

Algorithmic Graph Theory

Problem Class 2 | 7 May 2025

Laura Merker, Samuel Schneider

Exercise Sheet 1

- (1) For each $p \in \{\chi, \omega, \alpha, \kappa\}$, give $p(G \cup G')$ depending on p(G) and p(G'), where \cup is the disjoint union. Prove your claims.
- (2) Let G be a graph and x, y two of its vertices. Prove that $(G \circ x) - y = (G - y) \circ x$
- (3) Let G be a graph with vertices x_1, \ldots, x_n and $h = (h_1, \ldots, h_n) \in \mathbb{N}_0^n$ be a vector.
 - What does the algorithm to the right compute?
 - What is the run time?
 - Can *H* be computed faster?

```
H \leftarrow G
for all i \leftarrow 1, \dots, n do
if h_i = 0 then
| H \leftarrow H - x_i
else
while h_i > 1 do
| H \leftarrow H \circ x_i
h_i \leftarrow h_i - 1
```

- (4) Show that each $G \in \{C_n, \overline{C_n} : n \ge 5 \text{ odd}\}$ is minimally imperfect, that is, G is not perfect but every proper (i.e. strictly smaller) induced subgraph is perfect.
- (5) Let G be a graph on n vertices. Show that $\chi(G) \leq r$ holds iff $\alpha(G \square K_r) = n$. Conclude that INDEPENDENT SET is NP-hard.(given that COLORING is NP-hard).

Institute of Theoretical Informatics

Claim: $\chi(G \dot{\cup} G') = \max{\chi(G), \chi(G')}$

" \leq ": Color components with $\chi(G)$ and $\chi(G')$ colors, respectively.

" \geq ": G and G' are induced subgraphs of $G \dot{\cup} G'$.

Claim: $\omega(G \dot{\cup} G') = \max\{\omega(G), \omega(G')\}$

" \geq ": Every clique in G or G' is clique in $G \cup G'$.

" \leq ": No edges between any vertices $u \in V(G)$ and $v \in V(G')$.

Claim: $\alpha(G \cup G') = \alpha(G) + \alpha(G')$

" \leq ": No edges between vertices $u \in V(G)$ and $v \in V(G')$.

 \Rightarrow Combine maximum independent sets in G and G'.

">": Independet set in $G \cup G'$ can be partitioned in independet sets in G and G'.

Claim: $\kappa(G \cup G') = \kappa(G) + \kappa(G')$

" \leq ": Cover components with $\kappa(G)$ and $\kappa(G')$ cliques, respectively.

" \geq ": Clique cover of $G \cup G'$ can be partitioned in clique covers of G and G'.

Refer to the solution of *Exercise 2* of the second problem class.

4 Laura Merker, Samuel Schneider – Algorithmic Graph Theory

 $\begin{array}{l} H \leftarrow G \\ \text{for all } i \leftarrow 1, \dots, n \text{ do} \\ \text{if } h_i = 0 \text{ then} \\ \mid H \leftarrow H - x_i \text{ //delete edges incident to } x_i \text{ } \Rightarrow \deg(x_i) + \sum_{j < i} h_j \text{ operations} \\ \text{else} \\ \quad \begin{bmatrix} \text{while } h_i > 1 \text{ do} \\ H \leftarrow H \circ x_i \\ h_i \leftarrow h_i - 1 \end{bmatrix} \text{ //copy edges incident to } x_i \text{ } \Rightarrow \deg(x_i) + \sum_{j < i} h_j \text{ operations} \\ \end{array}$

Define: $\hat{h} = \max\{h_1, ..., h_n\}$ and $h'_i = \max\{h_i, 1\}$

Run time – upper bound:

$$\mathcal{O}\left(\sum_{i=1}^{n} h'_{i} \cdot \left(\deg(x_{i}) + \sum_{j < i} h_{j}\right)\right)$$
$$\subseteq \mathcal{O}\left(n \cdot \max(\hat{h}, 1) \cdot (n + n\hat{h})\right)$$
$$\subseteq \mathcal{O}\left(n^{2} \cdot \max^{2}(\hat{h}, 1)\right)$$

Run time – lower bound:

- Let $G = K_n$ and $h_i = h_j > 1$ for all $i, j \in [n]$
- $\blacksquare G \circ h$ has $n \cdot (h_1 1)$ new vertices

•
$$\frac{1}{2} \cdot n \cdot (h_1 - 1) \cdot (n - 1) \cdot h_1 \in \Theta(n^2 h_1^2)$$
 new edges
 \Rightarrow upper bound is tight

5 Laura Merker, Samuel Schneider – Algorithmic Graph Theory

Let $n \geq 5 \text{ odd}$

- C_n is not perfect as $\omega(C_n) = 2 < \chi(G) = 3$.
- $\overline{C_n}$ is not perfect as C_n is not perfect.
- For every $A \subsetneq V(C_n) : C_n[A]$ is perfect $\Leftrightarrow \overline{C_n[A]}$ is perfect Goal: Show that every $H \subsetneq_{ind} C_n$ is perfect.
- \blacksquare *H* is a disjoint union of paths.
- Paths are perfect \Rightarrow H is perfect.

$\chi(G) \le r \Rightarrow \alpha(G \square K_r) = n$

- Consider *r*-coloring of $G \square K_r$
- There is a color class with at least $\frac{|V(G \square K_r)|}{r} = \frac{n \cdot r}{r} = n \text{ vertices}$
- Every color class is an independent set $\Rightarrow \alpha(G \square K_r) \ge n$
- But also: $\alpha(G \Box K_r) \leq \kappa(G \Box K_r) \leq n$

 $\chi(G) \le r \Rightarrow \chi(G \square K_r) = r$

- $\chi(G \Box K_r) \ge r$ because $K_r \subseteq G \Box K_r$
- color G_1, \ldots, G_r with the same r colors but cyclically permuted
- \Rightarrow *r* colors suffice for $G \square K_r$

$\chi(G) \le r \Leftarrow \alpha(G \square K_r) = n$

- Let I be a maximum independent set of $G \square K_r$ $\Rightarrow \forall v \in V(G)$ there is exactly one $(v, w) \in I$
- For every $w \in V(K_r)$ let $V_w \coloneqq \{v \mid (v, w) \in I\}$
- **Claim:** Every V_w is an independent set
- Assume not: $\exists u, v \in V_w : uv \in E(G)$
- $\Rightarrow (u, w)(v, w) \in E(G \square K_r)$
- \Rightarrow one color for each V_w gives r-coloring of G