

Algorithmic Graph Theory Solution Sheet 5

Laura Merker and Samuel Schneider, July 16, 2025

(1) Give an algorithm that computes for a given chordal graph G and a PES σ a set of subtrees of a tree such that G is the intersection graph of these subtrees.

Apply your algorithm to the given graph with $\sigma = [a, b, c, d, e, f]$.

(2) Prove that: (i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$ (ii) $ab \ \Gamma^* \ a'b' \Leftrightarrow ba \ \Gamma^* \ b'a'$

(3) Prove that the "bull head" is transitively orientationable.

(4) Apply the algorithm for computing a transitive orientation to the given graphs.

(5) Show that the algorithm for computing a transitive orientation can be implemented to run in $\mathcal{O}(\Delta \cdot |E|)$ time and $\mathcal{O}(|V| + |E|)$ space with Δ denoting the maximum degree of a vertex.

(6) Let G = (V, E) be a graph. Prove the following statements.

(i) A vertex order σ is a perfect elimination scheme of G if and only if $a <_{\sigma} b <_{\sigma} c$ with $ab, ac \in E$ implies that $bc \in E$.

(ii) G is a comparability graph if and only if there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$.

Give an algorithm that computes for a given chordal graph G and a PES σ a set of subtrees of a tree such that G is the intersection graph of these subtrees.

Apply your algorithm to the given graph with $\sigma = [a, b, c, d, e, f]$.

Theorem 3.14:

For all Graphs G the following are equivalent:

- G is chordal
- \blacksquare G is the intersection graph of subtrees of a tree
- There is a tree $T = (\mathcal{K}, \mathcal{E})$ whose vertices \mathcal{K} are the maximal cliques of G such that for every $v \in V(G)$ the induced subgraphs of $T_{\mathcal{K}_v}$ are connected with \mathcal{K}_v being the set of cliques in \mathcal{K} that contain v.

The proof is constructive!

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow$ vertices of T with $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$ 10

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do recall sheet 4, exercise 3 $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\}) \checkmark$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$ 10 11 $\forall v \in V(G)$: identify vertices of T that contain v.

Correctness: proof of Theorem 3.14

Input: G chordal, PES σ von G

 $\mathbf{1} \ T \leftarrow \left(\left\{ \left\{ \sigma(n) \right\} \right\}, \emptyset \right)$

- 2 for i = n 1 to 1 do
- $\qquad \qquad \mathbf{3} \qquad \quad \mathbf{v} \leftarrow \sigma(i)$
- $\mathsf{4} \qquad A \leftarrow \{v\} \cup (\mathrm{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$
- 5 **if** $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$
- 6 $B \leftarrow \text{vertex of } T \text{ corresponding to } \operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\}$

7
$$B \leftarrow B \cup \{v\}$$

8 else

- 9 $B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\} \subsetneq B$
- 10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

 $\mathbf{1} \ T \leftarrow \left(\left\{ \left\{ \sigma(n) \right\} \right\}, \emptyset \right)$

2 for i = n - 1 to 1 do

 $\qquad \qquad \mathbf{3} \qquad \quad \mathbf{v} \leftarrow \sigma(i)$

 $\mathsf{4} \qquad A \leftarrow \{v\} \cup (\mathrm{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$

5 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \dots, \sigma(n)\}}$

 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$

7
$$B \leftarrow B \cup \{v\}$$

8 else

6

9
$$B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\} \subsetneq B$$

10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

 $1 \ T \leftarrow \left(\left\{ \left\{ \sigma(n) \right\} \right\}, \emptyset \right)$

- 2 for i = n 1 to 1 do
- $\qquad \qquad \mathbf{3} \qquad \quad \mathbf{v} \leftarrow \sigma(i)$
- $\mathsf{4} \qquad A \leftarrow \{v\} \cup (\mathrm{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$
- 5 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \dots, \sigma(n)\}}$
- 6 $B \leftarrow \text{vertex of } T \text{ corresponding to } \operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\}$

7
$$B \leftarrow B \cup \{v\}$$

8 else

- 9 $B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\} \subsetneq B$
- 10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow \text{vertex of } T \text{ corresponding to } \operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow$ vertices of T with $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9

10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow \text{vertex of } T \text{ corresponding to } \operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow$ vertices of T with $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9

10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9

10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

11 $\forall v \in V(G)$: identify vertices of T that contain v.

b e

c d

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \dots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow \text{vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subsetneq B$ 9

10 $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

Input: G chordal, PES σ von G

1 $T \leftarrow (\{\{\sigma(n)\}\}, \emptyset)$ 2 for i = n - 1 to 1 do $v \leftarrow \sigma(i)$ 3 $A \leftarrow \{v\} \cup (\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\})$ 4 if $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ is maximal clique $G_{\{\sigma(i+1), \ldots, \sigma(n)\}}$ 5 $B \leftarrow$ vertex of T corresponding to $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$ 6 $B \leftarrow B \cup \{v\}$ 7 8 else $B \leftarrow$ vertices of T with $\operatorname{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\} \subseteq B$ 9

10 $D \leftarrow \text{Vertices of } T \text{ with } \operatorname{Adj}(v) \cap \{o(i+1), \dots, o(n)\}$ $V_T \leftarrow V_T \cup \{A\}, E_T \leftarrow E_T \cup \{AB\}$

11 $\forall v \in V(G)$: identify vertices of T that contain v.

Subtree for each $v \in V(G)$ is obtained by taking the tree vertices that contain v.

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$

Because of symmetry we only have to show one of the implications each.

```
(i) ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'
```

By definition:

 $ab \ \Gamma \ a'b' \Leftrightarrow$ either a = a' and $bb' \notin E(G)$ or b = b' and $aa' \notin E(G)$

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$

By definition:

 $ab \ \Gamma \ a'b' \Leftrightarrow$ either a = a'and $bb' \notin E(G)$ or b = b' and $aa' \notin E(G)$

$\Leftrightarrow ba \ \Gamma \ b'a'$

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$ (ii) $ab \ \Gamma^* \ a'b' \Leftrightarrow ba \ \Gamma^* \ b'a'$

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$ (ii) $ab \ \Gamma^* \ a'b' \Leftrightarrow ba \ \Gamma^* \ b'a'$

 $ab \ \Gamma^* \ a'b' \Rightarrow ab = a_0b_0 \ \Gamma \ a_1b_1 \ \Gamma \ \dots \ \Gamma \ a_{k-1}b_{k-1} \ \Gamma \ a_kb_k = a'b'$

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$ (ii) $ab \ \Gamma^* \ a'b' \Leftrightarrow ba \ \Gamma^* \ b'a'$

$$ab \ \Gamma^* \ a'b' \Rightarrow ab = a_0b_0 \ \Gamma \ a_1b_1 \ \Gamma \ \dots \ \Gamma \ a_{k-1}b_{k-1} \ \Gamma \ a_kb_k = a'b'$$
$$\Rightarrow ba = b_0a_0 \ \Gamma \ b_1a_1 \ \Gamma \ \dots \ \Gamma \ b_{k-1}a_{k-1} \ \Gamma \ b_ka_k = b'a'$$

Because of symmetry we only have to show one of the implications each.

(i) $ab \ \Gamma \ a'b' \Leftrightarrow ba \ \Gamma \ b'a'$ (ii) $ab \ \Gamma^* \ a'b' \Leftrightarrow ba \ \Gamma^* \ b'a'$

 $ab \ \Gamma^* \ a'b' \Rightarrow ab = a_0b_0 \ \Gamma \ a_1b_1 \ \Gamma \ \dots \ \Gamma \ a_{k-1}b_{k-1} \ \Gamma \ a_kb_k = a'b'$ $\Rightarrow ba = b_0a_0 \ \Gamma \ b_1a_1 \ \Gamma \ \dots \ \Gamma \ b_{k-1}a_{k-1} \ \Gamma \ b_ka_k = b'a'$ $\Rightarrow ba \ \Gamma^* \ b'a'$

Let A be the implication class that contains ab. $ab \ \Gamma \ gb \qquad ed \ \Gamma \ ef$ $ab \ \Gamma \ cb \qquad ef \ \Gamma \ eg$ $cb \ \Gamma \ cd \qquad eg \ \Gamma \ bg$ $cd \ \Gamma \ ed$

Let A be the implication class that contains ab. $ab \ \Gamma \ gb \qquad ed \ \Gamma \ ef$ $ab \ \Gamma \ cb \qquad ef \ \Gamma \ eg$ $cb \ \Gamma \ cd \qquad eg \ \Gamma \ bg$ $cd \ \Gamma \ ed$

5 July 16, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory

Let A be the implication class that contains ab. $ab \ \Gamma \ gb \qquad ed \ \Gamma \ ef$ $ab \ \Gamma \ cb \qquad ef \ \Gamma \ eg$ $cb \ \Gamma \ cd \qquad eg \ \Gamma \ bg$ $cd \ \Gamma \ ed$

compute implication class of ab

compute implication class of ab $A_1 = \{ab, ae, db, de\}$ $A_1^{-1} = \{ba, ea, bd, ed\}$

compute implication class of ab $A_1 = \{ab, ae, db, de\}$ $A_1^{-1} = \{ba, ea, bd, ed\}$

by symmetry we get: $A_2 = \{cb, ce, fe, fb\}$ $A_2^{-1} = \{bc, ec, ef, bf\}$

compute implication class of ab $A_1 = \{ab, ae, db, de\}$ $A_1^{-1} = \{ba, ea, bd, ed\}$

by symmetry we get: $A_2 = \{cb, ce, fe, fb\}$ $A_2^{-1} = \{bc, ec, ef, bf\}$

and

 $A_{3} = \{ac, af, dc, df\} \\ A_{3}^{-1} = \{ca, fa, cd, fd\}$

compute implication classes again $B_1 = \{ab, ae, cb, ce, db, de, fb, fe\}$

compute implication classes again $B_1 = \{ab, ae, cb, ce, db, de, fb, fe\}$ $B_1^{-1} = \{ba, ea, bc, ec, bd, ed, bf, ef\}$

e

Deleting the green color class merges the red and blue farb classes

compute implication classes again $B_1 = \{ab, ae, cb, ce, db, de, fb, fe\}$ $B_1^{-1} = \{ba, ea, bc, ec, bd, ed, bf, ef\}$

Deleting the green color class merges the red and blue farb classes

compute implication classes again $B_1 = \{ab, ae, cb, ce, db, de, fb, fe\}$ $B_1^{-1} = \{ba, ea, bc, ec, bd, ed, bf, ef\}$

compute implication class of $\boldsymbol{a}\boldsymbol{b}$

compute implication class of $\boldsymbol{a}\boldsymbol{b}$

compute implication class of ab compute implication class of ad

compute implication class of *ab* compute implication class of *ad*

compute implication class of abcompute implication class of adby symmetry every edge has its own implication class

7

compute implication class of abcompute implication class of adby symmetry every edge has its own implication class

compute implication class of ad

compute implication class of ad

compute implication class of ad

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac{ac, bc} and as inverse {ca, cb}

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac{ac, bc} and as inverse {ca, cb} compute implication class of cd

а

d

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac{ac, bc} and as inverse {ca, cb} compute implication class of cd{cd}, inverse {dc}

а

d

compute implication class of ad $\{ad, bd\}$ and as inverse $\{da, db\}$

compute implication class of ac{ac, bc} and as inverse {ca, cb} compute implication class of cd{cd}, inverse {dc}

а

d

а

compute implication class of ac{ac, bc} and as inverse {ca, cb} compute implication class of cd{cd}, inverse {dc}

а

d

h

а

compute implication class of ac{ac, bc} and as inverse {ca, cb} compute implication class of cd{cd}, inverse {dc}

а

d

h

а

а

D

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time.

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$.

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0.

1 iff edge is in implication class initialize with $x_i y_i$

one position for each edge

Current step with edge uv: 1 iff vertex is neightbor of u, respectively v N_1 N_2 N_2 N_1

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0.

1 iff edge is in implication class initialize with $x_i y_i$

one position for each edge

Current step with edge uv:

1 iff vertex is neightbor of \boldsymbol{u} , respectively \boldsymbol{v}

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0.

1 iff edge is in implication class initialize with $x_i y_i$

one position for each edge

Current step with edge uv:

1 iff vertex is neightbor of u, respectively v

 \rightarrow add edge to B and orient away from u

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge.

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_i y_i] = 1$ and set $x_i y_i$ as the only element in B_i . Let uv be the edge that is currently considered. u v

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_i y_i] = 1$ and set $x_i y_i$ as the only element in B_i . Let uv be the edge that is currently considered. Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u)$. $\psi = \mathcal{O}(\Delta)$ ti

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_iy_i] = 1$ and set x_iy_i as the only element in B_i . U \mathcal{U} Let uv be the edge that is currently considered. Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u).$ time Look at edges v'v. If $N_2[v'] = 0$ then $v'v \in B_i$. $\Rightarrow \mathcal{O}(\Delta)$ time

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_iy_i] = 1$ and set x_iy_i as the only element in B_i . U \mathcal{U} Let uv be the edge that is currently considered. Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u).$ time Look at edges v'v. If $N_2[v'] = 0$ then $v'v \in B_i$. $\Rightarrow \mathcal{O}(\Delta)$ time If B[v'v] = 0 set B[v'v] = 1 und append v'v to B_i .

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_iy_i] = 1$ and set x_iy_i as the only element in B_i . U \mathcal{U} Let uv be the edge that is currently considered. Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u).$ time Look at edges v'v. If $N_2[v'] = 0$ then $v'v \in B_i$. $\Rightarrow \mathcal{O}(\Delta)$ time If B[v'v] = 0 set B[v'v] = 1 und append v'v to B_i . Do the same for edges uu'. Then reset N_1 and N_2 . $\Rightarrow \mathcal{O}(\Delta)$ time

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_iy_i] = 1$ and set x_iy_i as the only element in B_i . U Let uv be the edge that is currently considered. \mathcal{U} Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u).$ $\Rightarrow \mathcal{O}(\Delta)$ time Look at edges v'v. If $N_2[v'] = 0$ then $v'v \in B_i$. $\Rightarrow \mathcal{O}(\Delta)$ time If B[v'v] = 0 set B[v'v] = 1 und append v'v to B_i . Do the same for edges uu'. Then reset N_1 and N_2 . $\Rightarrow \mathcal{O}(\Delta)$ time Choose next edge from B_i and start from the beginning. At the end reset B. $\Rightarrow \mathcal{O}(|B_i|)$ time

Idea: computing the implication class B_i of $x_i y_i$ is possible in $\mathcal{O}(\Delta \cdot |B_i|)$ time. Test on $B_i = B_i^{-1}$ deleting \hat{B}_i takes $\mathcal{O}(|B_i|)$ time \implies in total $\mathcal{O}(\sum_i \Delta |B_i|) = \mathcal{O}(\Delta |E|)$. Global vertex-ID-indexed arrays N_1 , N_2 , initialized with 0. Global edge-ID-indexed array B, initialized with 0. B_i as list of edges with pointer on the current edge. Initialize $B[x_iy_i] = 1$ and set x_iy_i as the only element in B_i . U Let uv be the edge that is currently considered. \mathcal{U} Set $N_1[v'] = 1 \forall v' \in N_G(v) \& N_2[u'] = 1 \forall u' \in N_G(u).$ $\Rightarrow \mathcal{O}(\Delta)$ time Look at edges v'v. If $N_2[v'] = 0$ then $v'v \in B_i$. $\Rightarrow \mathcal{O}(\Delta)$ time If B[v'v] = 0 set B[v'v] = 1 und append v'v to B_i . Do the same for edges uu'. Then reset N_1 and N_2 . $\Rightarrow \mathcal{O}(\Delta)$ time Choose next edge from B_i and start from the beginning. At the end reset B. $\Rightarrow \mathcal{O}(|B_i|)$ time **Space:** N_1 , N_2 , B, $B_i \checkmark \mathcal{O}(|V| + |E|)$ space

A vertex order σ is a perfect elimination scheme of G $\iff a <_{\sigma} b <_{\sigma} c$ with $ab, ac \in E$ implies that $bc \in E$.

" \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$.

A vertex order σ is a perfect elimination scheme of $G \iff a <_{\sigma} b <_{\sigma} c$ with $ab, ac \in E$ implies that $bc \in E$.

" \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$. σ PES \Rightarrow right neighborhood of a is a clique

- " \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$.
- σ PES \implies right neighborhood of a is a clique
- b, c are in the right neighborhood of a, so $bc \in E$

- " \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$.
- σ PES \implies right neighborhood of a is a clique
- b, c are in the right neighborhood of a, so $bc \in E$
- " \Leftarrow " Assume for all a, b, c with $a <_{\sigma} b <_{\sigma} c$ we have $ab, ac \in E \Rightarrow bc \in E$.

- " \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$.
- σ PES \implies right neighborhood of a is a clique
- b, c are in the right neighborhood of a, so $bc \in E$
- " \Leftarrow " Assume for all a, b, c with $a <_{\sigma} b <_{\sigma} c$ we have $ab, ac \in E \Rightarrow bc \in E$.
- For each two right neighbors b, c of some vertex a, we have $bc \in E$

- " \Rightarrow " Let σ be a PES, let $ab, ac \in E$ with $a <_{\sigma} b <_{\sigma} c$. Let i such that $\sigma(i) = a$.
- σ PES \implies right neighborhood of a is a clique
- b, c are in the right neighborhood of a, so $bc \in E$
- " \Leftarrow " Assume for all a, b, c with $a <_{\sigma} b <_{\sigma} c$ we have $ab, ac \in E \Rightarrow bc \in E$.
- For each two right neighbors b, c of some vertex a, we have $bc \in E$
- \implies the right neighborhood of a is a clique

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G Idea: any topological ordering works for σ .

 $\widehat{} \rightarrow \widehat{} \rightarrow \widehat{}$

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G

Idea: any topological ordering works for σ .

Goal: show that there is a topological ordering, i.e., show that F is acyclic

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let *F* be a transitive orientation of *G* **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that *F* is acyclic Consider shortest directed cycle **Case 1:** length 3 **Case 2:** length > 3

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that F is acyclic Consider shortest directed cycle

Case 1: length 3Case 2: length > 3

 $\widehat{} \rightarrow \widehat{} \rightarrow \widehat{}$

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that F is acyclic Consider shortest directed cycle **Case 1:** length 3 **Case 2:** length > 3

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that F is acyclic Consider shortest directed cycle

Case 1: length 3Case 2: length > 3

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that F is acyclic Consider shortest directed cycle

Case 1: length 3 Case 2: length > 3

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Rightarrow " Let F be a transitive orientation of G **Idea:** any topological ordering works for σ . **Goal:** show that there is a topological ordering, i.e., show that F is acyclic Consider shortest directed cycle

Case 1: length 3

Case 2: length > 3

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Leftarrow " Let $F = \{(u, v) : uv \in E \text{ and } u <_{\sigma} v\}.$

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Leftarrow " Let $F = \{(u, v) : uv \in E \text{ and } u <_{\sigma} v\}$. Obs: F is orientation of G. Prove that F is transitive

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Leftarrow " Let $F = \{(u, v) : uv \in E \text{ and } u <_{\sigma} v\}$. Obs: F is orientation of G. Prove that F is transitive Let a, b, $c \in V$ with $ab, bc \in F$. Then $a <_{\sigma} b$ und $b <_{\sigma} c$.

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Leftarrow " Let $F = \{(u, v) : uv \in E \text{ and } u <_{\sigma} v\}$. Obs: F is orientation of G. Prove that F is transitive Let $a, b, c \in V$ with $ab, bc \in F$. Then $a <_{\sigma} b$ und $b <_{\sigma} c$. By definition of σ we have $ac \in E$.

G is a comparability graph \iff there is a vertex oder σ such that $a <_{\sigma} b <_{\sigma} c$ with $ab, bc \in E$ implies that $ac \in E$

" \Leftarrow " Let $F = \{(u, v) : uv \in E \text{ and } u <_{\sigma} v\}$. **Obs:** F is orientation of G. Prove that F is transitive Let $a, b, c \in V$ with $ab, bc \in F$. Then $a <_{\sigma} b$ und $b <_{\sigma} c$. By definition of σ we have $ac \in E$. With definition of F it follows that $ac \in F$, so G is a comparability graph

Let G be a transitively oriented comparability graph with only one sink and one source.

 \downarrow

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$.

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* $\int_{\sigma}^{\sigma} \int_{\sigma}^{\sigma}$

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$.

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* σ

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$. \rightarrow called *dominance drawing* or *2-dimensional*

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* \int_{σ}^{σ}

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$. \rightarrow called *dominance drawing* or *2-dimensional*

Proof sketch:

Choose φ with left-first DFS and φ' with right-first DFS.

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* σ

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and

Proof sketch:

Choose φ with left-first DFS and φ' with right-first DFS.

 $v <_{\varphi'} w. \rightarrow$ called *dominance drawing* or *2-dimensional*

If the transitive reduction is planar, then this yields an upward planar embedding

 $(\varphi \rightarrow x$ -coordinates, $\varphi' \rightarrow y$ -coordinates, rotate appropriately).

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* \int_{σ}

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$. \rightarrow called *dominance drawing* or *2-dimensional*

Proof sketch:Non-planar counterexample for " \checkmark "Choose φ with left-first DFS and φ' with right-first DFS. \uparrow If the transitive reduction is planar, then this yields an upward planar embedding $(\varphi \rightarrow x$ -coordinates, $\varphi' \rightarrow y$ -coordinates, rotate appropriately).

Let G be a transitively oriented comparability graph with only one sink and one source.

called *upward planar* or *planar lattice* σ

There is a topological ordering σ of its vertex set V(G) and a planar straight-line drawing of the transitive reduction of G such that y(v) < y(w) if and only if $v <_{\sigma} w$.

There are two linear orders φ, φ' of V(G) such that $(v, w) \in E(G)$ if and only if $v <_{\varphi} w$ and $v <_{\varphi'} w$. \rightarrow called *dominance drawing* or *2-dimensional*

Proof sketch:Non-planar counterexample for " \checkmark "Choose φ with left-first DFS and φ' with right-first DFS. \uparrow If the transitive reduction is planar, then this yields an upward planar embedding
 $(\varphi \rightarrow x$ -coordinates, $\varphi' \rightarrow y$ -coordinates, rotate appropriately). \downarrow https://en.wikipedia.org/wiki/Dominance_drawing#Planar_graphs \downarrow