

# Algorithmic Graph Theory Problem Session 7

Laura Merker and Samuel Schneider, July 30, 2025

## Problems

- (1) Prove that every cograph is a permutation graph.
- (2) Let G be a split graph that is not a complete graph. Prove or disprove that it is always possible to add an edge e such that G + e is a split graph.
- (3) Read the arXiv newsletter of July 14, 2025 (usually sent by email): https://il1www.iti.kit.edu/teaching/sommer2025/algorithmic\_graph\_theory/newsletter Read all titles, some abstracts, only open papers if you think they are relevant for you Keep in mind: articles on arXiv are not (necessarily) reviewed!
- (4) We aim to partition the edges of a split graph into as few complete bipartite graphs as possible. What is the smallest/largest number of complete bipartite graphs needed for n-vertex split graph in terms of n? Also find graphs that neither reach the minimum nor maximum.
- (5) How many maximal cliques can a split graph or its complement have at most? Give your answers in terms of  $\omega, \alpha, \kappa, \chi$ , resp. the number of vertices, or prove that this is not possible. Which of your results generalize to chordal graphs?



## Cographs are permutation graphs

Prove that every cograph is a permutation graph.

•  $K_1$  is clearly a permutation graph.

### **Complement:**

lacksquare G is permutation graph  $\iff G$  and  $\overline{G}$  are comp. graphs  $\iff \overline{G}$  is permutation graph

### Disjoint union:

- Let  $G_1$  and  $G_2$  be permutation graphs with respective permutations  $\pi_1$  and  $\pi_2$ .
- "concatenate"  $\pi_1$  and  $\pi_2$  to obtain  $\pi'$
- Two segements cross in  $\pi'$  if and only if they cross in  $\pi_1$  or  $\pi_2$ .
- $\blacksquare$   $\pi'$  is permutation for  $G_1 \cup G_2$ .

- $K_1$  is a cograph.
- The complement of a cograph is a cograph.
- The disjoint union of two cographs is a cograph.





Every cograph can be constructed as follows:

 $<sup>^{1}</sup>$ : For this to be a permutation we have to add  $|V(G_{1})|$  to every number in  $\pi_{2}$ .

## Adding edges to split graphs

Let G be a split graph that is not a complete graph. Prove that it is always possible to add an edge e such that G+e is a split graph.

- Let G be a split graph with a partition into a clique C and an independet set I.
- If there is a vertex  $v \in I$  with N(v) = C we can add it to C.
- lacktriangle Thus, assume w.l.o.g. that C is a maximal clique.
- Let  $u \in I$ . By maximality of C there is a vertex  $w \in C$  s.t.  $uw \notin E$
- C is clique and I is independent set in G + uw  $\implies G + uw$  is split graph.



## Bipartition number of split graphs

#### Def: Bipartition number

 $bp(G) = min \ k$  such that E(G) can be partitioned into k complete bipartite graphs



$$\mathsf{bp}(G) = 3$$

What is the max/min bipartition number of n-vertex split graphs?

■ Minimal:  $mc(E_n) = 0$ , mc(star) = 1

#### Babu, Jacob, 2025, arXiv:2507.08114

- Maximal: Abstract / Thm 2 (Graham, Pollak, 1972):  $bp(K_n) = n 1$  Is this the worst case?
  - $bp(G) \le n-1$  for *every* graph: cover edges with stars
- More interesting examples?
  - Main theorem:  $bp(G) = mc(G^c) 1$ , where mc denotes the number of maximal cliques
  - Alternative with deeper reading: Lemma 8:  $bp(G) \approx \omega(G)$  for split graphs G



half of the vertices in the clique and independent set each



## Number of maximal cliques

#### chordal

Let G be a split graph, then for the number mc(G) of maximal cliques we have . . .

•  $mc(G) \le \alpha(G) + 1 \ (= \kappa(G) + 1).$ Babu, Jacob, 2025, arXiv:2507.08114:  $bp(H) = mc(\overline{H}) - 1$ ,  $bp(H) \le \omega(H)$   $\alpha = k$  mc = k + 1choose  $H = \overline{G}$ :  $mc(G) = bp(\overline{G}) + 1 \le \omega(\overline{G}) + 1 = \alpha(G) + 1$ 

This is tight: *k*-clique plus leaves

lacktriangledown  $\operatorname{mc}(G) \leq n$ .

Case  $\alpha(G) < n$ :  $mc(G) \le \alpha(G) + 1 \le n$ Case  $\alpha(G) = n$ :  $G = E_n$ ,  $mc(E_n) = n = \alpha(E_n)$  We need a new argument! Note: for general graphs, mc can be exponential in n



appending next vertex v to the left:

- $\rightarrow v$  is in only one maximal clique
  - $\rightarrow$  no new maximal cliques that do not contain v
- $lacktriangleq \operatorname{mc}(G)$  is unbounded in  $\omega(G)$  (=  $\chi(G)$ ), i.e., there is no function f s.t.  $\operatorname{mc}(G) \leq f(\omega(G))$ .  $\omega(E_n)=1$  but  $\mathrm{mc}(E_n)=n$ , "unbounded" is stronger for a subclass  $\implies$  chordal graphs  $\checkmark$ hence for every f, we have  $\operatorname{mc}(E_{f(1)+1})=f(1)+1>f(1)=f(\omega(E_n))$







Hyper-Giraph

Giraph