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Exercises

(1) Give an algorithm that computes for a given chordal graph G and a PES o a set of subtrees
of a tree such that (G is the intersection graph of these subtrees.

Apply your algorithm to the given graph with ¢ = [a, b, ¢, d, ¢, f].
(2) Prove that:  (i)ab T a't’ < ba T b'd’
(ii)ab I'* a'b" < ba T'* b'd’

(3) Prove that the “bull head"” is transitively orientationable.

(4) Apply the algorithm for computing a transitive orientation to the given graphs.

(5) Show that the algorithm for computing a transitive orientation can be implemented to run in
O(A - |E|) time and O(|V| + |E|) space with A denoting the maximum degree of a vertex.

(6) Let G = (V, F) be a graph. Prove the following statements.

(i) A vertex order o is a perfect elimination scheme of G if and only if a <, b <, ¢ with
ab,ac € E implies that bc € E.

(i1) G is a comparability graph if and only if there is a vertex oder ¢ such that a <, b <, ¢ with

ab,bc € E implies that ac € E.
O U T




Exercise 1

The proof is constructive!
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Exercise 1

Input: G chordal, PES o von G

1 T ({{a(n)}},0)

2 fori=n—1to1ldo

3

© o ~N o o1 b

10

v < o(i)
A+ {v} U(Adj(v) n{o(i+1),...,0(n)})
B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)}
B <+ BU{v}
else
B < vertices of T" with Adj(v)N{o(i+1),...,0(n)} C B
Vp « VpU{A}, Er + Er U{AB}

11 Yv € V(G): identify vertices of T" that contain v.

AKIT



Exercise 1

Input: G chordal, PES o von G

1 T+ ({{o(n)}},0)
2 fori=n—1to1ldo recall sheet 4, exercise 3

3 v < o(i)
A+ {v}U(Adj(v)N{o(i+1),...,0(n)}) /

4
5 if Adj(v) N {o(i+1),...,0(n)} is maximal clique Gy(ii1), _om)
6 B < vertex of T corresponding to Adj(v) N{o(i+1),...,0(n)}
7 B <+ BU{v}
8 else
9 B < vertices of T" with Adj(v)N{o(i+1),...,0(n)} C B

10 Vp « VpU{A}, Er + Er U{AB}

11 Yv € V(G): identify vertices of T" that contain v.

Correctness: proof of Theorem 3.14

AKIT
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Input: G chordal, PES o von G

1 T ({{a(n)}},0)

2 fori=n—1to1ldo

3

© o ~N o o1 b

10

v < o(i)
A+ {v} U(Adj(v) n{o(i+1),...,0(n)})
B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)}
B <+ BU{v}
else
B < vertices of T" with Adj(v)N{o(i+1),...,0(n)} C B
Vp « VpU{A}, Er + Er U{AB}

11 Yv € V(G): identify vertices of T" that contain v.

AKIT



Exercise 1 P

Input: G chordal, PES o von G f € @

1 T ({{a(n)}},0)

2 fori=n—1to1ldo

3 v < o(i) p d 3

A+ {v} U(Adj(v) n{o(i+1),...,0(n)}) 1 = 4 i:B:A:{C,d,f}

B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)} @

B <+ BU{v}
else

B < vertices of T" with Adj(v)N{o(i+1),...,0(n)} C B
10 Vp <~ VpU{A}, Ep < Ep U{AB}
11 Yv € V(G): identify vertices of T" that contain v.

© o ~N o o1 b

AKIT



Exercise 1 P

Input: G chordal, PES o von G f € @

1 T ({{a(n)}},0)

2 fori=n—1to1ldo

3

© o ~N o o1 b

10

v oli) C d a

A+ {v} U(Adj(v) n{o(i+1),...,0(n)}) 1 = 4 i:B:A:{C,d,f}

B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)} @
B+ BU{v} @

B < vertices of T with Adj(v) N {c(i+1),...,0(n)} C B 1 =2 A= {b e f}
VT%VTU{A}, ET%ETU{AB} | B

else

11 Yv € V(G): identify vertices of T" that contain v. @

AKIT



Exercise 1 P

Input: G chordal, PES o von G f € @

1 T ({{a(n)}},0)

2 fori=n—1to1ldo

3

© o ~N o o1 b

10

11 Yv € V(G): identify vertices of T" that contain v. @

v oli) C d a

A+ {v} U(Adj(v) n{o(i+1),...,0(n)}) 1 = 4 i:B:A:{C,d,f}

B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)} @
B+ BU{v} @

B < vertices of T with Adj(v) N {c(i+1),...,0(n)} C B i =2 A=1{be, [} i=1:A={a.de}

Vi« VpU {A}, Er <« ErU {AB}

else

AKIT



Exercise 1 P

Input: G chordal, PES o von G f € @

1 T+ ({{o(n)}}.0)
2 forir=n—1to1do
3 v < o(i)

C d a
A+ {0} U (Adj(o) N {o(i +1),...,0(n)}) i = 4 i =3 A={cd, f}

B < vertex of T corresponding to Adj(v) N {o(i+1),...,0(n)} @
B+ BU{v} @
else

B < vertices of T with Adj(v) N {c(i+1),...,0(n)} C B i =2 A=1{be, [} i=1:A={a.de}

10 VT%VTU{A}, ET%ETU{AB}
11 Yv € V(G): identify vertices of T" that contain v. @ @
Subtree for each v € V(@) is obtained by @ @ @ @

taking the tree vertices that contain v.

© o ~N o o1 b

AKIT



Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’

AKIT



Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
By definition:

ab I' a'b’ < either a = a’ and bV’ ¢ E(G) or b=10" and ad’ ¢ E(G)
b a
I I
/ I / / | /
a=a b a b=1>
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Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
By definition:

ab I' a'b’ < either a = a’ and bV’ ¢ E(G) or b=10" and ad’ ¢ E(G)
b a
I
a=a b a b=1>
b a
I
I I
a.‘a’/’<: b’ a’ b=10
< bal bad

AKIT



Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
(i) ab I'* a'b' < ba T* b'd’
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Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
(i) ab I'* a'b' < ba T* b'd’

abT™* a't) = ab=agbg ' a1b1 T ... T' ap—_1bx—1 " arpbr = a'b’
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Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
(i) ab I'* a'b' < ba T* b'd’

abT™* a't) = ab=agbg ' a1b1 T ... T' ap—_1bx—1 " arpbr = a'b’
= ba =bgag I' bja1 I' ... ' bp_1ar_1 I brar = b'a

AKIT



Exercise 2

Because of symmetry we only have to show one of the implications each.

()ab T 'V < ba T Va’
(i) ab I'* a'b' < ba T* b'd’

abT™* a't) = ab=agbg ' a1b1 T ... T' ap—_1bx—1 " arpbr = a'b’
= ba =bgag I' bja1 I' ... ' bp_1ar_1 I brar = b'a
= ba I'* b'ad’

AKIT
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Exercise 3

Let A be the implication class
that contains ab.

5 July 16, 2025  Laura Merker and Samuel Schneider — Algorithmic Graph Theory ﬂ(IT



Exercise 3

Let A be the implication class
that contains ab.

ab I' gb
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Exercise 3

Let A be the implication class
that contains ab.

ab I' gb

ab I' cb

5 July 16, 2025  Laura Merker and Samuel Schneider — Algorithmic Graph Theory ﬂ(IT



Exercise 3

Let A be the implication class
that contains ab.

ab I' gb

ab I' cb

ch I’ cd
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Exercise 3

Let A be the implication class
that contains ab.

ab I' gb

ab I' cb

ch I’ cd

cd 1" ed
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Exercise 3

Let A be the implication class
that contains ab.

abl' gb edl ef

ab I' cb

ch I’ cd

cd 1" ed
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Exercise 3

5

July 16, 2025 Laura Merker and Samuel Schneider — Algorithmic Graph Theory

Let A be the implication class
that contains ab.

abl' gb edl ef
abl'cb ef I eg
chb 1 cd
cd 1" ed
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5
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Let A be the implication class
that contains ab.
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abl'cb ef I eg
chbl'cd egl bg
cd 1" ed
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Let A be the implication class
that contains ab.
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g

abT gb=bgec A~
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Exercise 3

Let A be the implication class
that contains ab.

abl' gb edl ef

abl'cb ef I eg

chbl'cd egl bg

cd 1" ed

g

abT gb=bgec A~
ab I bg = bg € A
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Exercise 3

Let A be the implication class
that contains ab.

abl' gb edl ef

abl'cb ef I eg

chbl'cd egl bg

cd 1" ed

g

abT gb=bgec A~
ab I bg = bg € A Therefore, we have AN A~ # () and thus A = A~

5 July 16, 2025 Laura Merker and Samuel Schneider — Algorithmic Graph Theory ﬂ(IT
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Exercise 4

e
compute implication class of ab

Ay = {ab, ae, db, de}
A7t = {ba, ea, bd, ed}
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Exercise 4

compute implication class of ab
Ay = {ab, ae, db, de}

A7t = {ba, ea, bd, ed}

by symmetry we get:

AQ — {Cba ce, fea fb}
Ayt ={be,ec ef,bf}
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Exercise 4

compute implication class of ab
Ay = {ab, ae, db, de}

A7t = {ba, ea, bd, ed}

by symmetry we get:

AQ — {Cb7 ce, fea fb}
A2_1 - {bC, €C, €f7 bf}

and
AB — {CLC) CLfa dC, df}
At ={ca, fa,cd, fd}

AKIT
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€ choose an implication class
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€ choose an implication class
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Exercise 4

compute implication classes again
By = {ab, ae, cb, ce,db, de, fb, fe}
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Exercise 4

compute implication classes again
By = {ab, ae, cb, ce,db, de, fb, fe}
Byt = {ba,ea,be, ec,bd, ed,bf, ef}

€

Deleting the green color class merges
the red and blue farb classes
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Exercise 4

compute implication classes again
By = {ab, ae, cb, ce,db, de, fb, fe}
Byt = {ba,ea,be, ec,bd, ed,bf, ef}

€

Deleting the green color class merges
the red and blue farb classes
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compute implication class of ab
compute implication class of ad
by symmetry every edge has its own implication class

AKIT
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compute implication class of ab
compute implication class of ad
by symmetry every edge has its own implication class

C
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compute implication class of ad

{ad,bd} and as inverse {da, db}

compute implication class of ac

{ac,bc} and as inverse {ca, cb}
compute implication class of cd

{cd}, inverse {dc}
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{ad,bd} and as inverse {da, db}
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{ac,bc} and as inverse {ca, cb}
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{cd}, inverse {dc}
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Exercise 4

compute implication class of ad

{ad,bd} and as inverse {da, db}

compute implication class of ac

{ac,bc} and as inverse {ca, cb}
compute implication class of cd

{cd}, inverse {dc}

The color class of cd stays the same.
The color classes of ad and bd are merged.
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Exercise 4

compute implication class of ad

{ad,bd} and as inverse {da, db}

compute implication class of ac

{ac,bc} and as inverse {ca, cb}
compute implication class of cd

{cd}, inverse {dc}

The color class of cd stays the same.
The color classes of ad and bd are merged.
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Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
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Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
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Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.

Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0.

Global edge-ID-indexed array B, initialized with 0.

Current step with edge uv:

1 iff edge is in implication class 1 iff vertex is neightbor of u, respec‘tive/lyfu
initialize with x;y; /
B LITTTOTTTTTIT] N{LIIOATTTT] NoUIHOTTTTT]

one position for each edge
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Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.

Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0.

Global edge-ID-indexed array B, initialized with 0.

Current step with edge uv:

1 iff edge is in implication class 1 iff vertex is neightbor of u, respec‘tive/lyfu
initialize with x;y; /
BLIIITHAOITTTITIT] N{CLHOAT T T T NoLIHTTTITT]
| |
one position for each edge neighbor of u and v — no new entry in B

AKIT



Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.

Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0.

Global edge-ID-indexed array B, initialized with 0.

Current step with edge uv:

1 iff edge is in implication class 1 iff vertex is neightbor of u, respec‘tive/lyfu
initialize with x;y; /
BLOITTTHOATTTTTT] N, LT T T T] No[ITHOATTTTT
| |
one position for each edge neighbor of u bot not of v

— add edge to B and orient away from u

AKIT
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Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0.

Global edge-ID-indexed array B, initialized with 0.
B, as list of edges with pointer on the current edge.
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Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0.

Global edge-ID-indexed array B, initialized with 0.
B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;. O O

<
S

Let uv be the edge that is currently considered.
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Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

Global edge-ID-indexed array B, initialized with 0. v

B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
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Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

Global edge-ID-indexed array B, initialized with 0. v

B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
Look at edges v'v. If Ny[v'] =0 then v'v € B;. = O(A) time
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Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.

Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

Global edge-ID-indexed array B, initialized with 0. v

B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
Look at edges v'v. If Ny[v'] =0 then v'v € B;. = O(A) time

If Blv'v] =0 set B[v'v] =1 und append v'v to B;.
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Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.

Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

Global edge-1D-indexed array B, initialized with 0. v

B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
Look at edges v'v. If Ny[v'| = 0 then v'v € B;. = O(A) time
If Blv'v] =0 set B[v'v] =1 und append v'v to B;.

Do the same for edges uu’. Then reset N7 and Ns. = O(A) time
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Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

v
Global edge-ID-indexed array B, initialized with 0.
B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
Look at edges v'v. If Ny[v'| = 0 then v'v € B;. = O(A) time
If Blv'v] =0 set B[v'v] =1 und append v'v to B;.

Do the same for edges uu’. Then reset N7 and Ns. = O(A) time

Choose next edge from B; and start from the beginning. At the end reset B. = O(|B;]) time
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Exercise 5

Idea: computing the implication class B; of x;y; is possible in O(A - |B;|) time.
Test on B; = B, ! deleting B; takes O(|B;|) time = in total O(3_, A|B;|) = O(A|E)).
Global vertex-ID-indexed arrays N1, Ns, initialized with 0. p

Global edge-1D-indexed array B, initialized with 0. v

B, as list of edges with pointer on the current edge.

Initialize B|x;y;] = 1 and set z;y; as the only element in B;.

Let uv be the edge that is currently considered. u U

Set N1[v'] = 1V’ € Ng(v) & Nolu'] = 1Vu' € Ng(u). = O(A) time
Look at edges v'v. If Ny[v'| = 0 then v'v € B;. = O(A) time
If Blv'v] =0 set B[v'v] =1 und append v'v to B;.

Do the same for edges uu’. Then reset N7 and Ns. = O(A) time

Choose next edge from B; and start from the beginning. At the end reset B. = O(|B;]) time
Space: Ny, No, B, B; v O(|V| + |E|) space
AN{]]
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m 0 PES = right neighborhood of a is a clique
m ), c are in the right neighborhood of a, so bc € E

“<" Assume for all a, b, c with a <, b <, c we have ab,ac € E = bc € F.

m For each two right neighbors b, ¢ of some vertex a, we have bc € E
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Exercise 6

AN = O

“=" Let o be a PES, let ab,ac € E with a <, b <, c. Let i such that ¢(i) = a.
m 0 PES = right neighborhood of a is a clique
m ), c are in the right neighborhood of a, so bc € E

“«<=" Assume for all a, b, c with a <, b <, ¢ we have ab,ac € £ = bc € F.

m For each two right neighbors b, ¢ of some vertex a, we have bc € E
—> the right neighborhood of a is a clique
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Consider shortest directed cycle
Case 1: length 3 Case 2: length > 3
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Idea: any topological ordering works for o.

Goal: show that there is a topological ordering, i.e., show that F' is acyclic
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“=" Let F' be a transitive orientation of (G
Idea: any topological ordering works for o.

Goal: show that there is a topological ordering, i.e., show that F' is acyclic
Consider shortest directed cycle
Case 1: length 3 Case 2: length > 3

transitive edge exists
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“<=" Let F ={(u,v): uv € E and u <, v}.
Obs: F' is orientation of G. Prove that F' is transitive
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Obs: F'is orientation of (G. Prove that F' is transitive
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Exercise 6

“<=" Let F ={(u,v): uv € E and u <, v}.

Obs: F' is orientation of G. Prove that F' is transitive

Let a, b, c € V with ab,bc € F'.  Then a <, b und b <, c.
By definition of 0 we have ac € E.
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Exercise 6

“<=" Let F ={(u,v): uv € E and u <, v}.

Obs: F' is orientation of G. Prove that F' is transitive

Let a, b, c € V with ab,bc € F'.  Then a <, b und b <, c.
By definition of 0 we have ac € E.

With definition of F' it follows that ac € F', so G is a comparability graph
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Exercise 7

Let G be a transitively oriented comparability graph with only one sink and one source.

There is a topological ordering o of its vertex set V(G) and a planar straight-line drawing of the
transitive reduction of GG such that y(v) < y(w) if and only if v <, w.

U

There are two linear orders ¢, ¢" of V(G) such that (v,w) € E(G) if and only if v <, w and
v <, W.
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O
There is a topological ordering o of its vertex set V(G) and a pénar straight-line drawing of the
transitive reduction of GG such that y(v) < y(w) if and only if v <, w.

U

There are two linear orders ¢, ¢" of V(G) such that (v,w) € E(G) if and only if v <, w and
v <, w. — called dominance drawing or 2-dimensional

Proof sketch:
Choose ¢ with left-first DFS and ¢’ with right-first DFS.
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v <, w. — called dominance drawing or 2-dimensional

Proof sketch:
Choose ¢ with left-first DFS and ¢’ with right-first DFS.

If the transitive reduction is planar, then this yields an upward planar embedding
(p — x-coordinates, ¢/ — y-coordinates, rotate appropriately).
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Exercise 7

Let G be a transitively oriented comparability graph with only one sink and one source.

?
called upward planar or planar lattice 0 |

O
There is a topological ordering o of its vertex set V(G) and a pgnar straight-line drawing of the
transitive reduction of GG such that y(v) < y(w) if and only if v <, w.

U

There are two linear orders ¢, ¢" of V(G) such that (v,w) € E(G) if and only if v <, w and
v <, w. — called dominance drawing or 2-dimensional

Proof sketch:
Choose ¢ with left-first DFS and ¢’ with right-first DFS.

If the transitive reduction is planar, then this yields an upward planar embedding
(p — x-coordinates, ¢/ — y-coordinates, rotate appropriately).

https://en.wikipedia.org/wiki/Dominance_drawing#Planar_graphs
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