4]}

Karlsruhe Institute of Technology

Algorithmic Graph Theory

Problem Class 2 | 7 May 2025

Laura Merker, Samuel Schneider

KIT — The Research University in the Helmholtz Association www.kit.edu

2

AT

Institute of Technology

Exercise Sheet 1
(1) For each p € {x,w, a, Kk}, give p(GUG") depending on p(G) and p(G’),
where U is the disjoint union. Prove your claims.

(2) Let G be a graph and z,y two of its vertices.
Prove that (Goz) —y=(G—y)ox

(3) Let G be a graph with vertices z;,...,z, and gr:ﬁ%l do
h = (hi,...,h,) € Nij be a vector. if h, — 0 then
® What does the algorithm to the right compute? | | H<« H -z
else
® What is the run time? while h; > 1 do
m Can H be computed faster? L H = Houw
h,z' < h,z —1

(4) Show that each G € {C,,,C,,: n > 5 odd} is minimally imperfect, that is, G is
not perfect but every proper (i.e. strictly smaller) induced subgraph is perfect.

(5) Let G be a graph on n vertices. Show that x(G) < r holds iff «(GO K,.) = n.
Conclude that INDEPENDENT SET is NP-hard.

Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

AT

L]
E xe rc l Se 1 Karlsruhe Institute of Technology

(Claim: y(GUG’) = max{x(G), x(G")}
“<": Color components with x(G) and x(G’) colors, respectively.
“>": G and G’ are induced subgraphs of GUG".

(Claim: w(GUG) = max{w(Q),w(G’')}
“>": Every clique in G or G’ is clique in GUG".
“<": No edges between any vertices u € V(G) and v € V(G).

Claim: a(GUG) = a(Q) + (G
“<”: No edges between vertices u € V(G) and v € V(G).
= Combine maximum independent sets in G and G’.

|“>": Independet set in G UG’ can be partitioned in independet sets in G and G’.J

Claim: k(GUG") = k(G) + k(G")

“<": Cover components with k(G) and k(G") cliques, respectively.

|“>": Clique cover of G UG’ can be partitioned in clique covers of G and G'.

Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

AT

[
E xe rc l Se 2 Karlsruhe Institute of Technology

Refer to the solution of Exercise 2 of the second problem class.

Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

5

AT

Exercise 3
, ow many edges do we have to delete/co ?1
forall ;< 1,...,n do o ey
if h; =0 then
H+— H—x; = deg(z;) + > _ h; operations
else j<i
while h; > 1 do
. i : ifz iajf = deg(x;) + ; h; operations

Define: h = max{hi,...,hn} and h} = max{h;, 1}

Run time — upper bound: Run time — lower bound:
O(Zzﬁzl h, . (deg(xi) 4+ Z hj)) Blet G=K, and h; = h; > 1 for all i,j € [n]
A It ® Goh hasn-(h1 —1) new vertices
C O(n - max(h,1) - (n+nh)) @l.n-(hi—1)-(n—1) h1 € O(n*hi) new edges
C O(n2 : max2(ﬁ, 1)) = upper bound is tight

Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

AT

[
E xe rc l Se | Karlsruhe Institute of Technology

Let n > 5 odd

m (', is not perfect as w(C,) =2 < x(G) = 3.

m C,, is not perfect as C,, is not perfect.

m For every A C V(C,) : C,[A] is perfect & C),[A] is perfect

Goal: Show that every H C;,q C), is perfect.

® H is a disjoint union of paths. / \‘

® Paths are perfect = H is perfect.

6 Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

Exercise b A\‘(IT

Karlsruhe Institute of Technology

LX(G) <r=x(GOK,) = fr}
®(GOK,) > r because K, C GOK,

® color G1,...,G, with the same r colors but
cyclically permuted

= r colors suffice for G K,

Gl GQ G3 G4
OEEE EEE0 EEOE OO0 LX(G)nga(GDKT):ﬂ

Lx(G) <r=aoGUK,) = n} ® Let be a maximum independent set of G O K,
= Vv € V(G) there is exactly one (v,w) € I
W For every w € V(K,) let Vi, == {v | (v,w) € I}

@ Consider r-coloring of G L1 K,

® There is a color class with at least

VGOKD| _ nr —) vertices Claim: Every V,, is an independent set
® Every color class is an independent set ® Assume not: Ju,v € Vi U'U; E(G)
= OA(GDKT) >n = (u7w)(|vauf}) € E}(]GDKT) - f
® But also: a(GOK,) < k(GOK,) <n = one color for each V., gives r-coloring of G

Laura Merker, Samuel Schneider — Algorithmic Graph Theory Institute of Theoretical Informatics

	exercises
	exercise1
	exercise2
	exercise3
	exercise4
	exercise5

