi and start from the beginning. At the end reset B. ➾ O(|Bi|) time
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Exercise 6

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.
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“⇒” Let σ be a PES, let ab, ac ∈ E with a <σ b <σ c. Let i such that σ(i) = a.

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.
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σ PES =⇒ right neighborhood of a is a clique

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.



July 16, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory9

Exercise 6

“⇒” Let σ be a PES, let ab, ac ∈ E with a <σ b <σ c. Let i such that σ(i) = a.
σ PES =⇒ right neighborhood of a is a clique
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A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.



July 16, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory9

Exercise 6

“⇒” Let σ be a PES, let ab, ac ∈ E with a <σ b <σ c. Let i such that σ(i) = a.
σ PES =⇒ right neighborhood of a is a clique
b, c are in the right neighborhood of a, so bc ∈ E

“⇐” Assume for all a, b, c with a <σ b <σ c we have ab, ac ∈ E ⇒ bc ∈ E.

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.
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“⇒” Let σ be a PES, let ab, ac ∈ E with a <σ b <σ c. Let i such that σ(i) = a.
σ PES =⇒ right neighborhood of a is a clique
b, c are in the right neighborhood of a, so bc ∈ E

“⇐” Assume for all a, b, c with a <σ b <σ c we have ab, ac ∈ E ⇒ bc ∈ E.
For each two right neighbors b, c of some vertex a, we have bc ∈ E

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E.
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Exercise 6

“⇒” Let σ be a PES, let ab, ac ∈ E with a <σ b <σ c. Let i such that σ(i) = a.
σ PES =⇒ right neighborhood of a is a clique
b, c are in the right neighborhood of a, so bc ∈ E

“⇐” Assume for all a, b, c with a <σ b <σ c we have ab, ac ∈ E ⇒ bc ∈ E.
For each two right neighbors b, c of some vertex a, we have bc ∈ E

=⇒ the right neighborhood of a is a clique

A vertex order σ is a perfect elimination scheme of G
⇐⇒ a <σ b <σ c with ab, ac ∈ E implies that bc ∈ E. =⇒
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Exercise 6

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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“⇒” Let F be a transitive orientation of G

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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Exercise 6

“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.
Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

=⇒
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“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

Consider shortest directed cycle
Case 1: length 3 Case 2: length > 3

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

=⇒
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Case 1: length 3 Case 2: length > 3
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Exercise 6

“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

Consider shortest directed cycle
Case 1: length 3

not transitive

Case 2: length > 3

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

E

=⇒
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“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

Consider shortest directed cycle
Case 1: length 3

not transitive

Case 2: length > 3

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

E
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Exercise 6

“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

Consider shortest directed cycle
Case 1: length 3

not transitive

Case 2: length > 3

transitive edge exists

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

E

=⇒
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Exercise 6

“⇒” Let F be a transitive orientation of G
Idea: any topological ordering works for σ.

Consider shortest directed cycle
Case 1: length 3

not transitive

Case 2: length > 3

transitive edge exists

⇒ shorter directed cycle

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E

E
E

=⇒
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“⇐” Let F = {(u, v) : uv ∈ E and u <σ v}.

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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Exercise 6

“⇐” Let F = {(u, v) : uv ∈ E and u <σ v}.
Obs: F is orientation of G. Prove that F is transitive

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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“⇐” Let F = {(u, v) : uv ∈ E and u <σ v}.
Obs: F is orientation of G. Prove that F is transitive
Let a, b, c ∈ V with ab, bc ∈ F . Then a <σ b und b <σ c.

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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“⇐” Let F = {(u, v) : uv ∈ E and u <σ v}.
Obs: F is orientation of G. Prove that F is transitive
Let a, b, c ∈ V with ab, bc ∈ F . Then a <σ b und b <σ c.
By definition of σ we have ac ∈ E.

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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Exercise 6

With definition of F it follows that ac ∈ F , so G is a comparability graph

“⇐” Let F = {(u, v) : uv ∈ E and u <σ v}.
Obs: F is orientation of G. Prove that F is transitive
Let a, b, c ∈ V with ab, bc ∈ F . Then a <σ b und b <σ c.
By definition of σ we have ac ∈ E.

G is a comparability graph
⇐⇒ there is a vertex oder σ such that a <σ b <σ c with ab, bc ∈ E implies that ac ∈ E
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Exercise 7

There is a topological ordering σ of its vertex set V (G) and a planar straight-line drawing of the
transitive reduction of G such that y(v) < y(w) if and only if v <σ w.

⇓
There are two linear orders φ, φ′ of V (G) such that (v, w) ∈ E(G) if and only if v <φ w and
v <φ′ w.

Let G be a transitively oriented comparability graph with only one sink and one source.
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https://en.wikipedia.org/wiki/Dominance_drawing#Planar_graphs

Non-planar counterexample for “̸⇑”

https://en.wikipedia.org/wiki/Dominance_drawing#Planar_graphs
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