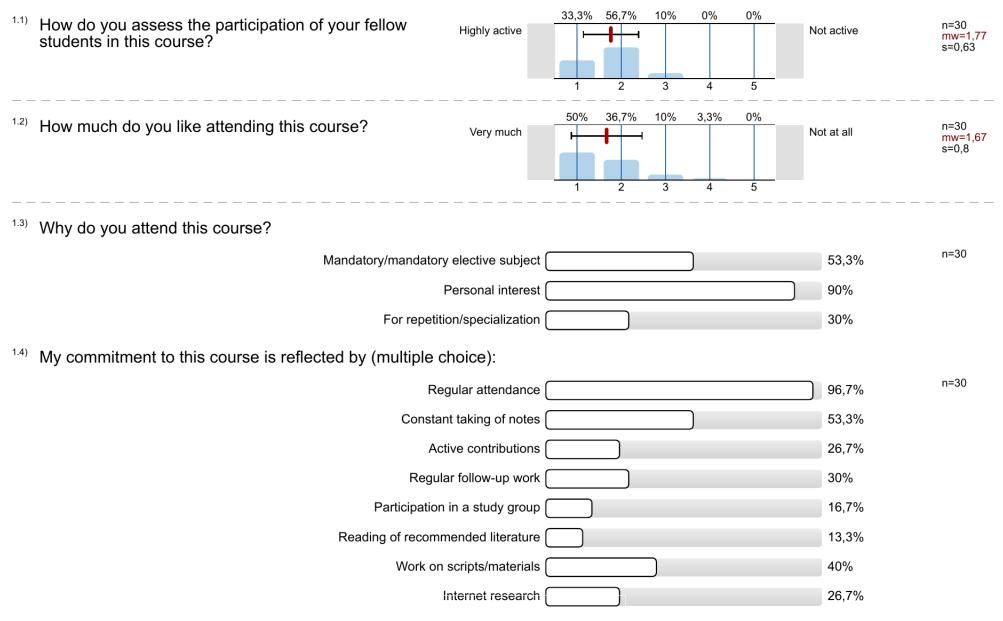
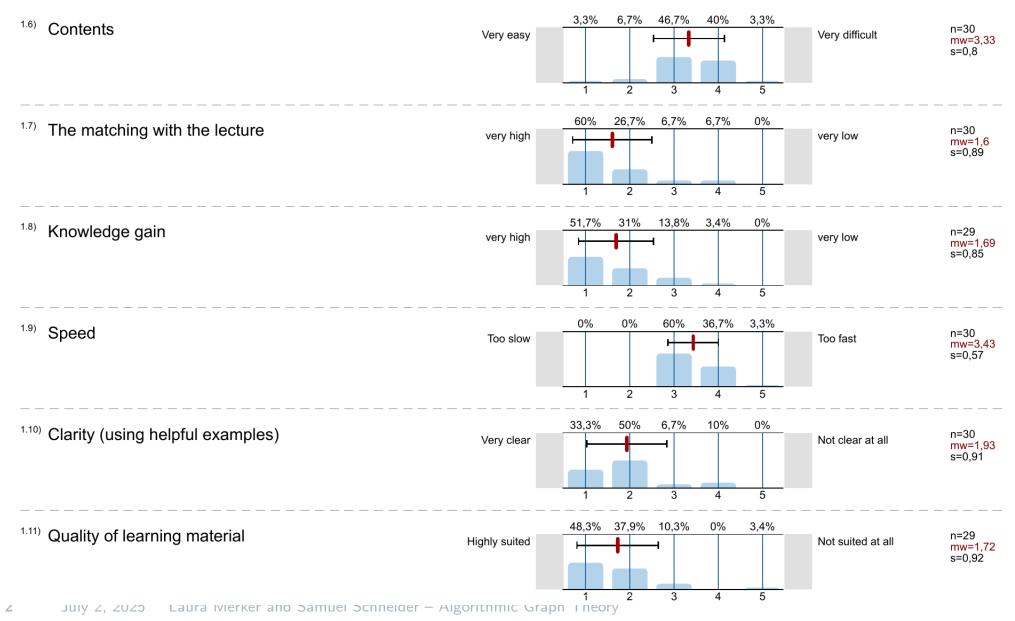


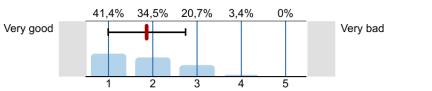
Algorithmic Graph Theory Problem Session 5

Laura Merker and Samuel Schneider, July 4, 2025





^{1.5)} Coordination of the content with that of other courses of my studies plan is ...

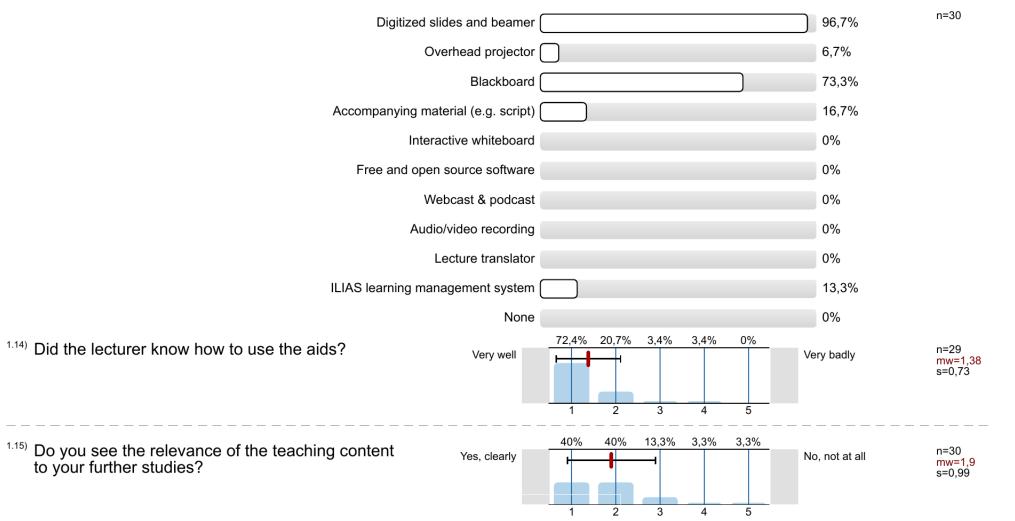


n=29

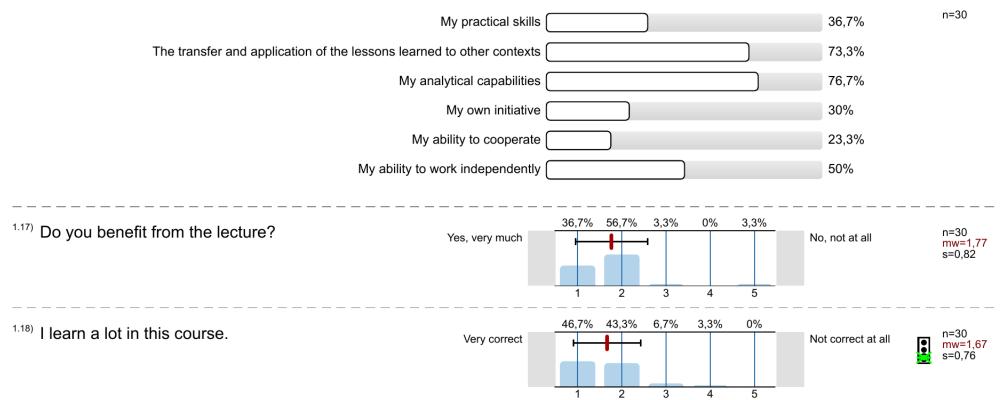
mw=1,86

s=0.88

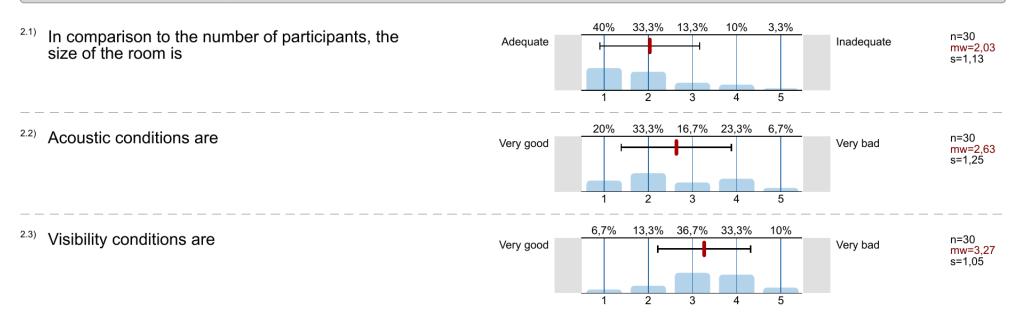
^{1.12)} Which aids (media) does the lecturer use to support teaching and learning? (multiple choice)

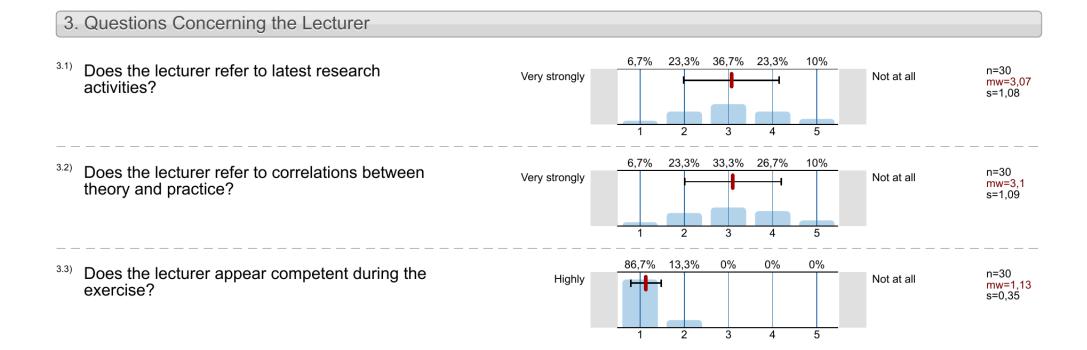


^{1.16)} The course supports (multiple choice)

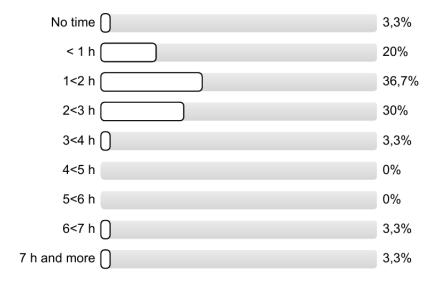


2. Questions Concerning the Venue

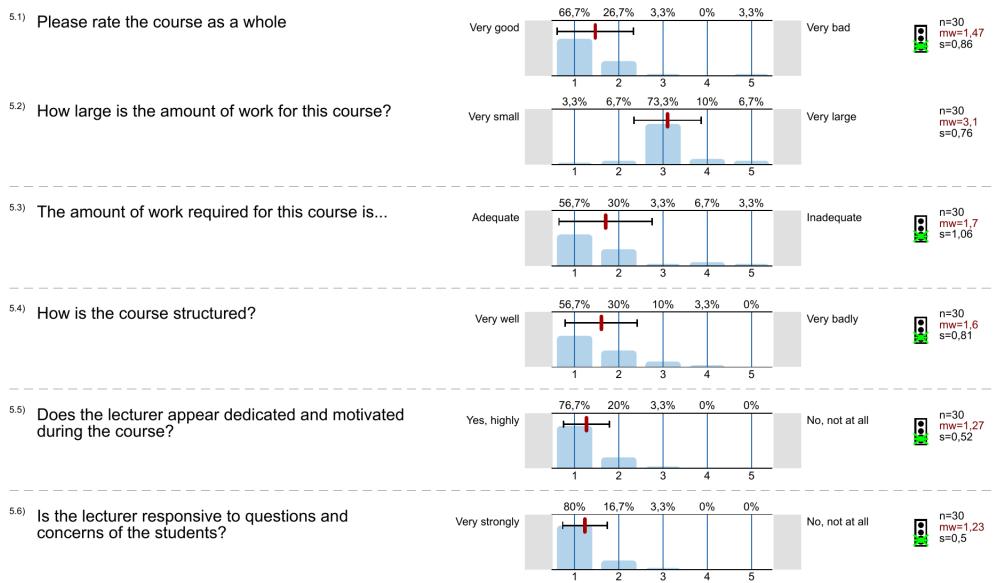




^{4.5)} How much time have you spent on the average per week for the preparation and follow-up of this course (so far!)?



n=30



2 July 2, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory

What you liked most:

format of the exercise class, i.e., new problems in class, brief discussion of exercise sheet
reading a paper

What you did not like at all:

- - the room
- exercises are too easy
 - no learning materials
 - problem class harder than sheet
 - course language

- exercise sheet + new problems in class is too much
- unclear how many problems one should be able to solve
- exercises are too hard, presentation of solutions too short
- irregular uploads of the exercise sheets
- some exercises unrelated to lecture

Problems

(1) Prove that trees are comparability graphs.

(2) Prove that a graph has chromatic number at most k if and only if it admits a linear vertex order \prec without a monotone path on k+1 vertices.

Path (v_1, \ldots, v_{k+1}) with $v_1 \prec \cdots \prec v_{k+1}$

(3) Let G be a graph. Recall: $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is chordal}\} = \operatorname{tw}(G)$.

Find a characterization for $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is comparability graph}\} = ?.$

(4) Look at the following paper: https://dmtcs.episciences.org/14441/pdf

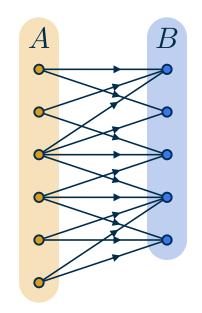
- What is a poset and how is it related to comparability graphs?
- Familiarize yourselves with C-I graphs: definition, examples, non-examples, interesting properties
- Characterize the trees that are C-I graphs.
- Relate this paper to Problem Session 3.

Trees and Comparability

bipartite graphs

Prove that trees are comparability graphs.

- Let G be a bipartite graph with bipartitions A and B.
- Set $F = E \cap (A \times B)$, i.e. orient every edge from A to B.
- Let $ab \in F$. Then, for all $v \in V(G)$ we have $bv \notin F$.
- \implies F is transitive and G is comparability graph

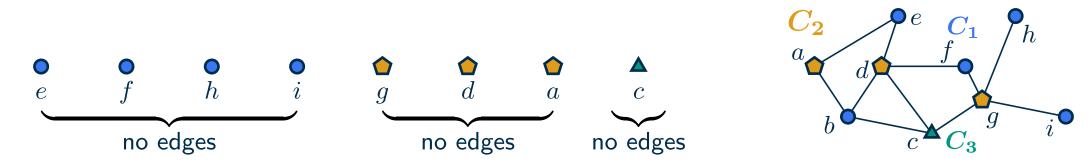


Monotone Paths and the Chromatic Number

Prove that for every graph G it holds that: $\chi(G) \leq k \iff G$ admits vertex order σ s.t. the longest monotone path has length at most k

" \Rightarrow ": Consider a partition $V(G) = C_1 \dot{\cup} \dots, \dot{\cup} C_k$ into color classes (independent sets).

• Let σ be some ordering with $C_1 \prec_{\sigma} \cdots \prec_{\sigma} C_k$.



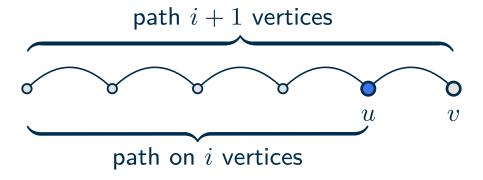
• Every path (v_1, \ldots, v_ℓ) in σ with $v_1 \prec_{\sigma} \cdots \prec_{\sigma} v_\ell$ contains at most one vertex of each C_i .

Monotone Paths and the Chromatic Number

Prove that for every graph G it holds that: $\chi(G) \leq k \iff G$ admits vertex order σ s.t. the longest monotone path has length at most k

" \Leftarrow ": Let σ be a such that the longest monotone path has length at most k

- $\hfill\blacksquare$ Define the color of v as the length of the longest monotone path ending in v
- Clearly this uses at most k colors.
- Let $uv \in E(G)$, $u \prec_{\sigma} v$ with u being assigned color i.
- Then, v has color at least i + 1.
- \implies coloring is proper.



Comparability Supergraphs

Let G be a graph. Recall: $\min\{\omega(G') \mid G' \supseteq G \text{ is chordal}\} = \operatorname{tw}(G)$.

Find a characterization for $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is comparability graph}\} = ?.$

Comparability graphs admit vertex orderings such that \longrightarrow \implies

Thus monotone paths imply cliques

Note: "←" also holds since cliques contain paths

We conclude: Let \prec be a vertex ordering certifying that H is a comparability graph. Then the length of a longest monotone path in \prec equals $\omega(H)$.

Does this sound familiar?

Recall: $\chi(H) \leq k \iff H$ admits vertex order s.t. longst monotone path has k vertices. **Idea:** Prove that $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is comparability graph}\} = \chi(G)$

Comparability Supergraphs

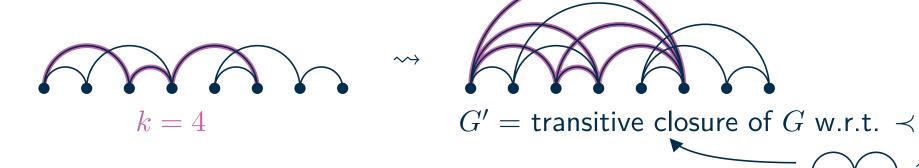
Idea: Prove that $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is comparability graph}\} = \chi(G)$ " \geq " Let \blacksquare G be a graph

• G' be comparability supergraph of G that minimizes $\omega(G')$ Then: $\chi(G) \le \chi(G') = \omega(G')$ since G' is perfect

Comparability Supergraphs

Idea: Prove that $\min\{\omega(G') \mid G' \supseteq G, G' \text{ is comparability graph}\} = \chi(G)$

" \leq " Let \prec be a vertex order of G such that the longest monotone path has length $k = \chi(G)$ (Exercise 2)



only transitive edges added \implies maximal monotone paths in G' same as in Gclique on c vertices contains monotone path on c vertices $\implies \omega(G') \le k = \chi(G)$

Posets and C-I Graphs

Section 2: Preliminaries

 \rightarrow contains all necessary definitions, usually brief and technical \rightarrow too be read only as needed (skip and come back if necessary)

Poset (P, \leq) : Partially ordered set, i.e., a (finite) set together with a partial order \leq **Example:** $P = \{a, b, c, d\}; a \leq b \leq d; a \leq c$

Comparability graph: vertex set = P, distinct x, y adjacent iff x, y comparable, i.e., $x \le y$ or $y \le x$

Cover graph G(P): transitive reduction of the comparability graph, i.e., remove transitive edges $d \\ \bullet \\ c$

Incomparability graph: complement of the comparability graph, $b \rightarrow i.e., x, y$ adjacent iff incomparable

C-I graph: Union of the cover graph and the incomparability graph of a poset, $b \leftarrow c$ i.e., only the transitive edges are missing

C-I Graphs

C-I graph: Union of the cover graph and the incomparability graph of a poset, $b \leftarrow c$ i.e., only the transitive edges are missing

- Lemmas 1,2,3, Theorem 1
- not hereditary
- \blacksquare connections to different subclasses of perfect graphs \rightarrow introduction

C-I Trees

Claim: A tree is a C-I graph if and only if it is a path.

Theorem 3: For G chordal: G C-I graph \iff G has at most 2 independent simplicial vertices.

- trees are chordal
- leaves are simplicial and independent
- the trees with at most two leaves are exactly the paths

 \rightarrow Graph that is not a C-I graph: tree with ≥ 3 leaves

- Recall from Problem Session 3: Bretscher, Corneil, Habib, and Paul (2008) give a simplified LexBFS-based algorithm for recognizing cographs.
- used for recognizing C-I cographs

