

Algorithmic Graph Theory Solution Sheet 3

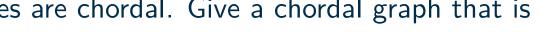
Laura Merker and Samuel Schneider, June 4, 2025

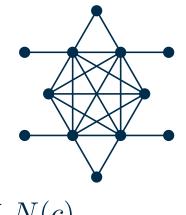
Exercise Sheet 3

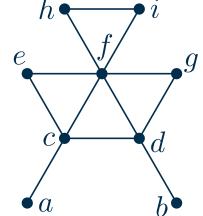
2

List all simplicial vertices in the graph on the right. (1)

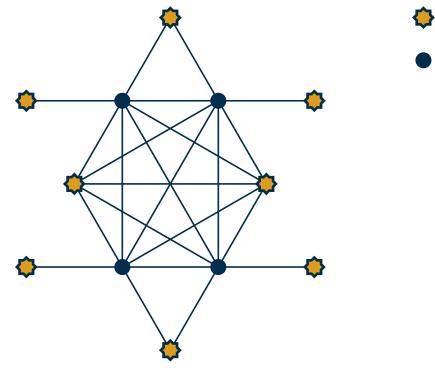
- Let S be a minimal vertex separator in a chordal graph G = (V, E). (2) Prove that every component of G_{V-S} contains a vertex c such that $S \subseteq N(c)$.
- Let G be an interval graph. Give two different proofs for the chordality of G (3) by proving the following statements: (a) G has a perfect elimination scheme. (b) Every minimal vertex separator of G is a clique.
- Run a lexicographic BFS on the graph on the right. (4)
- Give a graph with a perfect elimination scheme σ (5) such that σ cannot be computed using a lexicographic BFS.
- Prove that k-trees are chordal. Give a chordal graph that is not a k-tree. (6)





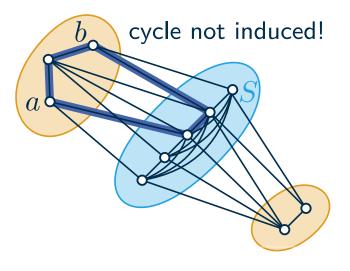


List all simplicial vertices in the given graph.



Recall (from lecture):

Let S be a minimal vertex separator in a chordal graph G=(V,E). Then S is a clique.



Arguments used in the proof:

• every component of G_{V-S} has an edge to every vertex of S

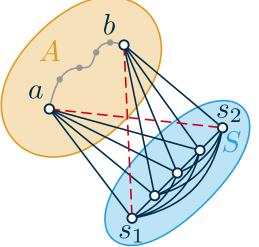
New: certified by a single vertex

choose a, b carefully!

- \blacksquare take shortest path between different neighbors a,b of S ----
- \blacksquare find induced cycle of length ≥ 4

Does the same argument work again? \rightarrow **No!**

- Let A component of G_{V-S} and $a \in A$ maximizing $N_S(a)$
- Every vertex in S is connected to some vertex in A. Assume not all to the same.
- Let $P \coloneqq (a, \ldots, b)$ min. path in G_A s.t. $N_S(a)$ and $N_S(b)$ uncomparable i.e. there are $s_1 \in N_S(a) \setminus N_S(b)$ and $s_2 \in N_S(b) \setminus N_S(a)$



- Let A component of G_{V-S} and $a \in A$ maximizing $N_S(a)$
- Every vertex in S is connected to some vertex in A. Assume not all to the same.
- Let $P \coloneqq (a, \ldots, b)$ min. path in G_A s.t. $N_S(a)$ and $N_S(b)$ uncomparable i.e. there are $s_1 \in N_S(a) \setminus N_S(b)$ and $s_2 \in N_S(b) \setminus N_S(a)$

Claim: No vertex of P is adjacent to s_1 and s_2

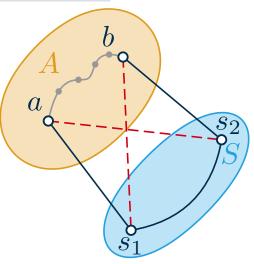
- Assume there is such a vertex $v \in V(P)$.
- By minimality of P the sets $N_S(a)$ and $N_S(v)$ are comparable.
- This contradicts the maximality of $N_S(a)$.

A v a s s 1

- Let A component of G_{V-S} and $a \in A$ maximizing $N_S(a)$
- Every vertex in S is connected to some vertex in A. Assume not all to the same.
- Let $P \coloneqq (a, \ldots, b)$ min. path in G_A s.t. $N_S(a)$ and $N_S(b)$ uncomparable i.e. there are $s_1 \in N_S(a) \setminus N_S(b)$ and $s_2 \in N_S(b) \setminus N_S(a)$

Claim: No vertex of P is adjacent to s_1 and s_2

- Assume there is such a vertex $v \in V(P)$.
- By minimality of P the sets $N_S(a)$ and $N_S(v)$ are comparable.
- This contradicts the maximality of $N_S(a)$.
- There is subpath $P' \coloneqq (a', \ldots, b')$ of P s.t. only a' is adjacent to s_1 and only b' is adjacent to s_2 \Rightarrow there is an induced cycle of length at least 4.
- For all $w \in A$ we have that $N_S(w)$ and $N_S(a)$ are comparable $\Rightarrow s_2 \notin N(A)$

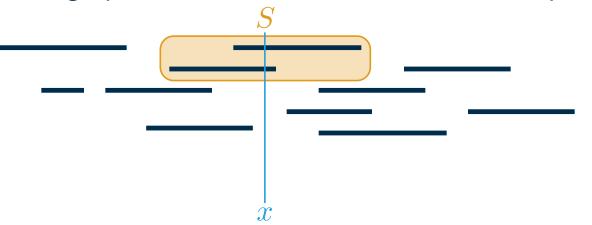


Prove that every interval graph has a perfect elemination scheme.

- We construct a PES using induction.
- Let G be the interval graph corresponding to the intervalls $I_v = [a_v, b_v]$ with $v \in V(G)$.
- Let $v_1 \in V(G)$ such that b_{v_1} is minimal under all right endpoints.
- For all $u \in N(v_1)$ it holds that $a_u \leq b_{v_1}$ und $b_{v_1} \leq b_u \Rightarrow b_{v_1} \in \bigcap_{u \in N_G(v_1)} I_u$ $\Rightarrow N_G(v_1)$ is a clique $\Rightarrow v_1$ is simplicial in G.
- Call induction on $G v_1$ and prepend v_1 to the resulting PES.

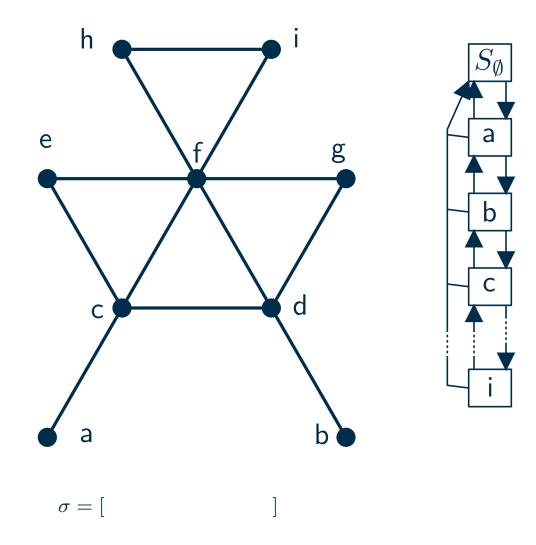
Prove that every minimal vertex separator of an interval graph is a clique.

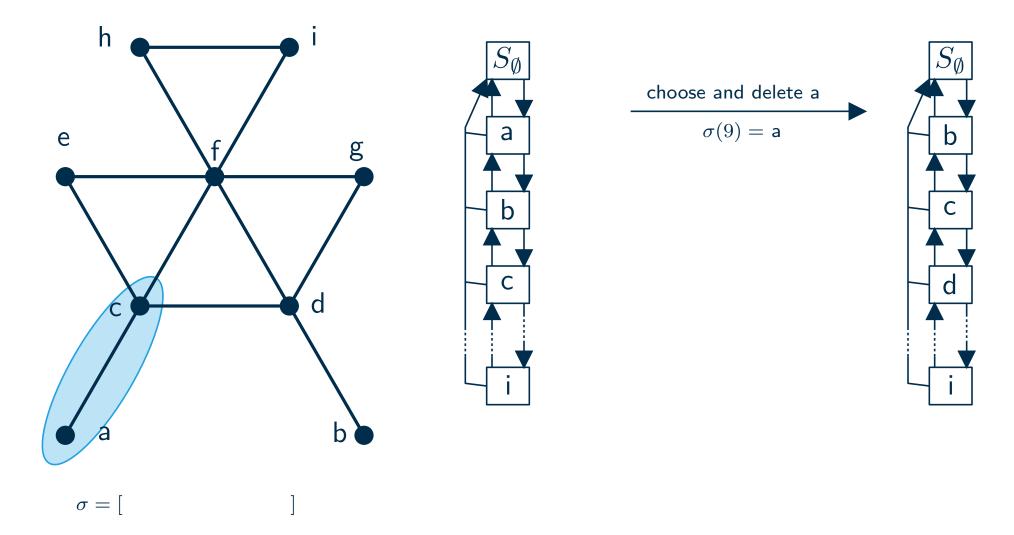
• Let G be an interval graph and let S be a minimal vertex separator

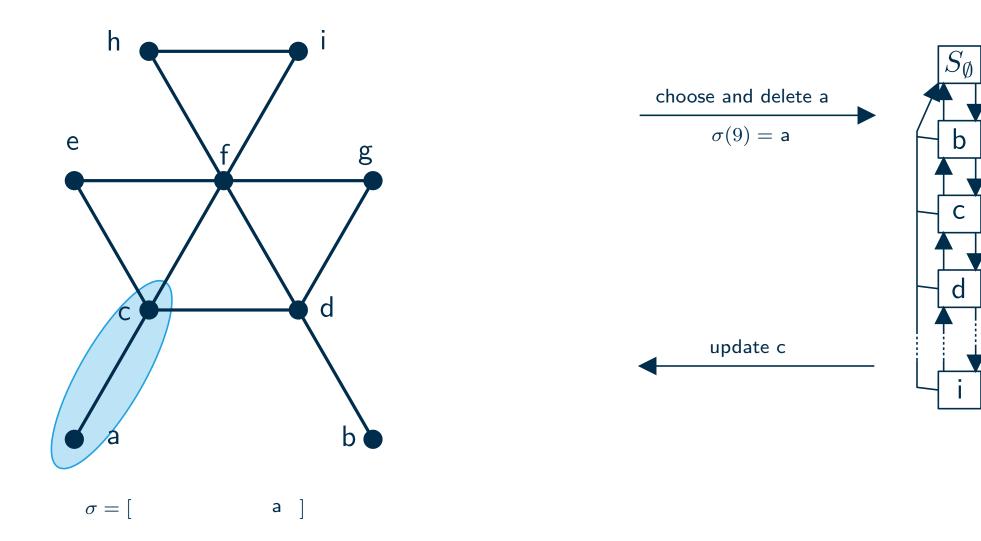


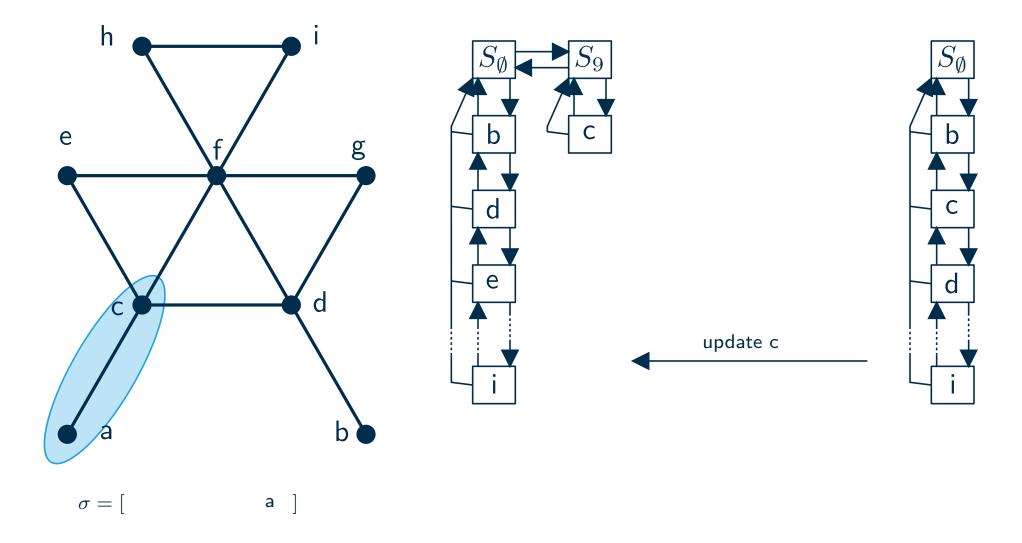
- Then there is a position x only intersecting intervals in S.
 - Otherwise G S is connected.
- Clearly the set S' of intervals intersecting x is a separator and a clique.
- As S is minimal and $S' \subseteq S$ we have S' = S.

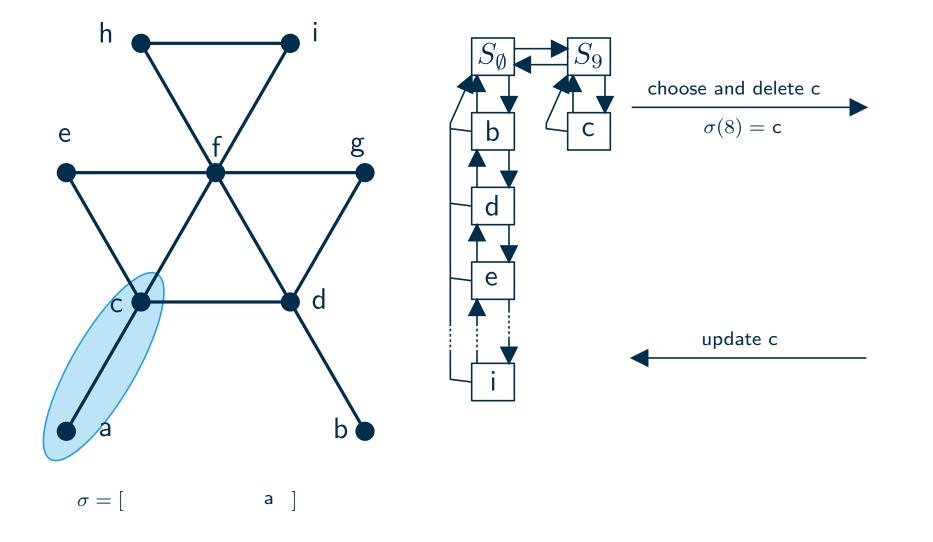
7

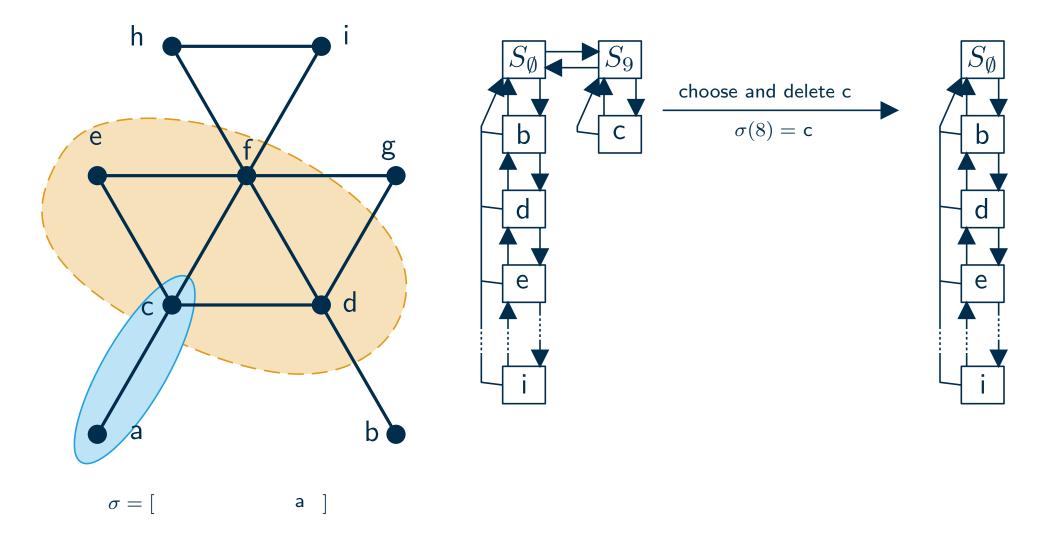


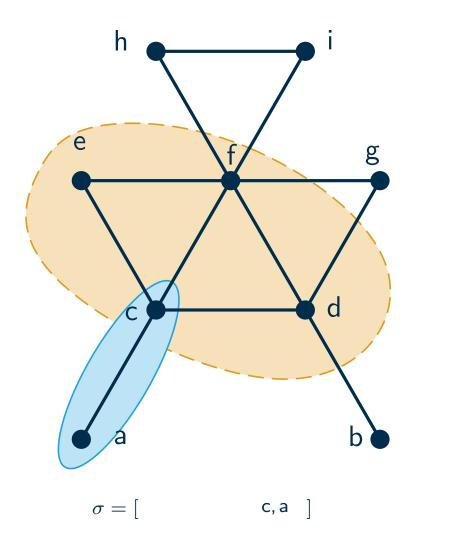


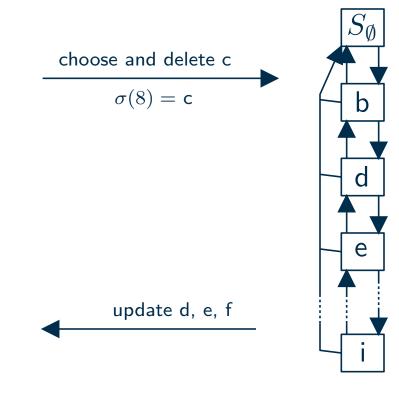


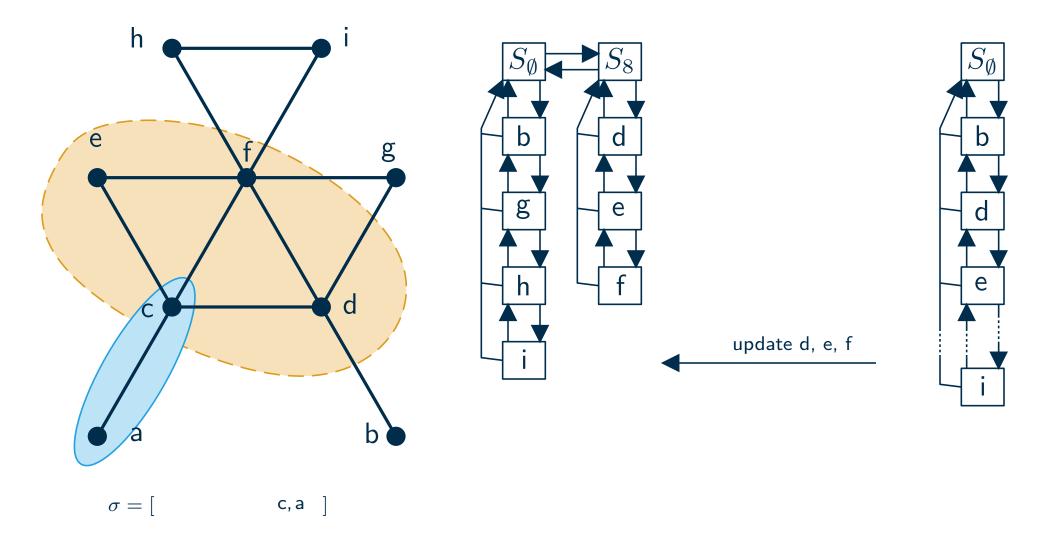


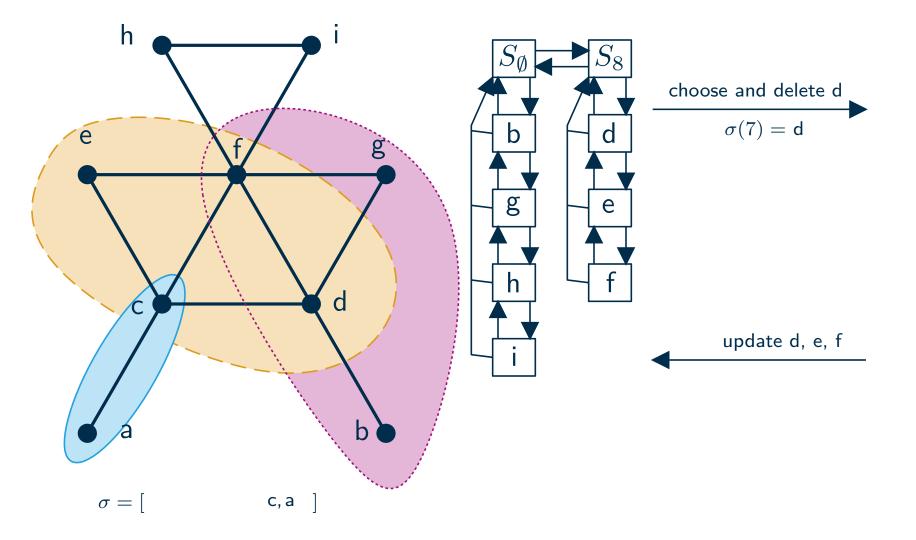


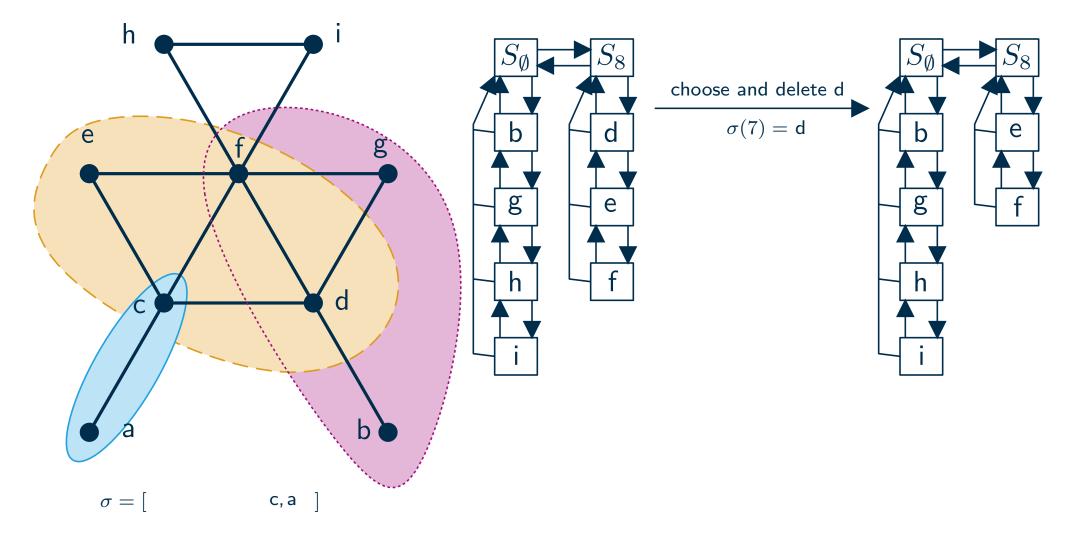


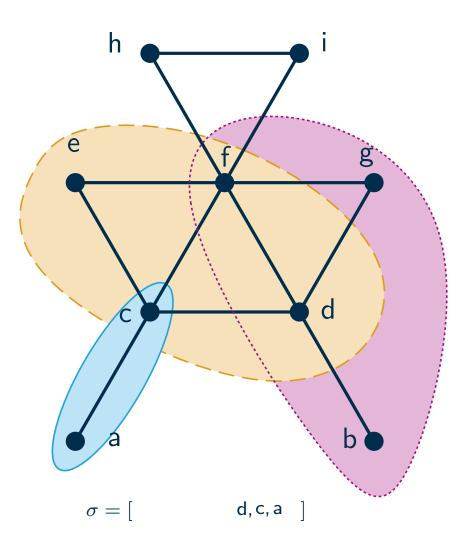


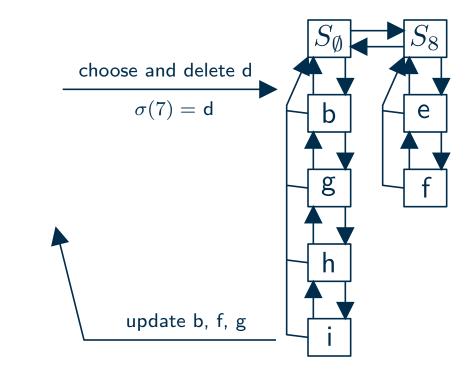


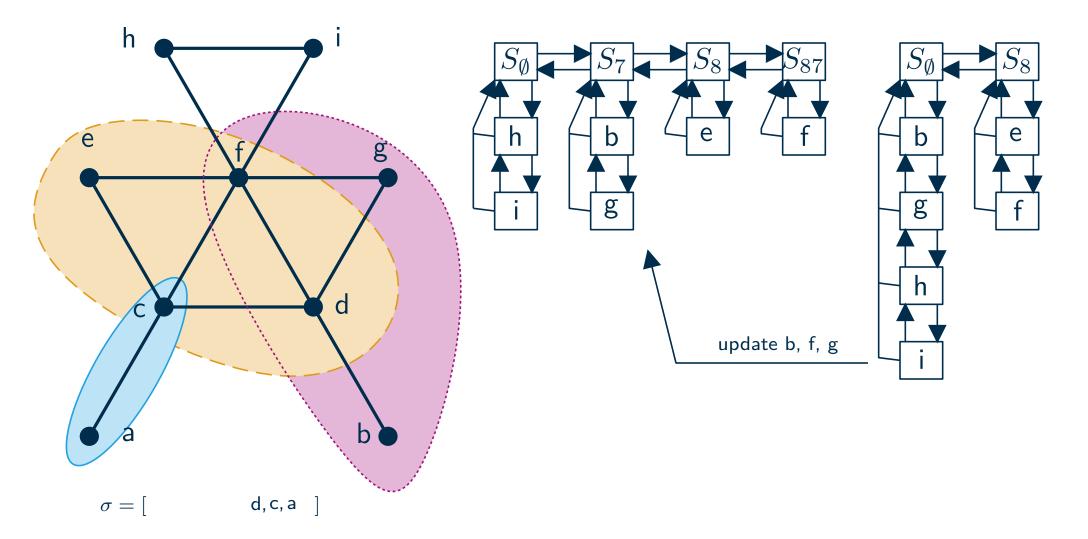


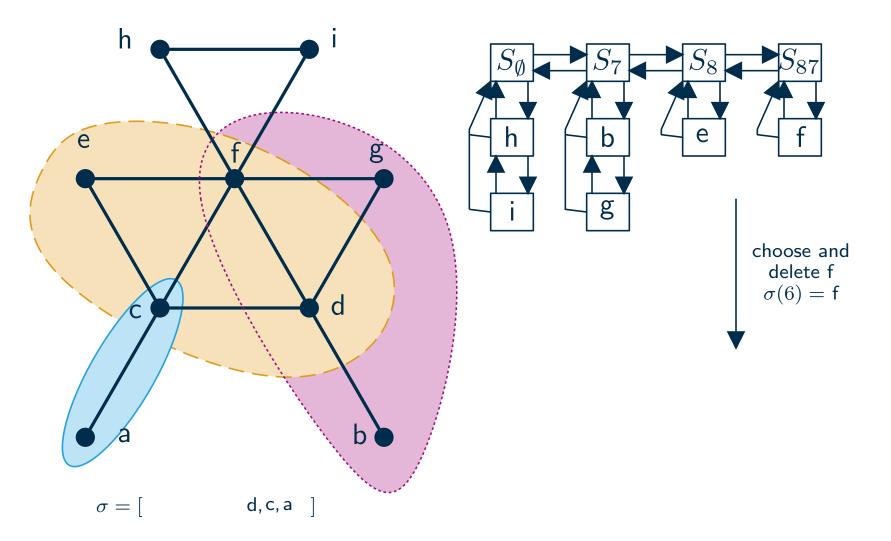


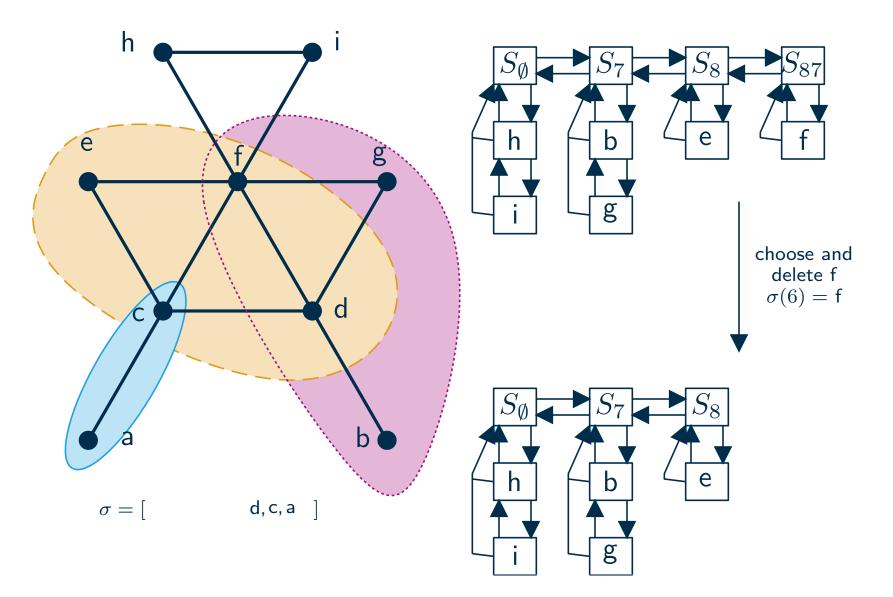


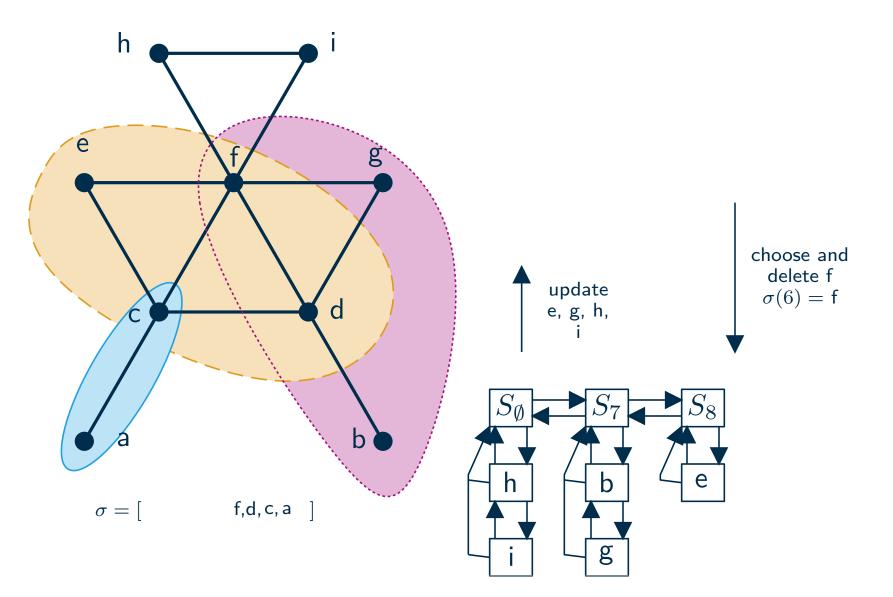


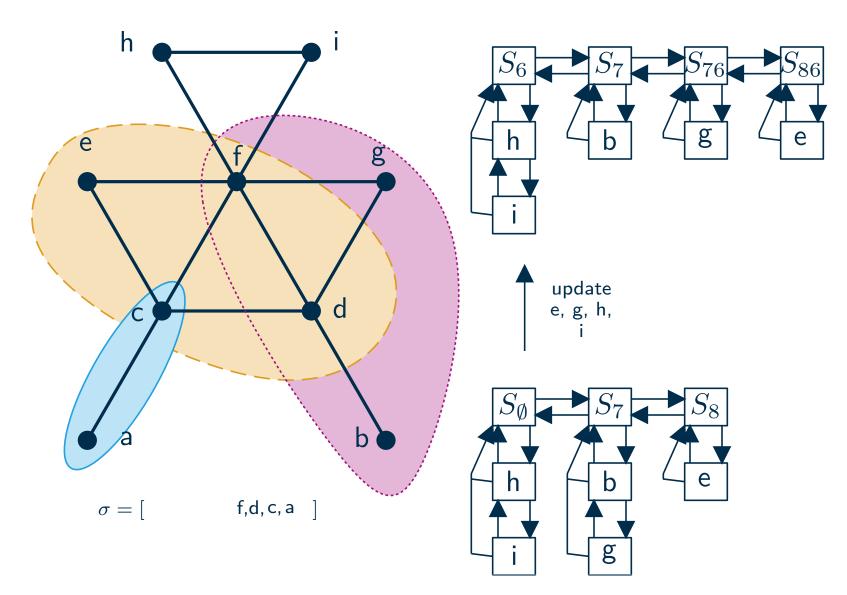


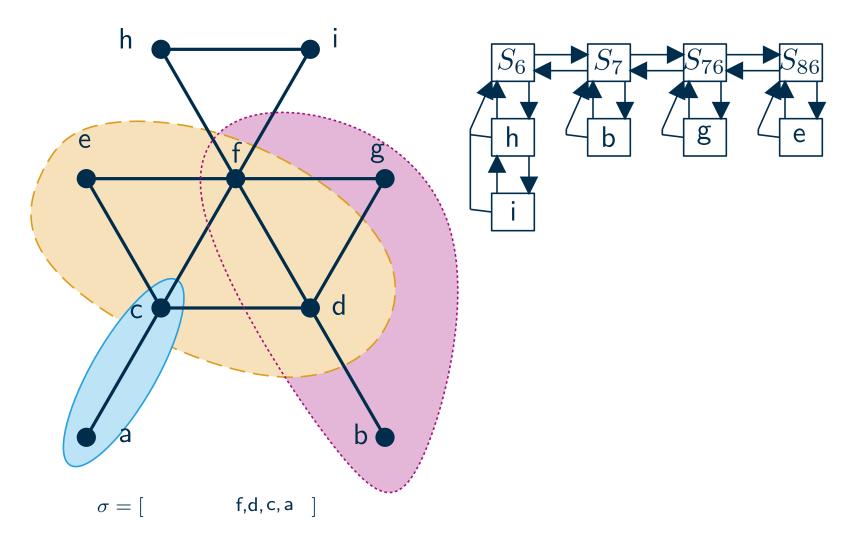


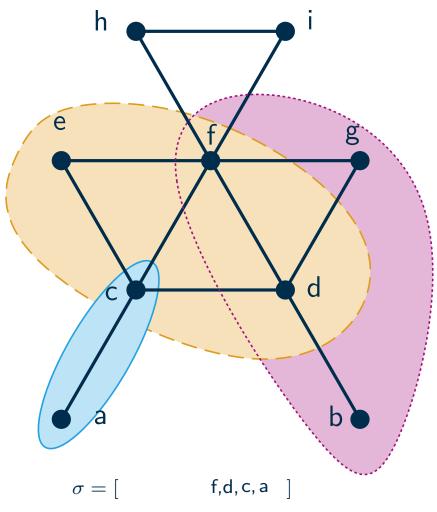


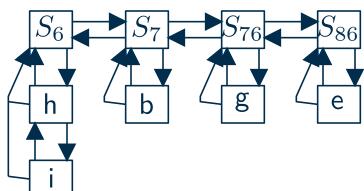




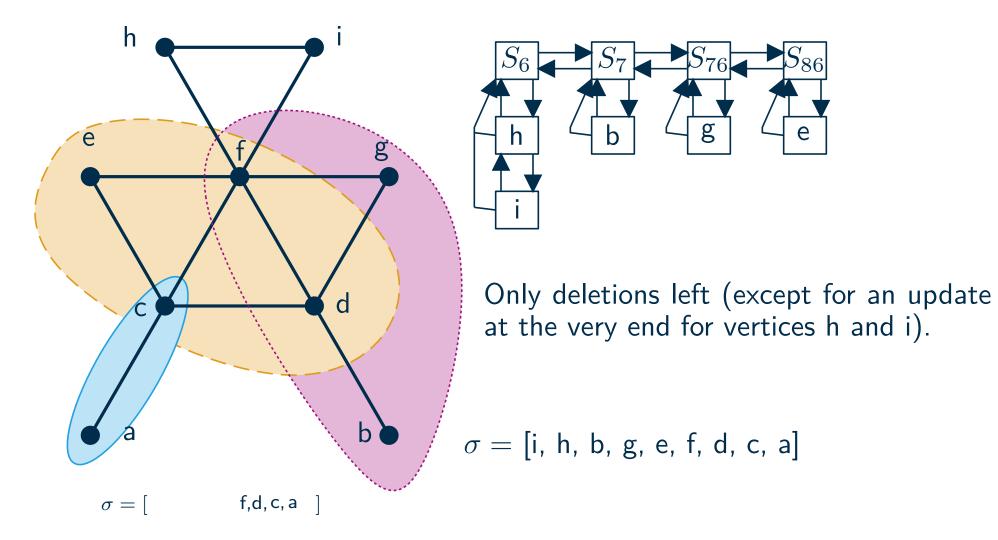


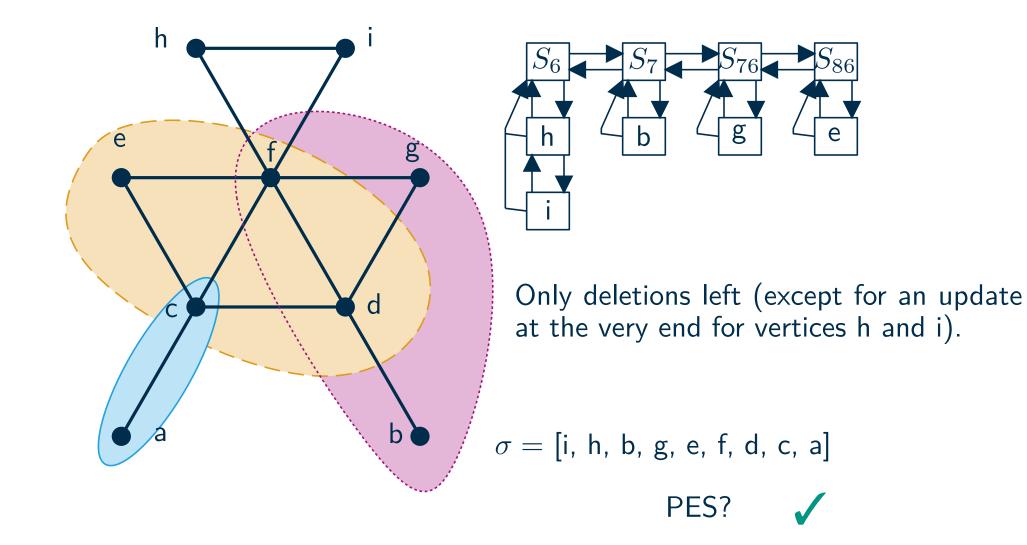




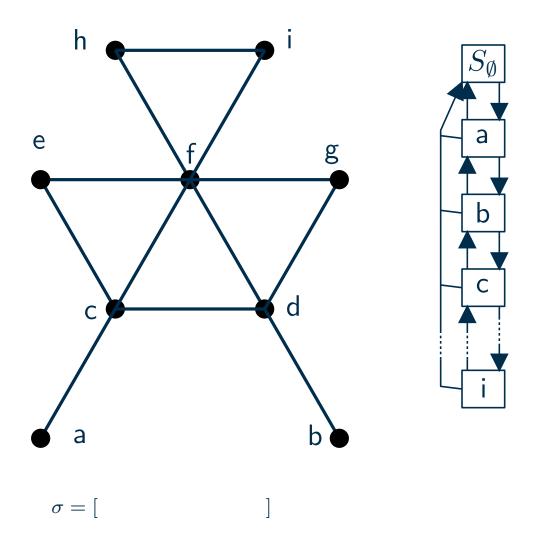


Only deletions left (except for an update at the very end for vertices h and i).

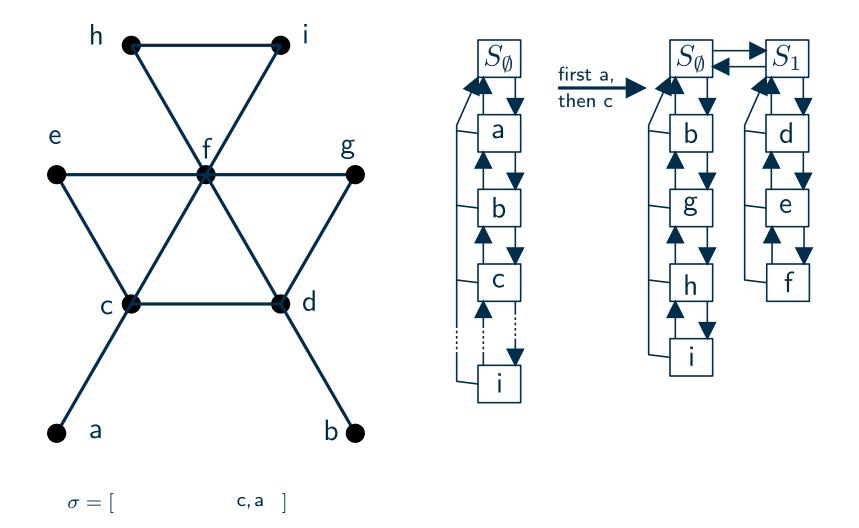




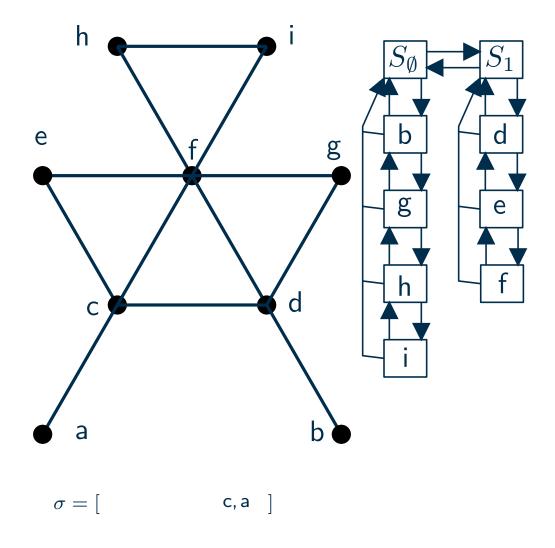
Exercise 4 – LexDFS



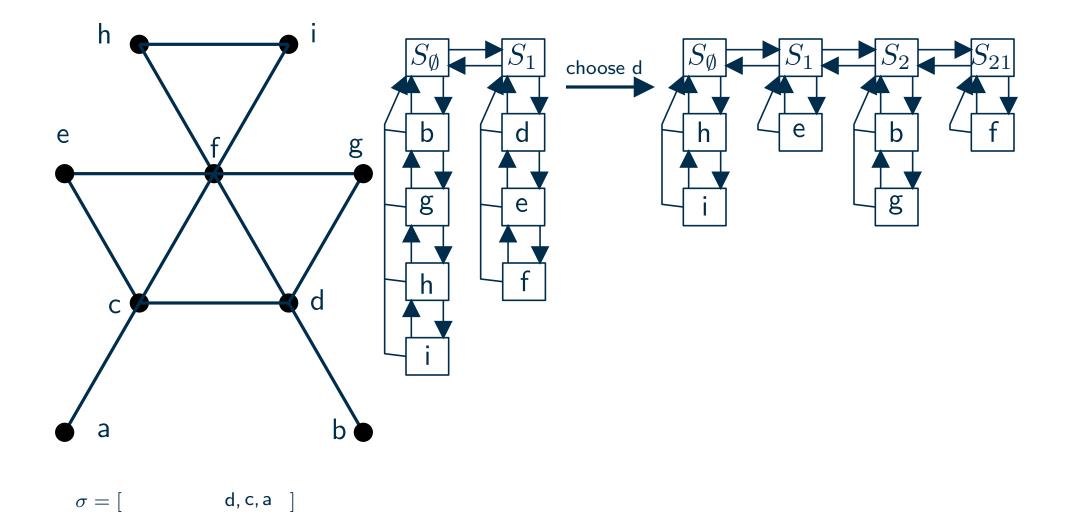
Exercise 4 – LexDFS



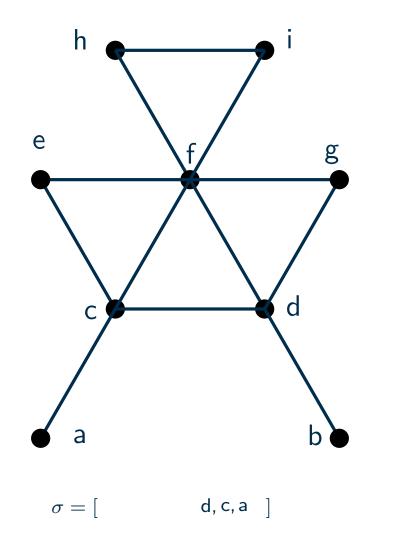
Exercise 4 – LexDFS

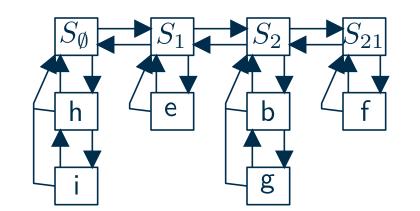


Exercise 4 – LexDFS

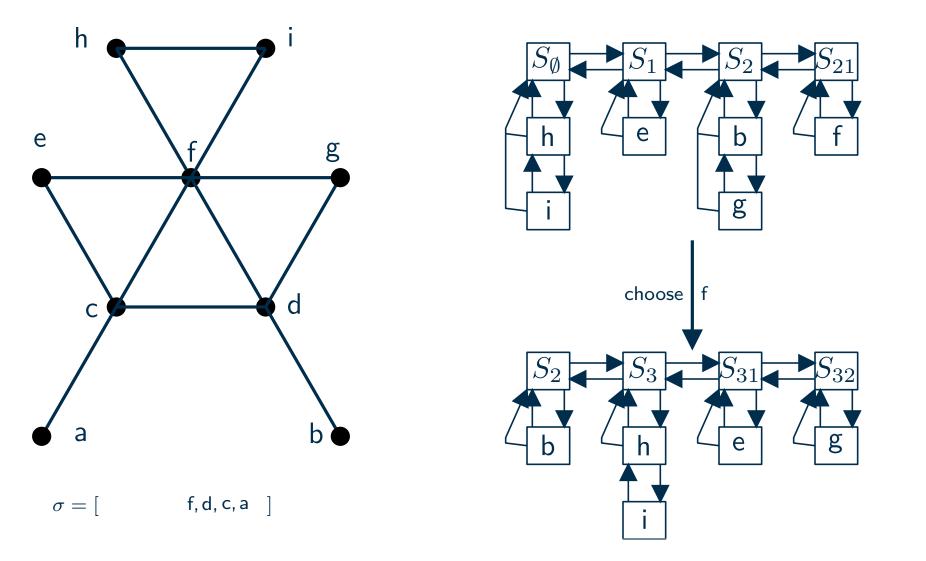


Exercise 4 – LexDFS

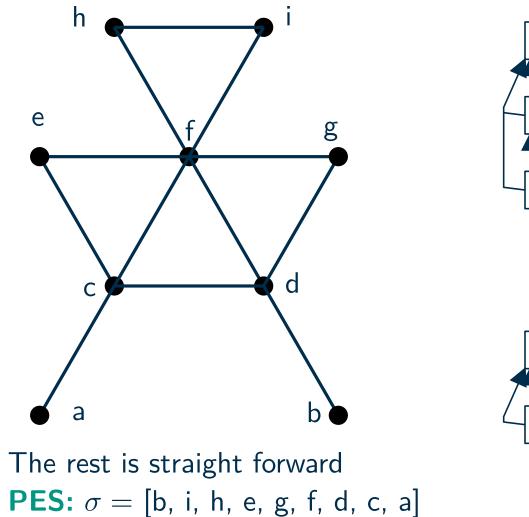


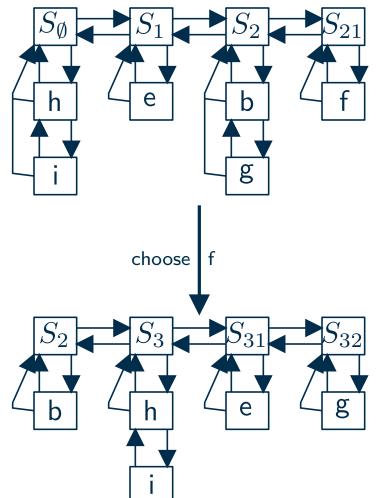


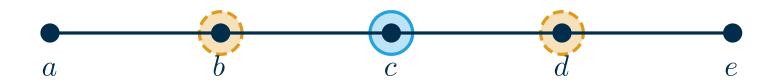
Exercise 4 – LexDFS



Exercise 4 – LexDFS







- A vertex of a path is simplicial if and only if it is a leaf. $\Rightarrow \sigma = [a, b, e, d, c]$ is a PES.
- In order to produce σ a LexBFS c has to start with c.
- The vertices *b* and *d* have the highest possible labels and are thus chosen next.
- Therefore, e cannot be chosen third and σ cannot be the result of a LexBFS.

Let G be a k-tree. **Goal:** Construct PES for G.

- If G is a clique every vertex ordering is a PES.
- Otherwise consider the vertex v that was added last. By construction v is simplicial.
- Call induction on G v and prepend v to the resulting PES.

Chordal graph G that is not a k-tree:

- Chordal: 🗸
- 1-trees are exactly trees.

 $\land \rightarrow \land$

 $\Rightarrow G$ is not a 1-tree

• There is only one 2-tree with four vertices: $A \longrightarrow G$ is not a 2-tree

• There is only one 3-tree with four vertices:

 $/ \rightarrow / \rightarrow /$

 $\Rightarrow G$ is not a 3-tree

• Every k-tree with k > 3 contains a K_4