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Problems
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?(1) Is σ = [a, b, c, d, e, f, g, h] a perfect elemenation scheme of

(iii) Every triangulated graph that has a universal vertex is chordal.

(i) There are infinitly many triangulated graphs that are not chordal.
(ii) There are infinitly many triangulated graphs that are chordal.

(2) Prove the following statements:

(3) Let σ be a PES and Kv be the clique consisting of v and its subsequent neighbors w. r. t. σ.
Prove that Kv is a maximal clique ⇔ there is no predecessor u of v such that Kv ⊆ Ku.

(4) Show that a minimum vertex cover can be computed efficiently on chordal graphs.

(5) Let G be a connected graph. Prove that G is a tree ⇔ every family of paths in G fulfills the
Helly property.

(6) Prove that if the line graph of G is chordal, then G is chordal. Show that the reverse does
not hold.
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Exercise 1

σ = [a, b, c, d, e, f, g, h]
a

b

c

d

e

fg
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G

1
2
3
4
5
6

for each vertex v do A(v)← ∅;

v ← σ(i);

if X = ∅ then go to line 8;
u← argmin{σ(x) | x ∈ X};

7
8
9
10

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
return false;
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A(a) = {}
A(b) = {}
A(c) = {}
A(d) = {}
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v = a, Xv = {e, g, h} ≠ ∅

G
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7
8
9
10

for i← 1 to n− 1 do
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A(g) = {}
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1
2
3
4
5
6
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σ = [a, b, c, d, e, f, g, h]
a

b

c

d

e

fg

h

v = a, Xv = {e, g, h} ≠ ∅
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Line 8: A(v) − Adj(v) = ∅
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v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
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A(d) = {}
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A(g) = {}
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Line 8: A(v) − Adj(v) = ∅

i = 2

v = b, Xv = {c, d, e} ≠ ∅
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for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};
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i = 2

v = b, Xv = {c, d, e} ≠ ∅
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7
8
9
10

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
return false;



July 2, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory3

Exercise 1

σ = [a, b, c, d, e, f, g, h]
a

b

c

d

e

fg

h

v = a, Xv = {e, g, h} ≠ ∅
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Line 8: A(v) − Adj(v) = ∅

i = 2

v = b, Xv = {c, d, e} ≠ ∅
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Line 8: A(v) − Adj(v) = ∅
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σ = [a, b, c, d, e, f, g, h]
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b
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v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
A(b) = {}

A(d) = {}

A(f ) = {}
A(g) = {}
A(h) = {}

A(e) = {g, h}

Line 8: A(v) − Adj(v) = ∅
v = b, Xv = {c, d, e} ≠ ∅

A(c) = {d, e}

Line 8: A(v) − Adj(v) = ∅

i = 3

v = c, Xv = {d, e} ≠ ∅

1
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4
5
6

for each vertex v do A(v)← ∅;
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7
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for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};
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if A(v)−Adj(v) ̸= ∅ then
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σ = [a, b, c, d, e, f, g, h]
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v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
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A(g) = {}
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A(e) = {g, h}

Line 8: A(v) − Adj(v) = ∅
v = b, Xv = {c, d, e} ≠ ∅

A(c) = {d, e}

Line 8: A(v) − Adj(v) = ∅

i = 3

v = c, Xv = {d, e} ≠ ∅

A(d) = {e}

1
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4
5
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for each vertex v do A(v)← ∅;

v ← σ(i);

if X = ∅ then go to line 8;
u← argmin{σ(x) | x ∈ X};

7
8
9
10

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
return false;
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i = 3

v = c, Xv = {d, e} ≠ ∅

A(d) = {e}
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add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
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v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
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Line 8: A(v) − Adj(v) = ∅
v = b, Xv = {c, d, e} ≠ ∅
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Line 8: A(v) − Adj(v) = ∅

i = 4

v = d, Xv = {e, f, h} ≠ ∅
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v ← σ(i);
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σ = [a, b, c, d, e, f, g, h]
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v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
A(b) = {}

A(g) = {}
A(h) = {}

Line 8: A(v) − Adj(v) = ∅
v = b, Xv = {c, d, e} ≠ ∅

A(c) = {d, e}

Line 8: A(v) − Adj(v) = ∅
v = c, Xv = {d, e} ≠ ∅

A(d) = {e}
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A(e) = {f, g, h}

Line 8: A(v) − Adj(v) = ∅
v = e, Xv = {f, g, h} ≠ ∅

A(f ) = {g, h}

Line 8: A(v) − Adj(v) = ∅

i = 6

v = f , Xv = {h} ≠ ∅
Line 8: A(v) − Adj(v) = {g} ≠ ∅

1
2
3
4
5
6

for each vertex v do A(v)← ∅;

v ← σ(i);

if X = ∅ then go to line 8;
u← argmin{σ(x) | x ∈ X};

7
8
9
10

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
return false;
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Exercise 1

σ = [a, b, c, d, e, f, g, h]
a

b

c

d

e

fg

h

v = a, Xv = {e, g, h} ≠ ∅

G

A(a) = {}
A(b) = {}

A(g) = {}
A(h) = {}

Line 8: A(v) − Adj(v) = ∅
v = b, Xv = {c, d, e} ≠ ∅

A(c) = {d, e}

Line 8: A(v) − Adj(v) = ∅
v = c, Xv = {d, e} ≠ ∅

A(d) = {e}

Line 8: A(v) − Adj(v) = ∅

v = d, Xv = {e, f, h} ≠ ∅

A(e) = {f, g, h}

Line 8: A(v) − Adj(v) = ∅
v = e, Xv = {f, g, h} ≠ ∅

A(f ) = {g, h}

Line 8: A(v) − Adj(v) = ∅
v = f , Xv = {h} ≠ ∅

Line 8: A(v) − Adj(v) = {g} ≠ ∅

1
2
3
4
5
6

for each vertex v do A(v)← ∅;

v ← σ(i);

if X = ∅ then go to line 8;
u← argmin{σ(x) | x ∈ X};

7
8
9
10

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then
return false;not a PES of G!



July 2, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory4

Exercise 2

Idea: triangulate Ck with k ≥ 4
induced Ck =⇒ not chordal

(1) There are infinitly many triangulated graphs that are not chordal.

(2) There are infinitly many triangulated graphs that are chordal.
Idea: stacked triangulations

start with C3

repeatedly choose inner triangle t and add vertex v with N(v) = t

resulting graph is a 3-tree =⇒ chordal
resulting graph is clearly triangulated

These graphs are also known as planar 3-trees or Apollonian networks.
Every triangulated planar graph with treewidth at most 3 is such a graph.
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Exercise 2
Look at induced Ck(k ≥ 4). It partitions the plane into two parts.
No vertex on the cycle is universell (otherwise it would not be induced).
There are vertices inside of Ck and outside of Ck because G is triangulated.

One vertex is universell and thus connected
to the other part.

(3) Every triangulated graph that has a universal vertex is chordal.

(2)
(1)
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Exercise 3

u v v1 v2 v3

Claim: Kv maximal ⇒ @ predecessor u such that Kv ⊆ Ku

If there is such a predecessor then obviously Kv is not maximal.
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Exercise 3

u v v1 v2 v3

Claim: Kv maximal ⇒ @ predecessor u such that Kv ⊆ Ku

If there is such a predecessor then obviously Kv is not maximal.

Claim: Kv maximal ⇐ @ predecessor u such that Kv ⊆ Ku

If Kv is not maximal then there is a clique C such that Kv ( C.
Every u ∈ C − Kv is left of v in σ. Thus, Kv ⊆ Ku ⊆ C.
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Exercise 4

Show that a minimum vertex cover can be computed efficiently on chordal graphs.

(i) Compute a maximum independent set.
(ii) Then, V − I is a minimum vertex cover (exercise class 1, exercise 2)

Let G = (V, E) be a chordal graph.
this takes O(n + m) time

this takes O(n) time

Vertex cover can be solved in linear time on chordal graphs
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Exercise 5

Let T be a tree and let P1, P2, P3 be paths in T such that

Proof:
a

b

cLet x be the last vertex on P3 that is on P1.

P3

x
Then, b → P1 → x → P3 → c is a path from b to c. P1

Therefore, b → P1 → x → P3 → c = P2.

Lemma

(i) P1 = (a, . . . , b),
(ii) P2 = (b, . . . , c),
(iii) P3 = (a, . . . , c).

Then, there is a vertex x ∈ P1 ∩ P2 ∩ P3.
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Exercise 5

Let
{

Pj ⊆ G : j ∈ J
}

be paths with Pi ∩ Pj ̸= ∅ for all i, j.
Goal:

⋂
j∈J Pj ̸= ∅.

We do induction on |J |.

Let |J | ≥ 3 and fix j1, j2 ∈ J .
By induction there are a ∈

⋂
j∈J−j1

Pj , b ∈
⋂

j∈J−j2
Pj and c ∈ Pj1 ∩ Pj2 .

By the lemma there is x ∈ Pj1 ∩ Pj2 ∩ P ′ =⇒ x ∈
⋂

j∈J Pj .

Base case: |J | = 2 ✓

Let P ′ =
⋂

j∈J−j1−j2
Pj . Then:

(i) Pj1 contains a path from b to c,
(ii) Pj2 contains a path from a to c and
(iii) P ′ contains a path from a to b.

G is tree =⇒ every family of paths fulfills the Helly property
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Exercise 5

Let
{

Pj ⊆ G : j ∈ J
}

be paths with Pi ∩ Pj ̸= ∅ for all i, j.
Goal:

⋂
j∈J Pj ̸= ∅.

We do induction on |J |.

Let |J | ≥ 3 and fix j1, j2 ∈ J .
By induction there are a ∈

⋂
j∈J−j1

Pj , b ∈
⋂

j∈J−j2
Pj and c ∈ Pj1 ∩ Pj2 .

By the lemma there is x ∈ Pj1 ∩ Pj2 ∩ P ′ =⇒ x ∈
⋂

j∈J Pj .

of subtrees

Base case: |J | = 2 ✓

Let P ′ =
⋂

j∈J−j1−j2
Pj . Then:

(i) Pj1 contains a path from b to c,
(ii) Pj2 contains a path from a to c and
(iii) P ′ contains a path from a to b.

subtrees

G is tree =⇒ every family of paths fulfills the Helly property
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Exercise 5

Contraposition: Let (v1, . . . , vk) be a cycle in G.

v1
v2

v3

vk

vk−1

P1 = (v1, v2, . . . , vk−1)
P2 = (v2, v3, . . . , vk)
P3 = (vk, v1)

{P1, P2, P3} does not fulfill the Helly property.

G is tree ⇐= every family of paths fulfills the Helly property

Choose:
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Exercise 6

Let C = (v1, . . . vk) an induced cycle in G.
Then, {v1v2, v2v3, . . . , vkv1} induces a cycle of length k in L(G).
L(G) chordal =⇒ k = 3.
Thus, G has only induced cycles of length at most 3.

L(G) chordal ⇒ G chordal

G

chordal

L(G)

not chordal
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Exercise 7

Prove that a graph has treewidth at least three if and only if it contains K4
as a topological minor.

Refer to: https://doi.org/10.1016/0012-365X(90)90292-P (the example on page 4)

⇒

Figure 2(a): Rewriting rules for
recognition of partial 2-trees

Forbidden minors characterization of partial 3-trees [Arnborg, Proskurowski and Corneil 1990]

⇒ ∅ ⇒

https://doi.org/10.1016/0012-365X(90)90292-P
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