

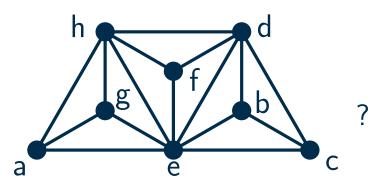
Algorithmic Graph Theory Solution Sheet 4

Laura Merker and Samuel Schneider, July 2, 2025

Problems

(1) Is $\sigma = [a, b, c, d, e, f, g, h]$ a perfect elemenation scheme of

(2) Prove the following statements:



(i) There are infinitly many triangulated graphs that are **not** chordal.

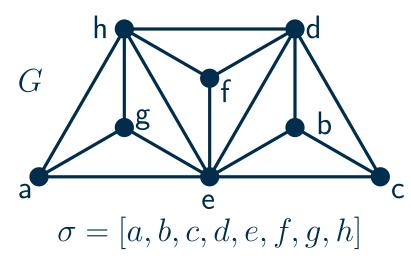
(ii) There are infinitly many triangulated graphs that are chordal.

(iii) Every triangulated graph that has a universal vertex is chordal.

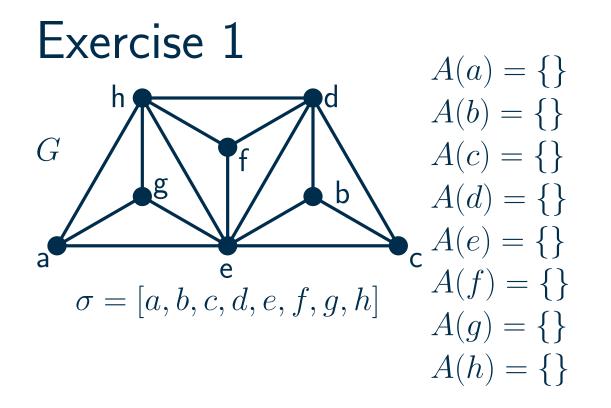
(3) Let σ be a PES and K_v be the clique consisting of v and its subsequent neighbors w.r.t. σ . Prove that K_v is a maximal clique \Leftrightarrow there is no predecessor u of v such that $K_v \subseteq K_u$.

(4) Show that a minimum vertex cover can be computed efficiently on chordal graphs.

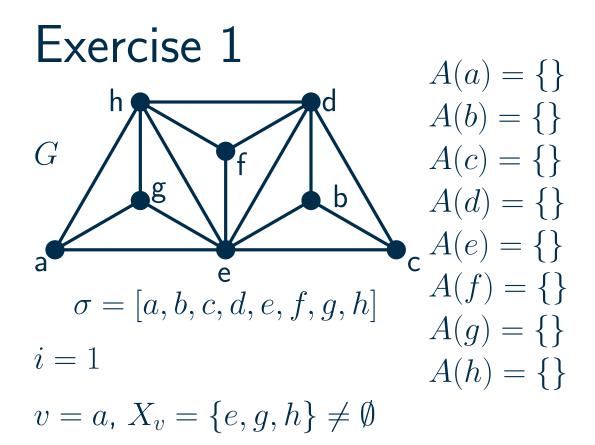
- (5) Let G be a connected graph. Prove that G is a tree \Leftrightarrow every family of paths in G fulfills the Helly property.
- (6) Prove that if the line graph of G is chordal, then G is chordal. Show that the reverse does not hold.



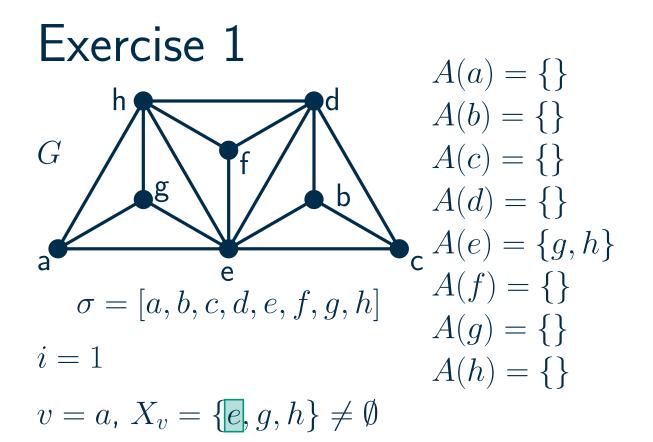
1 for each vertex
$$v$$
 do $A(v) \leftarrow \emptyset$;
2 for $i \leftarrow 1$ to $n - 1$ do
3 $v \leftarrow \sigma(i)$;
4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\}$;
5 if $X = \emptyset$ then go to line 8;
6 $u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\}$;
7 add $X - \{u\}$ to $A(u)$;
8 $if A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
9 $return false;$
10 return true;



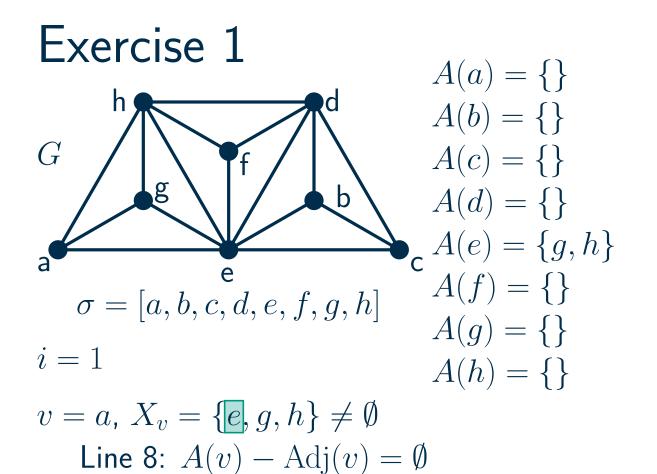
1	for each vertex v do $A(v) \leftarrow \emptyset$;		
2	2 for $i \leftarrow 1$ to $n-1$ do		
3	$v \leftarrow \sigma(i);$		
4	$X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$		
5	if $X = \emptyset$ then go to line 8 ;		
6	$u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$		
7	add $X - \{u\}$ to $A(u)$;		
8	if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then		
9	return false;		
10 return true;			



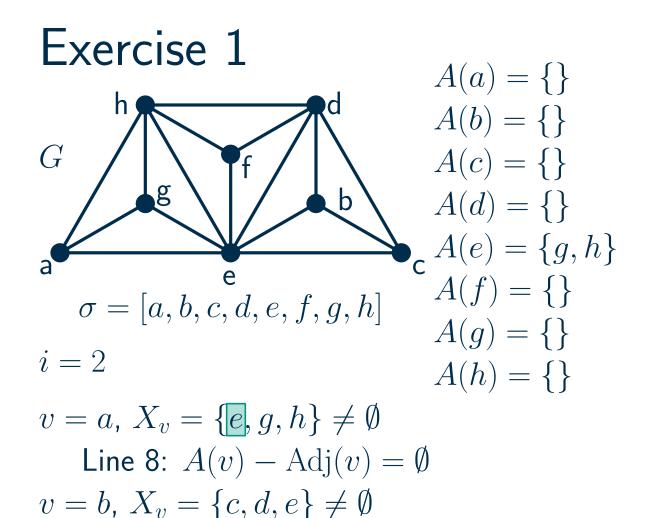
1	for each vertex v do $A(v) \leftarrow \emptyset$;		
2			
3	$v \leftarrow \sigma(i);$		
4	$X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$		
5	if $X = \emptyset$ then go to line 8 ;		
6	$u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$		
7	add $X - \{u\}$ to $A(u)$;		
8	if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then		
9	return false;		
10 return true;			



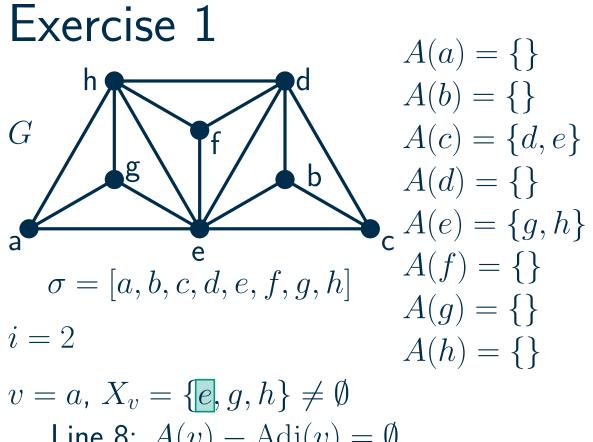
1 for each vertex
$$v$$
 do $A(v) \leftarrow \emptyset$;
2 for $i \leftarrow 1$ to $n - 1$ do
3 $v \leftarrow \sigma(i)$;
4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\}$;
5 if $X = \emptyset$ then go to line 8;
6 $u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\}$;
7 add $X - \{u\}$ to $A(u)$;
8 $if A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
9 $return$ false;
10 return true;



1 for each vertex
$$v$$
 do $A(v) \leftarrow \emptyset$;
2 for $i \leftarrow 1$ to $n - 1$ do
3 $v \leftarrow \sigma(i)$;
4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\}$;
5 if $X = \emptyset$ then go to line 8;
6 $u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\}$;
7 add $X - \{u\}$ to $A(u)$;
8 $if A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
9 $\lfloor return false;$
10 return true;



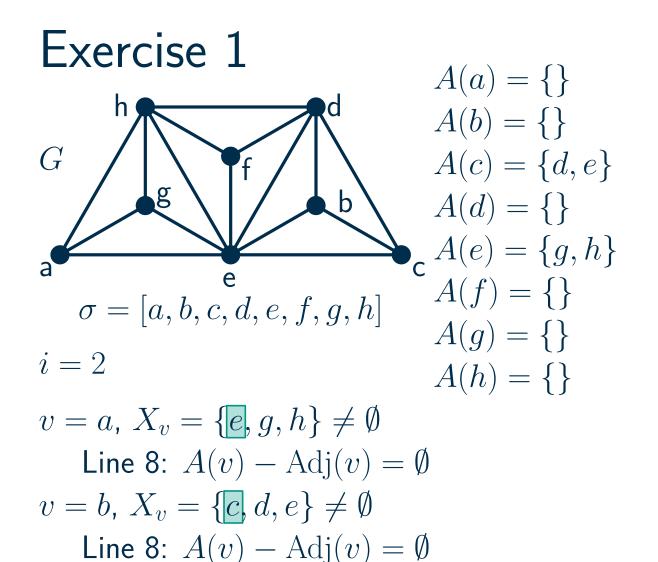
1	for each vertex v do $A(v) \leftarrow \emptyset$;				
2	2 for $i \leftarrow 1$ to $n-1$ do				
3	$v \leftarrow \sigma(i);$				
4	$X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$				
5	if $X = \emptyset$ then go to line 8;				
6	$u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$				
7	add $X - \{u\}$ to $A(u)$;				
8	if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then				
9	return false;				
10 return true;					



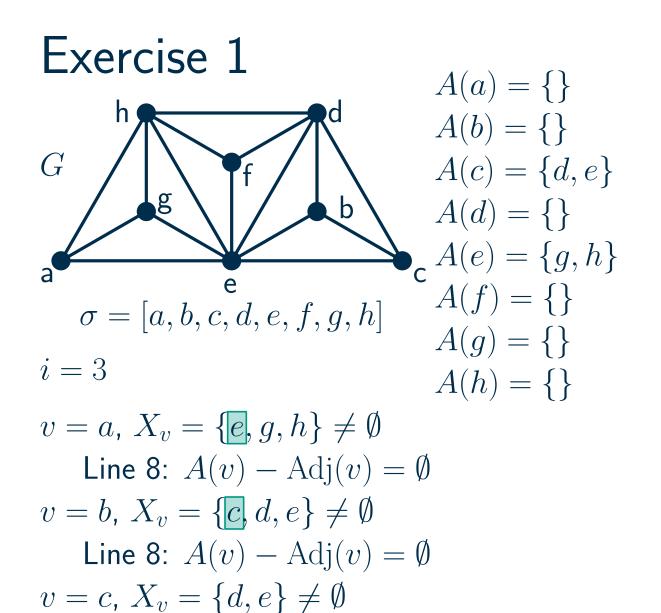
1 for each vertex v do $A(v) \leftarrow \emptyset$; **2** for $i \leftarrow 1$ to n-1 do 3 $v \leftarrow \sigma(i);$ 4 $X \leftarrow \{ x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x) \};$ 5 if $X = \emptyset$ then go to line 8; 6 $| u \leftarrow \operatorname{argmin} \{ \sigma(x) \mid x \in X \};$ 7 add $X - \{u\}$ to A(u); 8 if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then return false; 9

10 return true;

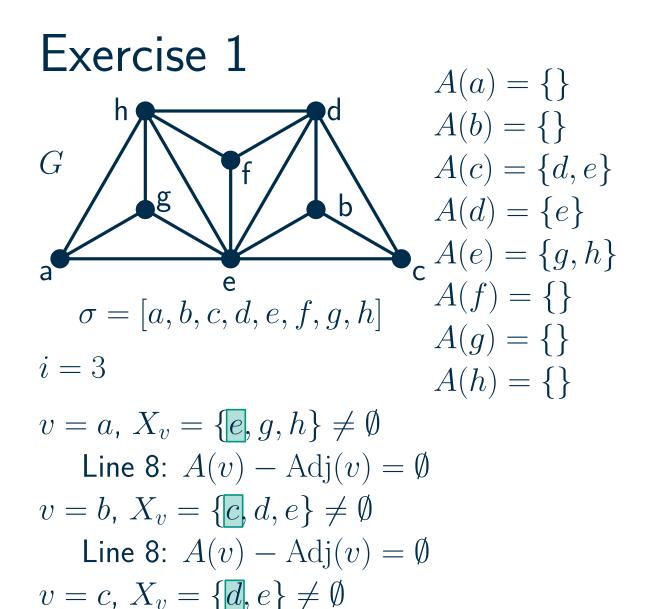
Line 8: $A(v) - \operatorname{Adj}(v) = \emptyset$ $v = b, X_v = \{c, d, e\} \neq \emptyset$



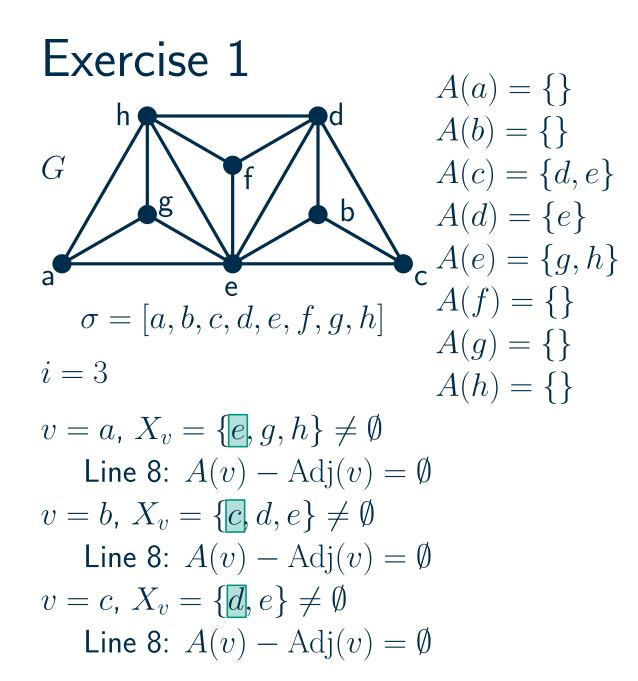
1 for each vertex
$$v$$
 do $A(v) \leftarrow \emptyset$;
2 for $i \leftarrow 1$ to $n - 1$ do
3 $v \leftarrow \sigma(i)$;
4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$
5 if $X = \emptyset$ then go to line 8;
6 $u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$
7 add $X - \{u\}$ to $A(u);$
8 $if A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
9 \lfloor return false;
10 return true;



	for each vertex v do $A(v) \leftarrow \emptyset$;		
2	2 for $i \leftarrow 1$ to $n-1$ do		
3	$v \leftarrow \sigma(i);$		
4	$X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$		
5	if $X = \emptyset$ then go to line 8;		
6	$u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$		
7	add $X - \{u\}$ to $A(u)$;		
8	if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then		
9	return false;		
10 return true;			



1	1 for each vertex v do $A(v) \leftarrow \emptyset$;				
2 for $i \leftarrow 1$ to $n-1$ do					
3	$v \leftarrow \sigma(i);$				
4	$X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$				
5	if $X = \emptyset$ then go to line 8 ;				
6	$u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\};$				
7	add $X - \{u\}$ to $A(u)$;				
8	if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then				
9	return false;				
10 return true;					



1 for each vertex
$$v$$
 do $A(v) \leftarrow \emptyset$;
2 for $i \leftarrow 1$ to $n - 1$ do
3 $v \leftarrow \sigma(i)$;
4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\}$;
5 if $X = \emptyset$ then go to line 8;
6 $u \leftarrow \operatorname{argmin}\{\sigma(x) \mid x \in X\}$;
7 $add X - \{u\}$ to $A(u)$;
8 $if A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
9 $return$ false;
10 return true;

Exercise 1

$$A(a) = \{\}$$

$$A(b) = \{d, e\}$$

$$A(b) = \{d, e\}$$

$$A(c) = \{d, e\}$$

$$A(d) = \{e\}$$

$$A($$

Exercise 1

$$A(a) = \{\}$$

$$A(b) = \{d, e\}$$

$$A(c) = \{d, e\}$$

$$A(c) = \{d, e\}$$

$$A(d) = \{e\}$$

$$A($$

Exercise 1

$$A(a) = \{\}$$

$$A(b) = \{]$$

$$A(b) = \{d, e\}$$

$$A(c) = \{d, e\}$$

$$A(c) = \{d, e\}$$

$$A(d) = \{e\}$$

$$A($$

Exercise 1

$$A(a) = \{\}$$

$$A(b) = \{\{\}$$

$$A(b) = \{\}$$

$$A(b) = \{\{\}$$

$$A(b) =$$

Exercise 1

$$A(a) = \{\}$$

$$A(b) = \{\{\}$$

$$A(b) = \{\}$$

$$A(b) = \{\{\}$$

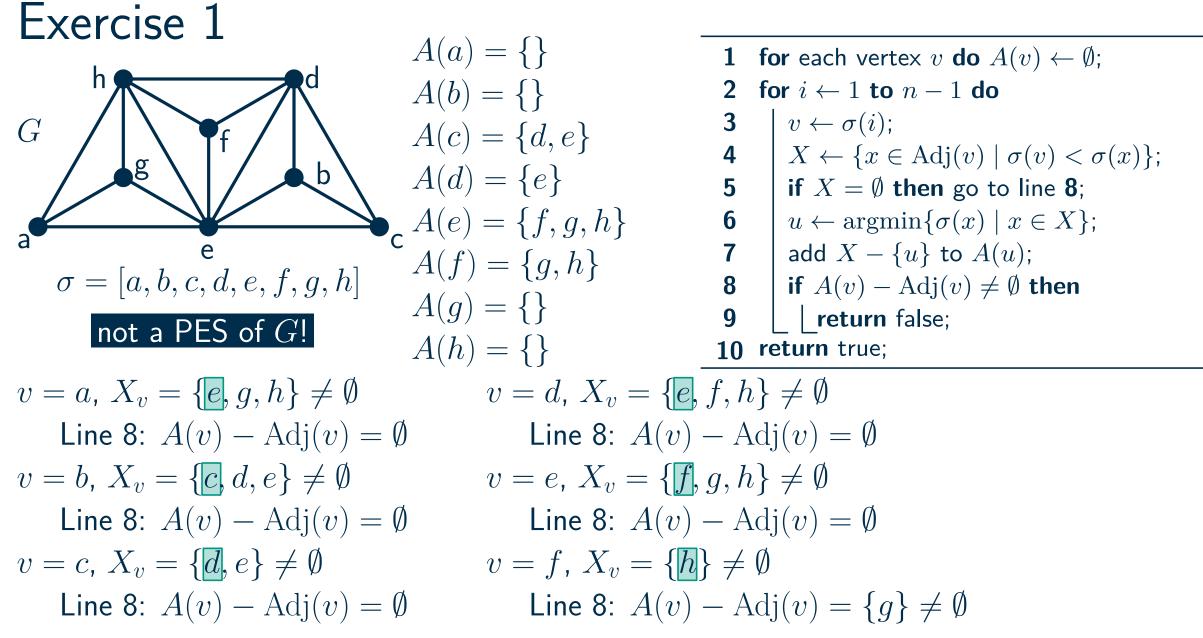
$$A($$

$$\begin{array}{l} \begin{array}{c} \text{Exercise 1} \\ \text{Good for the form of th$$

$$\begin{array}{l} \begin{array}{c} \text{Exercise 1} \\ \text{Good for the expansion of the expansion of$$

Exercise 1		
	$A(a) = \{\}$	1 for each vertex v do $A(v) \leftarrow \emptyset$;
h	$A(b) = \{\}$	2 for $i \leftarrow 1$ to $n-1$ do
G	$A(c) = \{d, e\}$	3 $v \leftarrow \sigma(i);$
		4 $X \leftarrow \{x \in \operatorname{Adj}(v) \mid \sigma(v) < \sigma(x)\};$
	$A(d) = \{e\}$	5 if $X = \emptyset$ then go to line 8;
	$A(e) = \{f, g, h\}$	6 $u \leftarrow \operatorname{argmin} \{ \sigma(x) \mid x \in X \};$
e e	$C A(f) = \{g, h\}$	7 add $X - \{u\}$ to $A(u)$;
$\sigma = [a, b, c, d, e, f, g, h]$		8 if $A(v) - \operatorname{Adj}(v) \neq \emptyset$ then
i 6	$A(g) = \{\}$	9 return false;
i = 6	$A(h) = \{\}$	10 return true;
$v = a$, $X_v = \{e, g, h\} \neq \emptyset$	$v=d$, $X_v=\{$	$e, f, h\} \neq \emptyset$
Line 8: $A(v) - \operatorname{Adj}(v) =$	\emptyset Line 8: $A(v$	$v) - \operatorname{Adj}(v) = \emptyset$
$v = b$, $X_v = \{c, d, e\} \neq \emptyset$	$v = e$, $X_v = \{$	$[f, g, h\} eq \emptyset$
Line 8: $A(v) - \operatorname{Adj}(v) =$	\emptyset Line 8: $A(i)$	$v) - \operatorname{Adj}(v) = \emptyset$
$v = c$, $X_v = \{ d, e \} \neq \emptyset$	$v=f$, $X_v=\{$	$\{h\} eq \emptyset$
Line 8: $A(v) - \operatorname{Adj}(v) =$	Ø	

$$\begin{array}{c} \text{Exercise 1} \\ A(a) = \{\} \\ A(b) = \{\} \\ A(d) = \{e\} \\ A(d) =$$



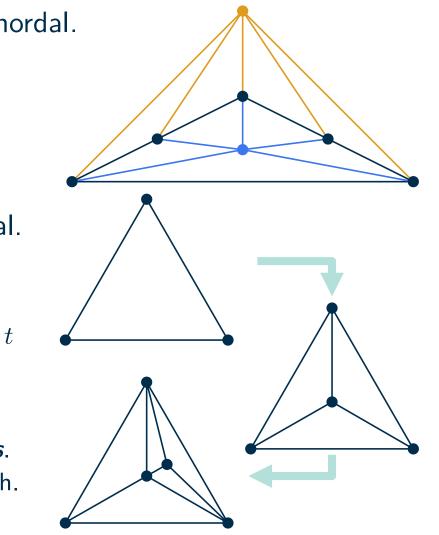
(1) There are infinitly many triangulated graphs that are **not** chordal. **Idea:** triangulate C_k with $k \ge 4$

• induced $C_k \implies$ not chordal

(2) There are infinitly many triangulated graphs that are chordal.
 Idea: stacked triangulations

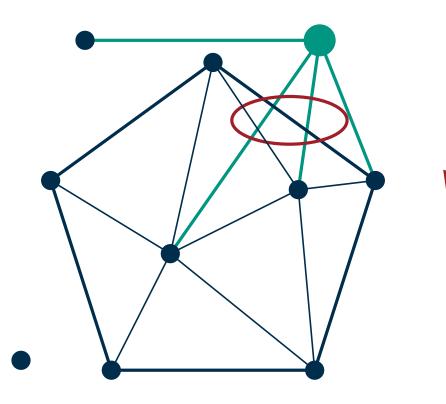
- start with C_3
- repeatedly choose inner triangle t and add vertex v with N(v) = t
- resulting graph is a 3-tree \implies chordal
- resulting graph is clearly triangulated

These graphs are also known as *planar* 3-*trees* or *Apollonian networks*. Every triangulated planar graph with treewidth at most 3 is such a graph.

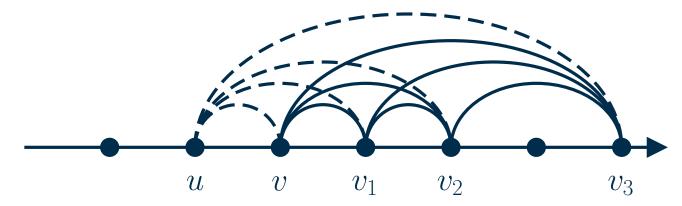


(3) Every triangulated graph that has a universal vertex is chordal.

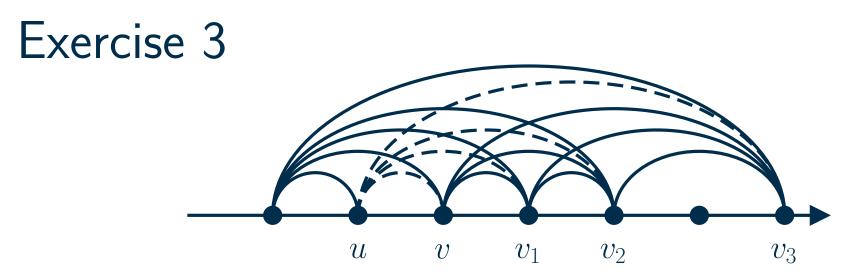
- Look at induced $C_k (k \ge 4)$. It partitions the plane into two parts.
- No vertex on the cycle is universell (otherwise it would not be induced).
- There are vertices inside of C_k and outside of C_k because G is triangulated.



One vertex is universell and thus connected to the other part.



Claim: K_v maximal $\Rightarrow \nexists$ predecessor u such that $K_v \subseteq K_u$ If there is such a predecessor then obviously K_v is not maximal.



Claim: K_v maximal $\Rightarrow \nexists$ predecessor u such that $K_v \subseteq K_u$ If there is such a predecessor then obviously K_v is not maximal.

Claim: K_v maximal $\Leftarrow \nexists$ predecessor u such that $K_v \subseteq K_u$ If K_v is not maximal then there is a clique C such that $K_v \subsetneq C$.

• Every $u \in C - K_v$ is left of v in σ . Thus, $K_v \subseteq K_u \subseteq C$.

Show that a minimum vertex cover can be computed efficiently on chordal graphs.

Let G = (V, E) be a chordal graph. (i) Compute a maximum independent set. this takes O(n + m) time (ii) Then, V - I is a minimum vertex cover (exercise class 1, exercise 2) this takes O(n) time

Vertex cover can be solved in linear time on chordal graphs

Lemma

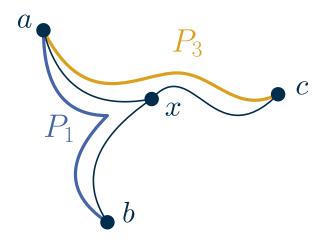
Let T be a tree and let P_1, P_2, P_3 be paths in T such that

(i) $P_1 = (a, \dots, b)$, (ii) $P_2 = (b, \dots, c)$, (iii) $P_3 = (a, \dots, c)$. Then, there is a vertex $x \in P_1 \cap P_2 \cap P_3$.

Proof:

8

- Let x be the last vertex on P_3 that is on P_1 .
- Then, $b \to P_1 \to x \to P_3 \to c$ is a path from b to c.
- Therefore, $b \to P_1 \to x \to P_3 \to c = P_2$.



G is tree \implies every family of paths fulfills the Helly property

Let $\{P_i \subseteq G : j \in J\}$ be paths with $P_i \cap P_j \neq \emptyset$ for all i, j. **Goal:** $\bigcap_{i \in J} P_j \neq \emptyset$. We do induction on |J|. Base case: |J| = 2 \checkmark • Let $|J| \geq 3$ and fix $j_1, j_2 \in J$. • By induction there are $a \in \bigcap_{i \in J-j_1} P_j$, $b \in \bigcap_{i \in J-j_2} P_j$ and $c \in P_{j_1} \cap P_{j_2}$. Let $P' = \bigcap_{i \in J - i_1 - i_2} P_j$. Then: (i) P_{i_1} contains a path from b to c, (ii) P_{i_2} contains a path from a to c and (iii) P' contains a path from a to b. • By the lemma there is $x \in P_{j_1} \cap P_{j_2} \cap P' \implies x \in \bigcap_{i \in J} P_j$.

of subtrees

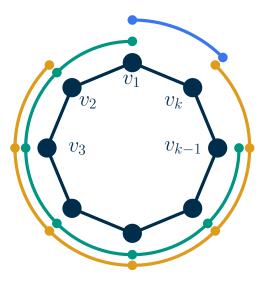
G is tree \implies every family of paths fulfills the Helly property

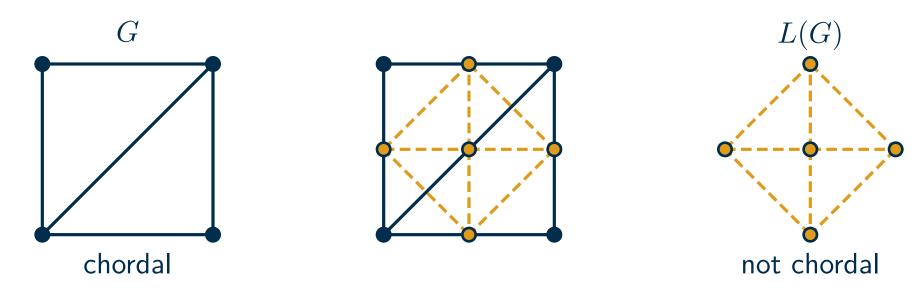
Let $\{P_i \subseteq G : j \in J\}$ be paths with $P_i \cap P_j \neq \emptyset$ for all i, j. **Goal:** $\bigcap_{i \in J} P_j \neq \emptyset$. subtrees We do induction on |J|. Base case: |J| = 2 \checkmark • Let $|J| \geq 3$ and fix $j_1, j_2 \in J$. • By induction there are $a \in \bigcap_{i \in J-j_1} P_j$, $b \in \bigcap_{i \in J-j_2} P_j$ and $c \in P_{j_1} \cap P_{j_2}$. Let $P' = \bigcap_{i \in J - i_1 - i_2} P_j$. Then: (i) P_{i_1} contains a path from b to c, (ii) P_{i_2} contains a path from a to c and (iii) P' contains a path from a to b. • By the lemma there is $x \in P_{j_1} \cap P_{j_2} \cap P' \implies x \in \bigcap_{i \in J} P_j$.

G is tree \iff every family of paths fulfills the Helly property

Contraposition: Let (v_1, \ldots, v_k) be a cycle in G.

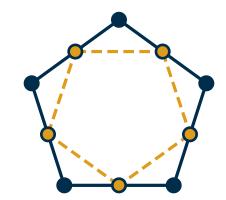
- Choose:
 - $P_1 = (v_1, v_2, \dots, v_{k-1})$
 - $P_2 = (v_2, v_3, \dots, v_k)$
 - $P_3 = (v_k, v_1)$
- $\{P_1, P_2, P_3\}$ does not fulfill the Helly property.





L(G) chordal \Rightarrow G chordal

- Let $C = (v_1, \ldots v_k)$ an induced cycle in G.
- Then, $\{v_1v_2, v_2v_3, \ldots, v_kv_1\}$ induces a cycle of length k in L(G).
- L(G) chordal $\implies k=3.$
- Thus, G has only induced cycles of length at most 3.



Prove that a graph has treewidth at least three if and only if it contains K_4 as a topological minor.

Refer to: https://doi.org/10.1016/0012-365X(90)90292-P (the example on page 4) Forbidden minors characterization of partial 3-trees [Arnborg, Proskurowski and Corneil 1990]

Example. We will show that the complete graph of 4 vertices, K_4 , is the only forbidden minor of partial 2-trees. Partial 2-trees are easily recognizable by reducing a graph to an edge by application of the following "rewriting rules" (cf. Fig. 2(a)): remove vertices of degree 0 or 1, and contract 2-paths ("series reduction": replace by a single edge two edges incident with a common degree 2 vertex). Applications of these rewriting rules create minors of the original graph.

By absence of vertices of degree 2 or less (which would lead to a smaller minor through a rewriting rule), a minimal minor is cubic, since deletion of any edge must create two vertices of degree 2 or less (every 2-tree has at least two 2-leaves, which are present in partial 2-trees as vertices of degree at most 2). To create two vertices of degree 2 by contraction of any edge, every edge must be in at least two triangles: take such an edge (x, y) and consider two common neighbors of x and y, u and v. Since (x, u) must be in another triangle and x has already three neighbors, the third edge incident to u must lead to v giving a K_4 .

