

Algorithmic Graph Theory

Problem Class 2 | 7 May 2025

Laura Merker, Samuel Schneider

Update from the faculty

exams may be taken in English or German

Graph G on vertices x_1, \ldots, x_n , tuple $h = (h_1, \ldots, h_n)$ of nonnegative integers Recall $H = G \circ h$: $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}, E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_i]\}$ **New definition:** $H = G \ominus h$ with $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}, E(H) = E(G) \cup \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$ $x_1 \xrightarrow{x_2} x_4 \circ \begin{pmatrix} 3\\1\\1 \end{pmatrix} = \checkmark$ (1) What is the difference between \circ and Θ ? (2) Can \circ , resp. Θ , be realized by elementary operations? I.e., is there a sequence h^1, h^2, \ldots of tuples, each with all entries 1 except for one 0 or 2, such that $G * h = G * h^1 * h^2 * \ldots$ for each $* \in \{\circ, \Theta\}$? If so, does the order matter? (3) Find a largest cycle, a largest induced cycle, ω, χ, α , and κ of $K_n \ominus (2, \ldots, 2)$. (4) Prove or disprove: If G is perfect, then ... • $\omega(G \ominus h) = \chi(G \ominus h)$ (follow a proof of the lecture) $\blacksquare G \ominus h$ is perfect Let $G_0 = K_2$ and $H_i = G_{i-1} \ominus (2, ..., 2)$, $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$, where u is a new vertex, $i \ge 1$

(5) Prove that G_1, G_2, \ldots are not perfect.

(6) Prove that G_0, G_1, \ldots are "far from perfect". For this, find $\omega(G_i)$ and $\chi(G_i)$, $i \ge 0$.